/* SPDX-License-Identifier: BSD-3-Clause * * Copyright 2016 Freescale Semiconductor, Inc. All rights reserved. * Copyright 2017,2019 NXP * */ /* System headers */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "dpaa_ethdev.h" #include "dpaa_rxtx.h" #include #include #include #include #include #include #include #include #define DPAA_MBUF_TO_CONTIG_FD(_mbuf, _fd, _bpid) \ do { \ (_fd)->cmd = 0; \ (_fd)->opaque_addr = 0; \ (_fd)->opaque = QM_FD_CONTIG << DPAA_FD_FORMAT_SHIFT; \ (_fd)->opaque |= ((_mbuf)->data_off) << DPAA_FD_OFFSET_SHIFT; \ (_fd)->opaque |= (_mbuf)->pkt_len; \ (_fd)->addr = (_mbuf)->buf_iova; \ (_fd)->bpid = _bpid; \ } while (0) #if (defined RTE_LIBRTE_DPAA_DEBUG_DRIVER) static void dpaa_display_frame(const struct qm_fd *fd) { int ii; char *ptr; printf("%s::bpid %x addr %08x%08x, format %d off %d, len %d stat %x\n", __func__, fd->bpid, fd->addr_hi, fd->addr_lo, fd->format, fd->offset, fd->length20, fd->status); ptr = (char *)rte_dpaa_mem_ptov(fd->addr); ptr += fd->offset; printf("%02x ", *ptr); for (ii = 1; ii < fd->length20; ii++) { printf("%02x ", *ptr); if ((ii % 16) == 0) printf("\n"); ptr++; } printf("\n"); } #else #define dpaa_display_frame(a) #endif static inline void dpaa_slow_parsing(struct rte_mbuf *m __rte_unused, uint64_t prs __rte_unused) { DPAA_DP_LOG(DEBUG, "Slow parsing"); /*TBD:XXX: to be implemented*/ } static inline void dpaa_eth_packet_info(struct rte_mbuf *m, void *fd_virt_addr) { struct annotations_t *annot = GET_ANNOTATIONS(fd_virt_addr); uint64_t prs = *((uintptr_t *)(&annot->parse)) & DPAA_PARSE_MASK; DPAA_DP_LOG(DEBUG, " Parsing mbuf: %p with annotations: %p", m, annot); switch (prs) { case DPAA_PKT_TYPE_IPV4: m->packet_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4; break; case DPAA_PKT_TYPE_IPV6: m->packet_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6; break; case DPAA_PKT_TYPE_ETHER: m->packet_type = RTE_PTYPE_L2_ETHER; break; case DPAA_PKT_TYPE_IPV4_FRAG: case DPAA_PKT_TYPE_IPV4_FRAG_UDP: case DPAA_PKT_TYPE_IPV4_FRAG_TCP: case DPAA_PKT_TYPE_IPV4_FRAG_SCTP: m->packet_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_FRAG; break; case DPAA_PKT_TYPE_IPV6_FRAG: case DPAA_PKT_TYPE_IPV6_FRAG_UDP: case DPAA_PKT_TYPE_IPV6_FRAG_TCP: case DPAA_PKT_TYPE_IPV6_FRAG_SCTP: m->packet_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_FRAG; break; case DPAA_PKT_TYPE_IPV4_EXT: m->packet_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT; break; case DPAA_PKT_TYPE_IPV6_EXT: m->packet_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT; break; case DPAA_PKT_TYPE_IPV4_TCP: m->packet_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP; break; case DPAA_PKT_TYPE_IPV6_TCP: m->packet_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP; break; case DPAA_PKT_TYPE_IPV4_UDP: m->packet_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP; break; case DPAA_PKT_TYPE_IPV6_UDP: m->packet_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP; break; case DPAA_PKT_TYPE_IPV4_EXT_UDP: m->packet_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_UDP; break; case DPAA_PKT_TYPE_IPV6_EXT_UDP: m->packet_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP; break; case DPAA_PKT_TYPE_IPV4_EXT_TCP: m->packet_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_TCP; break; case DPAA_PKT_TYPE_IPV6_EXT_TCP: m->packet_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_TCP; break; case DPAA_PKT_TYPE_IPV4_SCTP: m->packet_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_SCTP; break; case DPAA_PKT_TYPE_IPV6_SCTP: m->packet_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_SCTP; break; case DPAA_PKT_TYPE_NONE: m->packet_type = 0; break; /* More switch cases can be added */ default: dpaa_slow_parsing(m, prs); } m->tx_offload = annot->parse.ip_off[0]; m->tx_offload |= (annot->parse.l4_off - annot->parse.ip_off[0]) << DPAA_PKT_L3_LEN_SHIFT; /* Set the hash values */ m->hash.rss = (uint32_t)(annot->hash); /* All packets with Bad checksum are dropped by interface (and * corresponding notification issued to RX error queues). */ m->ol_flags = PKT_RX_RSS_HASH | PKT_RX_IP_CKSUM_GOOD; /* Check if Vlan is present */ if (prs & DPAA_PARSE_VLAN_MASK) m->ol_flags |= PKT_RX_VLAN; /* Packet received without stripping the vlan */ } static inline void dpaa_checksum(struct rte_mbuf *mbuf) { struct rte_ether_hdr *eth_hdr = rte_pktmbuf_mtod(mbuf, struct rte_ether_hdr *); char *l3_hdr = (char *)eth_hdr + mbuf->l2_len; struct rte_ipv4_hdr *ipv4_hdr = (struct rte_ipv4_hdr *)l3_hdr; struct rte_ipv6_hdr *ipv6_hdr = (struct rte_ipv6_hdr *)l3_hdr; DPAA_DP_LOG(DEBUG, "Calculating checksum for mbuf: %p", mbuf); if (((mbuf->packet_type & RTE_PTYPE_L3_MASK) == RTE_PTYPE_L3_IPV4) || ((mbuf->packet_type & RTE_PTYPE_L3_MASK) == RTE_PTYPE_L3_IPV4_EXT)) { ipv4_hdr = (struct rte_ipv4_hdr *)l3_hdr; ipv4_hdr->hdr_checksum = 0; ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr); } else if (((mbuf->packet_type & RTE_PTYPE_L3_MASK) == RTE_PTYPE_L3_IPV6) || ((mbuf->packet_type & RTE_PTYPE_L3_MASK) == RTE_PTYPE_L3_IPV6_EXT)) ipv6_hdr = (struct rte_ipv6_hdr *)l3_hdr; if ((mbuf->packet_type & RTE_PTYPE_L4_MASK) == RTE_PTYPE_L4_TCP) { struct rte_tcp_hdr *tcp_hdr = (struct rte_tcp_hdr *)(l3_hdr + mbuf->l3_len); tcp_hdr->cksum = 0; if (eth_hdr->ether_type == htons(RTE_ETHER_TYPE_IPV4)) tcp_hdr->cksum = rte_ipv4_udptcp_cksum(ipv4_hdr, tcp_hdr); else /* assume ethertype == RTE_ETHER_TYPE_IPV6 */ tcp_hdr->cksum = rte_ipv6_udptcp_cksum(ipv6_hdr, tcp_hdr); } else if ((mbuf->packet_type & RTE_PTYPE_L4_MASK) == RTE_PTYPE_L4_UDP) { struct rte_udp_hdr *udp_hdr = (struct rte_udp_hdr *)(l3_hdr + mbuf->l3_len); udp_hdr->dgram_cksum = 0; if (eth_hdr->ether_type == htons(RTE_ETHER_TYPE_IPV4)) udp_hdr->dgram_cksum = rte_ipv4_udptcp_cksum(ipv4_hdr, udp_hdr); else /* assume ethertype == RTE_ETHER_TYPE_IPV6 */ udp_hdr->dgram_cksum = rte_ipv6_udptcp_cksum(ipv6_hdr, udp_hdr); } } static inline void dpaa_checksum_offload(struct rte_mbuf *mbuf, struct qm_fd *fd, char *prs_buf) { struct dpaa_eth_parse_results_t *prs; DPAA_DP_LOG(DEBUG, " Offloading checksum for mbuf: %p", mbuf); prs = GET_TX_PRS(prs_buf); prs->l3r = 0; prs->l4r = 0; if (((mbuf->packet_type & RTE_PTYPE_L3_MASK) == RTE_PTYPE_L3_IPV4) || ((mbuf->packet_type & RTE_PTYPE_L3_MASK) == RTE_PTYPE_L3_IPV4_EXT)) prs->l3r = DPAA_L3_PARSE_RESULT_IPV4; else if (((mbuf->packet_type & RTE_PTYPE_L3_MASK) == RTE_PTYPE_L3_IPV6) || ((mbuf->packet_type & RTE_PTYPE_L3_MASK) == RTE_PTYPE_L3_IPV6_EXT)) prs->l3r = DPAA_L3_PARSE_RESULT_IPV6; if ((mbuf->packet_type & RTE_PTYPE_L4_MASK) == RTE_PTYPE_L4_TCP) prs->l4r = DPAA_L4_PARSE_RESULT_TCP; else if ((mbuf->packet_type & RTE_PTYPE_L4_MASK) == RTE_PTYPE_L4_UDP) prs->l4r = DPAA_L4_PARSE_RESULT_UDP; prs->ip_off[0] = mbuf->l2_len; prs->l4_off = mbuf->l3_len + mbuf->l2_len; /* Enable L3 (and L4, if TCP or UDP) HW checksum*/ fd->cmd = DPAA_FD_CMD_RPD | DPAA_FD_CMD_DTC; } static inline void dpaa_unsegmented_checksum(struct rte_mbuf *mbuf, struct qm_fd *fd_arr) { if (!mbuf->packet_type) { struct rte_net_hdr_lens hdr_lens; mbuf->packet_type = rte_net_get_ptype(mbuf, &hdr_lens, RTE_PTYPE_L2_MASK | RTE_PTYPE_L3_MASK | RTE_PTYPE_L4_MASK); mbuf->l2_len = hdr_lens.l2_len; mbuf->l3_len = hdr_lens.l3_len; } if (mbuf->data_off < (DEFAULT_TX_ICEOF + sizeof(struct dpaa_eth_parse_results_t))) { DPAA_DP_LOG(DEBUG, "Checksum offload Err: " "Not enough Headroom " "space for correct Checksum offload." "So Calculating checksum in Software."); dpaa_checksum(mbuf); } else { dpaa_checksum_offload(mbuf, fd_arr, mbuf->buf_addr); } } struct rte_mbuf * dpaa_eth_sg_to_mbuf(const struct qm_fd *fd, uint32_t ifid) { struct dpaa_bp_info *bp_info = DPAA_BPID_TO_POOL_INFO(fd->bpid); struct rte_mbuf *first_seg, *prev_seg, *cur_seg, *temp; struct qm_sg_entry *sgt, *sg_temp; void *vaddr, *sg_vaddr; int i = 0; uint16_t fd_offset = fd->offset; vaddr = DPAA_MEMPOOL_PTOV(bp_info, qm_fd_addr(fd)); if (!vaddr) { DPAA_PMD_ERR("unable to convert physical address"); return NULL; } sgt = vaddr + fd_offset; sg_temp = &sgt[i++]; hw_sg_to_cpu(sg_temp); temp = (struct rte_mbuf *)((char *)vaddr - bp_info->meta_data_size); sg_vaddr = DPAA_MEMPOOL_PTOV(bp_info, qm_sg_entry_get64(sg_temp)); first_seg = (struct rte_mbuf *)((char *)sg_vaddr - bp_info->meta_data_size); first_seg->data_off = sg_temp->offset; first_seg->data_len = sg_temp->length; first_seg->pkt_len = sg_temp->length; rte_mbuf_refcnt_set(first_seg, 1); first_seg->port = ifid; first_seg->nb_segs = 1; first_seg->ol_flags = 0; prev_seg = first_seg; while (i < DPAA_SGT_MAX_ENTRIES) { sg_temp = &sgt[i++]; hw_sg_to_cpu(sg_temp); sg_vaddr = DPAA_MEMPOOL_PTOV(bp_info, qm_sg_entry_get64(sg_temp)); cur_seg = (struct rte_mbuf *)((char *)sg_vaddr - bp_info->meta_data_size); cur_seg->data_off = sg_temp->offset; cur_seg->data_len = sg_temp->length; first_seg->pkt_len += sg_temp->length; first_seg->nb_segs += 1; rte_mbuf_refcnt_set(cur_seg, 1); prev_seg->next = cur_seg; if (sg_temp->final) { cur_seg->next = NULL; break; } prev_seg = cur_seg; } DPAA_DP_LOG(DEBUG, "Received an SG frame len =%d, num_sg =%d", first_seg->pkt_len, first_seg->nb_segs); dpaa_eth_packet_info(first_seg, vaddr); rte_pktmbuf_free_seg(temp); return first_seg; } static inline struct rte_mbuf * dpaa_eth_fd_to_mbuf(const struct qm_fd *fd, uint32_t ifid) { struct rte_mbuf *mbuf; struct dpaa_bp_info *bp_info = DPAA_BPID_TO_POOL_INFO(fd->bpid); void *ptr; uint8_t format = (fd->opaque & DPAA_FD_FORMAT_MASK) >> DPAA_FD_FORMAT_SHIFT; uint16_t offset; uint32_t length; if (unlikely(format == qm_fd_sg)) return dpaa_eth_sg_to_mbuf(fd, ifid); offset = (fd->opaque & DPAA_FD_OFFSET_MASK) >> DPAA_FD_OFFSET_SHIFT; length = fd->opaque & DPAA_FD_LENGTH_MASK; DPAA_DP_LOG(DEBUG, " FD--->MBUF off %d len = %d", offset, length); /* Ignoring case when format != qm_fd_contig */ dpaa_display_frame(fd); ptr = DPAA_MEMPOOL_PTOV(bp_info, qm_fd_addr(fd)); mbuf = (struct rte_mbuf *)((char *)ptr - bp_info->meta_data_size); /* Prefetch the Parse results and packet data to L1 */ rte_prefetch0((void *)((uint8_t *)ptr + DEFAULT_RX_ICEOF)); mbuf->data_off = offset; mbuf->data_len = length; mbuf->pkt_len = length; mbuf->port = ifid; mbuf->nb_segs = 1; mbuf->ol_flags = 0; mbuf->next = NULL; rte_mbuf_refcnt_set(mbuf, 1); dpaa_eth_packet_info(mbuf, mbuf->buf_addr); return mbuf; } uint16_t dpaa_free_mbuf(const struct qm_fd *fd) { struct rte_mbuf *mbuf; struct dpaa_bp_info *bp_info; uint8_t format; void *ptr; bp_info = DPAA_BPID_TO_POOL_INFO(fd->bpid); format = (fd->opaque & DPAA_FD_FORMAT_MASK) >> DPAA_FD_FORMAT_SHIFT; if (unlikely(format == qm_fd_sg)) { struct rte_mbuf *first_seg, *prev_seg, *cur_seg, *temp; struct qm_sg_entry *sgt, *sg_temp; void *vaddr, *sg_vaddr; int i = 0; uint16_t fd_offset = fd->offset; vaddr = DPAA_MEMPOOL_PTOV(bp_info, qm_fd_addr(fd)); if (!vaddr) { DPAA_PMD_ERR("unable to convert physical address"); return -1; } sgt = vaddr + fd_offset; sg_temp = &sgt[i++]; hw_sg_to_cpu(sg_temp); temp = (struct rte_mbuf *) ((char *)vaddr - bp_info->meta_data_size); sg_vaddr = DPAA_MEMPOOL_PTOV(bp_info, qm_sg_entry_get64(sg_temp)); first_seg = (struct rte_mbuf *)((char *)sg_vaddr - bp_info->meta_data_size); first_seg->nb_segs = 1; prev_seg = first_seg; while (i < DPAA_SGT_MAX_ENTRIES) { sg_temp = &sgt[i++]; hw_sg_to_cpu(sg_temp); sg_vaddr = DPAA_MEMPOOL_PTOV(bp_info, qm_sg_entry_get64(sg_temp)); cur_seg = (struct rte_mbuf *)((char *)sg_vaddr - bp_info->meta_data_size); first_seg->nb_segs += 1; prev_seg->next = cur_seg; if (sg_temp->final) { cur_seg->next = NULL; break; } prev_seg = cur_seg; } rte_pktmbuf_free_seg(temp); rte_pktmbuf_free_seg(first_seg); return 0; } ptr = DPAA_MEMPOOL_PTOV(bp_info, qm_fd_addr(fd)); mbuf = (struct rte_mbuf *)((char *)ptr - bp_info->meta_data_size); rte_pktmbuf_free(mbuf); return 0; } /* Specific for LS1043 */ void dpaa_rx_cb_no_prefetch(struct qman_fq **fq, struct qm_dqrr_entry **dqrr, void **bufs, int num_bufs) { struct rte_mbuf *mbuf; struct dpaa_bp_info *bp_info; const struct qm_fd *fd; void *ptr; struct dpaa_if *dpaa_intf; uint16_t offset, i; uint32_t length; uint8_t format; bp_info = DPAA_BPID_TO_POOL_INFO(dqrr[0]->fd.bpid); ptr = rte_dpaa_mem_ptov(qm_fd_addr(&dqrr[0]->fd)); rte_prefetch0((void *)((uint8_t *)ptr + DEFAULT_RX_ICEOF)); bufs[0] = (struct rte_mbuf *)((char *)ptr - bp_info->meta_data_size); for (i = 0; i < num_bufs; i++) { if (i < num_bufs - 1) { bp_info = DPAA_BPID_TO_POOL_INFO(dqrr[i + 1]->fd.bpid); ptr = rte_dpaa_mem_ptov(qm_fd_addr(&dqrr[i + 1]->fd)); rte_prefetch0((void *)((uint8_t *)ptr + DEFAULT_RX_ICEOF)); bufs[i + 1] = (struct rte_mbuf *)((char *)ptr - bp_info->meta_data_size); } fd = &dqrr[i]->fd; dpaa_intf = fq[0]->dpaa_intf; format = (fd->opaque & DPAA_FD_FORMAT_MASK) >> DPAA_FD_FORMAT_SHIFT; if (unlikely(format == qm_fd_sg)) { bufs[i] = dpaa_eth_sg_to_mbuf(fd, dpaa_intf->ifid); continue; } offset = (fd->opaque & DPAA_FD_OFFSET_MASK) >> DPAA_FD_OFFSET_SHIFT; length = fd->opaque & DPAA_FD_LENGTH_MASK; mbuf = bufs[i]; mbuf->data_off = offset; mbuf->data_len = length; mbuf->pkt_len = length; mbuf->port = dpaa_intf->ifid; mbuf->nb_segs = 1; mbuf->ol_flags = 0; mbuf->next = NULL; rte_mbuf_refcnt_set(mbuf, 1); dpaa_eth_packet_info(mbuf, mbuf->buf_addr); } } void dpaa_rx_cb(struct qman_fq **fq, struct qm_dqrr_entry **dqrr, void **bufs, int num_bufs) { struct rte_mbuf *mbuf; const struct qm_fd *fd; struct dpaa_if *dpaa_intf; uint16_t offset, i; uint32_t length; uint8_t format; for (i = 0; i < num_bufs; i++) { fd = &dqrr[i]->fd; dpaa_intf = fq[0]->dpaa_intf; format = (fd->opaque & DPAA_FD_FORMAT_MASK) >> DPAA_FD_FORMAT_SHIFT; if (unlikely(format == qm_fd_sg)) { bufs[i] = dpaa_eth_sg_to_mbuf(fd, dpaa_intf->ifid); continue; } offset = (fd->opaque & DPAA_FD_OFFSET_MASK) >> DPAA_FD_OFFSET_SHIFT; length = fd->opaque & DPAA_FD_LENGTH_MASK; mbuf = bufs[i]; mbuf->data_off = offset; mbuf->data_len = length; mbuf->pkt_len = length; mbuf->port = dpaa_intf->ifid; mbuf->nb_segs = 1; mbuf->ol_flags = 0; mbuf->next = NULL; rte_mbuf_refcnt_set(mbuf, 1); dpaa_eth_packet_info(mbuf, mbuf->buf_addr); } } void dpaa_rx_cb_prepare(struct qm_dqrr_entry *dq, void **bufs) { struct dpaa_bp_info *bp_info = DPAA_BPID_TO_POOL_INFO(dq->fd.bpid); void *ptr = rte_dpaa_mem_ptov(qm_fd_addr(&dq->fd)); /* In case of LS1046, annotation stashing is disabled due to L2 cache * being bottleneck in case of multicore scanario for this platform. * So we prefetch the annoation beforehand, so that it is available * in cache when accessed. */ rte_prefetch0((void *)((uint8_t *)ptr + DEFAULT_RX_ICEOF)); *bufs = (struct rte_mbuf *)((char *)ptr - bp_info->meta_data_size); } static uint16_t dpaa_eth_queue_portal_rx(struct qman_fq *fq, struct rte_mbuf **bufs, uint16_t nb_bufs) { int ret; if (unlikely(!fq->qp_initialized)) { ret = rte_dpaa_portal_fq_init((void *)0, fq); if (ret) { DPAA_PMD_ERR("Failure in affining portal %d", ret); return 0; } fq->qp_initialized = 1; } return qman_portal_poll_rx(nb_bufs, (void **)bufs, fq->qp); } enum qman_cb_dqrr_result dpaa_rx_cb_parallel(void *event, struct qman_portal *qm __always_unused, struct qman_fq *fq, const struct qm_dqrr_entry *dqrr, void **bufs) { u32 ifid = ((struct dpaa_if *)fq->dpaa_intf)->ifid; struct rte_mbuf *mbuf; struct rte_event *ev = (struct rte_event *)event; mbuf = dpaa_eth_fd_to_mbuf(&dqrr->fd, ifid); ev->event_ptr = (void *)mbuf; ev->flow_id = fq->ev.flow_id; ev->sub_event_type = fq->ev.sub_event_type; ev->event_type = RTE_EVENT_TYPE_ETHDEV; ev->op = RTE_EVENT_OP_NEW; ev->sched_type = fq->ev.sched_type; ev->queue_id = fq->ev.queue_id; ev->priority = fq->ev.priority; ev->impl_opaque = (uint8_t)DPAA_INVALID_MBUF_SEQN; mbuf->seqn = DPAA_INVALID_MBUF_SEQN; *bufs = mbuf; return qman_cb_dqrr_consume; } enum qman_cb_dqrr_result dpaa_rx_cb_atomic(void *event, struct qman_portal *qm __always_unused, struct qman_fq *fq, const struct qm_dqrr_entry *dqrr, void **bufs) { u8 index; u32 ifid = ((struct dpaa_if *)fq->dpaa_intf)->ifid; struct rte_mbuf *mbuf; struct rte_event *ev = (struct rte_event *)event; mbuf = dpaa_eth_fd_to_mbuf(&dqrr->fd, ifid); ev->event_ptr = (void *)mbuf; ev->flow_id = fq->ev.flow_id; ev->sub_event_type = fq->ev.sub_event_type; ev->event_type = RTE_EVENT_TYPE_ETHDEV; ev->op = RTE_EVENT_OP_NEW; ev->sched_type = fq->ev.sched_type; ev->queue_id = fq->ev.queue_id; ev->priority = fq->ev.priority; /* Save active dqrr entries */ index = DQRR_PTR2IDX(dqrr); DPAA_PER_LCORE_DQRR_SIZE++; DPAA_PER_LCORE_DQRR_HELD |= 1 << index; DPAA_PER_LCORE_DQRR_MBUF(index) = mbuf; ev->impl_opaque = index + 1; mbuf->seqn = (uint32_t)index + 1; *bufs = mbuf; return qman_cb_dqrr_defer; } uint16_t dpaa_eth_queue_rx(void *q, struct rte_mbuf **bufs, uint16_t nb_bufs) { struct qman_fq *fq = q; struct qm_dqrr_entry *dq; uint32_t num_rx = 0, ifid = ((struct dpaa_if *)fq->dpaa_intf)->ifid; int num_rx_bufs, ret; uint32_t vdqcr_flags = 0; if (unlikely(rte_dpaa_bpid_info == NULL && rte_eal_process_type() == RTE_PROC_SECONDARY)) rte_dpaa_bpid_info = fq->bp_array; if (likely(fq->is_static)) return dpaa_eth_queue_portal_rx(fq, bufs, nb_bufs); if (unlikely(!DPAA_PER_LCORE_PORTAL)) { ret = rte_dpaa_portal_init((void *)0); if (ret) { DPAA_PMD_ERR("Failure in affining portal"); return 0; } } /* Until request for four buffers, we provide exact number of buffers. * Otherwise we do not set the QM_VDQCR_EXACT flag. * Not setting QM_VDQCR_EXACT flag can provide two more buffers than * requested, so we request two less in this case. */ if (nb_bufs < 4) { vdqcr_flags = QM_VDQCR_EXACT; num_rx_bufs = nb_bufs; } else { num_rx_bufs = nb_bufs > DPAA_MAX_DEQUEUE_NUM_FRAMES ? (DPAA_MAX_DEQUEUE_NUM_FRAMES - 2) : (nb_bufs - 2); } ret = qman_set_vdq(fq, num_rx_bufs, vdqcr_flags); if (ret) return 0; do { dq = qman_dequeue(fq); if (!dq) continue; bufs[num_rx++] = dpaa_eth_fd_to_mbuf(&dq->fd, ifid); qman_dqrr_consume(fq, dq); } while (fq->flags & QMAN_FQ_STATE_VDQCR); return num_rx; } int dpaa_eth_mbuf_to_sg_fd(struct rte_mbuf *mbuf, struct qm_fd *fd, uint32_t bpid) { struct rte_mbuf *cur_seg = mbuf, *prev_seg = NULL; struct dpaa_bp_info *bp_info = DPAA_BPID_TO_POOL_INFO(bpid); struct rte_mbuf *temp, *mi; struct qm_sg_entry *sg_temp, *sgt; int i = 0; DPAA_DP_LOG(DEBUG, "Creating SG FD to transmit"); temp = rte_pktmbuf_alloc(bp_info->mp); if (!temp) { DPAA_PMD_ERR("Failure in allocation of mbuf"); return -1; } if (temp->buf_len < ((mbuf->nb_segs * sizeof(struct qm_sg_entry)) + temp->data_off)) { DPAA_PMD_ERR("Insufficient space in mbuf for SG entries"); return -1; } fd->cmd = 0; fd->opaque_addr = 0; if (mbuf->ol_flags & DPAA_TX_CKSUM_OFFLOAD_MASK) { if (!mbuf->packet_type) { struct rte_net_hdr_lens hdr_lens; mbuf->packet_type = rte_net_get_ptype(mbuf, &hdr_lens, RTE_PTYPE_L2_MASK | RTE_PTYPE_L3_MASK | RTE_PTYPE_L4_MASK); mbuf->l2_len = hdr_lens.l2_len; mbuf->l3_len = hdr_lens.l3_len; } if (temp->data_off < DEFAULT_TX_ICEOF + sizeof(struct dpaa_eth_parse_results_t)) temp->data_off = DEFAULT_TX_ICEOF + sizeof(struct dpaa_eth_parse_results_t); dcbz_64(temp->buf_addr); dpaa_checksum_offload(mbuf, fd, temp->buf_addr); } sgt = temp->buf_addr + temp->data_off; fd->format = QM_FD_SG; fd->addr = temp->buf_iova; fd->offset = temp->data_off; fd->bpid = bpid; fd->length20 = mbuf->pkt_len; while (i < DPAA_SGT_MAX_ENTRIES) { sg_temp = &sgt[i++]; sg_temp->opaque = 0; sg_temp->val = 0; sg_temp->addr = cur_seg->buf_iova; sg_temp->offset = cur_seg->data_off; sg_temp->length = cur_seg->data_len; if (RTE_MBUF_DIRECT(cur_seg)) { if (rte_mbuf_refcnt_read(cur_seg) > 1) { /*If refcnt > 1, invalid bpid is set to ensure * buffer is not freed by HW. */ sg_temp->bpid = 0xff; rte_mbuf_refcnt_update(cur_seg, -1); } else { sg_temp->bpid = DPAA_MEMPOOL_TO_BPID(cur_seg->pool); } cur_seg = cur_seg->next; } else { /* Get owner MBUF from indirect buffer */ mi = rte_mbuf_from_indirect(cur_seg); if (rte_mbuf_refcnt_read(mi) > 1) { /*If refcnt > 1, invalid bpid is set to ensure * owner buffer is not freed by HW. */ sg_temp->bpid = 0xff; } else { sg_temp->bpid = DPAA_MEMPOOL_TO_BPID(mi->pool); rte_mbuf_refcnt_update(mi, 1); } prev_seg = cur_seg; cur_seg = cur_seg->next; prev_seg->next = NULL; rte_pktmbuf_free(prev_seg); } if (cur_seg == NULL) { sg_temp->final = 1; cpu_to_hw_sg(sg_temp); break; } cpu_to_hw_sg(sg_temp); } return 0; } /* Handle mbufs which are not segmented (non SG) */ static inline void tx_on_dpaa_pool_unsegmented(struct rte_mbuf *mbuf, struct dpaa_bp_info *bp_info, struct qm_fd *fd_arr) { struct rte_mbuf *mi = NULL; if (RTE_MBUF_DIRECT(mbuf)) { if (rte_mbuf_refcnt_read(mbuf) > 1) { /* In case of direct mbuf and mbuf being cloned, * BMAN should _not_ release buffer. */ DPAA_MBUF_TO_CONTIG_FD(mbuf, fd_arr, 0xff); /* Buffer should be releasd by EAL */ rte_mbuf_refcnt_update(mbuf, -1); } else { /* In case of direct mbuf and no cloning, mbuf can be * released by BMAN. */ DPAA_MBUF_TO_CONTIG_FD(mbuf, fd_arr, bp_info->bpid); } } else { /* This is data-containing core mbuf: 'mi' */ mi = rte_mbuf_from_indirect(mbuf); if (rte_mbuf_refcnt_read(mi) > 1) { /* In case of indirect mbuf, and mbuf being cloned, * BMAN should _not_ release it and let EAL release * it through pktmbuf_free below. */ DPAA_MBUF_TO_CONTIG_FD(mbuf, fd_arr, 0xff); } else { /* In case of indirect mbuf, and no cloning, core mbuf * should be released by BMAN. * Increate refcnt of core mbuf so that when * pktmbuf_free is called and mbuf is released, EAL * doesn't try to release core mbuf which would have * been released by BMAN. */ rte_mbuf_refcnt_update(mi, 1); DPAA_MBUF_TO_CONTIG_FD(mbuf, fd_arr, bp_info->bpid); } rte_pktmbuf_free(mbuf); } if (mbuf->ol_flags & DPAA_TX_CKSUM_OFFLOAD_MASK) dpaa_unsegmented_checksum(mbuf, fd_arr); } /* Handle all mbufs on dpaa BMAN managed pool */ static inline uint16_t tx_on_dpaa_pool(struct rte_mbuf *mbuf, struct dpaa_bp_info *bp_info, struct qm_fd *fd_arr) { DPAA_DP_LOG(DEBUG, "BMAN offloaded buffer, mbuf: %p", mbuf); if (mbuf->nb_segs == 1) { /* Case for non-segmented buffers */ tx_on_dpaa_pool_unsegmented(mbuf, bp_info, fd_arr); } else if (mbuf->nb_segs > 1 && mbuf->nb_segs <= DPAA_SGT_MAX_ENTRIES) { if (dpaa_eth_mbuf_to_sg_fd(mbuf, fd_arr, bp_info->bpid)) { DPAA_PMD_DEBUG("Unable to create Scatter Gather FD"); return 1; } } else { DPAA_PMD_DEBUG("Number of Segments not supported"); return 1; } return 0; } /* Handle all mbufs on an external pool (non-dpaa) */ static inline struct rte_mbuf * reallocate_mbuf(struct qman_fq *txq, struct rte_mbuf *mbuf) { struct dpaa_if *dpaa_intf = txq->dpaa_intf; struct dpaa_bp_info *bp_info = dpaa_intf->bp_info; struct rte_mbuf *new_mbufs[DPAA_SGT_MAX_ENTRIES + 1] = {0}; struct rte_mbuf *temp_mbuf; int num_new_segs, mbuf_greater, ret, extra_seg = 0, i = 0; uint64_t mbufs_size, bytes_to_copy, offset1 = 0, offset2 = 0; char *data; DPAA_DP_LOG(DEBUG, "Reallocating transmit buffer"); mbufs_size = bp_info->size - bp_info->meta_data_size - RTE_PKTMBUF_HEADROOM; extra_seg = !!(mbuf->pkt_len % mbufs_size); num_new_segs = (mbuf->pkt_len / mbufs_size) + extra_seg; ret = rte_pktmbuf_alloc_bulk(bp_info->mp, new_mbufs, num_new_segs); if (ret != 0) { DPAA_DP_LOG(DEBUG, "Allocation for new buffers failed"); return NULL; } temp_mbuf = mbuf; while (temp_mbuf) { /* If mbuf data is less than new mbuf remaining memory */ if ((temp_mbuf->data_len - offset1) < (mbufs_size - offset2)) { bytes_to_copy = temp_mbuf->data_len - offset1; mbuf_greater = -1; /* If mbuf data is greater than new mbuf remaining memory */ } else if ((temp_mbuf->data_len - offset1) > (mbufs_size - offset2)) { bytes_to_copy = mbufs_size - offset2; mbuf_greater = 1; /* if mbuf data is equal to new mbuf remaining memory */ } else { bytes_to_copy = temp_mbuf->data_len - offset1; mbuf_greater = 0; } /* Copy the data */ data = rte_pktmbuf_append(new_mbufs[0], bytes_to_copy); rte_memcpy((uint8_t *)data, rte_pktmbuf_mtod_offset(mbuf, void *, offset1), bytes_to_copy); /* Set new offsets and the temp buffers */ if (mbuf_greater == -1) { offset1 = 0; offset2 += bytes_to_copy; temp_mbuf = temp_mbuf->next; } else if (mbuf_greater == 1) { offset2 = 0; offset1 += bytes_to_copy; new_mbufs[i]->next = new_mbufs[i + 1]; new_mbufs[0]->nb_segs++; i++; } else { offset1 = 0; offset2 = 0; temp_mbuf = temp_mbuf->next; new_mbufs[i]->next = new_mbufs[i + 1]; if (new_mbufs[i + 1]) new_mbufs[0]->nb_segs++; i++; } } /* Copy other required fields */ new_mbufs[0]->ol_flags = mbuf->ol_flags; new_mbufs[0]->packet_type = mbuf->packet_type; new_mbufs[0]->tx_offload = mbuf->tx_offload; rte_pktmbuf_free(mbuf); return new_mbufs[0]; } uint16_t dpaa_eth_queue_tx(void *q, struct rte_mbuf **bufs, uint16_t nb_bufs) { struct rte_mbuf *mbuf, *mi = NULL; struct rte_mempool *mp; struct dpaa_bp_info *bp_info; struct qm_fd fd_arr[DPAA_TX_BURST_SIZE]; uint32_t frames_to_send, loop, sent = 0; uint16_t state; int ret, realloc_mbuf = 0; uint32_t seqn, index, flags[DPAA_TX_BURST_SIZE] = {0}; if (unlikely(!DPAA_PER_LCORE_PORTAL)) { ret = rte_dpaa_portal_init((void *)0); if (ret) { DPAA_PMD_ERR("Failure in affining portal"); return 0; } } DPAA_DP_LOG(DEBUG, "Transmitting %d buffers on queue: %p", nb_bufs, q); while (nb_bufs) { frames_to_send = (nb_bufs > DPAA_TX_BURST_SIZE) ? DPAA_TX_BURST_SIZE : nb_bufs; for (loop = 0; loop < frames_to_send; loop++) { mbuf = *(bufs++); /* In case the data offset is not multiple of 16, * FMAN can stall because of an errata. So reallocate * the buffer in such case. */ if (dpaa_svr_family == SVR_LS1043A_FAMILY && (mbuf->data_off & 0x7F) != 0x0) realloc_mbuf = 1; seqn = mbuf->seqn; if (seqn != DPAA_INVALID_MBUF_SEQN) { index = seqn - 1; if (DPAA_PER_LCORE_DQRR_HELD & (1 << index)) { flags[loop] = ((index & QM_EQCR_DCA_IDXMASK) << 8); flags[loop] |= QMAN_ENQUEUE_FLAG_DCA; DPAA_PER_LCORE_DQRR_SIZE--; DPAA_PER_LCORE_DQRR_HELD &= ~(1 << index); } } if (likely(RTE_MBUF_DIRECT(mbuf))) { mp = mbuf->pool; bp_info = DPAA_MEMPOOL_TO_POOL_INFO(mp); if (likely(mp->ops_index == bp_info->dpaa_ops_index && mbuf->nb_segs == 1 && realloc_mbuf == 0 && rte_mbuf_refcnt_read(mbuf) == 1)) { DPAA_MBUF_TO_CONTIG_FD(mbuf, &fd_arr[loop], bp_info->bpid); if (mbuf->ol_flags & DPAA_TX_CKSUM_OFFLOAD_MASK) dpaa_unsegmented_checksum(mbuf, &fd_arr[loop]); continue; } } else { mi = rte_mbuf_from_indirect(mbuf); mp = mi->pool; } bp_info = DPAA_MEMPOOL_TO_POOL_INFO(mp); if (unlikely(mp->ops_index != bp_info->dpaa_ops_index || realloc_mbuf == 1)) { struct rte_mbuf *temp_mbuf; temp_mbuf = reallocate_mbuf(q, mbuf); if (!temp_mbuf) { /* Set frames_to_send & nb_bufs so * that packets are transmitted till * previous frame. */ frames_to_send = loop; nb_bufs = loop; goto send_pkts; } mbuf = temp_mbuf; realloc_mbuf = 0; } state = tx_on_dpaa_pool(mbuf, bp_info, &fd_arr[loop]); if (unlikely(state)) { /* Set frames_to_send & nb_bufs so * that packets are transmitted till * previous frame. */ frames_to_send = loop; nb_bufs = loop; goto send_pkts; } } send_pkts: loop = 0; while (loop < frames_to_send) { loop += qman_enqueue_multi(q, &fd_arr[loop], &flags[loop], frames_to_send - loop); } nb_bufs -= frames_to_send; sent += frames_to_send; } DPAA_DP_LOG(DEBUG, "Transmitted %d buffers on queue: %p", sent, q); return sent; } uint16_t dpaa_eth_queue_tx_slow(void *q, struct rte_mbuf **bufs, uint16_t nb_bufs) { qman_ern_poll_free(); return dpaa_eth_queue_tx(q, bufs, nb_bufs); } uint16_t dpaa_eth_tx_drop_all(void *q __rte_unused, struct rte_mbuf **bufs __rte_unused, uint16_t nb_bufs __rte_unused) { DPAA_DP_LOG(DEBUG, "Drop all packets"); /* Drop all incoming packets. No need to free packets here * because the rte_eth f/w frees up the packets through tx_buffer * callback in case this functions returns count less than nb_bufs */ return 0; }