/* SPDX-License-Identifier: BSD-3-Clause * * Copyright(c) 2019-2021 Xilinx, Inc. * Copyright(c) 2016-2019 Solarflare Communications Inc. * * This software was jointly developed between OKTET Labs (under contract * for Solarflare) and Solarflare Communications, Inc. */ #include #include "efx.h" #include "sfc.h" #include "sfc_debug.h" #include "sfc_log.h" #include "sfc_ev.h" #include "sfc_rx.h" #include "sfc_kvargs.h" #include "sfc_tweak.h" /* * Maximum number of Rx queue flush attempt in the case of failure or * flush timeout */ #define SFC_RX_QFLUSH_ATTEMPTS (3) /* * Time to wait between event queue polling attempts when waiting for Rx * queue flush done or failed events. */ #define SFC_RX_QFLUSH_POLL_WAIT_MS (1) /* * Maximum number of event queue polling attempts when waiting for Rx queue * flush done or failed events. It defines Rx queue flush attempt timeout * together with SFC_RX_QFLUSH_POLL_WAIT_MS. */ #define SFC_RX_QFLUSH_POLL_ATTEMPTS (2000) void sfc_rx_qflush_done(struct sfc_rxq_info *rxq_info) { rxq_info->state |= SFC_RXQ_FLUSHED; rxq_info->state &= ~SFC_RXQ_FLUSHING; } void sfc_rx_qflush_failed(struct sfc_rxq_info *rxq_info) { rxq_info->state |= SFC_RXQ_FLUSH_FAILED; rxq_info->state &= ~SFC_RXQ_FLUSHING; } static int sfc_efx_rx_qprime(struct sfc_efx_rxq *rxq) { int rc = 0; if (rxq->evq->read_ptr_primed != rxq->evq->read_ptr) { rc = efx_ev_qprime(rxq->evq->common, rxq->evq->read_ptr); if (rc == 0) rxq->evq->read_ptr_primed = rxq->evq->read_ptr; } return rc; } static void sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq) { unsigned int free_space; unsigned int bulks; void *objs[SFC_RX_REFILL_BULK]; efsys_dma_addr_t addr[RTE_DIM(objs)]; unsigned int added = rxq->added; unsigned int id; unsigned int i; struct sfc_efx_rx_sw_desc *rxd; struct rte_mbuf *m; uint16_t port_id = rxq->dp.dpq.port_id; free_space = rxq->max_fill_level - (added - rxq->completed); if (free_space < rxq->refill_threshold) return; bulks = free_space / RTE_DIM(objs); /* refill_threshold guarantees that bulks is positive */ SFC_ASSERT(bulks > 0); id = added & rxq->ptr_mask; do { if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs, RTE_DIM(objs)) < 0)) { /* * It is hardly a safe way to increment counter * from different contexts, but all PMDs do it. */ rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed += RTE_DIM(objs); /* Return if we have posted nothing yet */ if (added == rxq->added) return; /* Push posted */ break; } for (i = 0; i < RTE_DIM(objs); ++i, id = (id + 1) & rxq->ptr_mask) { m = objs[i]; __rte_mbuf_raw_sanity_check(m); rxd = &rxq->sw_desc[id]; rxd->mbuf = m; m->data_off = RTE_PKTMBUF_HEADROOM; m->port = port_id; addr[i] = rte_pktmbuf_iova(m); } efx_rx_qpost(rxq->common, addr, rxq->buf_size, RTE_DIM(objs), rxq->completed, added); added += RTE_DIM(objs); } while (--bulks > 0); SFC_ASSERT(added != rxq->added); rxq->added = added; efx_rx_qpush(rxq->common, added, &rxq->pushed); } static uint64_t sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags) { uint64_t mbuf_flags = 0; switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) { case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4): mbuf_flags |= PKT_RX_IP_CKSUM_GOOD; break; case EFX_PKT_IPV4: mbuf_flags |= PKT_RX_IP_CKSUM_BAD; break; default: RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0); SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) == PKT_RX_IP_CKSUM_UNKNOWN); break; } switch ((desc_flags & (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) { case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP): case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP): mbuf_flags |= PKT_RX_L4_CKSUM_GOOD; break; case EFX_PKT_TCP: case EFX_PKT_UDP: mbuf_flags |= PKT_RX_L4_CKSUM_BAD; break; default: RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0); SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) == PKT_RX_L4_CKSUM_UNKNOWN); break; } return mbuf_flags; } static uint32_t sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags) { return RTE_PTYPE_L2_ETHER | ((desc_flags & EFX_PKT_IPV4) ? RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) | ((desc_flags & EFX_PKT_IPV6) ? RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) | ((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) | ((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0); } static const uint32_t * sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps) { static const uint32_t ptypes[] = { RTE_PTYPE_L2_ETHER, RTE_PTYPE_L3_IPV4_EXT_UNKNOWN, RTE_PTYPE_L3_IPV6_EXT_UNKNOWN, RTE_PTYPE_L4_TCP, RTE_PTYPE_L4_UDP, RTE_PTYPE_UNKNOWN }; return ptypes; } static void sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags, struct rte_mbuf *m) { uint8_t *mbuf_data; if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0) return; mbuf_data = rte_pktmbuf_mtod(m, uint8_t *); if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) { m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common, EFX_RX_HASHALG_TOEPLITZ, mbuf_data); m->ol_flags |= PKT_RX_RSS_HASH; } } static uint16_t sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { struct sfc_dp_rxq *dp_rxq = rx_queue; struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq); unsigned int completed; unsigned int prefix_size = rxq->prefix_size; unsigned int done_pkts = 0; boolean_t discard_next = B_FALSE; struct rte_mbuf *scatter_pkt = NULL; if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)) return 0; sfc_ev_qpoll(rxq->evq); completed = rxq->completed; while (completed != rxq->pending && done_pkts < nb_pkts) { unsigned int id; struct sfc_efx_rx_sw_desc *rxd; struct rte_mbuf *m; unsigned int seg_len; unsigned int desc_flags; id = completed++ & rxq->ptr_mask; rxd = &rxq->sw_desc[id]; m = rxd->mbuf; desc_flags = rxd->flags; if (discard_next) goto discard; if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD)) goto discard; if (desc_flags & EFX_PKT_PREFIX_LEN) { uint16_t tmp_size; int rc __rte_unused; rc = efx_pseudo_hdr_pkt_length_get(rxq->common, rte_pktmbuf_mtod(m, uint8_t *), &tmp_size); SFC_ASSERT(rc == 0); seg_len = tmp_size; } else { seg_len = rxd->size - prefix_size; } rte_pktmbuf_data_len(m) = seg_len; rte_pktmbuf_pkt_len(m) = seg_len; if (scatter_pkt != NULL) { if (rte_pktmbuf_chain(scatter_pkt, m) != 0) { rte_pktmbuf_free(scatter_pkt); goto discard; } /* The packet to deliver */ m = scatter_pkt; } if (desc_flags & EFX_PKT_CONT) { /* The packet is scattered, more fragments to come */ scatter_pkt = m; /* Further fragments have no prefix */ prefix_size = 0; continue; } /* Scattered packet is done */ scatter_pkt = NULL; /* The first fragment of the packet has prefix */ prefix_size = rxq->prefix_size; m->ol_flags = sfc_efx_rx_desc_flags_to_offload_flags(desc_flags); m->packet_type = sfc_efx_rx_desc_flags_to_packet_type(desc_flags); /* * Extract RSS hash from the packet prefix and * set the corresponding field (if needed and possible) */ sfc_efx_rx_set_rss_hash(rxq, desc_flags, m); m->data_off += prefix_size; *rx_pkts++ = m; done_pkts++; continue; discard: discard_next = ((desc_flags & EFX_PKT_CONT) != 0); rte_mbuf_raw_free(m); rxd->mbuf = NULL; } /* pending is only moved when entire packet is received */ SFC_ASSERT(scatter_pkt == NULL); rxq->completed = completed; sfc_efx_rx_qrefill(rxq); if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN) sfc_efx_rx_qprime(rxq); return done_pkts; } static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending; static unsigned int sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq) { struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq); if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0) return 0; sfc_ev_qpoll(rxq->evq); return rxq->pending - rxq->completed; } static sfc_dp_rx_qdesc_status_t sfc_efx_rx_qdesc_status; static int sfc_efx_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset) { struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq); if (unlikely(offset > rxq->ptr_mask)) return -EINVAL; /* * Poll EvQ to derive up-to-date 'rxq->pending' figure; * it is required for the queue to be running, but the * check is omitted because API design assumes that it * is the duty of the caller to satisfy all conditions */ SFC_ASSERT((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == SFC_EFX_RXQ_FLAG_RUNNING); sfc_ev_qpoll(rxq->evq); /* * There is a handful of reserved entries in the ring, * but an explicit check whether the offset points to * a reserved entry is neglected since the two checks * below rely on the figures which take the HW limits * into account and thus if an entry is reserved, the * checks will fail and UNAVAIL code will be returned */ if (offset < (rxq->pending - rxq->completed)) return RTE_ETH_RX_DESC_DONE; if (offset < (rxq->added - rxq->completed)) return RTE_ETH_RX_DESC_AVAIL; return RTE_ETH_RX_DESC_UNAVAIL; } boolean_t sfc_rx_check_scatter(size_t pdu, size_t rx_buf_size, uint32_t rx_prefix_size, boolean_t rx_scatter_enabled, uint32_t rx_scatter_max, const char **error) { uint32_t effective_rx_scatter_max; uint32_t rx_scatter_bufs; effective_rx_scatter_max = rx_scatter_enabled ? rx_scatter_max : 1; rx_scatter_bufs = EFX_DIV_ROUND_UP(pdu + rx_prefix_size, rx_buf_size); if (rx_scatter_bufs > effective_rx_scatter_max) { if (rx_scatter_enabled) *error = "Possible number of Rx scatter buffers exceeds maximum number"; else *error = "Rx scatter is disabled and RxQ mbuf pool object size is too small"; return B_FALSE; } return B_TRUE; } /** Get Rx datapath ops by the datapath RxQ handle */ const struct sfc_dp_rx * sfc_dp_rx_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq) { const struct sfc_dp_queue *dpq = &dp_rxq->dpq; struct rte_eth_dev *eth_dev; struct sfc_adapter_priv *sap; SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id)); eth_dev = &rte_eth_devices[dpq->port_id]; sap = sfc_adapter_priv_by_eth_dev(eth_dev); return sap->dp_rx; } struct sfc_rxq_info * sfc_rxq_info_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq) { const struct sfc_dp_queue *dpq = &dp_rxq->dpq; struct rte_eth_dev *eth_dev; struct sfc_adapter_shared *sas; SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id)); eth_dev = &rte_eth_devices[dpq->port_id]; sas = sfc_adapter_shared_by_eth_dev(eth_dev); SFC_ASSERT(dpq->queue_id < sas->rxq_count); return &sas->rxq_info[dpq->queue_id]; } struct sfc_rxq * sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq) { const struct sfc_dp_queue *dpq = &dp_rxq->dpq; struct rte_eth_dev *eth_dev; struct sfc_adapter *sa; SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id)); eth_dev = &rte_eth_devices[dpq->port_id]; sa = sfc_adapter_by_eth_dev(eth_dev); SFC_ASSERT(dpq->queue_id < sfc_sa2shared(sa)->rxq_count); return &sa->rxq_ctrl[dpq->queue_id]; } static sfc_dp_rx_qsize_up_rings_t sfc_efx_rx_qsize_up_rings; static int sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc, __rte_unused struct sfc_dp_rx_hw_limits *limits, __rte_unused struct rte_mempool *mb_pool, unsigned int *rxq_entries, unsigned int *evq_entries, unsigned int *rxq_max_fill_level) { *rxq_entries = nb_rx_desc; *evq_entries = nb_rx_desc; *rxq_max_fill_level = EFX_RXQ_LIMIT(*rxq_entries); return 0; } static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate; static int sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id, const struct rte_pci_addr *pci_addr, int socket_id, const struct sfc_dp_rx_qcreate_info *info, struct sfc_dp_rxq **dp_rxqp) { struct sfc_efx_rxq *rxq; int rc; rc = ENOMEM; rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq), RTE_CACHE_LINE_SIZE, socket_id); if (rxq == NULL) goto fail_rxq_alloc; sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr); rc = ENOMEM; rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc", info->rxq_entries, sizeof(*rxq->sw_desc), RTE_CACHE_LINE_SIZE, socket_id); if (rxq->sw_desc == NULL) goto fail_desc_alloc; /* efx datapath is bound to efx control path */ rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq; if (info->flags & SFC_RXQ_FLAG_RSS_HASH) rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH; rxq->ptr_mask = info->rxq_entries - 1; rxq->batch_max = info->batch_max; rxq->prefix_size = info->prefix_size; rxq->max_fill_level = info->max_fill_level; rxq->refill_threshold = info->refill_threshold; rxq->buf_size = info->buf_size; rxq->refill_mb_pool = info->refill_mb_pool; *dp_rxqp = &rxq->dp; return 0; fail_desc_alloc: rte_free(rxq); fail_rxq_alloc: return rc; } static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy; static void sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq) { struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq); rte_free(rxq->sw_desc); rte_free(rxq); } /* Use qstop and qstart functions in the case of qstart failure */ static sfc_dp_rx_qstop_t sfc_efx_rx_qstop; static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge; static sfc_dp_rx_qstart_t sfc_efx_rx_qstart; static int sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq, __rte_unused unsigned int evq_read_ptr, const efx_rx_prefix_layout_t *pinfo) { /* libefx-based datapath is specific to libefx-based PMD */ struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq); struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq); int rc; /* * libefx API is used to extract information from Rx prefix and * it guarantees consistency. Just do length check to ensure * that we reserved space in Rx buffers correctly. */ if (rxq->prefix_size != pinfo->erpl_length) return ENOTSUP; rxq->common = crxq->common; rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0; sfc_efx_rx_qrefill(rxq); rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING); if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN) { rc = sfc_efx_rx_qprime(rxq); if (rc != 0) goto fail_rx_qprime; } return 0; fail_rx_qprime: sfc_efx_rx_qstop(dp_rxq, NULL); sfc_efx_rx_qpurge(dp_rxq); return rc; } static void sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq, __rte_unused unsigned int *evq_read_ptr) { struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq); rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING; /* libefx-based datapath is bound to libefx-based PMD and uses * event queue structure directly. So, there is no necessity to * return EvQ read pointer. */ } static void sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq) { struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq); unsigned int i; struct sfc_efx_rx_sw_desc *rxd; for (i = rxq->completed; i != rxq->added; ++i) { rxd = &rxq->sw_desc[i & rxq->ptr_mask]; rte_mbuf_raw_free(rxd->mbuf); rxd->mbuf = NULL; /* Packed stream relies on 0 in inactive SW desc. * Rx queue stop is not performance critical, so * there is no harm to do it always. */ rxd->flags = 0; rxd->size = 0; } rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED; } static sfc_dp_rx_intr_enable_t sfc_efx_rx_intr_enable; static int sfc_efx_rx_intr_enable(struct sfc_dp_rxq *dp_rxq) { struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq); int rc = 0; rxq->flags |= SFC_EFX_RXQ_FLAG_INTR_EN; if (rxq->flags & SFC_EFX_RXQ_FLAG_STARTED) { rc = sfc_efx_rx_qprime(rxq); if (rc != 0) rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN; } return rc; } static sfc_dp_rx_intr_disable_t sfc_efx_rx_intr_disable; static int sfc_efx_rx_intr_disable(struct sfc_dp_rxq *dp_rxq) { struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq); /* Cannot disarm, just disable rearm */ rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN; return 0; } struct sfc_dp_rx sfc_efx_rx = { .dp = { .name = SFC_KVARG_DATAPATH_EFX, .type = SFC_DP_RX, .hw_fw_caps = SFC_DP_HW_FW_CAP_RX_EFX, }, .features = SFC_DP_RX_FEAT_INTR, .dev_offload_capa = DEV_RX_OFFLOAD_CHECKSUM | DEV_RX_OFFLOAD_RSS_HASH, .queue_offload_capa = DEV_RX_OFFLOAD_SCATTER, .qsize_up_rings = sfc_efx_rx_qsize_up_rings, .qcreate = sfc_efx_rx_qcreate, .qdestroy = sfc_efx_rx_qdestroy, .qstart = sfc_efx_rx_qstart, .qstop = sfc_efx_rx_qstop, .qpurge = sfc_efx_rx_qpurge, .supported_ptypes_get = sfc_efx_supported_ptypes_get, .qdesc_npending = sfc_efx_rx_qdesc_npending, .qdesc_status = sfc_efx_rx_qdesc_status, .intr_enable = sfc_efx_rx_intr_enable, .intr_disable = sfc_efx_rx_intr_disable, .pkt_burst = sfc_efx_recv_pkts, }; static void sfc_rx_qflush(struct sfc_adapter *sa, unsigned int sw_index) { struct sfc_rxq_info *rxq_info; struct sfc_rxq *rxq; unsigned int retry_count; unsigned int wait_count; int rc; rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index]; SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED); rxq = &sa->rxq_ctrl[sw_index]; /* * Retry Rx queue flushing in the case of flush failed or * timeout. In the worst case it can delay for 6 seconds. */ for (retry_count = 0; ((rxq_info->state & SFC_RXQ_FLUSHED) == 0) && (retry_count < SFC_RX_QFLUSH_ATTEMPTS); ++retry_count) { rc = efx_rx_qflush(rxq->common); if (rc != 0) { rxq_info->state |= (rc == EALREADY) ? SFC_RXQ_FLUSHED : SFC_RXQ_FLUSH_FAILED; break; } rxq_info->state &= ~SFC_RXQ_FLUSH_FAILED; rxq_info->state |= SFC_RXQ_FLUSHING; /* * Wait for Rx queue flush done or failed event at least * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied * by SFC_RX_QFLUSH_POLL_ATTEMPTS). */ wait_count = 0; do { rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS); sfc_ev_qpoll(rxq->evq); } while ((rxq_info->state & SFC_RXQ_FLUSHING) && (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS)); if (rxq_info->state & SFC_RXQ_FLUSHING) sfc_err(sa, "RxQ %u flush timed out", sw_index); if (rxq_info->state & SFC_RXQ_FLUSH_FAILED) sfc_err(sa, "RxQ %u flush failed", sw_index); if (rxq_info->state & SFC_RXQ_FLUSHED) sfc_notice(sa, "RxQ %u flushed", sw_index); } sa->priv.dp_rx->qpurge(rxq_info->dp); } static int sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq) { struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; boolean_t need_rss = (rss->channels > 0) ? B_TRUE : B_FALSE; struct sfc_port *port = &sa->port; int rc; /* * If promiscuous or all-multicast mode has been requested, setting * filter for the default Rx queue might fail, in particular, while * running over PCI function which is not a member of corresponding * privilege groups; if this occurs, few iterations will be made to * repeat this step without promiscuous and all-multicast flags set */ retry: rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, need_rss); if (rc == 0) return 0; else if (rc != EOPNOTSUPP) return rc; if (port->promisc) { sfc_warn(sa, "promiscuous mode has been requested, " "but the HW rejects it"); sfc_warn(sa, "promiscuous mode will be disabled"); port->promisc = B_FALSE; sa->eth_dev->data->promiscuous = 0; rc = sfc_set_rx_mode_unchecked(sa); if (rc != 0) return rc; goto retry; } if (port->allmulti) { sfc_warn(sa, "all-multicast mode has been requested, " "but the HW rejects it"); sfc_warn(sa, "all-multicast mode will be disabled"); port->allmulti = B_FALSE; sa->eth_dev->data->all_multicast = 0; rc = sfc_set_rx_mode_unchecked(sa); if (rc != 0) return rc; goto retry; } return rc; } int sfc_rx_qstart(struct sfc_adapter *sa, unsigned int sw_index) { struct sfc_rxq_info *rxq_info; struct sfc_rxq *rxq; struct sfc_evq *evq; efx_rx_prefix_layout_t pinfo; int rc; sfc_log_init(sa, "sw_index=%u", sw_index); SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count); rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index]; SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED); rxq = &sa->rxq_ctrl[sw_index]; evq = rxq->evq; rc = sfc_ev_qstart(evq, sfc_evq_index_by_rxq_sw_index(sa, sw_index)); if (rc != 0) goto fail_ev_qstart; switch (rxq_info->type) { case EFX_RXQ_TYPE_DEFAULT: rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type, rxq->buf_size, &rxq->mem, rxq_info->entries, 0 /* not used on EF10 */, rxq_info->type_flags, evq->common, &rxq->common); break; case EFX_RXQ_TYPE_ES_SUPER_BUFFER: { struct rte_mempool *mp = rxq_info->refill_mb_pool; struct rte_mempool_info mp_info; rc = rte_mempool_ops_get_info(mp, &mp_info); if (rc != 0) { /* Positive errno is used in the driver */ rc = -rc; goto fail_mp_get_info; } if (mp_info.contig_block_size <= 0) { rc = EINVAL; goto fail_bad_contig_block_size; } rc = efx_rx_qcreate_es_super_buffer(sa->nic, rxq->hw_index, 0, mp_info.contig_block_size, rxq->buf_size, mp->header_size + mp->elt_size + mp->trailer_size, sa->rxd_wait_timeout_ns, &rxq->mem, rxq_info->entries, rxq_info->type_flags, evq->common, &rxq->common); break; } default: rc = ENOTSUP; } if (rc != 0) goto fail_rx_qcreate; rc = efx_rx_prefix_get_layout(rxq->common, &pinfo); if (rc != 0) goto fail_prefix_get_layout; efx_rx_qenable(rxq->common); rc = sa->priv.dp_rx->qstart(rxq_info->dp, evq->read_ptr, &pinfo); if (rc != 0) goto fail_dp_qstart; rxq_info->state |= SFC_RXQ_STARTED; if (sw_index == 0 && !sfc_sa2shared(sa)->isolated) { rc = sfc_rx_default_rxq_set_filter(sa, rxq); if (rc != 0) goto fail_mac_filter_default_rxq_set; } /* It seems to be used by DPDK for debug purposes only ('rte_ether') */ sa->eth_dev->data->rx_queue_state[sw_index] = RTE_ETH_QUEUE_STATE_STARTED; return 0; fail_mac_filter_default_rxq_set: sfc_rx_qflush(sa, sw_index); sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr); rxq_info->state = SFC_RXQ_INITIALIZED; fail_dp_qstart: efx_rx_qdestroy(rxq->common); fail_prefix_get_layout: fail_rx_qcreate: fail_bad_contig_block_size: fail_mp_get_info: sfc_ev_qstop(evq); fail_ev_qstart: return rc; } void sfc_rx_qstop(struct sfc_adapter *sa, unsigned int sw_index) { struct sfc_rxq_info *rxq_info; struct sfc_rxq *rxq; sfc_log_init(sa, "sw_index=%u", sw_index); SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count); rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index]; if (rxq_info->state == SFC_RXQ_INITIALIZED) return; SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED); /* It seems to be used by DPDK for debug purposes only ('rte_ether') */ sa->eth_dev->data->rx_queue_state[sw_index] = RTE_ETH_QUEUE_STATE_STOPPED; rxq = &sa->rxq_ctrl[sw_index]; sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr); if (sw_index == 0) efx_mac_filter_default_rxq_clear(sa->nic); sfc_rx_qflush(sa, sw_index); rxq_info->state = SFC_RXQ_INITIALIZED; efx_rx_qdestroy(rxq->common); sfc_ev_qstop(rxq->evq); } static uint64_t sfc_rx_get_offload_mask(struct sfc_adapter *sa) { const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); uint64_t no_caps = 0; if (encp->enc_tunnel_encapsulations_supported == 0) no_caps |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM; return ~no_caps; } uint64_t sfc_rx_get_dev_offload_caps(struct sfc_adapter *sa) { uint64_t caps = sa->priv.dp_rx->dev_offload_capa; caps |= DEV_RX_OFFLOAD_JUMBO_FRAME; return caps & sfc_rx_get_offload_mask(sa); } uint64_t sfc_rx_get_queue_offload_caps(struct sfc_adapter *sa) { return sa->priv.dp_rx->queue_offload_capa & sfc_rx_get_offload_mask(sa); } static int sfc_rx_qcheck_conf(struct sfc_adapter *sa, unsigned int rxq_max_fill_level, const struct rte_eth_rxconf *rx_conf, __rte_unused uint64_t offloads) { int rc = 0; if (rx_conf->rx_thresh.pthresh != 0 || rx_conf->rx_thresh.hthresh != 0 || rx_conf->rx_thresh.wthresh != 0) { sfc_warn(sa, "RxQ prefetch/host/writeback thresholds are not supported"); } if (rx_conf->rx_free_thresh > rxq_max_fill_level) { sfc_err(sa, "RxQ free threshold too large: %u vs maximum %u", rx_conf->rx_free_thresh, rxq_max_fill_level); rc = EINVAL; } if (rx_conf->rx_drop_en == 0) { sfc_err(sa, "RxQ drop disable is not supported"); rc = EINVAL; } return rc; } static unsigned int sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool) { uint32_t data_off; uint32_t order; /* The mbuf object itself is always cache line aligned */ order = rte_bsf32(RTE_CACHE_LINE_SIZE); /* Data offset from mbuf object start */ data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) + RTE_PKTMBUF_HEADROOM; order = MIN(order, rte_bsf32(data_off)); return 1u << order; } static uint16_t sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool) { const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start); const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end); uint16_t buf_size; unsigned int buf_aligned; unsigned int start_alignment; unsigned int end_padding_alignment; /* Below it is assumed that both alignments are power of 2 */ SFC_ASSERT(rte_is_power_of_2(nic_align_start)); SFC_ASSERT(rte_is_power_of_2(nic_align_end)); /* * mbuf is always cache line aligned, double-check * that it meets rx buffer start alignment requirements. */ /* Start from mbuf pool data room size */ buf_size = rte_pktmbuf_data_room_size(mb_pool); /* Remove headroom */ if (buf_size <= RTE_PKTMBUF_HEADROOM) { sfc_err(sa, "RxQ mbuf pool %s object data room size %u is smaller than headroom %u", mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM); return 0; } buf_size -= RTE_PKTMBUF_HEADROOM; /* Calculate guaranteed data start alignment */ buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool); /* Reserve space for start alignment */ if (buf_aligned < nic_align_start) { start_alignment = nic_align_start - buf_aligned; if (buf_size <= start_alignment) { sfc_err(sa, "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC", mb_pool->name, rte_pktmbuf_data_room_size(mb_pool), RTE_PKTMBUF_HEADROOM, start_alignment); return 0; } buf_aligned = nic_align_start; buf_size -= start_alignment; } else { start_alignment = 0; } /* Make sure that end padding does not write beyond the buffer */ if (buf_aligned < nic_align_end) { /* * Estimate space which can be lost. If guarnteed buffer * size is odd, lost space is (nic_align_end - 1). More * accurate formula is below. */ end_padding_alignment = nic_align_end - MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1)); if (buf_size <= end_padding_alignment) { sfc_err(sa, "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC", mb_pool->name, rte_pktmbuf_data_room_size(mb_pool), RTE_PKTMBUF_HEADROOM, start_alignment, end_padding_alignment); return 0; } buf_size -= end_padding_alignment; } else { /* * Start is aligned the same or better than end, * just align length. */ buf_size = EFX_P2ALIGN(uint32_t, buf_size, nic_align_end); } return buf_size; } int sfc_rx_qinit(struct sfc_adapter *sa, unsigned int sw_index, uint16_t nb_rx_desc, unsigned int socket_id, const struct rte_eth_rxconf *rx_conf, struct rte_mempool *mb_pool) { const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; int rc; unsigned int rxq_entries; unsigned int evq_entries; unsigned int rxq_max_fill_level; uint64_t offloads; uint16_t buf_size; struct sfc_rxq_info *rxq_info; struct sfc_evq *evq; struct sfc_rxq *rxq; struct sfc_dp_rx_qcreate_info info; struct sfc_dp_rx_hw_limits hw_limits; uint16_t rx_free_thresh; const char *error; memset(&hw_limits, 0, sizeof(hw_limits)); hw_limits.rxq_max_entries = sa->rxq_max_entries; hw_limits.rxq_min_entries = sa->rxq_min_entries; hw_limits.evq_max_entries = sa->evq_max_entries; hw_limits.evq_min_entries = sa->evq_min_entries; rc = sa->priv.dp_rx->qsize_up_rings(nb_rx_desc, &hw_limits, mb_pool, &rxq_entries, &evq_entries, &rxq_max_fill_level); if (rc != 0) goto fail_size_up_rings; SFC_ASSERT(rxq_entries >= sa->rxq_min_entries); SFC_ASSERT(rxq_entries <= sa->rxq_max_entries); SFC_ASSERT(rxq_max_fill_level <= nb_rx_desc); offloads = rx_conf->offloads | sa->eth_dev->data->dev_conf.rxmode.offloads; rc = sfc_rx_qcheck_conf(sa, rxq_max_fill_level, rx_conf, offloads); if (rc != 0) goto fail_bad_conf; buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool); if (buf_size == 0) { sfc_err(sa, "RxQ %u mbuf pool object size is too small", sw_index); rc = EINVAL; goto fail_bad_conf; } if (!sfc_rx_check_scatter(sa->port.pdu, buf_size, encp->enc_rx_prefix_size, (offloads & DEV_RX_OFFLOAD_SCATTER), encp->enc_rx_scatter_max, &error)) { sfc_err(sa, "RxQ %u MTU check failed: %s", sw_index, error); sfc_err(sa, "RxQ %u calculated Rx buffer size is %u vs " "PDU size %u plus Rx prefix %u bytes", sw_index, buf_size, (unsigned int)sa->port.pdu, encp->enc_rx_prefix_size); rc = EINVAL; goto fail_bad_conf; } SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count); rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index]; SFC_ASSERT(rxq_entries <= rxq_info->max_entries); rxq_info->entries = rxq_entries; if (sa->priv.dp_rx->dp.hw_fw_caps & SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER) rxq_info->type = EFX_RXQ_TYPE_ES_SUPER_BUFFER; else rxq_info->type = EFX_RXQ_TYPE_DEFAULT; rxq_info->type_flags = (offloads & DEV_RX_OFFLOAD_SCATTER) ? EFX_RXQ_FLAG_SCATTER : EFX_RXQ_FLAG_NONE; if ((encp->enc_tunnel_encapsulations_supported != 0) && (sfc_dp_rx_offload_capa(sa->priv.dp_rx) & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) != 0) rxq_info->type_flags |= EFX_RXQ_FLAG_INNER_CLASSES; if (offloads & DEV_RX_OFFLOAD_RSS_HASH) rxq_info->type_flags |= EFX_RXQ_FLAG_RSS_HASH; rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_RX, sw_index, evq_entries, socket_id, &evq); if (rc != 0) goto fail_ev_qinit; rxq = &sa->rxq_ctrl[sw_index]; rxq->evq = evq; rxq->hw_index = sw_index; /* * If Rx refill threshold is specified (its value is non zero) in * Rx configuration, use specified value. Otherwise use 1/8 of * the Rx descriptors number as the default. It allows to keep * Rx ring full-enough and does not refill too aggressive if * packet rate is high. * * Since PMD refills in bulks waiting for full bulk may be * refilled (basically round down), it is better to round up * here to mitigate it a bit. */ rx_free_thresh = (rx_conf->rx_free_thresh != 0) ? rx_conf->rx_free_thresh : EFX_DIV_ROUND_UP(nb_rx_desc, 8); /* Rx refill threshold cannot be smaller than refill bulk */ rxq_info->refill_threshold = RTE_MAX(rx_free_thresh, SFC_RX_REFILL_BULK); rxq_info->refill_mb_pool = mb_pool; if (rss->hash_support == EFX_RX_HASH_AVAILABLE && rss->channels > 0 && (offloads & DEV_RX_OFFLOAD_RSS_HASH)) rxq_info->rxq_flags = SFC_RXQ_FLAG_RSS_HASH; else rxq_info->rxq_flags = 0; rxq->buf_size = buf_size; rc = sfc_dma_alloc(sa, "rxq", sw_index, efx_rxq_size(sa->nic, rxq_info->entries), socket_id, &rxq->mem); if (rc != 0) goto fail_dma_alloc; memset(&info, 0, sizeof(info)); info.refill_mb_pool = rxq_info->refill_mb_pool; info.max_fill_level = rxq_max_fill_level; info.refill_threshold = rxq_info->refill_threshold; info.buf_size = buf_size; info.batch_max = encp->enc_rx_batch_max; info.prefix_size = encp->enc_rx_prefix_size; info.flags = rxq_info->rxq_flags; info.rxq_entries = rxq_info->entries; info.rxq_hw_ring = rxq->mem.esm_base; info.evq_hw_index = sfc_evq_index_by_rxq_sw_index(sa, sw_index); info.evq_entries = evq_entries; info.evq_hw_ring = evq->mem.esm_base; info.hw_index = rxq->hw_index; info.mem_bar = sa->mem_bar.esb_base; info.vi_window_shift = encp->enc_vi_window_shift; info.fcw_offset = sa->fcw_offset; rc = sa->priv.dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index, &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr, socket_id, &info, &rxq_info->dp); if (rc != 0) goto fail_dp_rx_qcreate; evq->dp_rxq = rxq_info->dp; rxq_info->state = SFC_RXQ_INITIALIZED; rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0); return 0; fail_dp_rx_qcreate: sfc_dma_free(sa, &rxq->mem); fail_dma_alloc: sfc_ev_qfini(evq); fail_ev_qinit: rxq_info->entries = 0; fail_bad_conf: fail_size_up_rings: sfc_log_init(sa, "failed %d", rc); return rc; } void sfc_rx_qfini(struct sfc_adapter *sa, unsigned int sw_index) { struct sfc_rxq_info *rxq_info; struct sfc_rxq *rxq; SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count); sa->eth_dev->data->rx_queues[sw_index] = NULL; rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index]; SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED); sa->priv.dp_rx->qdestroy(rxq_info->dp); rxq_info->dp = NULL; rxq_info->state &= ~SFC_RXQ_INITIALIZED; rxq_info->entries = 0; rxq = &sa->rxq_ctrl[sw_index]; sfc_dma_free(sa, &rxq->mem); sfc_ev_qfini(rxq->evq); rxq->evq = NULL; } /* * Mapping between RTE RSS hash functions and their EFX counterparts. */ static const struct sfc_rss_hf_rte_to_efx sfc_rss_hf_map[] = { { ETH_RSS_NONFRAG_IPV4_TCP, EFX_RX_HASH(IPV4_TCP, 4TUPLE) }, { ETH_RSS_NONFRAG_IPV4_UDP, EFX_RX_HASH(IPV4_UDP, 4TUPLE) }, { ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX, EFX_RX_HASH(IPV6_TCP, 4TUPLE) }, { ETH_RSS_NONFRAG_IPV6_UDP | ETH_RSS_IPV6_UDP_EX, EFX_RX_HASH(IPV6_UDP, 4TUPLE) }, { ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | ETH_RSS_NONFRAG_IPV4_OTHER, EFX_RX_HASH(IPV4_TCP, 2TUPLE) | EFX_RX_HASH(IPV4_UDP, 2TUPLE) | EFX_RX_HASH(IPV4, 2TUPLE) }, { ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | ETH_RSS_NONFRAG_IPV6_OTHER | ETH_RSS_IPV6_EX, EFX_RX_HASH(IPV6_TCP, 2TUPLE) | EFX_RX_HASH(IPV6_UDP, 2TUPLE) | EFX_RX_HASH(IPV6, 2TUPLE) } }; static efx_rx_hash_type_t sfc_rx_hash_types_mask_supp(efx_rx_hash_type_t hash_type, unsigned int *hash_type_flags_supported, unsigned int nb_hash_type_flags_supported) { efx_rx_hash_type_t hash_type_masked = 0; unsigned int i, j; for (i = 0; i < nb_hash_type_flags_supported; ++i) { unsigned int class_tuple_lbn[] = { EFX_RX_CLASS_IPV4_TCP_LBN, EFX_RX_CLASS_IPV4_UDP_LBN, EFX_RX_CLASS_IPV4_LBN, EFX_RX_CLASS_IPV6_TCP_LBN, EFX_RX_CLASS_IPV6_UDP_LBN, EFX_RX_CLASS_IPV6_LBN }; for (j = 0; j < RTE_DIM(class_tuple_lbn); ++j) { unsigned int tuple_mask = EFX_RX_CLASS_HASH_4TUPLE; unsigned int flag; tuple_mask <<= class_tuple_lbn[j]; flag = hash_type & tuple_mask; if (flag == hash_type_flags_supported[i]) hash_type_masked |= flag; } } return hash_type_masked; } int sfc_rx_hash_init(struct sfc_adapter *sa) { struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); uint32_t alg_mask = encp->enc_rx_scale_hash_alg_mask; efx_rx_hash_alg_t alg; unsigned int flags_supp[EFX_RX_HASH_NFLAGS]; unsigned int nb_flags_supp; struct sfc_rss_hf_rte_to_efx *hf_map; struct sfc_rss_hf_rte_to_efx *entry; efx_rx_hash_type_t efx_hash_types; unsigned int i; int rc; if (alg_mask & (1U << EFX_RX_HASHALG_TOEPLITZ)) alg = EFX_RX_HASHALG_TOEPLITZ; else if (alg_mask & (1U << EFX_RX_HASHALG_PACKED_STREAM)) alg = EFX_RX_HASHALG_PACKED_STREAM; else return EINVAL; rc = efx_rx_scale_hash_flags_get(sa->nic, alg, flags_supp, RTE_DIM(flags_supp), &nb_flags_supp); if (rc != 0) return rc; hf_map = rte_calloc_socket("sfc-rss-hf-map", RTE_DIM(sfc_rss_hf_map), sizeof(*hf_map), 0, sa->socket_id); if (hf_map == NULL) return ENOMEM; entry = hf_map; efx_hash_types = 0; for (i = 0; i < RTE_DIM(sfc_rss_hf_map); ++i) { efx_rx_hash_type_t ht; ht = sfc_rx_hash_types_mask_supp(sfc_rss_hf_map[i].efx, flags_supp, nb_flags_supp); if (ht != 0) { entry->rte = sfc_rss_hf_map[i].rte; entry->efx = ht; efx_hash_types |= ht; ++entry; } } rss->hash_alg = alg; rss->hf_map_nb_entries = (unsigned int)(entry - hf_map); rss->hf_map = hf_map; rss->hash_types = efx_hash_types; return 0; } void sfc_rx_hash_fini(struct sfc_adapter *sa) { struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; rte_free(rss->hf_map); } int sfc_rx_hf_rte_to_efx(struct sfc_adapter *sa, uint64_t rte, efx_rx_hash_type_t *efx) { struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; efx_rx_hash_type_t hash_types = 0; unsigned int i; for (i = 0; i < rss->hf_map_nb_entries; ++i) { uint64_t rte_mask = rss->hf_map[i].rte; if ((rte & rte_mask) != 0) { rte &= ~rte_mask; hash_types |= rss->hf_map[i].efx; } } if (rte != 0) { sfc_err(sa, "unsupported hash functions requested"); return EINVAL; } *efx = hash_types; return 0; } uint64_t sfc_rx_hf_efx_to_rte(struct sfc_rss *rss, efx_rx_hash_type_t efx) { uint64_t rte = 0; unsigned int i; for (i = 0; i < rss->hf_map_nb_entries; ++i) { efx_rx_hash_type_t hash_type = rss->hf_map[i].efx; if ((efx & hash_type) == hash_type) rte |= rss->hf_map[i].rte; } return rte; } static int sfc_rx_process_adv_conf_rss(struct sfc_adapter *sa, struct rte_eth_rss_conf *conf) { struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; efx_rx_hash_type_t efx_hash_types = rss->hash_types; uint64_t rss_hf = sfc_rx_hf_efx_to_rte(rss, efx_hash_types); int rc; if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { if ((conf->rss_hf != 0 && conf->rss_hf != rss_hf) || conf->rss_key != NULL) return EINVAL; } if (conf->rss_hf != 0) { rc = sfc_rx_hf_rte_to_efx(sa, conf->rss_hf, &efx_hash_types); if (rc != 0) return rc; } if (conf->rss_key != NULL) { if (conf->rss_key_len != sizeof(rss->key)) { sfc_err(sa, "RSS key size is wrong (should be %zu)", sizeof(rss->key)); return EINVAL; } rte_memcpy(rss->key, conf->rss_key, sizeof(rss->key)); } rss->hash_types = efx_hash_types; return 0; } static int sfc_rx_rss_config(struct sfc_adapter *sa) { struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; int rc = 0; if (rss->channels > 0) { rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, rss->hash_alg, rss->hash_types, B_TRUE); if (rc != 0) goto finish; rc = efx_rx_scale_key_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, rss->key, sizeof(rss->key)); if (rc != 0) goto finish; rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, rss->tbl, RTE_DIM(rss->tbl)); } finish: return rc; } int sfc_rx_start(struct sfc_adapter *sa) { struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); unsigned int sw_index; int rc; sfc_log_init(sa, "rxq_count=%u", sas->rxq_count); rc = efx_rx_init(sa->nic); if (rc != 0) goto fail_rx_init; rc = sfc_rx_rss_config(sa); if (rc != 0) goto fail_rss_config; for (sw_index = 0; sw_index < sas->rxq_count; ++sw_index) { if (sas->rxq_info[sw_index].state == SFC_RXQ_INITIALIZED && (!sas->rxq_info[sw_index].deferred_start || sas->rxq_info[sw_index].deferred_started)) { rc = sfc_rx_qstart(sa, sw_index); if (rc != 0) goto fail_rx_qstart; } } return 0; fail_rx_qstart: while (sw_index-- > 0) sfc_rx_qstop(sa, sw_index); fail_rss_config: efx_rx_fini(sa->nic); fail_rx_init: sfc_log_init(sa, "failed %d", rc); return rc; } void sfc_rx_stop(struct sfc_adapter *sa) { struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); unsigned int sw_index; sfc_log_init(sa, "rxq_count=%u", sas->rxq_count); sw_index = sas->rxq_count; while (sw_index-- > 0) { if (sas->rxq_info[sw_index].state & SFC_RXQ_STARTED) sfc_rx_qstop(sa, sw_index); } efx_rx_fini(sa->nic); } static int sfc_rx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index) { struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); struct sfc_rxq_info *rxq_info = &sas->rxq_info[sw_index]; const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); unsigned int max_entries; max_entries = encp->enc_rxq_max_ndescs; SFC_ASSERT(rte_is_power_of_2(max_entries)); rxq_info->max_entries = max_entries; return 0; } static int sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode) { struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); uint64_t offloads_supported = sfc_rx_get_dev_offload_caps(sa) | sfc_rx_get_queue_offload_caps(sa); struct sfc_rss *rss = &sas->rss; int rc = 0; switch (rxmode->mq_mode) { case ETH_MQ_RX_NONE: /* No special checks are required */ break; case ETH_MQ_RX_RSS: if (rss->context_type == EFX_RX_SCALE_UNAVAILABLE) { sfc_err(sa, "RSS is not available"); rc = EINVAL; } break; default: sfc_err(sa, "Rx multi-queue mode %u not supported", rxmode->mq_mode); rc = EINVAL; } /* * Requested offloads are validated against supported by ethdev, * so unsupported offloads cannot be added as the result of * below check. */ if ((rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM) != (offloads_supported & DEV_RX_OFFLOAD_CHECKSUM)) { sfc_warn(sa, "Rx checksum offloads cannot be disabled - always on (IPv4/TCP/UDP)"); rxmode->offloads |= DEV_RX_OFFLOAD_CHECKSUM; } if ((offloads_supported & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) && (~rxmode->offloads & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)) { sfc_warn(sa, "Rx outer IPv4 checksum offload cannot be disabled - always on"); rxmode->offloads |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM; } return rc; } /** * Destroy excess queues that are no longer needed after reconfiguration * or complete close. */ static void sfc_rx_fini_queues(struct sfc_adapter *sa, unsigned int nb_rx_queues) { struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); int sw_index; SFC_ASSERT(nb_rx_queues <= sas->rxq_count); sw_index = sas->rxq_count; while (--sw_index >= (int)nb_rx_queues) { if (sas->rxq_info[sw_index].state & SFC_RXQ_INITIALIZED) sfc_rx_qfini(sa, sw_index); } sas->rxq_count = nb_rx_queues; } /** * Initialize Rx subsystem. * * Called at device (re)configuration stage when number of receive queues is * specified together with other device level receive configuration. * * It should be used to allocate NUMA-unaware resources. */ int sfc_rx_configure(struct sfc_adapter *sa) { struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); struct sfc_rss *rss = &sas->rss; struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf; const unsigned int nb_rx_queues = sa->eth_dev->data->nb_rx_queues; int rc; sfc_log_init(sa, "nb_rx_queues=%u (old %u)", nb_rx_queues, sas->rxq_count); rc = sfc_rx_check_mode(sa, &dev_conf->rxmode); if (rc != 0) goto fail_check_mode; if (nb_rx_queues == sas->rxq_count) goto configure_rss; if (sas->rxq_info == NULL) { rc = ENOMEM; sas->rxq_info = rte_calloc_socket("sfc-rxqs", nb_rx_queues, sizeof(sas->rxq_info[0]), 0, sa->socket_id); if (sas->rxq_info == NULL) goto fail_rxqs_alloc; /* * Allocate primary process only RxQ control from heap * since it should not be shared. */ rc = ENOMEM; sa->rxq_ctrl = calloc(nb_rx_queues, sizeof(sa->rxq_ctrl[0])); if (sa->rxq_ctrl == NULL) goto fail_rxqs_ctrl_alloc; } else { struct sfc_rxq_info *new_rxq_info; struct sfc_rxq *new_rxq_ctrl; if (nb_rx_queues < sas->rxq_count) sfc_rx_fini_queues(sa, nb_rx_queues); rc = ENOMEM; new_rxq_info = rte_realloc(sas->rxq_info, nb_rx_queues * sizeof(sas->rxq_info[0]), 0); if (new_rxq_info == NULL && nb_rx_queues > 0) goto fail_rxqs_realloc; rc = ENOMEM; new_rxq_ctrl = realloc(sa->rxq_ctrl, nb_rx_queues * sizeof(sa->rxq_ctrl[0])); if (new_rxq_ctrl == NULL && nb_rx_queues > 0) goto fail_rxqs_ctrl_realloc; sas->rxq_info = new_rxq_info; sa->rxq_ctrl = new_rxq_ctrl; if (nb_rx_queues > sas->rxq_count) { memset(&sas->rxq_info[sas->rxq_count], 0, (nb_rx_queues - sas->rxq_count) * sizeof(sas->rxq_info[0])); memset(&sa->rxq_ctrl[sas->rxq_count], 0, (nb_rx_queues - sas->rxq_count) * sizeof(sa->rxq_ctrl[0])); } } while (sas->rxq_count < nb_rx_queues) { rc = sfc_rx_qinit_info(sa, sas->rxq_count); if (rc != 0) goto fail_rx_qinit_info; sas->rxq_count++; } configure_rss: rss->channels = (dev_conf->rxmode.mq_mode == ETH_MQ_RX_RSS) ? MIN(sas->rxq_count, EFX_MAXRSS) : 0; if (rss->channels > 0) { struct rte_eth_rss_conf *adv_conf_rss; unsigned int sw_index; for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index) rss->tbl[sw_index] = sw_index % rss->channels; adv_conf_rss = &dev_conf->rx_adv_conf.rss_conf; rc = sfc_rx_process_adv_conf_rss(sa, adv_conf_rss); if (rc != 0) goto fail_rx_process_adv_conf_rss; } return 0; fail_rx_process_adv_conf_rss: fail_rx_qinit_info: fail_rxqs_ctrl_realloc: fail_rxqs_realloc: fail_rxqs_ctrl_alloc: fail_rxqs_alloc: sfc_rx_close(sa); fail_check_mode: sfc_log_init(sa, "failed %d", rc); return rc; } /** * Shutdown Rx subsystem. * * Called at device close stage, for example, before device shutdown. */ void sfc_rx_close(struct sfc_adapter *sa) { struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; sfc_rx_fini_queues(sa, 0); rss->channels = 0; free(sa->rxq_ctrl); sa->rxq_ctrl = NULL; rte_free(sfc_sa2shared(sa)->rxq_info); sfc_sa2shared(sa)->rxq_info = NULL; }