/* SPDX-License-Identifier: BSD-3-Clause * Copyright(C) 2021 Marvell. */ #include "roc_api.h" static uint8_t zuc_d[32] = {0x44, 0xD7, 0x26, 0xBC, 0x62, 0x6B, 0x13, 0x5E, 0x57, 0x89, 0x35, 0xE2, 0x71, 0x35, 0x09, 0xAF, 0x4D, 0x78, 0x2F, 0x13, 0x6B, 0xC4, 0x1A, 0xF1, 0x5E, 0x26, 0x3C, 0x4D, 0x78, 0x9A, 0x47, 0xAC}; static inline void cpt_snow3g_key_gen(const uint8_t *ck, uint32_t *keyx) { int i, base; for (i = 0; i < 4; i++) { base = 4 * i; keyx[3 - i] = (ck[base] << 24) | (ck[base + 1] << 16) | (ck[base + 2] << 8) | (ck[base + 3]); keyx[3 - i] = plt_cpu_to_be_32(keyx[3 - i]); } } static inline int cpt_ciph_aes_key_validate(uint16_t key_len) { switch (key_len) { case 16: case 24: case 32: return 0; default: return -1; } } static inline int cpt_ciph_type_set(roc_se_cipher_type type, struct roc_se_ctx *ctx, uint16_t key_len) { int fc_type = 0; switch (type) { case ROC_SE_PASSTHROUGH: fc_type = ROC_SE_FC_GEN; break; case ROC_SE_DES3_CBC: case ROC_SE_DES3_ECB: fc_type = ROC_SE_FC_GEN; break; case ROC_SE_AES_CBC: case ROC_SE_AES_ECB: case ROC_SE_AES_CFB: case ROC_SE_AES_CTR: case ROC_SE_AES_GCM: if (unlikely(cpt_ciph_aes_key_validate(key_len) != 0)) return -1; fc_type = ROC_SE_FC_GEN; break; case ROC_SE_CHACHA20: fc_type = ROC_SE_FC_GEN; break; case ROC_SE_AES_XTS: key_len = key_len / 2; if (unlikely(key_len == 24)) { plt_err("Invalid AES key len for XTS"); return -1; } if (unlikely(cpt_ciph_aes_key_validate(key_len) != 0)) return -1; fc_type = ROC_SE_FC_GEN; break; case ROC_SE_ZUC_EEA3: case ROC_SE_SNOW3G_UEA2: if (unlikely(key_len != 16)) return -1; /* No support for AEAD yet */ if (unlikely(ctx->hash_type)) return -1; fc_type = ROC_SE_PDCP; break; case ROC_SE_AES_CTR_EEA2: fc_type = ROC_SE_PDCP; break; case ROC_SE_KASUMI_F8_CBC: case ROC_SE_KASUMI_F8_ECB: if (unlikely(key_len != 16)) return -1; /* No support for AEAD yet */ if (unlikely(ctx->hash_type)) return -1; fc_type = ROC_SE_KASUMI; break; default: return -1; } ctx->fc_type = fc_type; return 0; } static inline void cpt_ciph_aes_key_type_set(struct roc_se_context *fctx, uint16_t key_len) { roc_se_aes_type aes_key_type = 0; switch (key_len) { case 16: aes_key_type = ROC_SE_AES_128_BIT; break; case 24: aes_key_type = ROC_SE_AES_192_BIT; break; case 32: aes_key_type = ROC_SE_AES_256_BIT; break; default: /* This should not happen */ plt_err("Invalid AES key len"); return; } fctx->enc.aes_key = aes_key_type; } int roc_se_auth_key_set(struct roc_se_ctx *se_ctx, roc_se_auth_type type, const uint8_t *key, uint16_t key_len, uint16_t mac_len) { struct roc_se_zuc_snow3g_ctx *zs_ctx; struct roc_se_kasumi_ctx *k_ctx; struct roc_se_context *fctx; if (se_ctx == NULL) return -1; zs_ctx = &se_ctx->se_ctx.zs_ctx; k_ctx = &se_ctx->se_ctx.k_ctx; fctx = &se_ctx->se_ctx.fctx; if ((type >= ROC_SE_ZUC_EIA3) && (type <= ROC_SE_KASUMI_F9_ECB)) { uint32_t keyx[4]; if (key_len != 16) return -1; /* No support for AEAD yet */ if (se_ctx->enc_cipher) return -1; /* For ZUC/SNOW3G/Kasumi */ switch (type) { case ROC_SE_SNOW3G_UIA2: se_ctx->pdcp_alg_type = ROC_SE_PDCP_ALG_TYPE_SNOW3G; cpt_snow3g_key_gen(key, keyx); memcpy(zs_ctx->ci_key, keyx, key_len); se_ctx->fc_type = ROC_SE_PDCP; se_ctx->zsk_flags = 0x1; break; case ROC_SE_ZUC_EIA3: se_ctx->pdcp_alg_type = ROC_SE_PDCP_ALG_TYPE_ZUC; memcpy(zs_ctx->ci_key, key, key_len); memcpy(zs_ctx->zuc_const, zuc_d, 32); se_ctx->fc_type = ROC_SE_PDCP; se_ctx->zsk_flags = 0x1; break; case ROC_SE_AES_CMAC_EIA2: se_ctx->pdcp_alg_type = ROC_SE_PDCP_ALG_TYPE_AES_CTR; memcpy(zs_ctx->ci_key, key, key_len); se_ctx->fc_type = ROC_SE_PDCP; se_ctx->zsk_flags = 0x1; break; case ROC_SE_KASUMI_F9_ECB: /* Kasumi ECB mode */ se_ctx->k_ecb = 1; memcpy(k_ctx->ci_key, key, key_len); se_ctx->fc_type = ROC_SE_KASUMI; se_ctx->zsk_flags = 0x1; break; case ROC_SE_KASUMI_F9_CBC: memcpy(k_ctx->ci_key, key, key_len); se_ctx->fc_type = ROC_SE_KASUMI; se_ctx->zsk_flags = 0x1; break; default: return -1; } se_ctx->mac_len = 4; se_ctx->hash_type = type; return 0; } if (!se_ctx->fc_type || (type && type != ROC_SE_GMAC_TYPE && !se_ctx->enc_cipher)) se_ctx->fc_type = ROC_SE_HASH_HMAC; if (se_ctx->fc_type == ROC_SE_FC_GEN && key_len > 64) return -1; /* For GMAC auth, cipher must be NULL */ if (type == ROC_SE_GMAC_TYPE) fctx->enc.enc_cipher = 0; fctx->enc.hash_type = type; se_ctx->hash_type = type; fctx->enc.mac_len = mac_len; se_ctx->mac_len = mac_len; if (key_len) { se_ctx->hmac = 1; se_ctx->auth_key = plt_zmalloc(key_len, 8); if (se_ctx->auth_key == NULL) return -1; memcpy(se_ctx->auth_key, key, key_len); se_ctx->auth_key_len = key_len; memset(fctx->hmac.ipad, 0, sizeof(fctx->hmac.ipad)); memset(fctx->hmac.opad, 0, sizeof(fctx->hmac.opad)); if (key_len <= 64) memcpy(fctx->hmac.opad, key, key_len); fctx->enc.auth_input_type = 1; } return 0; } int roc_se_ciph_key_set(struct roc_se_ctx *se_ctx, roc_se_cipher_type type, const uint8_t *key, uint16_t key_len, uint8_t *salt) { struct roc_se_context *fctx = &se_ctx->se_ctx.fctx; struct roc_se_zuc_snow3g_ctx *zs_ctx; uint32_t keyx[4]; int ret; /* For AES-GCM, salt is taken from ctx even if IV source * is from DPTR */ if ((salt != NULL) && (type == ROC_SE_AES_GCM)) { memcpy(fctx->enc.encr_iv, salt, 4); /* Assuming it was just salt update * and nothing else */ if (key == NULL) return 0; } ret = cpt_ciph_type_set(type, se_ctx, key_len); if (unlikely(ret)) return -1; if (se_ctx->fc_type == ROC_SE_FC_GEN) { /* * We need to always say IV is from DPTR as user can * sometimes iverride IV per operation. */ fctx->enc.iv_source = ROC_SE_FROM_DPTR; if (se_ctx->auth_key_len > 64) return -1; } switch (type) { case ROC_SE_PASSTHROUGH: se_ctx->enc_cipher = 0; fctx->enc.enc_cipher = 0; goto success; case ROC_SE_DES3_CBC: /* CPT performs DES using 3DES with the 8B DES-key * replicated 2 more times to match the 24B 3DES-key. * Eg. If org. key is "0x0a 0x0b", then new key is * "0x0a 0x0b 0x0a 0x0b 0x0a 0x0b" */ if (key_len == 8) { /* Skipping the first 8B as it will be copied * in the regular code flow */ memcpy(fctx->enc.encr_key + key_len, key, key_len); memcpy(fctx->enc.encr_key + 2 * key_len, key, key_len); } break; case ROC_SE_DES3_ECB: /* For DES3_ECB IV need to be from CTX. */ fctx->enc.iv_source = ROC_SE_FROM_CTX; break; case ROC_SE_AES_CBC: case ROC_SE_AES_ECB: case ROC_SE_AES_CFB: case ROC_SE_AES_CTR: case ROC_SE_CHACHA20: cpt_ciph_aes_key_type_set(fctx, key_len); break; case ROC_SE_AES_GCM: cpt_ciph_aes_key_type_set(fctx, key_len); break; case ROC_SE_AES_XTS: key_len = key_len / 2; cpt_ciph_aes_key_type_set(fctx, key_len); /* Copy key2 for XTS into ipad */ memset(fctx->hmac.ipad, 0, sizeof(fctx->hmac.ipad)); memcpy(fctx->hmac.ipad, &key[key_len], key_len); break; case ROC_SE_SNOW3G_UEA2: se_ctx->pdcp_alg_type = ROC_SE_PDCP_ALG_TYPE_SNOW3G; cpt_snow3g_key_gen(key, keyx); memcpy(se_ctx->se_ctx.zs_ctx.ci_key, keyx, key_len); se_ctx->zsk_flags = 0; goto success; case ROC_SE_ZUC_EEA3: zs_ctx = &se_ctx->se_ctx.zs_ctx; se_ctx->pdcp_alg_type = ROC_SE_PDCP_ALG_TYPE_ZUC; memcpy(zs_ctx->ci_key, key, key_len); memcpy(zs_ctx->zuc_const, zuc_d, 32); se_ctx->zsk_flags = 0; goto success; case ROC_SE_AES_CTR_EEA2: se_ctx->pdcp_alg_type = ROC_SE_PDCP_ALG_TYPE_AES_CTR; memcpy(se_ctx->se_ctx.zs_ctx.ci_key, key, key_len); se_ctx->zsk_flags = 0; goto success; case ROC_SE_KASUMI_F8_ECB: se_ctx->k_ecb = 1; memcpy(se_ctx->se_ctx.k_ctx.ci_key, key, key_len); se_ctx->zsk_flags = 0; goto success; case ROC_SE_KASUMI_F8_CBC: memcpy(se_ctx->se_ctx.k_ctx.ci_key, key, key_len); se_ctx->zsk_flags = 0; goto success; default: return -1; } /* Only for ROC_SE_FC_GEN case */ /* For GMAC auth, cipher must be NULL */ if (se_ctx->hash_type != ROC_SE_GMAC_TYPE) fctx->enc.enc_cipher = type; memcpy(fctx->enc.encr_key, key, key_len); success: se_ctx->enc_cipher = type; return 0; }