/*- * BSD LICENSE * * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. * Copyright 2014 6WIND S.A. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _RTE_MBUF_H_ #define _RTE_MBUF_H_ /** * @file * RTE Mbuf * * The mbuf library provides the ability to create and destroy buffers * that may be used by the RTE application to store message * buffers. The message buffers are stored in a mempool, using the * RTE mempool library. * * This library provide an API to allocate/free packet mbufs, which are * used to carry network packets. * * To understand the concepts of packet buffers or mbufs, you * should read "TCP/IP Illustrated, Volume 2: The Implementation, * Addison-Wesley, 1995, ISBN 0-201-63354-X from Richard Stevens" * http://www.kohala.com/start/tcpipiv2.html */ #include #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif /* deprecated options */ #pragma GCC poison RTE_MBUF_SCATTER_GATHER #pragma GCC poison RTE_MBUF_REFCNT /* * Packet Offload Features Flags. It also carry packet type information. * Critical resources. Both rx/tx shared these bits. Be cautious on any change * * - RX flags start at bit position zero, and get added to the left of previous * flags. * - The most-significant 3 bits are reserved for generic mbuf flags * - TX flags therefore start at bit position 60 (i.e. 63-3), and new flags get * added to the right of the previously defined flags i.e. they should count * downwards, not upwards. * * Keep these flags synchronized with rte_get_rx_ol_flag_name() and * rte_get_tx_ol_flag_name(). */ #define PKT_RX_VLAN_PKT (1ULL << 0) /**< RX packet is a 802.1q VLAN packet. */ #define PKT_RX_RSS_HASH (1ULL << 1) /**< RX packet with RSS hash result. */ #define PKT_RX_FDIR (1ULL << 2) /**< RX packet with FDIR match indicate. */ #define PKT_RX_L4_CKSUM_BAD (1ULL << 3) /**< L4 cksum of RX pkt. is not OK. */ #define PKT_RX_IP_CKSUM_BAD (1ULL << 4) /**< IP cksum of RX pkt. is not OK. */ #define PKT_RX_EIP_CKSUM_BAD (0ULL << 0) /**< External IP header checksum error. */ #define PKT_RX_OVERSIZE (0ULL << 0) /**< Num of desc of an RX pkt oversize. */ #define PKT_RX_HBUF_OVERFLOW (0ULL << 0) /**< Header buffer overflow. */ #define PKT_RX_RECIP_ERR (0ULL << 0) /**< Hardware processing error. */ #define PKT_RX_MAC_ERR (0ULL << 0) /**< MAC error. */ #define PKT_RX_IEEE1588_PTP (1ULL << 9) /**< RX IEEE1588 L2 Ethernet PT Packet. */ #define PKT_RX_IEEE1588_TMST (1ULL << 10) /**< RX IEEE1588 L2/L4 timestamped packet.*/ #define PKT_RX_FDIR_ID (1ULL << 13) /**< FD id reported if FDIR match. */ #define PKT_RX_FDIR_FLX (1ULL << 14) /**< Flexible bytes reported if FDIR match. */ #define PKT_RX_QINQ_PKT (1ULL << 15) /**< RX packet with double VLAN stripped. */ /* add new RX flags here */ /* add new TX flags here */ /** * Second VLAN insertion (QinQ) flag. */ #define PKT_TX_QINQ_PKT (1ULL << 49) /**< TX packet with double VLAN inserted. */ /** * TCP segmentation offload. To enable this offload feature for a * packet to be transmitted on hardware supporting TSO: * - set the PKT_TX_TCP_SEG flag in mbuf->ol_flags (this flag implies * PKT_TX_TCP_CKSUM) * - set the flag PKT_TX_IPV4 or PKT_TX_IPV6 * - if it's IPv4, set the PKT_TX_IP_CKSUM flag and write the IP checksum * to 0 in the packet * - fill the mbuf offload information: l2_len, l3_len, l4_len, tso_segsz * - calculate the pseudo header checksum without taking ip_len in account, * and set it in the TCP header. Refer to rte_ipv4_phdr_cksum() and * rte_ipv6_phdr_cksum() that can be used as helpers. */ #define PKT_TX_TCP_SEG (1ULL << 50) #define PKT_TX_IEEE1588_TMST (1ULL << 51) /**< TX IEEE1588 packet to timestamp. */ /** * Bits 52+53 used for L4 packet type with checksum enabled: 00: Reserved, * 01: TCP checksum, 10: SCTP checksum, 11: UDP checksum. To use hardware * L4 checksum offload, the user needs to: * - fill l2_len and l3_len in mbuf * - set the flags PKT_TX_TCP_CKSUM, PKT_TX_SCTP_CKSUM or PKT_TX_UDP_CKSUM * - set the flag PKT_TX_IPV4 or PKT_TX_IPV6 * - calculate the pseudo header checksum and set it in the L4 header (only * for TCP or UDP). See rte_ipv4_phdr_cksum() and rte_ipv6_phdr_cksum(). * For SCTP, set the crc field to 0. */ #define PKT_TX_L4_NO_CKSUM (0ULL << 52) /**< Disable L4 cksum of TX pkt. */ #define PKT_TX_TCP_CKSUM (1ULL << 52) /**< TCP cksum of TX pkt. computed by NIC. */ #define PKT_TX_SCTP_CKSUM (2ULL << 52) /**< SCTP cksum of TX pkt. computed by NIC. */ #define PKT_TX_UDP_CKSUM (3ULL << 52) /**< UDP cksum of TX pkt. computed by NIC. */ #define PKT_TX_L4_MASK (3ULL << 52) /**< Mask for L4 cksum offload request. */ /** * Offload the IP checksum in the hardware. The flag PKT_TX_IPV4 should * also be set by the application, although a PMD will only check * PKT_TX_IP_CKSUM. * - set the IP checksum field in the packet to 0 * - fill the mbuf offload information: l2_len, l3_len */ #define PKT_TX_IP_CKSUM (1ULL << 54) /** * Packet is IPv4. This flag must be set when using any offload feature * (TSO, L3 or L4 checksum) to tell the NIC that the packet is an IPv4 * packet. If the packet is a tunneled packet, this flag is related to * the inner headers. */ #define PKT_TX_IPV4 (1ULL << 55) /** * Packet is IPv6. This flag must be set when using an offload feature * (TSO or L4 checksum) to tell the NIC that the packet is an IPv6 * packet. If the packet is a tunneled packet, this flag is related to * the inner headers. */ #define PKT_TX_IPV6 (1ULL << 56) #define PKT_TX_VLAN_PKT (1ULL << 57) /**< TX packet is a 802.1q VLAN packet. */ /** * Offload the IP checksum of an external header in the hardware. The * flag PKT_TX_OUTER_IPV4 should also be set by the application, alto ugh * a PMD will only check PKT_TX_IP_CKSUM. The IP checksum field in the * packet must be set to 0. * - set the outer IP checksum field in the packet to 0 * - fill the mbuf offload information: outer_l2_len, outer_l3_len */ #define PKT_TX_OUTER_IP_CKSUM (1ULL << 58) /** * Packet outer header is IPv4. This flag must be set when using any * outer offload feature (L3 or L4 checksum) to tell the NIC that the * outer header of the tunneled packet is an IPv4 packet. */ #define PKT_TX_OUTER_IPV4 (1ULL << 59) /** * Packet outer header is IPv6. This flag must be set when using any * outer offload feature (L4 checksum) to tell the NIC that the outer * header of the tunneled packet is an IPv6 packet. */ #define PKT_TX_OUTER_IPV6 (1ULL << 60) #define __RESERVED (1ULL << 61) /**< reserved for future mbuf use */ #define IND_ATTACHED_MBUF (1ULL << 62) /**< Indirect attached mbuf */ /* Use final bit of flags to indicate a control mbuf */ #define CTRL_MBUF_FLAG (1ULL << 63) /**< Mbuf contains control data */ /* * 32 bits are divided into several fields to mark packet types. Note that * each field is indexical. * - Bit 3:0 is for L2 types. * - Bit 7:4 is for L3 or outer L3 (for tunneling case) types. * - Bit 11:8 is for L4 or outer L4 (for tunneling case) types. * - Bit 15:12 is for tunnel types. * - Bit 19:16 is for inner L2 types. * - Bit 23:20 is for inner L3 types. * - Bit 27:24 is for inner L4 types. * - Bit 31:28 is reserved. * * To be compatible with Vector PMD, RTE_PTYPE_L3_IPV4, RTE_PTYPE_L3_IPV4_EXT, * RTE_PTYPE_L3_IPV6, RTE_PTYPE_L3_IPV6_EXT, RTE_PTYPE_L4_TCP, RTE_PTYPE_L4_UDP * and RTE_PTYPE_L4_SCTP should be kept as below in a contiguous 7 bits. * * Note that L3 types values are selected for checking IPV4/IPV6 header from * performance point of view. Reading annotations of RTE_ETH_IS_IPV4_HDR and * RTE_ETH_IS_IPV6_HDR is needed for any future changes of L3 type values. * * Note that the packet types of the same packet recognized by different * hardware may be different, as different hardware may have different * capability of packet type recognition. * * examples: * <'ether type'=0x0800 * | 'version'=4, 'protocol'=0x29 * | 'version'=6, 'next header'=0x3A * | 'ICMPv6 header'> * will be recognized on i40e hardware as packet type combination of, * RTE_PTYPE_L2_ETHER | * RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | * RTE_PTYPE_TUNNEL_IP | * RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | * RTE_PTYPE_INNER_L4_ICMP. * * <'ether type'=0x86DD * | 'version'=6, 'next header'=0x2F * | 'GRE header' * | 'version'=6, 'next header'=0x11 * | 'UDP header'> * will be recognized on i40e hardware as packet type combination of, * RTE_PTYPE_L2_ETHER | * RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | * RTE_PTYPE_TUNNEL_GRENAT | * RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | * RTE_PTYPE_INNER_L4_UDP. */ #define RTE_PTYPE_UNKNOWN 0x00000000 /** * Ethernet packet type. * It is used for outer packet for tunneling cases. * * Packet format: * <'ether type'=[0x0800|0x86DD]> */ #define RTE_PTYPE_L2_ETHER 0x00000001 /** * Ethernet packet type for time sync. * * Packet format: * <'ether type'=0x88F7> */ #define RTE_PTYPE_L2_ETHER_TIMESYNC 0x00000002 /** * ARP (Address Resolution Protocol) packet type. * * Packet format: * <'ether type'=0x0806> */ #define RTE_PTYPE_L2_ETHER_ARP 0x00000003 /** * LLDP (Link Layer Discovery Protocol) packet type. * * Packet format: * <'ether type'=0x88CC> */ #define RTE_PTYPE_L2_ETHER_LLDP 0x00000004 /** * Mask of layer 2 packet types. * It is used for outer packet for tunneling cases. */ #define RTE_PTYPE_L2_MASK 0x0000000f /** * IP (Internet Protocol) version 4 packet type. * It is used for outer packet for tunneling cases, and does not contain any * header option. * * Packet format: * <'ether type'=0x0800 * | 'version'=4, 'ihl'=5> */ #define RTE_PTYPE_L3_IPV4 0x00000010 /** * IP (Internet Protocol) version 4 packet type. * It is used for outer packet for tunneling cases, and contains header * options. * * Packet format: * <'ether type'=0x0800 * | 'version'=4, 'ihl'=[6-15], 'options'> */ #define RTE_PTYPE_L3_IPV4_EXT 0x00000030 /** * IP (Internet Protocol) version 6 packet type. * It is used for outer packet for tunneling cases, and does not contain any * extension header. * * Packet format: * <'ether type'=0x86DD * | 'version'=6, 'next header'=0x3B> */ #define RTE_PTYPE_L3_IPV6 0x00000040 /** * IP (Internet Protocol) version 4 packet type. * It is used for outer packet for tunneling cases, and may or maynot contain * header options. * * Packet format: * <'ether type'=0x0800 * | 'version'=4, 'ihl'=[5-15], <'options'>> */ #define RTE_PTYPE_L3_IPV4_EXT_UNKNOWN 0x00000090 /** * IP (Internet Protocol) version 6 packet type. * It is used for outer packet for tunneling cases, and contains extension * headers. * * Packet format: * <'ether type'=0x86DD * | 'version'=6, 'next header'=[0x0|0x2B|0x2C|0x32|0x33|0x3C|0x87], * 'extension headers'> */ #define RTE_PTYPE_L3_IPV6_EXT 0x000000c0 /** * IP (Internet Protocol) version 6 packet type. * It is used for outer packet for tunneling cases, and may or maynot contain * extension headers. * * Packet format: * <'ether type'=0x86DD * | 'version'=6, 'next header'=[0x3B|0x0|0x2B|0x2C|0x32|0x33|0x3C|0x87], * <'extension headers'>> */ #define RTE_PTYPE_L3_IPV6_EXT_UNKNOWN 0x000000e0 /** * Mask of layer 3 packet types. * It is used for outer packet for tunneling cases. */ #define RTE_PTYPE_L3_MASK 0x000000f0 /** * TCP (Transmission Control Protocol) packet type. * It is used for outer packet for tunneling cases. * * Packet format: * <'ether type'=0x0800 * | 'version'=4, 'protocol'=6, 'MF'=0> * or, * <'ether type'=0x86DD * | 'version'=6, 'next header'=6> */ #define RTE_PTYPE_L4_TCP 0x00000100 /** * UDP (User Datagram Protocol) packet type. * It is used for outer packet for tunneling cases. * * Packet format: * <'ether type'=0x0800 * | 'version'=4, 'protocol'=17, 'MF'=0> * or, * <'ether type'=0x86DD * | 'version'=6, 'next header'=17> */ #define RTE_PTYPE_L4_UDP 0x00000200 /** * Fragmented IP (Internet Protocol) packet type. * It is used for outer packet for tunneling cases. * * It refers to those packets of any IP types, which can be recognized as * fragmented. A fragmented packet cannot be recognized as any other L4 types * (RTE_PTYPE_L4_TCP, RTE_PTYPE_L4_UDP, RTE_PTYPE_L4_SCTP, RTE_PTYPE_L4_ICMP, * RTE_PTYPE_L4_NONFRAG). * * Packet format: * <'ether type'=0x0800 * | 'version'=4, 'MF'=1> * or, * <'ether type'=0x86DD * | 'version'=6, 'next header'=44> */ #define RTE_PTYPE_L4_FRAG 0x00000300 /** * SCTP (Stream Control Transmission Protocol) packet type. * It is used for outer packet for tunneling cases. * * Packet format: * <'ether type'=0x0800 * | 'version'=4, 'protocol'=132, 'MF'=0> * or, * <'ether type'=0x86DD * | 'version'=6, 'next header'=132> */ #define RTE_PTYPE_L4_SCTP 0x00000400 /** * ICMP (Internet Control Message Protocol) packet type. * It is used for outer packet for tunneling cases. * * Packet format: * <'ether type'=0x0800 * | 'version'=4, 'protocol'=1, 'MF'=0> * or, * <'ether type'=0x86DD * | 'version'=6, 'next header'=1> */ #define RTE_PTYPE_L4_ICMP 0x00000500 /** * Non-fragmented IP (Internet Protocol) packet type. * It is used for outer packet for tunneling cases. * * It refers to those packets of any IP types, while cannot be recognized as * any of above L4 types (RTE_PTYPE_L4_TCP, RTE_PTYPE_L4_UDP, * RTE_PTYPE_L4_FRAG, RTE_PTYPE_L4_SCTP, RTE_PTYPE_L4_ICMP). * * Packet format: * <'ether type'=0x0800 * | 'version'=4, 'protocol'!=[6|17|132|1], 'MF'=0> * or, * <'ether type'=0x86DD * | 'version'=6, 'next header'!=[6|17|44|132|1]> */ #define RTE_PTYPE_L4_NONFRAG 0x00000600 /** * Mask of layer 4 packet types. * It is used for outer packet for tunneling cases. */ #define RTE_PTYPE_L4_MASK 0x00000f00 /** * IP (Internet Protocol) in IP (Internet Protocol) tunneling packet type. * * Packet format: * <'ether type'=0x0800 * | 'version'=4, 'protocol'=[4|41]> * or, * <'ether type'=0x86DD * | 'version'=6, 'next header'=[4|41]> */ #define RTE_PTYPE_TUNNEL_IP 0x00001000 /** * GRE (Generic Routing Encapsulation) tunneling packet type. * * Packet format: * <'ether type'=0x0800 * | 'version'=4, 'protocol'=47> * or, * <'ether type'=0x86DD * | 'version'=6, 'next header'=47> */ #define RTE_PTYPE_TUNNEL_GRE 0x00002000 /** * VXLAN (Virtual eXtensible Local Area Network) tunneling packet type. * * Packet format: * <'ether type'=0x0800 * | 'version'=4, 'protocol'=17 * | 'destination port'=4798> * or, * <'ether type'=0x86DD * | 'version'=6, 'next header'=17 * | 'destination port'=4798> */ #define RTE_PTYPE_TUNNEL_VXLAN 0x00003000 /** * NVGRE (Network Virtualization using Generic Routing Encapsulation) tunneling * packet type. * * Packet format: * <'ether type'=0x0800 * | 'version'=4, 'protocol'=47 * | 'protocol type'=0x6558> * or, * <'ether type'=0x86DD * | 'version'=6, 'next header'=47 * | 'protocol type'=0x6558'> */ #define RTE_PTYPE_TUNNEL_NVGRE 0x00004000 /** * GENEVE (Generic Network Virtualization Encapsulation) tunneling packet type. * * Packet format: * <'ether type'=0x0800 * | 'version'=4, 'protocol'=17 * | 'destination port'=6081> * or, * <'ether type'=0x86DD * | 'version'=6, 'next header'=17 * | 'destination port'=6081> */ #define RTE_PTYPE_TUNNEL_GENEVE 0x00005000 /** * Tunneling packet type of Teredo, VXLAN (Virtual eXtensible Local Area * Network) or GRE (Generic Routing Encapsulation) could be recognized as this * packet type, if they can not be recognized independently as of hardware * capability. */ #define RTE_PTYPE_TUNNEL_GRENAT 0x00006000 /** * Mask of tunneling packet types. */ #define RTE_PTYPE_TUNNEL_MASK 0x0000f000 /** * Ethernet packet type. * It is used for inner packet type only. * * Packet format (inner only): * <'ether type'=[0x800|0x86DD]> */ #define RTE_PTYPE_INNER_L2_ETHER 0x00010000 /** * Ethernet packet type with VLAN (Virtual Local Area Network) tag. * * Packet format (inner only): * <'ether type'=[0x800|0x86DD], vlan=[1-4095]> */ #define RTE_PTYPE_INNER_L2_ETHER_VLAN 0x00020000 /** * Mask of inner layer 2 packet types. */ #define RTE_PTYPE_INNER_L2_MASK 0x000f0000 /** * IP (Internet Protocol) version 4 packet type. * It is used for inner packet only, and does not contain any header option. * * Packet format (inner only): * <'ether type'=0x0800 * | 'version'=4, 'ihl'=5> */ #define RTE_PTYPE_INNER_L3_IPV4 0x00100000 /** * IP (Internet Protocol) version 4 packet type. * It is used for inner packet only, and contains header options. * * Packet format (inner only): * <'ether type'=0x0800 * | 'version'=4, 'ihl'=[6-15], 'options'> */ #define RTE_PTYPE_INNER_L3_IPV4_EXT 0x00200000 /** * IP (Internet Protocol) version 6 packet type. * It is used for inner packet only, and does not contain any extension header. * * Packet format (inner only): * <'ether type'=0x86DD * | 'version'=6, 'next header'=0x3B> */ #define RTE_PTYPE_INNER_L3_IPV6 0x00300000 /** * IP (Internet Protocol) version 4 packet type. * It is used for inner packet only, and may or maynot contain header options. * * Packet format (inner only): * <'ether type'=0x0800 * | 'version'=4, 'ihl'=[5-15], <'options'>> */ #define RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN 0x00400000 /** * IP (Internet Protocol) version 6 packet type. * It is used for inner packet only, and contains extension headers. * * Packet format (inner only): * <'ether type'=0x86DD * | 'version'=6, 'next header'=[0x0|0x2B|0x2C|0x32|0x33|0x3C|0x87], * 'extension headers'> */ #define RTE_PTYPE_INNER_L3_IPV6_EXT 0x00500000 /** * IP (Internet Protocol) version 6 packet type. * It is used for inner packet only, and may or maynot contain extension * headers. * * Packet format (inner only): * <'ether type'=0x86DD * | 'version'=6, 'next header'=[0x3B|0x0|0x2B|0x2C|0x32|0x33|0x3C|0x87], * <'extension headers'>> */ #define RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN 0x00600000 /** * Mask of inner layer 3 packet types. */ #define RTE_PTYPE_INNER_L3_MASK 0x00f00000 /** * TCP (Transmission Control Protocol) packet type. * It is used for inner packet only. * * Packet format (inner only): * <'ether type'=0x0800 * | 'version'=4, 'protocol'=6, 'MF'=0> * or, * <'ether type'=0x86DD * | 'version'=6, 'next header'=6> */ #define RTE_PTYPE_INNER_L4_TCP 0x01000000 /** * UDP (User Datagram Protocol) packet type. * It is used for inner packet only. * * Packet format (inner only): * <'ether type'=0x0800 * | 'version'=4, 'protocol'=17, 'MF'=0> * or, * <'ether type'=0x86DD * | 'version'=6, 'next header'=17> */ #define RTE_PTYPE_INNER_L4_UDP 0x02000000 /** * Fragmented IP (Internet Protocol) packet type. * It is used for inner packet only, and may or maynot have layer 4 packet. * * Packet format (inner only): * <'ether type'=0x0800 * | 'version'=4, 'MF'=1> * or, * <'ether type'=0x86DD * | 'version'=6, 'next header'=44> */ #define RTE_PTYPE_INNER_L4_FRAG 0x03000000 /** * SCTP (Stream Control Transmission Protocol) packet type. * It is used for inner packet only. * * Packet format (inner only): * <'ether type'=0x0800 * | 'version'=4, 'protocol'=132, 'MF'=0> * or, * <'ether type'=0x86DD * | 'version'=6, 'next header'=132> */ #define RTE_PTYPE_INNER_L4_SCTP 0x04000000 /** * ICMP (Internet Control Message Protocol) packet type. * It is used for inner packet only. * * Packet format (inner only): * <'ether type'=0x0800 * | 'version'=4, 'protocol'=1, 'MF'=0> * or, * <'ether type'=0x86DD * | 'version'=6, 'next header'=1> */ #define RTE_PTYPE_INNER_L4_ICMP 0x05000000 /** * Non-fragmented IP (Internet Protocol) packet type. * It is used for inner packet only, and may or maynot have other unknown layer * 4 packet types. * * Packet format (inner only): * <'ether type'=0x0800 * | 'version'=4, 'protocol'!=[6|17|132|1], 'MF'=0> * or, * <'ether type'=0x86DD * | 'version'=6, 'next header'!=[6|17|44|132|1]> */ #define RTE_PTYPE_INNER_L4_NONFRAG 0x06000000 /** * Mask of inner layer 4 packet types. */ #define RTE_PTYPE_INNER_L4_MASK 0x0f000000 /** * Check if the (outer) L3 header is IPv4. To avoid comparing IPv4 types one by * one, bit 4 is selected to be used for IPv4 only. Then checking bit 4 can * determine if it is an IPV4 packet. */ #define RTE_ETH_IS_IPV4_HDR(ptype) ((ptype) & RTE_PTYPE_L3_IPV4) /** * Check if the (outer) L3 header is IPv4. To avoid comparing IPv4 types one by * one, bit 6 is selected to be used for IPv4 only. Then checking bit 6 can * determine if it is an IPV4 packet. */ #define RTE_ETH_IS_IPV6_HDR(ptype) ((ptype) & RTE_PTYPE_L3_IPV6) /* Check if it is a tunneling packet */ #define RTE_ETH_IS_TUNNEL_PKT(ptype) ((ptype) & (RTE_PTYPE_TUNNEL_MASK | \ RTE_PTYPE_INNER_L2_MASK | \ RTE_PTYPE_INNER_L3_MASK | \ RTE_PTYPE_INNER_L4_MASK)) /** Alignment constraint of mbuf private area. */ #define RTE_MBUF_PRIV_ALIGN 8 /** * Get the name of a RX offload flag * * @param mask * The mask describing the flag. * @return * The name of this flag, or NULL if it's not a valid RX flag. */ const char *rte_get_rx_ol_flag_name(uint64_t mask); /** * Get the name of a TX offload flag * * @param mask * The mask describing the flag. Usually only one bit must be set. * Several bits can be given if they belong to the same mask. * Ex: PKT_TX_L4_MASK. * @return * The name of this flag, or NULL if it's not a valid TX flag. */ const char *rte_get_tx_ol_flag_name(uint64_t mask); /** * Some NICs need at least 2KB buffer to RX standard Ethernet frame without * splitting it into multiple segments. * So, for mbufs that planned to be involved into RX/TX, the recommended * minimal buffer length is 2KB + RTE_PKTMBUF_HEADROOM. */ #define RTE_MBUF_DEFAULT_DATAROOM 2048 #define RTE_MBUF_DEFAULT_BUF_SIZE \ (RTE_MBUF_DEFAULT_DATAROOM + RTE_PKTMBUF_HEADROOM) /* define a set of marker types that can be used to refer to set points in the * mbuf */ typedef void *MARKER[0]; /**< generic marker for a point in a structure */ typedef uint8_t MARKER8[0]; /**< generic marker with 1B alignment */ typedef uint64_t MARKER64[0]; /**< marker that allows us to overwrite 8 bytes * with a single assignment */ /** Opaque rte_mbuf_offload structure declarations */ struct rte_mbuf_offload; /** * The generic rte_mbuf, containing a packet mbuf. */ struct rte_mbuf { MARKER cacheline0; void *buf_addr; /**< Virtual address of segment buffer. */ phys_addr_t buf_physaddr; /**< Physical address of segment buffer. */ uint16_t buf_len; /**< Length of segment buffer. */ /* next 6 bytes are initialised on RX descriptor rearm */ MARKER8 rearm_data; uint16_t data_off; /** * 16-bit Reference counter. * It should only be accessed using the following functions: * rte_mbuf_refcnt_update(), rte_mbuf_refcnt_read(), and * rte_mbuf_refcnt_set(). The functionality of these functions (atomic, * or non-atomic) is controlled by the CONFIG_RTE_MBUF_REFCNT_ATOMIC * config option. */ union { rte_atomic16_t refcnt_atomic; /**< Atomically accessed refcnt */ uint16_t refcnt; /**< Non-atomically accessed refcnt */ }; uint8_t nb_segs; /**< Number of segments. */ uint8_t port; /**< Input port. */ uint64_t ol_flags; /**< Offload features. */ /* remaining bytes are set on RX when pulling packet from descriptor */ MARKER rx_descriptor_fields1; /* * The packet type, which is the combination of outer/inner L2, L3, L4 * and tunnel types. */ union { uint32_t packet_type; /**< L2/L3/L4 and tunnel information. */ struct { uint32_t l2_type:4; /**< (Outer) L2 type. */ uint32_t l3_type:4; /**< (Outer) L3 type. */ uint32_t l4_type:4; /**< (Outer) L4 type. */ uint32_t tun_type:4; /**< Tunnel type. */ uint32_t inner_l2_type:4; /**< Inner L2 type. */ uint32_t inner_l3_type:4; /**< Inner L3 type. */ uint32_t inner_l4_type:4; /**< Inner L4 type. */ }; }; uint32_t pkt_len; /**< Total pkt len: sum of all segments. */ uint16_t data_len; /**< Amount of data in segment buffer. */ uint16_t vlan_tci; /**< VLAN Tag Control Identifier (CPU order) */ union { uint32_t rss; /**< RSS hash result if RSS enabled */ struct { union { struct { uint16_t hash; uint16_t id; }; uint32_t lo; /**< Second 4 flexible bytes */ }; uint32_t hi; /**< First 4 flexible bytes or FD ID, dependent on PKT_RX_FDIR_* flag in ol_flags. */ } fdir; /**< Filter identifier if FDIR enabled */ struct { uint32_t lo; uint32_t hi; } sched; /**< Hierarchical scheduler */ uint32_t usr; /**< User defined tags. See rte_distributor_process() */ } hash; /**< hash information */ uint32_t seqn; /**< Sequence number. See also rte_reorder_insert() */ uint16_t vlan_tci_outer; /**< Outer VLAN Tag Control Identifier (CPU order) */ /* second cache line - fields only used in slow path or on TX */ MARKER cacheline1 __rte_cache_min_aligned; union { void *userdata; /**< Can be used for external metadata */ uint64_t udata64; /**< Allow 8-byte userdata on 32-bit */ }; struct rte_mempool *pool; /**< Pool from which mbuf was allocated. */ struct rte_mbuf *next; /**< Next segment of scattered packet. */ /* fields to support TX offloads */ union { uint64_t tx_offload; /**< combined for easy fetch */ struct { uint64_t l2_len:7; /**< L2 (MAC) Header Length. */ uint64_t l3_len:9; /**< L3 (IP) Header Length. */ uint64_t l4_len:8; /**< L4 (TCP/UDP) Header Length. */ uint64_t tso_segsz:16; /**< TCP TSO segment size */ /* fields for TX offloading of tunnels */ uint64_t outer_l3_len:9; /**< Outer L3 (IP) Hdr Length. */ uint64_t outer_l2_len:7; /**< Outer L2 (MAC) Hdr Length. */ /* uint64_t unused:8; */ }; }; /** Size of the application private data. In case of an indirect * mbuf, it stores the direct mbuf private data size. */ uint16_t priv_size; /** Timesync flags for use with IEEE1588. */ uint16_t timesync; /* Chain of off-load operations to perform on mbuf */ struct rte_mbuf_offload *offload_ops; } __rte_cache_aligned; static inline uint16_t rte_pktmbuf_priv_size(struct rte_mempool *mp); /** * Return the DMA address of the beginning of the mbuf data * * @param mb * The pointer to the mbuf. * @return * The physical address of the beginning of the mbuf data */ static inline phys_addr_t rte_mbuf_data_dma_addr(const struct rte_mbuf *mb) { return mb->buf_physaddr + mb->data_off; } /** * Return the default DMA address of the beginning of the mbuf data * * This function is used by drivers in their receive function, as it * returns the location where data should be written by the NIC, taking * the default headroom in account. * * @param mb * The pointer to the mbuf. * @return * The physical address of the beginning of the mbuf data */ static inline phys_addr_t rte_mbuf_data_dma_addr_default(const struct rte_mbuf *mb) { return mb->buf_physaddr + RTE_PKTMBUF_HEADROOM; } /** * Return the mbuf owning the data buffer address of an indirect mbuf. * * @param mi * The pointer to the indirect mbuf. * @return * The address of the direct mbuf corresponding to buffer_addr. */ static inline struct rte_mbuf * rte_mbuf_from_indirect(struct rte_mbuf *mi) { return (struct rte_mbuf *)RTE_PTR_SUB(mi->buf_addr, sizeof(*mi) + mi->priv_size); } /** * Return the buffer address embedded in the given mbuf. * * @param md * The pointer to the mbuf. * @return * The address of the data buffer owned by the mbuf. */ static inline char * rte_mbuf_to_baddr(struct rte_mbuf *md) { char *buffer_addr; buffer_addr = (char *)md + sizeof(*md) + rte_pktmbuf_priv_size(md->pool); return buffer_addr; } /** * Returns TRUE if given mbuf is indirect, or FALSE otherwise. */ #define RTE_MBUF_INDIRECT(mb) ((mb)->ol_flags & IND_ATTACHED_MBUF) /** * Returns TRUE if given mbuf is direct, or FALSE otherwise. */ #define RTE_MBUF_DIRECT(mb) (!RTE_MBUF_INDIRECT(mb)) /** * Private data in case of pktmbuf pool. * * A structure that contains some pktmbuf_pool-specific data that are * appended after the mempool structure (in private data). */ struct rte_pktmbuf_pool_private { uint16_t mbuf_data_room_size; /**< Size of data space in each mbuf. */ uint16_t mbuf_priv_size; /**< Size of private area in each mbuf. */ }; #ifdef RTE_LIBRTE_MBUF_DEBUG /** check mbuf type in debug mode */ #define __rte_mbuf_sanity_check(m, is_h) rte_mbuf_sanity_check(m, is_h) /** check mbuf type in debug mode if mbuf pointer is not null */ #define __rte_mbuf_sanity_check_raw(m, is_h) do { \ if ((m) != NULL) \ rte_mbuf_sanity_check(m, is_h); \ } while (0) /** MBUF asserts in debug mode */ #define RTE_MBUF_ASSERT(exp) \ if (!(exp)) { \ rte_panic("line%d\tassert \"" #exp "\" failed\n", __LINE__); \ } #else /* RTE_LIBRTE_MBUF_DEBUG */ /** check mbuf type in debug mode */ #define __rte_mbuf_sanity_check(m, is_h) do { } while (0) /** check mbuf type in debug mode if mbuf pointer is not null */ #define __rte_mbuf_sanity_check_raw(m, is_h) do { } while (0) /** MBUF asserts in debug mode */ #define RTE_MBUF_ASSERT(exp) do { } while (0) #endif /* RTE_LIBRTE_MBUF_DEBUG */ #ifdef RTE_MBUF_REFCNT_ATOMIC /** * Reads the value of an mbuf's refcnt. * @param m * Mbuf to read * @return * Reference count number. */ static inline uint16_t rte_mbuf_refcnt_read(const struct rte_mbuf *m) { return (uint16_t)(rte_atomic16_read(&m->refcnt_atomic)); } /** * Sets an mbuf's refcnt to a defined value. * @param m * Mbuf to update * @param new_value * Value set */ static inline void rte_mbuf_refcnt_set(struct rte_mbuf *m, uint16_t new_value) { rte_atomic16_set(&m->refcnt_atomic, new_value); } /** * Adds given value to an mbuf's refcnt and returns its new value. * @param m * Mbuf to update * @param value * Value to add/subtract * @return * Updated value */ static inline uint16_t rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value) { /* * The atomic_add is an expensive operation, so we don't want to * call it in the case where we know we are the uniq holder of * this mbuf (i.e. ref_cnt == 1). Otherwise, an atomic * operation has to be used because concurrent accesses on the * reference counter can occur. */ if (likely(rte_mbuf_refcnt_read(m) == 1)) { rte_mbuf_refcnt_set(m, 1 + value); return 1 + value; } return (uint16_t)(rte_atomic16_add_return(&m->refcnt_atomic, value)); } #else /* ! RTE_MBUF_REFCNT_ATOMIC */ /** * Adds given value to an mbuf's refcnt and returns its new value. */ static inline uint16_t rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value) { m->refcnt = (uint16_t)(m->refcnt + value); return m->refcnt; } /** * Reads the value of an mbuf's refcnt. */ static inline uint16_t rte_mbuf_refcnt_read(const struct rte_mbuf *m) { return m->refcnt; } /** * Sets an mbuf's refcnt to the defined value. */ static inline void rte_mbuf_refcnt_set(struct rte_mbuf *m, uint16_t new_value) { m->refcnt = new_value; } #endif /* RTE_MBUF_REFCNT_ATOMIC */ /** Mbuf prefetch */ #define RTE_MBUF_PREFETCH_TO_FREE(m) do { \ if ((m) != NULL) \ rte_prefetch0(m); \ } while (0) /** * Sanity checks on an mbuf. * * Check the consistency of the given mbuf. The function will cause a * panic if corruption is detected. * * @param m * The mbuf to be checked. * @param is_header * True if the mbuf is a packet header, false if it is a sub-segment * of a packet (in this case, some fields like nb_segs are not checked) */ void rte_mbuf_sanity_check(const struct rte_mbuf *m, int is_header); /** * @internal Allocate a new mbuf from mempool *mp*. * The use of that function is reserved for RTE internal needs. * Please use rte_pktmbuf_alloc(). * * @param mp * The mempool from which mbuf is allocated. * @return * - The pointer to the new mbuf on success. * - NULL if allocation failed. */ static inline struct rte_mbuf *__rte_mbuf_raw_alloc(struct rte_mempool *mp) { struct rte_mbuf *m; void *mb = NULL; if (rte_mempool_get(mp, &mb) < 0) return NULL; m = (struct rte_mbuf *)mb; RTE_MBUF_ASSERT(rte_mbuf_refcnt_read(m) == 0); rte_mbuf_refcnt_set(m, 1); return m; } /** * @internal Put mbuf back into its original mempool. * The use of that function is reserved for RTE internal needs. * Please use rte_pktmbuf_free(). * * @param m * The mbuf to be freed. */ static inline void __attribute__((always_inline)) __rte_mbuf_raw_free(struct rte_mbuf *m) { RTE_MBUF_ASSERT(rte_mbuf_refcnt_read(m) == 0); rte_mempool_put(m->pool, m); } /* Operations on ctrl mbuf */ /** * The control mbuf constructor. * * This function initializes some fields in an mbuf structure that are * not modified by the user once created (mbuf type, origin pool, buffer * start address, and so on). This function is given as a callback function * to rte_mempool_create() at pool creation time. * * @param mp * The mempool from which the mbuf is allocated. * @param opaque_arg * A pointer that can be used by the user to retrieve useful information * for mbuf initialization. This pointer comes from the ``init_arg`` * parameter of rte_mempool_create(). * @param m * The mbuf to initialize. * @param i * The index of the mbuf in the pool table. */ void rte_ctrlmbuf_init(struct rte_mempool *mp, void *opaque_arg, void *m, unsigned i); /** * Allocate a new mbuf (type is ctrl) from mempool *mp*. * * This new mbuf is initialized with data pointing to the beginning of * buffer, and with a length of zero. * * @param mp * The mempool from which the mbuf is allocated. * @return * - The pointer to the new mbuf on success. * - NULL if allocation failed. */ #define rte_ctrlmbuf_alloc(mp) rte_pktmbuf_alloc(mp) /** * Free a control mbuf back into its original mempool. * * @param m * The control mbuf to be freed. */ #define rte_ctrlmbuf_free(m) rte_pktmbuf_free(m) /** * A macro that returns the pointer to the carried data. * * The value that can be read or assigned. * * @param m * The control mbuf. */ #define rte_ctrlmbuf_data(m) ((char *)((m)->buf_addr) + (m)->data_off) /** * A macro that returns the length of the carried data. * * The value that can be read or assigned. * * @param m * The control mbuf. */ #define rte_ctrlmbuf_len(m) rte_pktmbuf_data_len(m) /** * Tests if an mbuf is a control mbuf * * @param m * The mbuf to be tested * @return * - True (1) if the mbuf is a control mbuf * - False(0) otherwise */ static inline int rte_is_ctrlmbuf(struct rte_mbuf *m) { return !!(m->ol_flags & CTRL_MBUF_FLAG); } /* Operations on pkt mbuf */ /** * The packet mbuf constructor. * * This function initializes some fields in the mbuf structure that are * not modified by the user once created (origin pool, buffer start * address, and so on). This function is given as a callback function to * rte_mempool_create() at pool creation time. * * @param mp * The mempool from which mbufs originate. * @param opaque_arg * A pointer that can be used by the user to retrieve useful information * for mbuf initialization. This pointer comes from the ``init_arg`` * parameter of rte_mempool_create(). * @param m * The mbuf to initialize. * @param i * The index of the mbuf in the pool table. */ void rte_pktmbuf_init(struct rte_mempool *mp, void *opaque_arg, void *m, unsigned i); /** * A packet mbuf pool constructor. * * This function initializes the mempool private data in the case of a * pktmbuf pool. This private data is needed by the driver. The * function is given as a callback function to rte_mempool_create() at * pool creation. It can be extended by the user, for example, to * provide another packet size. * * @param mp * The mempool from which mbufs originate. * @param opaque_arg * A pointer that can be used by the user to retrieve useful information * for mbuf initialization. This pointer comes from the ``init_arg`` * parameter of rte_mempool_create(). */ void rte_pktmbuf_pool_init(struct rte_mempool *mp, void *opaque_arg); /** * Create a mbuf pool. * * This function creates and initializes a packet mbuf pool. It is * a wrapper to rte_mempool_create() with the proper packet constructor * and mempool constructor. * * @param name * The name of the mbuf pool. * @param n * The number of elements in the mbuf pool. The optimum size (in terms * of memory usage) for a mempool is when n is a power of two minus one: * n = (2^q - 1). * @param cache_size * Size of the per-core object cache. See rte_mempool_create() for * details. * @param priv_size * Size of application private are between the rte_mbuf structure * and the data buffer. This value must be aligned to RTE_MBUF_PRIV_ALIGN. * @param data_room_size * Size of data buffer in each mbuf, including RTE_PKTMBUF_HEADROOM. * @param socket_id * The socket identifier where the memory should be allocated. The * value can be *SOCKET_ID_ANY* if there is no NUMA constraint for the * reserved zone. * @return * The pointer to the new allocated mempool, on success. NULL on error * with rte_errno set appropriately. Possible rte_errno values include: * - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure * - E_RTE_SECONDARY - function was called from a secondary process instance * - EINVAL - cache size provided is too large, or priv_size is not aligned. * - ENOSPC - the maximum number of memzones has already been allocated * - EEXIST - a memzone with the same name already exists * - ENOMEM - no appropriate memory area found in which to create memzone */ struct rte_mempool * rte_pktmbuf_pool_create(const char *name, unsigned n, unsigned cache_size, uint16_t priv_size, uint16_t data_room_size, int socket_id); /** * Get the data room size of mbufs stored in a pktmbuf_pool * * The data room size is the amount of data that can be stored in a * mbuf including the headroom (RTE_PKTMBUF_HEADROOM). * * @param mp * The packet mbuf pool. * @return * The data room size of mbufs stored in this mempool. */ static inline uint16_t rte_pktmbuf_data_room_size(struct rte_mempool *mp) { struct rte_pktmbuf_pool_private *mbp_priv; mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp); return mbp_priv->mbuf_data_room_size; } /** * Get the application private size of mbufs stored in a pktmbuf_pool * * The private size of mbuf is a zone located between the rte_mbuf * structure and the data buffer where an application can store data * associated to a packet. * * @param mp * The packet mbuf pool. * @return * The private size of mbufs stored in this mempool. */ static inline uint16_t rte_pktmbuf_priv_size(struct rte_mempool *mp) { struct rte_pktmbuf_pool_private *mbp_priv; mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp); return mbp_priv->mbuf_priv_size; } /** * Reset the fields of a packet mbuf to their default values. * * The given mbuf must have only one segment. * * @param m * The packet mbuf to be resetted. */ static inline void rte_pktmbuf_reset(struct rte_mbuf *m) { m->next = NULL; m->pkt_len = 0; m->tx_offload = 0; m->vlan_tci = 0; m->vlan_tci_outer = 0; m->nb_segs = 1; m->port = 0xff; m->ol_flags = 0; m->packet_type = 0; m->data_off = (RTE_PKTMBUF_HEADROOM <= m->buf_len) ? RTE_PKTMBUF_HEADROOM : m->buf_len; m->data_len = 0; __rte_mbuf_sanity_check(m, 1); } /** * Allocate a new mbuf from a mempool. * * This new mbuf contains one segment, which has a length of 0. The pointer * to data is initialized to have some bytes of headroom in the buffer * (if buffer size allows). * * @param mp * The mempool from which the mbuf is allocated. * @return * - The pointer to the new mbuf on success. * - NULL if allocation failed. */ static inline struct rte_mbuf *rte_pktmbuf_alloc(struct rte_mempool *mp) { struct rte_mbuf *m; if ((m = __rte_mbuf_raw_alloc(mp)) != NULL) rte_pktmbuf_reset(m); return m; } /** * Allocate a bulk of mbufs, initialize refcnt and reset the fields to default * values. * * @param pool * The mempool from which mbufs are allocated. * @param mbufs * Array of pointers to mbufs * @param count * Array size * @return * - 0: Success */ static inline int rte_pktmbuf_alloc_bulk(struct rte_mempool *pool, struct rte_mbuf **mbufs, unsigned count) { unsigned idx = 0; int rc; rc = rte_mempool_get_bulk(pool, (void **)mbufs, count); if (unlikely(rc)) return rc; /* To understand duff's device on loop unwinding optimization, see * https://en.wikipedia.org/wiki/Duff's_device. * Here while() loop is used rather than do() while{} to avoid extra * check if count is zero. */ switch (count % 4) { case 0: while (idx != count) { RTE_MBUF_ASSERT(rte_mbuf_refcnt_read(mbufs[idx]) == 0); rte_mbuf_refcnt_set(mbufs[idx], 1); rte_pktmbuf_reset(mbufs[idx]); idx++; case 3: RTE_MBUF_ASSERT(rte_mbuf_refcnt_read(mbufs[idx]) == 0); rte_mbuf_refcnt_set(mbufs[idx], 1); rte_pktmbuf_reset(mbufs[idx]); idx++; case 2: RTE_MBUF_ASSERT(rte_mbuf_refcnt_read(mbufs[idx]) == 0); rte_mbuf_refcnt_set(mbufs[idx], 1); rte_pktmbuf_reset(mbufs[idx]); idx++; case 1: RTE_MBUF_ASSERT(rte_mbuf_refcnt_read(mbufs[idx]) == 0); rte_mbuf_refcnt_set(mbufs[idx], 1); rte_pktmbuf_reset(mbufs[idx]); idx++; } } return 0; } /** * Attach packet mbuf to another packet mbuf. * * After attachment we refer the mbuf we attached as 'indirect', * while mbuf we attached to as 'direct'. * Right now, not supported: * - attachment for already indirect mbuf (e.g. - mi has to be direct). * - mbuf we trying to attach (mi) is used by someone else * e.g. it's reference counter is greater then 1. * * @param mi * The indirect packet mbuf. * @param m * The packet mbuf we're attaching to. */ static inline void rte_pktmbuf_attach(struct rte_mbuf *mi, struct rte_mbuf *m) { struct rte_mbuf *md; RTE_MBUF_ASSERT(RTE_MBUF_DIRECT(mi) && rte_mbuf_refcnt_read(mi) == 1); /* if m is not direct, get the mbuf that embeds the data */ if (RTE_MBUF_DIRECT(m)) md = m; else md = rte_mbuf_from_indirect(m); rte_mbuf_refcnt_update(md, 1); mi->priv_size = m->priv_size; mi->buf_physaddr = m->buf_physaddr; mi->buf_addr = m->buf_addr; mi->buf_len = m->buf_len; mi->next = m->next; mi->data_off = m->data_off; mi->data_len = m->data_len; mi->port = m->port; mi->vlan_tci = m->vlan_tci; mi->vlan_tci_outer = m->vlan_tci_outer; mi->tx_offload = m->tx_offload; mi->hash = m->hash; mi->next = NULL; mi->pkt_len = mi->data_len; mi->nb_segs = 1; mi->ol_flags = m->ol_flags | IND_ATTACHED_MBUF; mi->packet_type = m->packet_type; __rte_mbuf_sanity_check(mi, 1); __rte_mbuf_sanity_check(m, 0); } /** * Detach an indirect packet mbuf. * * - restore original mbuf address and length values. * - reset pktmbuf data and data_len to their default values. * All other fields of the given packet mbuf will be left intact. * * @param m * The indirect attached packet mbuf. */ static inline void rte_pktmbuf_detach(struct rte_mbuf *m) { struct rte_mempool *mp = m->pool; uint32_t mbuf_size, buf_len, priv_size; priv_size = rte_pktmbuf_priv_size(mp); mbuf_size = sizeof(struct rte_mbuf) + priv_size; buf_len = rte_pktmbuf_data_room_size(mp); m->priv_size = priv_size; m->buf_addr = (char *)m + mbuf_size; m->buf_physaddr = rte_mempool_virt2phy(mp, m) + mbuf_size; m->buf_len = (uint16_t)buf_len; m->data_off = RTE_MIN(RTE_PKTMBUF_HEADROOM, (uint16_t)m->buf_len); m->data_len = 0; m->ol_flags = 0; } static inline struct rte_mbuf* __attribute__((always_inline)) __rte_pktmbuf_prefree_seg(struct rte_mbuf *m) { __rte_mbuf_sanity_check(m, 0); if (likely(rte_mbuf_refcnt_update(m, -1) == 0)) { /* if this is an indirect mbuf, then * - detach mbuf * - free attached mbuf segment */ if (RTE_MBUF_INDIRECT(m)) { struct rte_mbuf *md = rte_mbuf_from_indirect(m); rte_pktmbuf_detach(m); if (rte_mbuf_refcnt_update(md, -1) == 0) __rte_mbuf_raw_free(md); } return m; } return NULL; } /** * Free a segment of a packet mbuf into its original mempool. * * Free an mbuf, without parsing other segments in case of chained * buffers. * * @param m * The packet mbuf segment to be freed. */ static inline void __attribute__((always_inline)) rte_pktmbuf_free_seg(struct rte_mbuf *m) { if (likely(NULL != (m = __rte_pktmbuf_prefree_seg(m)))) { m->next = NULL; __rte_mbuf_raw_free(m); } } /** * Free a packet mbuf back into its original mempool. * * Free an mbuf, and all its segments in case of chained buffers. Each * segment is added back into its original mempool. * * @param m * The packet mbuf to be freed. */ static inline void rte_pktmbuf_free(struct rte_mbuf *m) { struct rte_mbuf *m_next; __rte_mbuf_sanity_check(m, 1); while (m != NULL) { m_next = m->next; rte_pktmbuf_free_seg(m); m = m_next; } } /** * Creates a "clone" of the given packet mbuf. * * Walks through all segments of the given packet mbuf, and for each of them: * - Creates a new packet mbuf from the given pool. * - Attaches newly created mbuf to the segment. * Then updates pkt_len and nb_segs of the "clone" packet mbuf to match values * from the original packet mbuf. * * @param md * The packet mbuf to be cloned. * @param mp * The mempool from which the "clone" mbufs are allocated. * @return * - The pointer to the new "clone" mbuf on success. * - NULL if allocation fails. */ static inline struct rte_mbuf *rte_pktmbuf_clone(struct rte_mbuf *md, struct rte_mempool *mp) { struct rte_mbuf *mc, *mi, **prev; uint32_t pktlen; uint8_t nseg; if (unlikely ((mc = rte_pktmbuf_alloc(mp)) == NULL)) return NULL; mi = mc; prev = &mi->next; pktlen = md->pkt_len; nseg = 0; do { nseg++; rte_pktmbuf_attach(mi, md); *prev = mi; prev = &mi->next; } while ((md = md->next) != NULL && (mi = rte_pktmbuf_alloc(mp)) != NULL); *prev = NULL; mc->nb_segs = nseg; mc->pkt_len = pktlen; /* Allocation of new indirect segment failed */ if (unlikely (mi == NULL)) { rte_pktmbuf_free(mc); return NULL; } __rte_mbuf_sanity_check(mc, 1); return mc; } /** * Adds given value to the refcnt of all packet mbuf segments. * * Walks through all segments of given packet mbuf and for each of them * invokes rte_mbuf_refcnt_update(). * * @param m * The packet mbuf whose refcnt to be updated. * @param v * The value to add to the mbuf's segments refcnt. */ static inline void rte_pktmbuf_refcnt_update(struct rte_mbuf *m, int16_t v) { __rte_mbuf_sanity_check(m, 1); do { rte_mbuf_refcnt_update(m, v); } while ((m = m->next) != NULL); } /** * Get the headroom in a packet mbuf. * * @param m * The packet mbuf. * @return * The length of the headroom. */ static inline uint16_t rte_pktmbuf_headroom(const struct rte_mbuf *m) { __rte_mbuf_sanity_check(m, 1); return m->data_off; } /** * Get the tailroom of a packet mbuf. * * @param m * The packet mbuf. * @return * The length of the tailroom. */ static inline uint16_t rte_pktmbuf_tailroom(const struct rte_mbuf *m) { __rte_mbuf_sanity_check(m, 1); return (uint16_t)(m->buf_len - rte_pktmbuf_headroom(m) - m->data_len); } /** * Get the last segment of the packet. * * @param m * The packet mbuf. * @return * The last segment of the given mbuf. */ static inline struct rte_mbuf *rte_pktmbuf_lastseg(struct rte_mbuf *m) { struct rte_mbuf *m2 = (struct rte_mbuf *)m; __rte_mbuf_sanity_check(m, 1); while (m2->next != NULL) m2 = m2->next; return m2; } /** * A macro that points to an offset into the data in the mbuf. * * The returned pointer is cast to type t. Before using this * function, the user must ensure that the first segment is large * enough to accommodate its data. * * @param m * The packet mbuf. * @param o * The offset into the mbuf data. * @param t * The type to cast the result into. */ #define rte_pktmbuf_mtod_offset(m, t, o) \ ((t)((char *)(m)->buf_addr + (m)->data_off + (o))) /** * A macro that points to the start of the data in the mbuf. * * The returned pointer is cast to type t. Before using this * function, the user must ensure that the first segment is large * enough to accommodate its data. * * @param m * The packet mbuf. * @param t * The type to cast the result into. */ #define rte_pktmbuf_mtod(m, t) rte_pktmbuf_mtod_offset(m, t, 0) /** * A macro that returns the physical address that points to an offset of the * start of the data in the mbuf * * @param m * The packet mbuf. * @param o * The offset into the data to calculate address from. */ #define rte_pktmbuf_mtophys_offset(m, o) \ (phys_addr_t)((m)->buf_physaddr + (m)->data_off + (o)) /** * A macro that returns the physical address that points to the start of the * data in the mbuf * * @param m * The packet mbuf. */ #define rte_pktmbuf_mtophys(m) rte_pktmbuf_mtophys_offset(m, 0) /** * A macro that returns the length of the packet. * * The value can be read or assigned. * * @param m * The packet mbuf. */ #define rte_pktmbuf_pkt_len(m) ((m)->pkt_len) /** * A macro that returns the length of the segment. * * The value can be read or assigned. * * @param m * The packet mbuf. */ #define rte_pktmbuf_data_len(m) ((m)->data_len) /** * Prepend len bytes to an mbuf data area. * * Returns a pointer to the new * data start address. If there is not enough headroom in the first * segment, the function will return NULL, without modifying the mbuf. * * @param m * The pkt mbuf. * @param len * The amount of data to prepend (in bytes). * @return * A pointer to the start of the newly prepended data, or * NULL if there is not enough headroom space in the first segment */ static inline char *rte_pktmbuf_prepend(struct rte_mbuf *m, uint16_t len) { __rte_mbuf_sanity_check(m, 1); if (unlikely(len > rte_pktmbuf_headroom(m))) return NULL; m->data_off -= len; m->data_len = (uint16_t)(m->data_len + len); m->pkt_len = (m->pkt_len + len); return (char *)m->buf_addr + m->data_off; } /** * Append len bytes to an mbuf. * * Append len bytes to an mbuf and return a pointer to the start address * of the added data. If there is not enough tailroom in the last * segment, the function will return NULL, without modifying the mbuf. * * @param m * The packet mbuf. * @param len * The amount of data to append (in bytes). * @return * A pointer to the start of the newly appended data, or * NULL if there is not enough tailroom space in the last segment */ static inline char *rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len) { void *tail; struct rte_mbuf *m_last; __rte_mbuf_sanity_check(m, 1); m_last = rte_pktmbuf_lastseg(m); if (unlikely(len > rte_pktmbuf_tailroom(m_last))) return NULL; tail = (char *)m_last->buf_addr + m_last->data_off + m_last->data_len; m_last->data_len = (uint16_t)(m_last->data_len + len); m->pkt_len = (m->pkt_len + len); return (char*) tail; } /** * Remove len bytes at the beginning of an mbuf. * * Returns a pointer to the start address of the new data area. If the * length is greater than the length of the first segment, then the * function will fail and return NULL, without modifying the mbuf. * * @param m * The packet mbuf. * @param len * The amount of data to remove (in bytes). * @return * A pointer to the new start of the data. */ static inline char *rte_pktmbuf_adj(struct rte_mbuf *m, uint16_t len) { __rte_mbuf_sanity_check(m, 1); if (unlikely(len > m->data_len)) return NULL; m->data_len = (uint16_t)(m->data_len - len); m->data_off += len; m->pkt_len = (m->pkt_len - len); return (char *)m->buf_addr + m->data_off; } /** * Remove len bytes of data at the end of the mbuf. * * If the length is greater than the length of the last segment, the * function will fail and return -1 without modifying the mbuf. * * @param m * The packet mbuf. * @param len * The amount of data to remove (in bytes). * @return * - 0: On success. * - -1: On error. */ static inline int rte_pktmbuf_trim(struct rte_mbuf *m, uint16_t len) { struct rte_mbuf *m_last; __rte_mbuf_sanity_check(m, 1); m_last = rte_pktmbuf_lastseg(m); if (unlikely(len > m_last->data_len)) return -1; m_last->data_len = (uint16_t)(m_last->data_len - len); m->pkt_len = (m->pkt_len - len); return 0; } /** * Test if mbuf data is contiguous. * * @param m * The packet mbuf. * @return * - 1, if all data is contiguous (one segment). * - 0, if there is several segments. */ static inline int rte_pktmbuf_is_contiguous(const struct rte_mbuf *m) { __rte_mbuf_sanity_check(m, 1); return !!(m->nb_segs == 1); } /** * Chain an mbuf to another, thereby creating a segmented packet. * * Note: The implementation will do a linear walk over the segments to find * the tail entry. For cases when there are many segments, it's better to * chain the entries manually. * * @param head * The head of the mbuf chain (the first packet) * @param tail * The mbuf to put last in the chain * * @return * - 0, on success. * - -EOVERFLOW, if the chain is full (256 entries) */ static inline int rte_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *tail) { struct rte_mbuf *cur_tail; /* Check for number-of-segments-overflow */ if (head->nb_segs + tail->nb_segs >= 1 << (sizeof(head->nb_segs) * 8)) return -EOVERFLOW; /* Chain 'tail' onto the old tail */ cur_tail = rte_pktmbuf_lastseg(head); cur_tail->next = tail; /* accumulate number of segments and total length. */ head->nb_segs = (uint8_t)(head->nb_segs + tail->nb_segs); head->pkt_len += tail->pkt_len; /* pkt_len is only set in the head */ tail->pkt_len = tail->data_len; return 0; } /** * Dump an mbuf structure to the console. * * Dump all fields for the given packet mbuf and all its associated * segments (in the case of a chained buffer). * * @param f * A pointer to a file for output * @param m * The packet mbuf. * @param dump_len * If dump_len != 0, also dump the "dump_len" first data bytes of * the packet. */ void rte_pktmbuf_dump(FILE *f, const struct rte_mbuf *m, unsigned dump_len); #ifdef __cplusplus } #endif #endif /* _RTE_MBUF_H_ */