/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2014-2021 Broadcom * All rights reserved. */ #include #include #include #include #include #include #include #include #include "bnxt.h" #include "bnxt_filter.h" #include "bnxt_hwrm.h" #include "bnxt_ring.h" #include "bnxt_rxq.h" #include "bnxt_rxr.h" #include "bnxt_vnic.h" #include "hsi_struct_def_dpdk.h" static int bnxt_flow_args_validate(const struct rte_flow_attr *attr, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], struct rte_flow_error *error) { if (!pattern) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM_NUM, NULL, "NULL pattern."); return -rte_errno; } if (!actions) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_NUM, NULL, "NULL action."); return -rte_errno; } if (!attr) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR, NULL, "NULL attribute."); return -rte_errno; } return 0; } static const struct rte_flow_item * bnxt_flow_non_void_item(const struct rte_flow_item *cur) { while (1) { if (cur->type != RTE_FLOW_ITEM_TYPE_VOID) return cur; cur++; } } static const struct rte_flow_action * bnxt_flow_non_void_action(const struct rte_flow_action *cur) { while (1) { if (cur->type != RTE_FLOW_ACTION_TYPE_VOID) return cur; cur++; } } static int bnxt_filter_type_check(const struct rte_flow_item pattern[], struct rte_flow_error *error) { const struct rte_flow_item *item = bnxt_flow_non_void_item(pattern); int use_ntuple = 1; bool has_vlan = 0; while (item->type != RTE_FLOW_ITEM_TYPE_END) { switch (item->type) { case RTE_FLOW_ITEM_TYPE_ANY: case RTE_FLOW_ITEM_TYPE_ETH: use_ntuple = 0; break; case RTE_FLOW_ITEM_TYPE_VLAN: use_ntuple = 0; has_vlan = 1; break; case RTE_FLOW_ITEM_TYPE_IPV4: case RTE_FLOW_ITEM_TYPE_IPV6: case RTE_FLOW_ITEM_TYPE_TCP: case RTE_FLOW_ITEM_TYPE_UDP: /* FALLTHROUGH */ /* need ntuple match, reset exact match */ use_ntuple |= 1; break; default: PMD_DRV_LOG(DEBUG, "Unknown Flow type\n"); use_ntuple |= 0; } item++; } if (has_vlan && use_ntuple) { PMD_DRV_LOG(ERR, "VLAN flow cannot use NTUPLE filter\n"); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Cannot use VLAN with NTUPLE"); return -rte_errno; } return use_ntuple; } static int bnxt_validate_and_parse_flow_type(struct bnxt *bp, const struct rte_flow_attr *attr, const struct rte_flow_item pattern[], struct rte_flow_error *error, struct bnxt_filter_info *filter) { const struct rte_flow_item *item = bnxt_flow_non_void_item(pattern); const struct rte_flow_item_vlan *vlan_spec, *vlan_mask; const struct rte_flow_item_ipv4 *ipv4_spec, *ipv4_mask; const struct rte_flow_item_ipv6 *ipv6_spec, *ipv6_mask; const struct rte_flow_item_tcp *tcp_spec, *tcp_mask; const struct rte_flow_item_udp *udp_spec, *udp_mask; const struct rte_flow_item_eth *eth_spec, *eth_mask; const struct rte_ether_addr *dst, *src; const struct rte_flow_item_nvgre *nvgre_spec; const struct rte_flow_item_nvgre *nvgre_mask; const struct rte_flow_item_gre *gre_spec; const struct rte_flow_item_gre *gre_mask; const struct rte_flow_item_vxlan *vxlan_spec; const struct rte_flow_item_vxlan *vxlan_mask; uint8_t vni_mask[] = {0xFF, 0xFF, 0xFF}; uint8_t tni_mask[] = {0xFF, 0xFF, 0xFF}; const struct rte_flow_item_vf *vf_spec; uint32_t tenant_id_be = 0, valid_flags = 0; bool vni_masked = 0; bool tni_masked = 0; uint32_t en_ethertype; uint8_t inner = 0; uint32_t vf = 0; uint32_t en = 0; int use_ntuple; int dflt_vnic; use_ntuple = bnxt_filter_type_check(pattern, error); if (use_ntuple < 0) return use_ntuple; PMD_DRV_LOG(DEBUG, "Use NTUPLE %d\n", use_ntuple); filter->filter_type = use_ntuple ? HWRM_CFA_NTUPLE_FILTER : HWRM_CFA_L2_FILTER; en_ethertype = use_ntuple ? NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE : EM_FLOW_ALLOC_INPUT_EN_ETHERTYPE; while (item->type != RTE_FLOW_ITEM_TYPE_END) { if (item->last) { /* last or range is NOT supported as match criteria */ rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "No support for range"); return -rte_errno; } switch (item->type) { case RTE_FLOW_ITEM_TYPE_ANY: inner = ((const struct rte_flow_item_any *)item->spec)->num > 3; if (inner) PMD_DRV_LOG(DEBUG, "Parse inner header\n"); break; case RTE_FLOW_ITEM_TYPE_ETH: if (!item->spec) break; eth_spec = item->spec; if (item->mask) eth_mask = item->mask; else eth_mask = &rte_flow_item_eth_mask; /* Source MAC address mask cannot be partially set. * Should be All 0's or all 1's. * Destination MAC address mask must not be partially * set. Should be all 1's or all 0's. */ if ((!rte_is_zero_ether_addr(ð_mask->src) && !rte_is_broadcast_ether_addr(ð_mask->src)) || (!rte_is_zero_ether_addr(ð_mask->dst) && !rte_is_broadcast_ether_addr(ð_mask->dst))) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "MAC_addr mask not valid"); return -rte_errno; } /* Mask is not allowed. Only exact matches are */ if (eth_mask->type && eth_mask->type != RTE_BE16(0xffff)) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "ethertype mask not valid"); return -rte_errno; } if (rte_is_broadcast_ether_addr(ð_mask->dst)) { dst = ð_spec->dst; if (!rte_is_valid_assigned_ether_addr(dst)) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "DMAC is invalid"); PMD_DRV_LOG(ERR, "DMAC is invalid!\n"); return -rte_errno; } rte_memcpy(filter->dst_macaddr, ð_spec->dst, RTE_ETHER_ADDR_LEN); en |= use_ntuple ? NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR : EM_FLOW_ALLOC_INPUT_EN_DST_MACADDR; valid_flags |= inner ? BNXT_FLOW_L2_INNER_DST_VALID_FLAG : BNXT_FLOW_L2_DST_VALID_FLAG; filter->priority = attr->priority; PMD_DRV_LOG(DEBUG, "Creating a priority flow\n"); } if (rte_is_broadcast_ether_addr(ð_mask->src)) { src = ð_spec->src; if (!rte_is_valid_assigned_ether_addr(src)) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "SMAC is invalid"); PMD_DRV_LOG(ERR, "SMAC is invalid!\n"); return -rte_errno; } rte_memcpy(filter->src_macaddr, ð_spec->src, RTE_ETHER_ADDR_LEN); en |= use_ntuple ? NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_MACADDR : EM_FLOW_ALLOC_INPUT_EN_SRC_MACADDR; valid_flags |= inner ? BNXT_FLOW_L2_INNER_SRC_VALID_FLAG : BNXT_FLOW_L2_SRC_VALID_FLAG; } /* * else { * PMD_DRV_LOG(ERR, "Handle this condition\n"); * } */ if (eth_mask->type) { filter->ethertype = rte_be_to_cpu_16(eth_spec->type); en |= en_ethertype; } if (inner) valid_flags |= BNXT_FLOW_PARSE_INNER_FLAG; break; case RTE_FLOW_ITEM_TYPE_VLAN: vlan_spec = item->spec; if (item->mask) vlan_mask = item->mask; else vlan_mask = &rte_flow_item_vlan_mask; if (en & en_ethertype) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "VLAN TPID matching is not" " supported"); return -rte_errno; } if (vlan_mask->tci && vlan_mask->tci == RTE_BE16(0x0fff)) { /* Only the VLAN ID can be matched. */ filter->l2_ovlan = rte_be_to_cpu_16(vlan_spec->tci & RTE_BE16(0x0fff)); en |= EM_FLOW_ALLOC_INPUT_EN_OVLAN_VID; } else { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "VLAN mask is invalid"); return -rte_errno; } if (vlan_mask->inner_type && vlan_mask->inner_type != RTE_BE16(0xffff)) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "inner ethertype mask not" " valid"); return -rte_errno; } if (vlan_mask->inner_type) { filter->ethertype = rte_be_to_cpu_16(vlan_spec->inner_type); en |= en_ethertype; } break; case RTE_FLOW_ITEM_TYPE_IPV4: /* If mask is not involved, we could use EM filters. */ ipv4_spec = item->spec; if (!item->spec) break; if (item->mask) ipv4_mask = item->mask; else ipv4_mask = &rte_flow_item_ipv4_mask; /* Only IP DST and SRC fields are maskable. */ if (ipv4_mask->hdr.version_ihl || ipv4_mask->hdr.type_of_service || ipv4_mask->hdr.total_length || ipv4_mask->hdr.packet_id || ipv4_mask->hdr.fragment_offset || ipv4_mask->hdr.time_to_live || ipv4_mask->hdr.next_proto_id || ipv4_mask->hdr.hdr_checksum) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Invalid IPv4 mask."); return -rte_errno; } filter->dst_ipaddr[0] = ipv4_spec->hdr.dst_addr; filter->src_ipaddr[0] = ipv4_spec->hdr.src_addr; if (use_ntuple) en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR | NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR; else en |= EM_FLOW_ALLOC_INPUT_EN_SRC_IPADDR | EM_FLOW_ALLOC_INPUT_EN_DST_IPADDR; if (ipv4_mask->hdr.src_addr) { filter->src_ipaddr_mask[0] = ipv4_mask->hdr.src_addr; en |= !use_ntuple ? 0 : NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK; } if (ipv4_mask->hdr.dst_addr) { filter->dst_ipaddr_mask[0] = ipv4_mask->hdr.dst_addr; en |= !use_ntuple ? 0 : NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK; } filter->ip_addr_type = use_ntuple ? HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_IP_ADDR_TYPE_IPV4 : HWRM_CFA_EM_FLOW_ALLOC_INPUT_IP_ADDR_TYPE_IPV4; if (ipv4_spec->hdr.next_proto_id) { filter->ip_protocol = ipv4_spec->hdr.next_proto_id; if (use_ntuple) en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO; else en |= EM_FLOW_ALLOC_INPUT_EN_IP_PROTO; } break; case RTE_FLOW_ITEM_TYPE_IPV6: ipv6_spec = item->spec; if (!item->spec) break; if (item->mask) ipv6_mask = item->mask; else ipv6_mask = &rte_flow_item_ipv6_mask; /* Only IP DST and SRC fields are maskable. */ if (ipv6_mask->hdr.vtc_flow || ipv6_mask->hdr.payload_len || ipv6_mask->hdr.proto || ipv6_mask->hdr.hop_limits) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Invalid IPv6 mask."); return -rte_errno; } if (use_ntuple) en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR | NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR; else en |= EM_FLOW_ALLOC_INPUT_EN_SRC_IPADDR | EM_FLOW_ALLOC_INPUT_EN_DST_IPADDR; rte_memcpy(filter->src_ipaddr, ipv6_spec->hdr.src_addr, 16); rte_memcpy(filter->dst_ipaddr, ipv6_spec->hdr.dst_addr, 16); if (!bnxt_check_zero_bytes(ipv6_mask->hdr.src_addr, 16)) { rte_memcpy(filter->src_ipaddr_mask, ipv6_mask->hdr.src_addr, 16); en |= !use_ntuple ? 0 : NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK; } if (!bnxt_check_zero_bytes(ipv6_mask->hdr.dst_addr, 16)) { rte_memcpy(filter->dst_ipaddr_mask, ipv6_mask->hdr.dst_addr, 16); en |= !use_ntuple ? 0 : NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK; } filter->ip_addr_type = use_ntuple ? NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6 : EM_FLOW_ALLOC_INPUT_IP_ADDR_TYPE_IPV6; break; case RTE_FLOW_ITEM_TYPE_TCP: tcp_spec = item->spec; if (!item->spec) break; if (item->mask) tcp_mask = item->mask; else tcp_mask = &rte_flow_item_tcp_mask; /* Check TCP mask. Only DST & SRC ports are maskable */ if (tcp_mask->hdr.sent_seq || tcp_mask->hdr.recv_ack || tcp_mask->hdr.data_off || tcp_mask->hdr.tcp_flags || tcp_mask->hdr.rx_win || tcp_mask->hdr.cksum || tcp_mask->hdr.tcp_urp) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Invalid TCP mask"); return -rte_errno; } filter->src_port = tcp_spec->hdr.src_port; filter->dst_port = tcp_spec->hdr.dst_port; if (use_ntuple) en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT | NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT; else en |= EM_FLOW_ALLOC_INPUT_EN_SRC_PORT | EM_FLOW_ALLOC_INPUT_EN_DST_PORT; if (tcp_mask->hdr.dst_port) { filter->dst_port_mask = tcp_mask->hdr.dst_port; en |= !use_ntuple ? 0 : NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK; } if (tcp_mask->hdr.src_port) { filter->src_port_mask = tcp_mask->hdr.src_port; en |= !use_ntuple ? 0 : NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK; } break; case RTE_FLOW_ITEM_TYPE_UDP: udp_spec = item->spec; if (!item->spec) break; if (item->mask) udp_mask = item->mask; else udp_mask = &rte_flow_item_udp_mask; if (udp_mask->hdr.dgram_len || udp_mask->hdr.dgram_cksum) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Invalid UDP mask"); return -rte_errno; } filter->src_port = udp_spec->hdr.src_port; filter->dst_port = udp_spec->hdr.dst_port; if (use_ntuple) en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT | NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT; else en |= EM_FLOW_ALLOC_INPUT_EN_SRC_PORT | EM_FLOW_ALLOC_INPUT_EN_DST_PORT; if (udp_mask->hdr.dst_port) { filter->dst_port_mask = udp_mask->hdr.dst_port; en |= !use_ntuple ? 0 : NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK; } if (udp_mask->hdr.src_port) { filter->src_port_mask = udp_mask->hdr.src_port; en |= !use_ntuple ? 0 : NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK; } break; case RTE_FLOW_ITEM_TYPE_VXLAN: vxlan_spec = item->spec; vxlan_mask = item->mask; /* Check if VXLAN item is used to describe protocol. * If yes, both spec and mask should be NULL. * If no, both spec and mask shouldn't be NULL. */ if ((!vxlan_spec && vxlan_mask) || (vxlan_spec && !vxlan_mask)) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Invalid VXLAN item"); return -rte_errno; } if (!vxlan_spec && !vxlan_mask) { filter->tunnel_type = CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_VXLAN; break; } if (vxlan_spec->rsvd1 || vxlan_spec->rsvd0[0] || vxlan_spec->rsvd0[1] || vxlan_spec->rsvd0[2] || vxlan_spec->flags != 0x8) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Invalid VXLAN item"); return -rte_errno; } /* Check if VNI is masked. */ if (vxlan_mask != NULL) { vni_masked = !!memcmp(vxlan_mask->vni, vni_mask, RTE_DIM(vni_mask)); if (vni_masked) { rte_flow_error_set (error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Invalid VNI mask"); return -rte_errno; } rte_memcpy(((uint8_t *)&tenant_id_be + 1), vxlan_spec->vni, 3); filter->vni = rte_be_to_cpu_32(tenant_id_be); filter->tunnel_type = CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_VXLAN; } break; case RTE_FLOW_ITEM_TYPE_NVGRE: nvgre_spec = item->spec; nvgre_mask = item->mask; /* Check if NVGRE item is used to describe protocol. * If yes, both spec and mask should be NULL. * If no, both spec and mask shouldn't be NULL. */ if ((!nvgre_spec && nvgre_mask) || (nvgre_spec && !nvgre_mask)) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Invalid NVGRE item"); return -rte_errno; } if (!nvgre_spec && !nvgre_mask) { filter->tunnel_type = CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_NVGRE; break; } if (nvgre_spec->c_k_s_rsvd0_ver != 0x2000 || nvgre_spec->protocol != 0x6558) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Invalid NVGRE item"); return -rte_errno; } if (nvgre_spec && nvgre_mask) { tni_masked = !!memcmp(nvgre_mask->tni, tni_mask, RTE_DIM(tni_mask)); if (tni_masked) { rte_flow_error_set (error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Invalid TNI mask"); return -rte_errno; } rte_memcpy(((uint8_t *)&tenant_id_be + 1), nvgre_spec->tni, 3); filter->vni = rte_be_to_cpu_32(tenant_id_be); filter->tunnel_type = CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_NVGRE; } break; case RTE_FLOW_ITEM_TYPE_GRE: gre_spec = (const struct rte_flow_item_gre *)item->spec; gre_mask = (const struct rte_flow_item_gre *)item->mask; /* *Check if GRE item is used to describe protocol. * If yes, both spec and mask should be NULL. * If no, both spec and mask shouldn't be NULL. */ if (!!gre_spec ^ !!gre_mask) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Invalid GRE item"); return -rte_errno; } if (!gre_spec && !gre_mask) { filter->tunnel_type = CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_IPGRE; break; } break; case RTE_FLOW_ITEM_TYPE_VF: vf_spec = item->spec; vf = vf_spec->id; if (!BNXT_PF(bp)) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Configuring on a VF!"); return -rte_errno; } if (vf >= bp->pdev->max_vfs) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Incorrect VF id!"); return -rte_errno; } if (!attr->transfer) { rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, "Matching VF traffic without" " affecting it (transfer attribute)" " is unsupported"); return -rte_errno; } filter->mirror_vnic_id = dflt_vnic = bnxt_hwrm_func_qcfg_vf_dflt_vnic_id(bp, vf); if (dflt_vnic < 0) { /* This simply indicates there's no driver * loaded. This is not an error. */ rte_flow_error_set (error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Unable to get default VNIC for VF"); return -rte_errno; } filter->mirror_vnic_id = dflt_vnic; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_MIRROR_VNIC_ID; break; default: break; } item++; } filter->enables = en; filter->valid_flags = valid_flags; return 0; } /* Parse attributes */ static int bnxt_flow_parse_attr(const struct rte_flow_attr *attr, struct rte_flow_error *error) { /* Must be input direction */ if (!attr->ingress) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, attr, "Only support ingress."); return -rte_errno; } /* Not supported */ if (attr->egress) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, attr, "No support for egress."); return -rte_errno; } return 0; } static struct bnxt_filter_info * bnxt_find_matching_l2_filter(struct bnxt *bp, struct bnxt_filter_info *nf) { struct bnxt_filter_info *mf, *f0; struct bnxt_vnic_info *vnic0; int i; vnic0 = BNXT_GET_DEFAULT_VNIC(bp); f0 = STAILQ_FIRST(&vnic0->filter); /* This flow has same DST MAC as the port/l2 filter. */ if (memcmp(f0->l2_addr, nf->dst_macaddr, RTE_ETHER_ADDR_LEN) == 0) return f0; for (i = bp->max_vnics - 1; i >= 0; i--) { struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; if (vnic->fw_vnic_id == INVALID_VNIC_ID) continue; STAILQ_FOREACH(mf, &vnic->filter, next) { if (mf->matching_l2_fltr_ptr) continue; if (mf->ethertype == nf->ethertype && mf->l2_ovlan == nf->l2_ovlan && mf->l2_ovlan_mask == nf->l2_ovlan_mask && mf->l2_ivlan == nf->l2_ivlan && mf->l2_ivlan_mask == nf->l2_ivlan_mask && !memcmp(mf->src_macaddr, nf->src_macaddr, RTE_ETHER_ADDR_LEN) && !memcmp(mf->dst_macaddr, nf->dst_macaddr, RTE_ETHER_ADDR_LEN)) return mf; } } return NULL; } static struct bnxt_filter_info * bnxt_create_l2_filter(struct bnxt *bp, struct bnxt_filter_info *nf, struct bnxt_vnic_info *vnic) { struct bnxt_filter_info *filter1; int rc; /* Alloc new L2 filter. * This flow needs MAC filter which does not match any existing * L2 filters. */ filter1 = bnxt_get_unused_filter(bp); if (filter1 == NULL) return NULL; memcpy(filter1, nf, sizeof(*filter1)); filter1->flags = HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_XDP_DISABLE; filter1->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_PATH_RX; if (nf->valid_flags & BNXT_FLOW_L2_SRC_VALID_FLAG || nf->valid_flags & BNXT_FLOW_L2_DST_VALID_FLAG) { filter1->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_OUTERMOST; PMD_DRV_LOG(DEBUG, "Create Outer filter\n"); } if (nf->filter_type == HWRM_CFA_L2_FILTER && (nf->valid_flags & BNXT_FLOW_L2_SRC_VALID_FLAG || nf->valid_flags & BNXT_FLOW_L2_INNER_SRC_VALID_FLAG)) { PMD_DRV_LOG(DEBUG, "Create L2 filter for SRC MAC\n"); filter1->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_SOURCE_VALID; memcpy(filter1->l2_addr, nf->src_macaddr, RTE_ETHER_ADDR_LEN); } else { PMD_DRV_LOG(DEBUG, "Create L2 filter for DST MAC\n"); memcpy(filter1->l2_addr, nf->dst_macaddr, RTE_ETHER_ADDR_LEN); } if (nf->priority && (nf->valid_flags & BNXT_FLOW_L2_DST_VALID_FLAG || nf->valid_flags & BNXT_FLOW_L2_INNER_DST_VALID_FLAG)) { /* Tell the FW where to place the filter in the table. */ if (nf->priority > 65535) { filter1->pri_hint = HWRM_CFA_L2_FILTER_ALLOC_INPUT_PRI_HINT_BELOW_FILTER; /* This will place the filter in TCAM */ filter1->l2_filter_id_hint = (uint64_t)-1; } } if (nf->valid_flags & (BNXT_FLOW_L2_DST_VALID_FLAG | BNXT_FLOW_L2_SRC_VALID_FLAG | BNXT_FLOW_L2_INNER_SRC_VALID_FLAG | BNXT_FLOW_L2_INNER_DST_VALID_FLAG)) { filter1->enables = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR | L2_FILTER_ALLOC_INPUT_EN_L2_ADDR_MASK; memset(filter1->l2_addr_mask, 0xff, RTE_ETHER_ADDR_LEN); } if (nf->valid_flags & BNXT_FLOW_L2_DROP_FLAG) { filter1->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_DROP; if (nf->ethertype == RTE_ETHER_TYPE_IPV4) { /* Num VLANs for drop filter will/should be 0. * If the req is memset to 0, then the count will * be automatically set to 0. */ if (nf->valid_flags & BNXT_FLOW_PARSE_INNER_FLAG) { filter1->enables |= L2_FILTER_ALLOC_INPUT_EN_T_NUM_VLANS; } else { filter1->enables |= L2_FILTER_ALLOC_INPUT_EN_NUM_VLANS; filter1->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_OUTERMOST; } } } rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter1); if (rc) { bnxt_free_filter(bp, filter1); return NULL; } return filter1; } struct bnxt_filter_info * bnxt_get_l2_filter(struct bnxt *bp, struct bnxt_filter_info *nf, struct bnxt_vnic_info *vnic) { struct bnxt_filter_info *l2_filter = NULL; l2_filter = bnxt_find_matching_l2_filter(bp, nf); if (l2_filter) { l2_filter->l2_ref_cnt++; } else { l2_filter = bnxt_create_l2_filter(bp, nf, vnic); if (l2_filter) { STAILQ_INSERT_TAIL(&vnic->filter, l2_filter, next); l2_filter->vnic = vnic; } } nf->matching_l2_fltr_ptr = l2_filter; return l2_filter; } static int bnxt_vnic_prep(struct bnxt *bp, struct bnxt_vnic_info *vnic) { struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf; uint64_t rx_offloads = dev_conf->rxmode.offloads; int rc; if (bp->nr_vnics > bp->max_vnics - 1) return -ENOMEM; rc = bnxt_vnic_grp_alloc(bp, vnic); if (rc) goto ret; rc = bnxt_hwrm_vnic_alloc(bp, vnic); if (rc) { PMD_DRV_LOG(ERR, "HWRM vnic alloc failure rc: %x\n", rc); goto ret; } bp->nr_vnics++; /* RSS context is required only when there is more than one RSS ring */ if (vnic->rx_queue_cnt > 1) { rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 0 /* ctx_idx 0 */); if (rc) { PMD_DRV_LOG(ERR, "HWRM vnic ctx alloc failure: %x\n", rc); goto ret; } } else { PMD_DRV_LOG(DEBUG, "No RSS context required\n"); } if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP) vnic->vlan_strip = true; else vnic->vlan_strip = false; rc = bnxt_hwrm_vnic_cfg(bp, vnic); if (rc) goto ret; bnxt_hwrm_vnic_plcmode_cfg(bp, vnic); ret: return rc; } static int match_vnic_rss_cfg(struct bnxt *bp, struct bnxt_vnic_info *vnic, const struct rte_flow_action_rss *rss) { unsigned int match = 0, i; if (vnic->rx_queue_cnt != rss->queue_num) return -EINVAL; for (i = 0; i < rss->queue_num; i++) { if (!bp->rx_queues[rss->queue[i]]->vnic->rx_queue_cnt && !bp->rx_queues[rss->queue[i]]->rx_started) return -EINVAL; } for (i = 0; i < vnic->rx_queue_cnt; i++) { int j; for (j = 0; j < vnic->rx_queue_cnt; j++) { if (bp->grp_info[rss->queue[i]].fw_grp_id == vnic->fw_grp_ids[j]) match++; } } if (match != vnic->rx_queue_cnt) { PMD_DRV_LOG(ERR, "VNIC queue count %d vs queues matched %d\n", match, vnic->rx_queue_cnt); return -EINVAL; } return 0; } static void bnxt_update_filter_flags_en(struct bnxt_filter_info *filter, struct bnxt_filter_info *filter1, int use_ntuple) { if (!use_ntuple && !(filter->valid_flags & ~(BNXT_FLOW_L2_DST_VALID_FLAG | BNXT_FLOW_L2_SRC_VALID_FLAG | BNXT_FLOW_L2_INNER_SRC_VALID_FLAG | BNXT_FLOW_L2_INNER_DST_VALID_FLAG | BNXT_FLOW_L2_DROP_FLAG | BNXT_FLOW_PARSE_INNER_FLAG))) { filter->flags = filter1->flags; filter->enables = filter1->enables; filter->filter_type = HWRM_CFA_L2_FILTER; memcpy(filter->l2_addr, filter1->l2_addr, RTE_ETHER_ADDR_LEN); memset(filter->l2_addr_mask, 0xff, RTE_ETHER_ADDR_LEN); filter->pri_hint = filter1->pri_hint; filter->l2_filter_id_hint = filter1->l2_filter_id_hint; } filter->fw_l2_filter_id = filter1->fw_l2_filter_id; filter->l2_ref_cnt = filter1->l2_ref_cnt; filter->flow_id = filter1->flow_id; PMD_DRV_LOG(DEBUG, "l2_filter: %p fw_l2_filter_id %" PRIx64 " l2_ref_cnt %u\n", filter1, filter->fw_l2_filter_id, filter->l2_ref_cnt); } static int bnxt_validate_and_parse_flow(struct rte_eth_dev *dev, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], const struct rte_flow_attr *attr, struct rte_flow_error *error, struct bnxt_filter_info *filter) { const struct rte_flow_action *act = bnxt_flow_non_void_action(actions); struct bnxt *bp = dev->data->dev_private; struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf; struct bnxt_vnic_info *vnic = NULL, *vnic0 = NULL; const struct rte_flow_action_queue *act_q; const struct rte_flow_action_vf *act_vf; struct bnxt_filter_info *filter1 = NULL; const struct rte_flow_action_rss *rss; struct bnxt_rx_queue *rxq = NULL; int dflt_vnic, vnic_id; unsigned int rss_idx; uint32_t vf = 0, i; int rc, use_ntuple; rc = bnxt_validate_and_parse_flow_type(bp, attr, pattern, error, filter); if (rc != 0) goto ret; rc = bnxt_flow_parse_attr(attr, error); if (rc != 0) goto ret; /* Since we support ingress attribute only - right now. */ if (filter->filter_type == HWRM_CFA_EM_FILTER) filter->flags = HWRM_CFA_EM_FLOW_ALLOC_INPUT_FLAGS_PATH_RX; use_ntuple = bnxt_filter_type_check(pattern, error); start: switch (act->type) { case RTE_FLOW_ACTION_TYPE_QUEUE: /* Allow this flow. Redirect to a VNIC. */ act_q = (const struct rte_flow_action_queue *)act->conf; if (!act_q->index || act_q->index >= bp->rx_nr_rings) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "Invalid queue ID."); rc = -rte_errno; goto ret; } PMD_DRV_LOG(DEBUG, "Queue index %d\n", act_q->index); if (use_ntuple && !BNXT_RFS_NEEDS_VNIC(bp)) { filter->flags = HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DEST_RFS_RING_IDX; filter->dst_id = act_q->index; goto skip_vnic_alloc; } vnic_id = attr->group; if (!vnic_id) { PMD_DRV_LOG(DEBUG, "Group id is 0\n"); vnic_id = act_q->index; } BNXT_VALID_VNIC_OR_RET(bp, vnic_id); vnic = &bp->vnic_info[vnic_id]; if (vnic->rx_queue_cnt) { if (vnic->start_grp_id != act_q->index) { PMD_DRV_LOG(ERR, "VNIC already in use\n"); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "VNIC already in use"); rc = -rte_errno; goto ret; } goto use_vnic; } rxq = bp->rx_queues[act_q->index]; if (!(dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS) && rxq && vnic->fw_vnic_id != INVALID_HW_RING_ID) goto use_vnic; if (!rxq) { PMD_DRV_LOG(ERR, "Queue invalid or used with other VNIC\n"); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "Queue invalid queue or in use"); rc = -rte_errno; goto ret; } rxq->vnic = vnic; rxq->rx_started = 1; vnic->rx_queue_cnt++; vnic->start_grp_id = act_q->index; vnic->end_grp_id = act_q->index; vnic->func_default = 0; //This is not a default VNIC. PMD_DRV_LOG(DEBUG, "VNIC found\n"); rc = bnxt_vnic_prep(bp, vnic); if (rc) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "VNIC prep fail"); rc = -rte_errno; goto ret; } PMD_DRV_LOG(DEBUG, "vnic[%d] = %p vnic->fw_grp_ids = %p\n", act_q->index, vnic, vnic->fw_grp_ids); use_vnic: vnic->ff_pool_idx = vnic_id; PMD_DRV_LOG(DEBUG, "Setting vnic ff_idx %d\n", vnic->ff_pool_idx); filter->dst_id = vnic->fw_vnic_id; skip_vnic_alloc: /* For ntuple filter, create the L2 filter with default VNIC. * The user specified redirect queue will be set while creating * the ntuple filter in hardware. */ vnic0 = BNXT_GET_DEFAULT_VNIC(bp); if (use_ntuple) filter1 = bnxt_get_l2_filter(bp, filter, vnic0); else filter1 = bnxt_get_l2_filter(bp, filter, vnic); if (filter1 == NULL) { rte_flow_error_set(error, ENOSPC, RTE_FLOW_ERROR_TYPE_ACTION, act, "Filter not available"); rc = -rte_errno; goto ret; } PMD_DRV_LOG(DEBUG, "new fltr: %p l2fltr: %p l2_ref_cnt: %d\n", filter, filter1, filter1->l2_ref_cnt); bnxt_update_filter_flags_en(filter, filter1, use_ntuple); break; case RTE_FLOW_ACTION_TYPE_DROP: vnic0 = &bp->vnic_info[0]; filter->dst_id = vnic0->fw_vnic_id; filter->valid_flags |= BNXT_FLOW_L2_DROP_FLAG; filter1 = bnxt_get_l2_filter(bp, filter, vnic0); if (filter1 == NULL) { rte_flow_error_set(error, ENOSPC, RTE_FLOW_ERROR_TYPE_ACTION, act, "Filter not available"); rc = -rte_errno; goto ret; } if (filter->filter_type == HWRM_CFA_EM_FILTER) filter->flags = HWRM_CFA_EM_FLOW_ALLOC_INPUT_FLAGS_DROP; else if (filter->filter_type == HWRM_CFA_NTUPLE_FILTER) filter->flags = HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP; bnxt_update_filter_flags_en(filter, filter1, use_ntuple); break; case RTE_FLOW_ACTION_TYPE_COUNT: vnic0 = &bp->vnic_info[0]; filter1 = bnxt_get_l2_filter(bp, filter, vnic0); if (filter1 == NULL) { rte_flow_error_set(error, ENOSPC, RTE_FLOW_ERROR_TYPE_ACTION, act, "New filter not available"); rc = -rte_errno; goto ret; } filter->fw_l2_filter_id = filter1->fw_l2_filter_id; filter->flow_id = filter1->flow_id; filter->flags = HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_METER; break; case RTE_FLOW_ACTION_TYPE_VF: act_vf = (const struct rte_flow_action_vf *)act->conf; vf = act_vf->id; if (filter->tunnel_type == CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_VXLAN || filter->tunnel_type == CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_IPGRE) { /* If issued on a VF, ensure id is 0 and is trusted */ if (BNXT_VF(bp)) { if (!BNXT_VF_IS_TRUSTED(bp) || vf) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "Incorrect VF"); rc = -rte_errno; goto ret; } } filter->enables |= filter->tunnel_type; filter->filter_type = HWRM_CFA_TUNNEL_REDIRECT_FILTER; goto done; } if (vf >= bp->pdev->max_vfs) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "Incorrect VF id!"); rc = -rte_errno; goto ret; } filter->mirror_vnic_id = dflt_vnic = bnxt_hwrm_func_qcfg_vf_dflt_vnic_id(bp, vf); if (dflt_vnic < 0) { /* This simply indicates there's no driver loaded. * This is not an error. */ rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "Unable to get default VNIC for VF"); rc = -rte_errno; goto ret; } filter->mirror_vnic_id = dflt_vnic; filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_MIRROR_VNIC_ID; vnic0 = &bp->vnic_info[0]; filter1 = bnxt_get_l2_filter(bp, filter, vnic0); if (filter1 == NULL) { rte_flow_error_set(error, ENOSPC, RTE_FLOW_ERROR_TYPE_ACTION, act, "New filter not available"); rc = -rte_errno; goto ret; } filter->fw_l2_filter_id = filter1->fw_l2_filter_id; filter->flow_id = filter1->flow_id; break; case RTE_FLOW_ACTION_TYPE_RSS: rss = (const struct rte_flow_action_rss *)act->conf; vnic_id = attr->group; BNXT_VALID_VNIC_OR_RET(bp, vnic_id); vnic = &bp->vnic_info[vnic_id]; /* Check if requested RSS config matches RSS config of VNIC * only if it is not a fresh VNIC configuration. * Otherwise the existing VNIC configuration can be used. */ if (vnic->rx_queue_cnt) { rc = match_vnic_rss_cfg(bp, vnic, rss); if (rc) { PMD_DRV_LOG(ERR, "VNIC and RSS config mismatch\n"); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "VNIC and RSS cfg mismatch"); rc = -rte_errno; goto ret; } goto vnic_found; } for (i = 0; i < rss->queue_num; i++) { PMD_DRV_LOG(DEBUG, "RSS action Queue %d\n", rss->queue[i]); if (!rss->queue[i] || rss->queue[i] >= bp->rx_nr_rings || !bp->rx_queues[rss->queue[i]]) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "Invalid queue ID for RSS"); rc = -rte_errno; goto ret; } rxq = bp->rx_queues[rss->queue[i]]; if (bp->vnic_info[0].fw_grp_ids[rss->queue[i]] != INVALID_HW_RING_ID) { PMD_DRV_LOG(ERR, "queue active with other VNIC\n"); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "Invalid queue ID for RSS"); rc = -rte_errno; goto ret; } rxq->vnic = vnic; rxq->rx_started = 1; vnic->rx_queue_cnt++; } vnic->start_grp_id = rss->queue[0]; vnic->end_grp_id = rss->queue[rss->queue_num - 1]; vnic->func_default = 0; //This is not a default VNIC. rc = bnxt_vnic_prep(bp, vnic); if (rc) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "VNIC prep fail"); rc = -rte_errno; goto ret; } PMD_DRV_LOG(DEBUG, "vnic[%d] = %p vnic->fw_grp_ids = %p\n", vnic_id, vnic, vnic->fw_grp_ids); vnic->ff_pool_idx = vnic_id; PMD_DRV_LOG(DEBUG, "Setting vnic ff_pool_idx %d\n", vnic->ff_pool_idx); /* This can be done only after vnic_grp_alloc is done. */ for (i = 0; i < vnic->rx_queue_cnt; i++) { vnic->fw_grp_ids[i] = bp->grp_info[rss->queue[i]].fw_grp_id; /* Make sure vnic0 does not use these rings. */ bp->vnic_info[0].fw_grp_ids[rss->queue[i]] = INVALID_HW_RING_ID; } for (rss_idx = 0; rss_idx < HW_HASH_INDEX_SIZE; ) { for (i = 0; i < vnic->rx_queue_cnt; i++) vnic->rss_table[rss_idx++] = vnic->fw_grp_ids[i]; } /* Configure RSS only if the queue count is > 1 */ if (vnic->rx_queue_cnt > 1) { vnic->hash_type = bnxt_rte_to_hwrm_hash_types(rss->types); vnic->hash_mode = bnxt_rte_to_hwrm_hash_level(bp, rss->types, rss->level); if (!rss->key_len) { /* If hash key has not been specified, * use random hash key. */ bnxt_prandom_bytes(vnic->rss_hash_key, HW_HASH_KEY_SIZE); } else { if (rss->key_len > HW_HASH_KEY_SIZE) memcpy(vnic->rss_hash_key, rss->key, HW_HASH_KEY_SIZE); else memcpy(vnic->rss_hash_key, rss->key, rss->key_len); } bnxt_hwrm_vnic_rss_cfg(bp, vnic); } else { PMD_DRV_LOG(DEBUG, "No RSS config required\n"); } vnic_found: filter->dst_id = vnic->fw_vnic_id; filter1 = bnxt_get_l2_filter(bp, filter, vnic); if (filter1 == NULL) { rte_flow_error_set(error, ENOSPC, RTE_FLOW_ERROR_TYPE_ACTION, act, "New filter not available"); rc = -rte_errno; goto ret; } PMD_DRV_LOG(DEBUG, "L2 filter created\n"); bnxt_update_filter_flags_en(filter, filter1, use_ntuple); break; case RTE_FLOW_ACTION_TYPE_MARK: if (bp->mark_table == NULL) { rte_flow_error_set(error, ENOMEM, RTE_FLOW_ERROR_TYPE_ACTION, act, "Mark table not allocated."); rc = -rte_errno; goto ret; } if (bp->flags & BNXT_FLAG_RX_VECTOR_PKT_MODE) { PMD_DRV_LOG(DEBUG, "Disabling vector processing for mark\n"); bp->eth_dev->rx_pkt_burst = bnxt_recv_pkts; bp->flags &= ~BNXT_FLAG_RX_VECTOR_PKT_MODE; } filter->valid_flags |= BNXT_FLOW_MARK_FLAG; filter->mark = ((const struct rte_flow_action_mark *) act->conf)->id; PMD_DRV_LOG(DEBUG, "Mark the flow %d\n", filter->mark); break; default: rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "Invalid action."); rc = -rte_errno; goto ret; } done: act = bnxt_flow_non_void_action(++act); while (act->type != RTE_FLOW_ACTION_TYPE_END) goto start; return rc; ret: if (filter1) { bnxt_hwrm_clear_l2_filter(bp, filter1); bnxt_free_filter(bp, filter1); } if (rte_errno) { if (vnic && STAILQ_EMPTY(&vnic->filter)) vnic->rx_queue_cnt = 0; if (rxq && !vnic->rx_queue_cnt) rxq->vnic = &bp->vnic_info[0]; } return -rte_errno; } static struct bnxt_vnic_info *find_matching_vnic(struct bnxt *bp, struct bnxt_filter_info *filter) { struct bnxt_vnic_info *vnic = NULL; unsigned int i; for (i = 0; i < bp->max_vnics; i++) { vnic = &bp->vnic_info[i]; if (vnic->fw_vnic_id != INVALID_VNIC_ID && filter->dst_id == vnic->fw_vnic_id) { PMD_DRV_LOG(DEBUG, "Found matching VNIC Id %d\n", vnic->ff_pool_idx); return vnic; } } return NULL; } static int bnxt_flow_validate(struct rte_eth_dev *dev, const struct rte_flow_attr *attr, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], struct rte_flow_error *error) { struct bnxt *bp = dev->data->dev_private; struct bnxt_vnic_info *vnic = NULL; struct bnxt_filter_info *filter; int ret = 0; bnxt_acquire_flow_lock(bp); ret = bnxt_flow_args_validate(attr, pattern, actions, error); if (ret != 0) { bnxt_release_flow_lock(bp); return ret; } filter = bnxt_get_unused_filter(bp); if (filter == NULL) { PMD_DRV_LOG(ERR, "Not enough resources for a new flow.\n"); bnxt_release_flow_lock(bp); return -ENOMEM; } ret = bnxt_validate_and_parse_flow(dev, pattern, actions, attr, error, filter); if (ret) goto exit; vnic = find_matching_vnic(bp, filter); if (vnic) { if (STAILQ_EMPTY(&vnic->filter)) { rte_free(vnic->fw_grp_ids); bnxt_hwrm_vnic_ctx_free(bp, vnic); bnxt_hwrm_vnic_free(bp, vnic); vnic->rx_queue_cnt = 0; bp->nr_vnics--; PMD_DRV_LOG(DEBUG, "Free VNIC\n"); } } if (filter->filter_type == HWRM_CFA_EM_FILTER) bnxt_hwrm_clear_em_filter(bp, filter); else if (filter->filter_type == HWRM_CFA_NTUPLE_FILTER) bnxt_hwrm_clear_ntuple_filter(bp, filter); else bnxt_hwrm_clear_l2_filter(bp, filter); exit: /* No need to hold on to this filter if we are just validating flow */ bnxt_free_filter(bp, filter); bnxt_release_flow_lock(bp); return ret; } static void bnxt_update_filter(struct bnxt *bp, struct bnxt_filter_info *old_filter, struct bnxt_filter_info *new_filter) { /* Clear the new L2 filter that was created in the previous step in * bnxt_validate_and_parse_flow. For L2 filters, we will use the new * filter which points to the new destination queue and so we clear * the previous L2 filter. For ntuple filters, we are going to reuse * the old L2 filter and create new NTUPLE filter with this new * destination queue subsequently during bnxt_flow_create. So we * decrement the ref cnt of the L2 filter that would've been bumped * up previously in bnxt_validate_and_parse_flow as the old n-tuple * filter that was referencing it will be deleted now. */ bnxt_hwrm_clear_l2_filter(bp, old_filter); if (new_filter->filter_type == HWRM_CFA_L2_FILTER) { bnxt_hwrm_set_l2_filter(bp, new_filter->dst_id, new_filter); } else { if (new_filter->filter_type == HWRM_CFA_EM_FILTER) bnxt_hwrm_clear_em_filter(bp, old_filter); if (new_filter->filter_type == HWRM_CFA_NTUPLE_FILTER) bnxt_hwrm_clear_ntuple_filter(bp, old_filter); } } static int bnxt_match_filter(struct bnxt *bp, struct bnxt_filter_info *nf) { struct bnxt_filter_info *mf; struct rte_flow *flow; int i; for (i = bp->max_vnics - 1; i >= 0; i--) { struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; if (vnic->fw_vnic_id == INVALID_VNIC_ID) continue; STAILQ_FOREACH(flow, &vnic->flow_list, next) { mf = flow->filter; if (mf->filter_type == nf->filter_type && mf->flags == nf->flags && mf->src_port == nf->src_port && mf->src_port_mask == nf->src_port_mask && mf->dst_port == nf->dst_port && mf->dst_port_mask == nf->dst_port_mask && mf->ip_protocol == nf->ip_protocol && mf->ip_addr_type == nf->ip_addr_type && mf->ethertype == nf->ethertype && mf->vni == nf->vni && mf->tunnel_type == nf->tunnel_type && mf->l2_ovlan == nf->l2_ovlan && mf->l2_ovlan_mask == nf->l2_ovlan_mask && mf->l2_ivlan == nf->l2_ivlan && mf->l2_ivlan_mask == nf->l2_ivlan_mask && !memcmp(mf->l2_addr, nf->l2_addr, RTE_ETHER_ADDR_LEN) && !memcmp(mf->l2_addr_mask, nf->l2_addr_mask, RTE_ETHER_ADDR_LEN) && !memcmp(mf->src_macaddr, nf->src_macaddr, RTE_ETHER_ADDR_LEN) && !memcmp(mf->dst_macaddr, nf->dst_macaddr, RTE_ETHER_ADDR_LEN) && !memcmp(mf->src_ipaddr, nf->src_ipaddr, sizeof(nf->src_ipaddr)) && !memcmp(mf->src_ipaddr_mask, nf->src_ipaddr_mask, sizeof(nf->src_ipaddr_mask)) && !memcmp(mf->dst_ipaddr, nf->dst_ipaddr, sizeof(nf->dst_ipaddr)) && !memcmp(mf->dst_ipaddr_mask, nf->dst_ipaddr_mask, sizeof(nf->dst_ipaddr_mask))) { if (mf->dst_id == nf->dst_id) return -EEXIST; /* Free the old filter, update flow * with new filter */ bnxt_update_filter(bp, mf, nf); STAILQ_REMOVE(&vnic->filter, mf, bnxt_filter_info, next); STAILQ_INSERT_TAIL(&vnic->filter, nf, next); bnxt_free_filter(bp, mf); flow->filter = nf; return -EXDEV; } } } return 0; } static void bnxt_setup_flow_counter(struct bnxt *bp) { if (bp->fw_cap & BNXT_FW_CAP_ADV_FLOW_COUNTERS && !(bp->flags & BNXT_FLAG_FC_THREAD) && BNXT_FLOW_XSTATS_EN(bp)) { rte_eal_alarm_set(US_PER_S * BNXT_FC_TIMER, bnxt_flow_cnt_alarm_cb, (void *)bp); bp->flags |= BNXT_FLAG_FC_THREAD; } } void bnxt_flow_cnt_alarm_cb(void *arg) { int rc = 0; struct bnxt *bp = arg; if (!bp->flow_stat->rx_fc_out_tbl.va) { PMD_DRV_LOG(ERR, "bp->flow_stat->rx_fc_out_tbl.va is NULL?\n"); bnxt_cancel_fc_thread(bp); return; } if (!bp->flow_stat->flow_count) { bnxt_cancel_fc_thread(bp); return; } if (!bp->eth_dev->data->dev_started) { bnxt_cancel_fc_thread(bp); return; } rc = bnxt_flow_stats_req(bp); if (rc) { PMD_DRV_LOG(ERR, "Flow stat alarm not rescheduled.\n"); return; } rte_eal_alarm_set(US_PER_S * BNXT_FC_TIMER, bnxt_flow_cnt_alarm_cb, (void *)bp); } static struct rte_flow * bnxt_flow_create(struct rte_eth_dev *dev, const struct rte_flow_attr *attr, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], struct rte_flow_error *error) { struct bnxt *bp = dev->data->dev_private; struct bnxt_vnic_info *vnic = NULL; struct bnxt_filter_info *filter; bool update_flow = false; struct rte_flow *flow; int ret = 0; uint32_t tun_type, flow_id; if (BNXT_VF(bp) && !BNXT_VF_IS_TRUSTED(bp)) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_HANDLE, NULL, "Failed to create flow, Not a Trusted VF!"); return NULL; } if (!dev->data->dev_started) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, "Device must be started"); return NULL; } flow = rte_zmalloc("bnxt_flow", sizeof(struct rte_flow), 0); if (!flow) { rte_flow_error_set(error, ENOMEM, RTE_FLOW_ERROR_TYPE_HANDLE, NULL, "Failed to allocate memory"); return flow; } bnxt_acquire_flow_lock(bp); ret = bnxt_flow_args_validate(attr, pattern, actions, error); if (ret != 0) { PMD_DRV_LOG(ERR, "Not a validate flow.\n"); goto free_flow; } filter = bnxt_get_unused_filter(bp); if (filter == NULL) { rte_flow_error_set(error, ENOSPC, RTE_FLOW_ERROR_TYPE_HANDLE, NULL, "Not enough resources for a new flow"); goto free_flow; } ret = bnxt_validate_and_parse_flow(dev, pattern, actions, attr, error, filter); if (ret != 0) goto free_filter; ret = bnxt_match_filter(bp, filter); if (ret == -EEXIST) { PMD_DRV_LOG(DEBUG, "Flow already exists.\n"); /* Clear the filter that was created as part of * validate_and_parse_flow() above */ bnxt_hwrm_clear_l2_filter(bp, filter); goto free_filter; } else if (ret == -EXDEV) { PMD_DRV_LOG(DEBUG, "Flow with same pattern exists\n"); PMD_DRV_LOG(DEBUG, "Updating with different destination\n"); update_flow = true; } /* If tunnel redirection to a VF/PF is specified then only tunnel_type * is set and enable is set to the tunnel type. Issue hwrm cmd directly * in such a case. */ if (filter->filter_type == HWRM_CFA_TUNNEL_REDIRECT_FILTER && filter->enables == filter->tunnel_type) { ret = bnxt_hwrm_tunnel_redirect_query(bp, &tun_type); if (ret) { rte_flow_error_set(error, -ret, RTE_FLOW_ERROR_TYPE_HANDLE, NULL, "Unable to query tunnel to VF"); goto free_filter; } if (tun_type == (1U << filter->tunnel_type)) { ret = bnxt_hwrm_tunnel_redirect_free(bp, filter->tunnel_type); if (ret) { PMD_DRV_LOG(ERR, "Unable to free existing tunnel\n"); rte_flow_error_set(error, -ret, RTE_FLOW_ERROR_TYPE_HANDLE, NULL, "Unable to free preexisting " "tunnel on VF"); goto free_filter; } } ret = bnxt_hwrm_tunnel_redirect(bp, filter->tunnel_type); if (ret) { rte_flow_error_set(error, -ret, RTE_FLOW_ERROR_TYPE_HANDLE, NULL, "Unable to redirect tunnel to VF"); goto free_filter; } vnic = &bp->vnic_info[0]; goto done; } if (filter->filter_type == HWRM_CFA_EM_FILTER) { filter->enables |= HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_L2_FILTER_ID; ret = bnxt_hwrm_set_em_filter(bp, filter->dst_id, filter); if (ret != 0) { rte_flow_error_set(error, -ret, RTE_FLOW_ERROR_TYPE_HANDLE, NULL, "Failed to create EM filter"); goto free_filter; } } if (filter->filter_type == HWRM_CFA_NTUPLE_FILTER) { filter->enables |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID; ret = bnxt_hwrm_set_ntuple_filter(bp, filter->dst_id, filter); if (ret != 0) { rte_flow_error_set(error, -ret, RTE_FLOW_ERROR_TYPE_HANDLE, NULL, "Failed to create ntuple filter"); goto free_filter; } } if (BNXT_RFS_NEEDS_VNIC(bp)) vnic = find_matching_vnic(bp, filter); else vnic = BNXT_GET_DEFAULT_VNIC(bp); done: if (!ret || update_flow) { flow->filter = filter; flow->vnic = vnic; if (update_flow) { ret = -EXDEV; goto free_flow; } if (filter->valid_flags & BNXT_FLOW_MARK_FLAG) { PMD_DRV_LOG(DEBUG, "Mark action: mark id 0x%x, flow id 0x%x\n", filter->mark, filter->flow_id); /* TCAM and EM should be 16-bit only. * Other modes not supported. */ flow_id = filter->flow_id & BNXT_FLOW_ID_MASK; if (bp->mark_table[flow_id].valid) { rte_flow_error_set(error, EEXIST, RTE_FLOW_ERROR_TYPE_HANDLE, NULL, "Flow with mark id exists"); bnxt_clear_one_vnic_filter(bp, filter); goto free_filter; } bp->mark_table[flow_id].valid = true; bp->mark_table[flow_id].mark_id = filter->mark; } STAILQ_INSERT_TAIL(&vnic->filter, filter, next); STAILQ_INSERT_TAIL(&vnic->flow_list, flow, next); if (BNXT_FLOW_XSTATS_EN(bp)) bp->flow_stat->flow_count++; bnxt_release_flow_lock(bp); bnxt_setup_flow_counter(bp); PMD_DRV_LOG(DEBUG, "Successfully created flow.\n"); return flow; } free_filter: bnxt_free_filter(bp, filter); free_flow: if (ret == -EEXIST) rte_flow_error_set(error, ret, RTE_FLOW_ERROR_TYPE_HANDLE, NULL, "Matching Flow exists."); else if (ret == -EXDEV) rte_flow_error_set(error, 0, RTE_FLOW_ERROR_TYPE_NONE, NULL, "Flow with pattern exists, updating destination queue"); else if (!rte_errno) rte_flow_error_set(error, -ret, RTE_FLOW_ERROR_TYPE_HANDLE, NULL, "Failed to create flow."); rte_free(flow); flow = NULL; bnxt_release_flow_lock(bp); return flow; } static int bnxt_handle_tunnel_redirect_destroy(struct bnxt *bp, struct bnxt_filter_info *filter, struct rte_flow_error *error) { uint16_t tun_dst_fid; uint32_t tun_type; int ret = 0; ret = bnxt_hwrm_tunnel_redirect_query(bp, &tun_type); if (ret) { rte_flow_error_set(error, -ret, RTE_FLOW_ERROR_TYPE_HANDLE, NULL, "Unable to query tunnel to VF"); return ret; } if (tun_type == (1U << filter->tunnel_type)) { ret = bnxt_hwrm_tunnel_redirect_info(bp, filter->tunnel_type, &tun_dst_fid); if (ret) { rte_flow_error_set(error, -ret, RTE_FLOW_ERROR_TYPE_HANDLE, NULL, "tunnel_redirect info cmd fail"); return ret; } PMD_DRV_LOG(INFO, "Pre-existing tunnel fid = %x vf->fid = %x\n", tun_dst_fid + bp->first_vf_id, bp->fw_fid); /* Tunnel doesn't belong to this VF, so don't send HWRM * cmd, just delete the flow from driver */ if (bp->fw_fid != (tun_dst_fid + bp->first_vf_id)) PMD_DRV_LOG(ERR, "Tunnel does not belong to this VF, skip hwrm_tunnel_redirect_free\n"); else ret = bnxt_hwrm_tunnel_redirect_free(bp, filter->tunnel_type); } return ret; } static int _bnxt_flow_destroy(struct bnxt *bp, struct rte_flow *flow, struct rte_flow_error *error) { struct bnxt_filter_info *filter; struct bnxt_vnic_info *vnic; int ret = 0; uint32_t flow_id; filter = flow->filter; vnic = flow->vnic; if (filter->filter_type == HWRM_CFA_TUNNEL_REDIRECT_FILTER && filter->enables == filter->tunnel_type) { ret = bnxt_handle_tunnel_redirect_destroy(bp, filter, error); if (!ret) goto done; else return ret; } ret = bnxt_match_filter(bp, filter); if (ret == 0) PMD_DRV_LOG(ERR, "Could not find matching flow\n"); if (filter->valid_flags & BNXT_FLOW_MARK_FLAG) { flow_id = filter->flow_id & BNXT_FLOW_ID_MASK; memset(&bp->mark_table[flow_id], 0, sizeof(bp->mark_table[flow_id])); filter->flow_id = 0; } ret = bnxt_clear_one_vnic_filter(bp, filter); done: if (!ret) { /* If it is a L2 drop filter, when the filter is created, * the FW updates the BC/MC records. * Once this filter is removed, issue the set_rx_mask command * to reset the BC/MC records in the HW to the settings * before the drop counter is created. */ if (filter->valid_flags & BNXT_FLOW_L2_DROP_FLAG) bnxt_set_rx_mask_no_vlan(bp, &bp->vnic_info[0]); STAILQ_REMOVE(&vnic->filter, filter, bnxt_filter_info, next); bnxt_free_filter(bp, filter); STAILQ_REMOVE(&vnic->flow_list, flow, rte_flow, next); rte_free(flow); if (BNXT_FLOW_XSTATS_EN(bp)) bp->flow_stat->flow_count--; /* If this was the last flow associated with this vnic, * switch the queue back to RSS pool. */ if (vnic && !vnic->func_default && STAILQ_EMPTY(&vnic->flow_list)) { rte_free(vnic->fw_grp_ids); if (vnic->rx_queue_cnt > 1) bnxt_hwrm_vnic_ctx_free(bp, vnic); bnxt_hwrm_vnic_free(bp, vnic); vnic->rx_queue_cnt = 0; bp->nr_vnics--; } } else { rte_flow_error_set(error, -ret, RTE_FLOW_ERROR_TYPE_HANDLE, NULL, "Failed to destroy flow."); } return ret; } static int bnxt_flow_destroy(struct rte_eth_dev *dev, struct rte_flow *flow, struct rte_flow_error *error) { struct bnxt *bp = dev->data->dev_private; int ret = 0; bnxt_acquire_flow_lock(bp); if (!flow) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_HANDLE, NULL, "Invalid flow: failed to destroy flow."); bnxt_release_flow_lock(bp); return -EINVAL; } if (!flow->filter) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_HANDLE, NULL, "Invalid flow: failed to destroy flow."); bnxt_release_flow_lock(bp); return -EINVAL; } ret = _bnxt_flow_destroy(bp, flow, error); bnxt_release_flow_lock(bp); return ret; } void bnxt_cancel_fc_thread(struct bnxt *bp) { bp->flags &= ~BNXT_FLAG_FC_THREAD; rte_eal_alarm_cancel(bnxt_flow_cnt_alarm_cb, (void *)bp); } static int bnxt_flow_flush(struct rte_eth_dev *dev, struct rte_flow_error *error) { struct bnxt *bp = dev->data->dev_private; struct bnxt_vnic_info *vnic; struct rte_flow *flow; unsigned int i; int ret = 0; bnxt_acquire_flow_lock(bp); for (i = 0; i < bp->max_vnics; i++) { vnic = &bp->vnic_info[i]; if (vnic && vnic->fw_vnic_id == INVALID_VNIC_ID) continue; while (!STAILQ_EMPTY(&vnic->flow_list)) { flow = STAILQ_FIRST(&vnic->flow_list); if (!flow->filter) continue; ret = _bnxt_flow_destroy(bp, flow, error); if (ret) break; } } bnxt_cancel_fc_thread(bp); bnxt_release_flow_lock(bp); return ret; } const struct rte_flow_ops bnxt_flow_ops = { .validate = bnxt_flow_validate, .create = bnxt_flow_create, .destroy = bnxt_flow_destroy, .flush = bnxt_flow_flush, };