/* SPDX-License-Identifier: BSD-3-Clause * Copyright 2017 6WIND S.A. * Copyright 2017 Mellanox Technologies, Ltd */ /** * @file * Memory management functions for mlx4 driver. */ #include #include #include #include #include #include /* Verbs headers do not support -pedantic. */ #ifdef PEDANTIC #pragma GCC diagnostic ignored "-Wpedantic" #endif #include #ifdef PEDANTIC #pragma GCC diagnostic error "-Wpedantic" #endif #include #include #include #include #include #include #include #include #include "mlx4_glue.h" #include "mlx4_mr.h" #include "mlx4_rxtx.h" #include "mlx4_utils.h" struct mr_find_contig_memsegs_data { uintptr_t addr; uintptr_t start; uintptr_t end; const struct rte_memseg_list *msl; }; struct mr_update_mp_data { struct rte_eth_dev *dev; struct mlx4_mr_ctrl *mr_ctrl; int ret; }; /** * Expand B-tree table to a given size. Can't be called with holding * memory_hotplug_lock or priv->mr.rwlock due to rte_realloc(). * * @param bt * Pointer to B-tree structure. * @param n * Number of entries for expansion. * * @return * 0 on success, -1 on failure. */ static int mr_btree_expand(struct mlx4_mr_btree *bt, int n) { void *mem; int ret = 0; if (n <= bt->size) return ret; /* * Downside of directly using rte_realloc() is that SOCKET_ID_ANY is * used inside if there's no room to expand. Because this is a quite * rare case and a part of very slow path, it is very acceptable. * Initially cache_bh[] will be given practically enough space and once * it is expanded, expansion wouldn't be needed again ever. */ mem = rte_realloc(bt->table, n * sizeof(struct mlx4_mr_cache), 0); if (mem == NULL) { /* Not an error, B-tree search will be skipped. */ WARN("failed to expand MR B-tree (%p) table", (void *)bt); ret = -1; } else { DEBUG("expanded MR B-tree table (size=%u)", n); bt->table = mem; bt->size = n; } return ret; } /** * Look up LKey from given B-tree lookup table, store the last index and return * searched LKey. * * @param bt * Pointer to B-tree structure. * @param[out] idx * Pointer to index. Even on search failure, returns index where it stops * searching so that index can be used when inserting a new entry. * @param addr * Search key. * * @return * Searched LKey on success, UINT32_MAX on no match. */ static uint32_t mr_btree_lookup(struct mlx4_mr_btree *bt, uint16_t *idx, uintptr_t addr) { struct mlx4_mr_cache *lkp_tbl; uint16_t n; uint16_t base = 0; assert(bt != NULL); lkp_tbl = *bt->table; n = bt->len; /* First entry must be NULL for comparison. */ assert(bt->len > 0 || (lkp_tbl[0].start == 0 && lkp_tbl[0].lkey == UINT32_MAX)); /* Binary search. */ do { register uint16_t delta = n >> 1; if (addr < lkp_tbl[base + delta].start) { n = delta; } else { base += delta; n -= delta; } } while (n > 1); assert(addr >= lkp_tbl[base].start); *idx = base; if (addr < lkp_tbl[base].end) return lkp_tbl[base].lkey; /* Not found. */ return UINT32_MAX; } /** * Insert an entry to B-tree lookup table. * * @param bt * Pointer to B-tree structure. * @param entry * Pointer to new entry to insert. * * @return * 0 on success, -1 on failure. */ static int mr_btree_insert(struct mlx4_mr_btree *bt, struct mlx4_mr_cache *entry) { struct mlx4_mr_cache *lkp_tbl; uint16_t idx = 0; size_t shift; assert(bt != NULL); assert(bt->len <= bt->size); assert(bt->len > 0); lkp_tbl = *bt->table; /* Find out the slot for insertion. */ if (mr_btree_lookup(bt, &idx, entry->start) != UINT32_MAX) { DEBUG("abort insertion to B-tree(%p): already exist at" " idx=%u [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x", (void *)bt, idx, entry->start, entry->end, entry->lkey); /* Already exist, return. */ return 0; } /* If table is full, return error. */ if (unlikely(bt->len == bt->size)) { bt->overflow = 1; return -1; } /* Insert entry. */ ++idx; shift = (bt->len - idx) * sizeof(struct mlx4_mr_cache); if (shift) memmove(&lkp_tbl[idx + 1], &lkp_tbl[idx], shift); lkp_tbl[idx] = *entry; bt->len++; DEBUG("inserted B-tree(%p)[%u]," " [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x", (void *)bt, idx, entry->start, entry->end, entry->lkey); return 0; } /** * Initialize B-tree and allocate memory for lookup table. * * @param bt * Pointer to B-tree structure. * @param n * Number of entries to allocate. * @param socket * NUMA socket on which memory must be allocated. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ int mlx4_mr_btree_init(struct mlx4_mr_btree *bt, int n, int socket) { if (bt == NULL) { rte_errno = EINVAL; return -rte_errno; } memset(bt, 0, sizeof(*bt)); bt->table = rte_calloc_socket("B-tree table", n, sizeof(struct mlx4_mr_cache), 0, socket); if (bt->table == NULL) { rte_errno = ENOMEM; ERROR("failed to allocate memory for btree cache on socket %d", socket); return -rte_errno; } bt->size = n; /* First entry must be NULL for binary search. */ (*bt->table)[bt->len++] = (struct mlx4_mr_cache) { .lkey = UINT32_MAX, }; DEBUG("initialized B-tree %p with table %p", (void *)bt, (void *)bt->table); return 0; } /** * Free B-tree resources. * * @param bt * Pointer to B-tree structure. */ void mlx4_mr_btree_free(struct mlx4_mr_btree *bt) { if (bt == NULL) return; DEBUG("freeing B-tree %p with table %p", (void *)bt, (void *)bt->table); rte_free(bt->table); memset(bt, 0, sizeof(*bt)); } #ifndef NDEBUG /** * Dump all the entries in a B-tree * * @param bt * Pointer to B-tree structure. */ void mlx4_mr_btree_dump(struct mlx4_mr_btree *bt) { int idx; struct mlx4_mr_cache *lkp_tbl; if (bt == NULL) return; lkp_tbl = *bt->table; for (idx = 0; idx < bt->len; ++idx) { struct mlx4_mr_cache *entry = &lkp_tbl[idx]; DEBUG("B-tree(%p)[%u]," " [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x", (void *)bt, idx, entry->start, entry->end, entry->lkey); } } #endif /** * Find virtually contiguous memory chunk in a given MR. * * @param dev * Pointer to MR structure. * @param[out] entry * Pointer to returning MR cache entry. If not found, this will not be * updated. * @param start_idx * Start index of the memseg bitmap. * * @return * Next index to go on lookup. */ static int mr_find_next_chunk(struct mlx4_mr *mr, struct mlx4_mr_cache *entry, int base_idx) { uintptr_t start = 0; uintptr_t end = 0; uint32_t idx = 0; /* MR for external memory doesn't have memseg list. */ if (mr->msl == NULL) { struct ibv_mr *ibv_mr = mr->ibv_mr; assert(mr->ms_bmp_n == 1); assert(mr->ms_n == 1); assert(base_idx == 0); /* * Can't search it from memseg list but get it directly from * verbs MR as there's only one chunk. */ entry->start = (uintptr_t)ibv_mr->addr; entry->end = (uintptr_t)ibv_mr->addr + mr->ibv_mr->length; entry->lkey = rte_cpu_to_be_32(mr->ibv_mr->lkey); /* Returning 1 ends iteration. */ return 1; } for (idx = base_idx; idx < mr->ms_bmp_n; ++idx) { if (rte_bitmap_get(mr->ms_bmp, idx)) { const struct rte_memseg_list *msl; const struct rte_memseg *ms; msl = mr->msl; ms = rte_fbarray_get(&msl->memseg_arr, mr->ms_base_idx + idx); assert(msl->page_sz == ms->hugepage_sz); if (!start) start = ms->addr_64; end = ms->addr_64 + ms->hugepage_sz; } else if (start) { /* Passed the end of a fragment. */ break; } } if (start) { /* Found one chunk. */ entry->start = start; entry->end = end; entry->lkey = rte_cpu_to_be_32(mr->ibv_mr->lkey); } return idx; } /** * Insert a MR to the global B-tree cache. It may fail due to low-on-memory. * Then, this entry will have to be searched by mr_lookup_dev_list() in * mlx4_mr_create() on miss. * * @param dev * Pointer to Ethernet device. * @param mr * Pointer to MR to insert. * * @return * 0 on success, -1 on failure. */ static int mr_insert_dev_cache(struct rte_eth_dev *dev, struct mlx4_mr *mr) { struct mlx4_priv *priv = dev->data->dev_private; unsigned int n; DEBUG("port %u inserting MR(%p) to global cache", dev->data->port_id, (void *)mr); for (n = 0; n < mr->ms_bmp_n; ) { struct mlx4_mr_cache entry; memset(&entry, 0, sizeof(entry)); /* Find a contiguous chunk and advance the index. */ n = mr_find_next_chunk(mr, &entry, n); if (!entry.end) break; if (mr_btree_insert(&priv->mr.cache, &entry) < 0) { /* * Overflowed, but the global table cannot be expanded * because of deadlock. */ return -1; } } return 0; } /** * Look up address in the original global MR list. * * @param dev * Pointer to Ethernet device. * @param[out] entry * Pointer to returning MR cache entry. If no match, this will not be updated. * @param addr * Search key. * * @return * Found MR on match, NULL otherwise. */ static struct mlx4_mr * mr_lookup_dev_list(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry, uintptr_t addr) { struct mlx4_priv *priv = dev->data->dev_private; struct mlx4_mr *mr; /* Iterate all the existing MRs. */ LIST_FOREACH(mr, &priv->mr.mr_list, mr) { unsigned int n; if (mr->ms_n == 0) continue; for (n = 0; n < mr->ms_bmp_n; ) { struct mlx4_mr_cache ret; memset(&ret, 0, sizeof(ret)); n = mr_find_next_chunk(mr, &ret, n); if (addr >= ret.start && addr < ret.end) { /* Found. */ *entry = ret; return mr; } } } return NULL; } /** * Look up address on device. * * @param dev * Pointer to Ethernet device. * @param[out] entry * Pointer to returning MR cache entry. If no match, this will not be updated. * @param addr * Search key. * * @return * Searched LKey on success, UINT32_MAX on failure and rte_errno is set. */ static uint32_t mr_lookup_dev(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry, uintptr_t addr) { struct mlx4_priv *priv = dev->data->dev_private; uint16_t idx; uint32_t lkey = UINT32_MAX; struct mlx4_mr *mr; /* * If the global cache has overflowed since it failed to expand the * B-tree table, it can't have all the existing MRs. Then, the address * has to be searched by traversing the original MR list instead, which * is very slow path. Otherwise, the global cache is all inclusive. */ if (!unlikely(priv->mr.cache.overflow)) { lkey = mr_btree_lookup(&priv->mr.cache, &idx, addr); if (lkey != UINT32_MAX) *entry = (*priv->mr.cache.table)[idx]; } else { /* Falling back to the slowest path. */ mr = mr_lookup_dev_list(dev, entry, addr); if (mr != NULL) lkey = entry->lkey; } assert(lkey == UINT32_MAX || (addr >= entry->start && addr < entry->end)); return lkey; } /** * Free MR resources. MR lock must not be held to avoid a deadlock. rte_free() * can raise memory free event and the callback function will spin on the lock. * * @param mr * Pointer to MR to free. */ static void mr_free(struct mlx4_mr *mr) { if (mr == NULL) return; DEBUG("freeing MR(%p):", (void *)mr); if (mr->ibv_mr != NULL) claim_zero(mlx4_glue->dereg_mr(mr->ibv_mr)); if (mr->ms_bmp != NULL) rte_bitmap_free(mr->ms_bmp); rte_free(mr); } /** * Release resources of detached MR having no online entry. * * @param dev * Pointer to Ethernet device. */ static void mlx4_mr_garbage_collect(struct rte_eth_dev *dev) { struct mlx4_priv *priv = dev->data->dev_private; struct mlx4_mr *mr_next; struct mlx4_mr_list free_list = LIST_HEAD_INITIALIZER(free_list); /* Must be called from the primary process. */ assert(rte_eal_process_type() == RTE_PROC_PRIMARY); /* * MR can't be freed with holding the lock because rte_free() could call * memory free callback function. This will be a deadlock situation. */ rte_rwlock_write_lock(&priv->mr.rwlock); /* Detach the whole free list and release it after unlocking. */ free_list = priv->mr.mr_free_list; LIST_INIT(&priv->mr.mr_free_list); rte_rwlock_write_unlock(&priv->mr.rwlock); /* Release resources. */ mr_next = LIST_FIRST(&free_list); while (mr_next != NULL) { struct mlx4_mr *mr = mr_next; mr_next = LIST_NEXT(mr, mr); mr_free(mr); } } /* Called during rte_memseg_contig_walk() by mlx4_mr_create(). */ static int mr_find_contig_memsegs_cb(const struct rte_memseg_list *msl, const struct rte_memseg *ms, size_t len, void *arg) { struct mr_find_contig_memsegs_data *data = arg; if (data->addr < ms->addr_64 || data->addr >= ms->addr_64 + len) return 0; /* Found, save it and stop walking. */ data->start = ms->addr_64; data->end = ms->addr_64 + len; data->msl = msl; return 1; } /** * Create a new global Memory Region (MR) for a missing virtual address. * This API should be called on a secondary process, then a request is sent to * the primary process in order to create a MR for the address. As the global MR * list is on the shared memory, following LKey lookup should succeed unless the * request fails. * * @param dev * Pointer to Ethernet device. * @param[out] entry * Pointer to returning MR cache entry, found in the global cache or newly * created. If failed to create one, this will not be updated. * @param addr * Target virtual address to register. * * @return * Searched LKey on success, UINT32_MAX on failure and rte_errno is set. */ static uint32_t mlx4_mr_create_secondary(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry, uintptr_t addr) { struct mlx4_priv *priv = dev->data->dev_private; int ret; DEBUG("port %u requesting MR creation for address (%p)", dev->data->port_id, (void *)addr); ret = mlx4_mp_req_mr_create(dev, addr); if (ret) { DEBUG("port %u fail to request MR creation for address (%p)", dev->data->port_id, (void *)addr); return UINT32_MAX; } rte_rwlock_read_lock(&priv->mr.rwlock); /* Fill in output data. */ mr_lookup_dev(dev, entry, addr); /* Lookup can't fail. */ assert(entry->lkey != UINT32_MAX); rte_rwlock_read_unlock(&priv->mr.rwlock); DEBUG("port %u MR CREATED by primary process for %p:\n" " [0x%" PRIxPTR ", 0x%" PRIxPTR "), lkey=0x%x", dev->data->port_id, (void *)addr, entry->start, entry->end, entry->lkey); return entry->lkey; } /** * Create a new global Memory Region (MR) for a missing virtual address. * Register entire virtually contiguous memory chunk around the address. * This must be called from the primary process. * * @param dev * Pointer to Ethernet device. * @param[out] entry * Pointer to returning MR cache entry, found in the global cache or newly * created. If failed to create one, this will not be updated. * @param addr * Target virtual address to register. * * @return * Searched LKey on success, UINT32_MAX on failure and rte_errno is set. */ uint32_t mlx4_mr_create_primary(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry, uintptr_t addr) { struct mlx4_priv *priv = dev->data->dev_private; const struct rte_memseg_list *msl; const struct rte_memseg *ms; struct mlx4_mr *mr = NULL; size_t len; uint32_t ms_n; uint32_t bmp_size; void *bmp_mem; int ms_idx_shift = -1; unsigned int n; struct mr_find_contig_memsegs_data data = { .addr = addr, }; struct mr_find_contig_memsegs_data data_re; DEBUG("port %u creating a MR using address (%p)", dev->data->port_id, (void *)addr); /* * Release detached MRs if any. This can't be called with holding either * memory_hotplug_lock or priv->mr.rwlock. MRs on the free list have * been detached by the memory free event but it couldn't be released * inside the callback due to deadlock. As a result, releasing resources * is quite opportunistic. */ mlx4_mr_garbage_collect(dev); /* * If enabled, find out a contiguous virtual address chunk in use, to * which the given address belongs, in order to register maximum range. * In the best case where mempools are not dynamically recreated and * '--socket-mem' is specified as an EAL option, it is very likely to * have only one MR(LKey) per a socket and per a hugepage-size even * though the system memory is highly fragmented. As the whole memory * chunk will be pinned by kernel, it can't be reused unless entire * chunk is freed from EAL. * * If disabled, just register one memseg (page). Then, memory * consumption will be minimized but it may drop performance if there * are many MRs to lookup on the datapath. */ if (!priv->mr_ext_memseg_en) { data.msl = rte_mem_virt2memseg_list((void *)addr); data.start = RTE_ALIGN_FLOOR(addr, data.msl->page_sz); data.end = data.start + data.msl->page_sz; } else if (!rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data)) { WARN("port %u unable to find virtually contiguous" " chunk for address (%p)." " rte_memseg_contig_walk() failed.", dev->data->port_id, (void *)addr); rte_errno = ENXIO; goto err_nolock; } alloc_resources: /* Addresses must be page-aligned. */ assert(rte_is_aligned((void *)data.start, data.msl->page_sz)); assert(rte_is_aligned((void *)data.end, data.msl->page_sz)); msl = data.msl; ms = rte_mem_virt2memseg((void *)data.start, msl); len = data.end - data.start; assert(msl->page_sz == ms->hugepage_sz); /* Number of memsegs in the range. */ ms_n = len / msl->page_sz; DEBUG("port %u extending %p to [0x%" PRIxPTR ", 0x%" PRIxPTR ")," " page_sz=0x%" PRIx64 ", ms_n=%u", dev->data->port_id, (void *)addr, data.start, data.end, msl->page_sz, ms_n); /* Size of memory for bitmap. */ bmp_size = rte_bitmap_get_memory_footprint(ms_n); mr = rte_zmalloc_socket(NULL, RTE_ALIGN_CEIL(sizeof(*mr), RTE_CACHE_LINE_SIZE) + bmp_size, RTE_CACHE_LINE_SIZE, msl->socket_id); if (mr == NULL) { WARN("port %u unable to allocate memory for a new MR of" " address (%p).", dev->data->port_id, (void *)addr); rte_errno = ENOMEM; goto err_nolock; } mr->msl = msl; /* * Save the index of the first memseg and initialize memseg bitmap. To * see if a memseg of ms_idx in the memseg-list is still valid, check: * rte_bitmap_get(mr->bmp, ms_idx - mr->ms_base_idx) */ mr->ms_base_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms); bmp_mem = RTE_PTR_ALIGN_CEIL(mr + 1, RTE_CACHE_LINE_SIZE); mr->ms_bmp = rte_bitmap_init(ms_n, bmp_mem, bmp_size); if (mr->ms_bmp == NULL) { WARN("port %u unable to initialize bitmap for a new MR of" " address (%p).", dev->data->port_id, (void *)addr); rte_errno = EINVAL; goto err_nolock; } /* * Should recheck whether the extended contiguous chunk is still valid. * Because memory_hotplug_lock can't be held if there's any memory * related calls in a critical path, resource allocation above can't be * locked. If the memory has been changed at this point, try again with * just single page. If not, go on with the big chunk atomically from * here. */ rte_mcfg_mem_read_lock(); data_re = data; if (len > msl->page_sz && !rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data_re)) { WARN("port %u unable to find virtually contiguous" " chunk for address (%p)." " rte_memseg_contig_walk() failed.", dev->data->port_id, (void *)addr); rte_errno = ENXIO; goto err_memlock; } if (data.start != data_re.start || data.end != data_re.end) { /* * The extended contiguous chunk has been changed. Try again * with single memseg instead. */ data.start = RTE_ALIGN_FLOOR(addr, msl->page_sz); data.end = data.start + msl->page_sz; rte_mcfg_mem_read_unlock(); mr_free(mr); goto alloc_resources; } assert(data.msl == data_re.msl); rte_rwlock_write_lock(&priv->mr.rwlock); /* * Check the address is really missing. If other thread already created * one or it is not found due to overflow, abort and return. */ if (mr_lookup_dev(dev, entry, addr) != UINT32_MAX) { /* * Insert to the global cache table. It may fail due to * low-on-memory. Then, this entry will have to be searched * here again. */ mr_btree_insert(&priv->mr.cache, entry); DEBUG("port %u found MR for %p on final lookup, abort", dev->data->port_id, (void *)addr); rte_rwlock_write_unlock(&priv->mr.rwlock); rte_mcfg_mem_read_unlock(); /* * Must be unlocked before calling rte_free() because * mlx4_mr_mem_event_free_cb() can be called inside. */ mr_free(mr); return entry->lkey; } /* * Trim start and end addresses for verbs MR. Set bits for registering * memsegs but exclude already registered ones. Bitmap can be * fragmented. */ for (n = 0; n < ms_n; ++n) { uintptr_t start; struct mlx4_mr_cache ret; memset(&ret, 0, sizeof(ret)); start = data_re.start + n * msl->page_sz; /* Exclude memsegs already registered by other MRs. */ if (mr_lookup_dev(dev, &ret, start) == UINT32_MAX) { /* * Start from the first unregistered memseg in the * extended range. */ if (ms_idx_shift == -1) { mr->ms_base_idx += n; data.start = start; ms_idx_shift = n; } data.end = start + msl->page_sz; rte_bitmap_set(mr->ms_bmp, n - ms_idx_shift); ++mr->ms_n; } } len = data.end - data.start; mr->ms_bmp_n = len / msl->page_sz; assert(ms_idx_shift + mr->ms_bmp_n <= ms_n); /* * Finally create a verbs MR for the memory chunk. ibv_reg_mr() can be * called with holding the memory lock because it doesn't use * mlx4_alloc_buf_extern() which eventually calls rte_malloc_socket() * through mlx4_alloc_verbs_buf(). */ mr->ibv_mr = mlx4_glue->reg_mr(priv->pd, (void *)data.start, len, IBV_ACCESS_LOCAL_WRITE); if (mr->ibv_mr == NULL) { WARN("port %u fail to create a verbs MR for address (%p)", dev->data->port_id, (void *)addr); rte_errno = EINVAL; goto err_mrlock; } assert((uintptr_t)mr->ibv_mr->addr == data.start); assert(mr->ibv_mr->length == len); LIST_INSERT_HEAD(&priv->mr.mr_list, mr, mr); DEBUG("port %u MR CREATED (%p) for %p:\n" " [0x%" PRIxPTR ", 0x%" PRIxPTR ")," " lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u", dev->data->port_id, (void *)mr, (void *)addr, data.start, data.end, rte_cpu_to_be_32(mr->ibv_mr->lkey), mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n); /* Insert to the global cache table. */ mr_insert_dev_cache(dev, mr); /* Fill in output data. */ mr_lookup_dev(dev, entry, addr); /* Lookup can't fail. */ assert(entry->lkey != UINT32_MAX); rte_rwlock_write_unlock(&priv->mr.rwlock); rte_mcfg_mem_read_unlock(); return entry->lkey; err_mrlock: rte_rwlock_write_unlock(&priv->mr.rwlock); err_memlock: rte_mcfg_mem_read_unlock(); err_nolock: /* * In case of error, as this can be called in a datapath, a warning * message per an error is preferable instead. Must be unlocked before * calling rte_free() because mlx4_mr_mem_event_free_cb() can be called * inside. */ mr_free(mr); return UINT32_MAX; } /** * Create a new global Memory Region (MR) for a missing virtual address. * This can be called from primary and secondary process. * * @param dev * Pointer to Ethernet device. * @param[out] entry * Pointer to returning MR cache entry, found in the global cache or newly * created. If failed to create one, this will not be updated. * @param addr * Target virtual address to register. * * @return * Searched LKey on success, UINT32_MAX on failure and rte_errno is set. */ static uint32_t mlx4_mr_create(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry, uintptr_t addr) { uint32_t ret = 0; switch (rte_eal_process_type()) { case RTE_PROC_PRIMARY: ret = mlx4_mr_create_primary(dev, entry, addr); break; case RTE_PROC_SECONDARY: ret = mlx4_mr_create_secondary(dev, entry, addr); break; default: break; } return ret; } /** * Rebuild the global B-tree cache of device from the original MR list. * * @param dev * Pointer to Ethernet device. */ static void mr_rebuild_dev_cache(struct rte_eth_dev *dev) { struct mlx4_priv *priv = dev->data->dev_private; struct mlx4_mr *mr; DEBUG("port %u rebuild dev cache[]", dev->data->port_id); /* Flush cache to rebuild. */ priv->mr.cache.len = 1; priv->mr.cache.overflow = 0; /* Iterate all the existing MRs. */ LIST_FOREACH(mr, &priv->mr.mr_list, mr) if (mr_insert_dev_cache(dev, mr) < 0) return; } /** * Callback for memory free event. Iterate freed memsegs and check whether it * belongs to an existing MR. If found, clear the bit from bitmap of MR. As a * result, the MR would be fragmented. If it becomes empty, the MR will be freed * later by mlx4_mr_garbage_collect(). * * The global cache must be rebuilt if there's any change and this event has to * be propagated to dataplane threads to flush the local caches. * * @param dev * Pointer to Ethernet device. * @param addr * Address of freed memory. * @param len * Size of freed memory. */ static void mlx4_mr_mem_event_free_cb(struct rte_eth_dev *dev, const void *addr, size_t len) { struct mlx4_priv *priv = dev->data->dev_private; const struct rte_memseg_list *msl; struct mlx4_mr *mr; int ms_n; int i; int rebuild = 0; DEBUG("port %u free callback: addr=%p, len=%zu", dev->data->port_id, addr, len); msl = rte_mem_virt2memseg_list(addr); /* addr and len must be page-aligned. */ assert((uintptr_t)addr == RTE_ALIGN((uintptr_t)addr, msl->page_sz)); assert(len == RTE_ALIGN(len, msl->page_sz)); ms_n = len / msl->page_sz; rte_rwlock_write_lock(&priv->mr.rwlock); /* Clear bits of freed memsegs from MR. */ for (i = 0; i < ms_n; ++i) { const struct rte_memseg *ms; struct mlx4_mr_cache entry; uintptr_t start; int ms_idx; uint32_t pos; /* Find MR having this memseg. */ start = (uintptr_t)addr + i * msl->page_sz; mr = mr_lookup_dev_list(dev, &entry, start); if (mr == NULL) continue; assert(mr->msl); /* Can't be external memory. */ ms = rte_mem_virt2memseg((void *)start, msl); assert(ms != NULL); assert(msl->page_sz == ms->hugepage_sz); ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms); pos = ms_idx - mr->ms_base_idx; assert(rte_bitmap_get(mr->ms_bmp, pos)); assert(pos < mr->ms_bmp_n); DEBUG("port %u MR(%p): clear bitmap[%u] for addr %p", dev->data->port_id, (void *)mr, pos, (void *)start); rte_bitmap_clear(mr->ms_bmp, pos); if (--mr->ms_n == 0) { LIST_REMOVE(mr, mr); LIST_INSERT_HEAD(&priv->mr.mr_free_list, mr, mr); DEBUG("port %u remove MR(%p) from list", dev->data->port_id, (void *)mr); } /* * MR is fragmented or will be freed. the global cache must be * rebuilt. */ rebuild = 1; } if (rebuild) { mr_rebuild_dev_cache(dev); /* * Flush local caches by propagating invalidation across cores. * rte_smp_wmb() is enough to synchronize this event. If one of * freed memsegs is seen by other core, that means the memseg * has been allocated by allocator, which will come after this * free call. Therefore, this store instruction (incrementing * generation below) will be guaranteed to be seen by other core * before the core sees the newly allocated memory. */ ++priv->mr.dev_gen; DEBUG("broadcasting local cache flush, gen=%d", priv->mr.dev_gen); rte_smp_wmb(); } rte_rwlock_write_unlock(&priv->mr.rwlock); #ifndef NDEBUG if (rebuild) mlx4_mr_dump_dev(dev); #endif } /** * Callback for memory event. * * @param event_type * Memory event type. * @param addr * Address of memory. * @param len * Size of memory. */ void mlx4_mr_mem_event_cb(enum rte_mem_event event_type, const void *addr, size_t len, void *arg __rte_unused) { struct mlx4_priv *priv; struct mlx4_dev_list *dev_list = &mlx4_shared_data->mem_event_cb_list; /* Must be called from the primary process. */ assert(rte_eal_process_type() == RTE_PROC_PRIMARY); switch (event_type) { case RTE_MEM_EVENT_FREE: rte_rwlock_read_lock(&mlx4_shared_data->mem_event_rwlock); /* Iterate all the existing mlx4 devices. */ LIST_FOREACH(priv, dev_list, mem_event_cb) mlx4_mr_mem_event_free_cb(ETH_DEV(priv), addr, len); rte_rwlock_read_unlock(&mlx4_shared_data->mem_event_rwlock); break; case RTE_MEM_EVENT_ALLOC: default: break; } } /** * Look up address in the global MR cache table. If not found, create a new MR. * Insert the found/created entry to local bottom-half cache table. * * @param dev * Pointer to Ethernet device. * @param mr_ctrl * Pointer to per-queue MR control structure. * @param[out] entry * Pointer to returning MR cache entry, found in the global cache or newly * created. If failed to create one, this is not written. * @param addr * Search key. * * @return * Searched LKey on success, UINT32_MAX on no match. */ static uint32_t mlx4_mr_lookup_dev(struct rte_eth_dev *dev, struct mlx4_mr_ctrl *mr_ctrl, struct mlx4_mr_cache *entry, uintptr_t addr) { struct mlx4_priv *priv = dev->data->dev_private; struct mlx4_mr_btree *bt = &mr_ctrl->cache_bh; uint16_t idx; uint32_t lkey; /* If local cache table is full, try to double it. */ if (unlikely(bt->len == bt->size)) mr_btree_expand(bt, bt->size << 1); /* Look up in the global cache. */ rte_rwlock_read_lock(&priv->mr.rwlock); lkey = mr_btree_lookup(&priv->mr.cache, &idx, addr); if (lkey != UINT32_MAX) { /* Found. */ *entry = (*priv->mr.cache.table)[idx]; rte_rwlock_read_unlock(&priv->mr.rwlock); /* * Update local cache. Even if it fails, return the found entry * to update top-half cache. Next time, this entry will be found * in the global cache. */ mr_btree_insert(bt, entry); return lkey; } rte_rwlock_read_unlock(&priv->mr.rwlock); /* First time to see the address? Create a new MR. */ lkey = mlx4_mr_create(dev, entry, addr); /* * Update the local cache if successfully created a new global MR. Even * if failed to create one, there's no action to take in this datapath * code. As returning LKey is invalid, this will eventually make HW * fail. */ if (lkey != UINT32_MAX) mr_btree_insert(bt, entry); return lkey; } /** * Bottom-half of LKey search on datapath. Firstly search in cache_bh[] and if * misses, search in the global MR cache table and update the new entry to * per-queue local caches. * * @param dev * Pointer to Ethernet device. * @param mr_ctrl * Pointer to per-queue MR control structure. * @param addr * Search key. * * @return * Searched LKey on success, UINT32_MAX on no match. */ static uint32_t mlx4_mr_addr2mr_bh(struct rte_eth_dev *dev, struct mlx4_mr_ctrl *mr_ctrl, uintptr_t addr) { uint32_t lkey; uint16_t bh_idx = 0; /* Victim in top-half cache to replace with new entry. */ struct mlx4_mr_cache *repl = &mr_ctrl->cache[mr_ctrl->head]; /* Binary-search MR translation table. */ lkey = mr_btree_lookup(&mr_ctrl->cache_bh, &bh_idx, addr); /* Update top-half cache. */ if (likely(lkey != UINT32_MAX)) { *repl = (*mr_ctrl->cache_bh.table)[bh_idx]; } else { /* * If missed in local lookup table, search in the global cache * and local cache_bh[] will be updated inside if possible. * Top-half cache entry will also be updated. */ lkey = mlx4_mr_lookup_dev(dev, mr_ctrl, repl, addr); if (unlikely(lkey == UINT32_MAX)) return UINT32_MAX; } /* Update the most recently used entry. */ mr_ctrl->mru = mr_ctrl->head; /* Point to the next victim, the oldest. */ mr_ctrl->head = (mr_ctrl->head + 1) % MLX4_MR_CACHE_N; return lkey; } /** * Bottom-half of LKey search on Rx. * * @param rxq * Pointer to Rx queue structure. * @param addr * Search key. * * @return * Searched LKey on success, UINT32_MAX on no match. */ uint32_t mlx4_rx_addr2mr_bh(struct rxq *rxq, uintptr_t addr) { struct mlx4_mr_ctrl *mr_ctrl = &rxq->mr_ctrl; struct mlx4_priv *priv = rxq->priv; return mlx4_mr_addr2mr_bh(ETH_DEV(priv), mr_ctrl, addr); } /** * Bottom-half of LKey search on Tx. * * @param txq * Pointer to Tx queue structure. * @param addr * Search key. * * @return * Searched LKey on success, UINT32_MAX on no match. */ static uint32_t mlx4_tx_addr2mr_bh(struct txq *txq, uintptr_t addr) { struct mlx4_mr_ctrl *mr_ctrl = &txq->mr_ctrl; struct mlx4_priv *priv = txq->priv; return mlx4_mr_addr2mr_bh(ETH_DEV(priv), mr_ctrl, addr); } /** * Bottom-half of LKey search on Tx. If it can't be searched in the memseg * list, register the mempool of the mbuf as externally allocated memory. * * @param txq * Pointer to Tx queue structure. * @param mb * Pointer to mbuf. * * @return * Searched LKey on success, UINT32_MAX on no match. */ uint32_t mlx4_tx_mb2mr_bh(struct txq *txq, struct rte_mbuf *mb) { uintptr_t addr = (uintptr_t)mb->buf_addr; uint32_t lkey; lkey = mlx4_tx_addr2mr_bh(txq, addr); if (lkey == UINT32_MAX && rte_errno == ENXIO) { /* Mempool may have externally allocated memory. */ return mlx4_tx_update_ext_mp(txq, addr, mlx4_mb2mp(mb)); } return lkey; } /** * Flush all of the local cache entries. * * @param mr_ctrl * Pointer to per-queue MR control structure. */ void mlx4_mr_flush_local_cache(struct mlx4_mr_ctrl *mr_ctrl) { /* Reset the most-recently-used index. */ mr_ctrl->mru = 0; /* Reset the linear search array. */ mr_ctrl->head = 0; memset(mr_ctrl->cache, 0, sizeof(mr_ctrl->cache)); /* Reset the B-tree table. */ mr_ctrl->cache_bh.len = 1; mr_ctrl->cache_bh.overflow = 0; /* Update the generation number. */ mr_ctrl->cur_gen = *mr_ctrl->dev_gen_ptr; DEBUG("mr_ctrl(%p): flushed, cur_gen=%d", (void *)mr_ctrl, mr_ctrl->cur_gen); } /** * Called during rte_mempool_mem_iter() by mlx4_mr_update_ext_mp(). * * Externally allocated chunk is registered and a MR is created for the chunk. * The MR object is added to the global list. If memseg list of a MR object * (mr->msl) is null, the MR object can be regarded as externally allocated * memory. * * Once external memory is registered, it should be static. If the memory is * freed and the virtual address range has different physical memory mapped * again, it may cause crash on device due to the wrong translation entry. PMD * can't track the free event of the external memory for now. */ static void mlx4_mr_update_ext_mp_cb(struct rte_mempool *mp, void *opaque, struct rte_mempool_memhdr *memhdr, unsigned mem_idx __rte_unused) { struct mr_update_mp_data *data = opaque; struct rte_eth_dev *dev = data->dev; struct mlx4_priv *priv = dev->data->dev_private; struct mlx4_mr_ctrl *mr_ctrl = data->mr_ctrl; struct mlx4_mr *mr = NULL; uintptr_t addr = (uintptr_t)memhdr->addr; size_t len = memhdr->len; struct mlx4_mr_cache entry; uint32_t lkey; assert(rte_eal_process_type() == RTE_PROC_PRIMARY); /* If already registered, it should return. */ rte_rwlock_read_lock(&priv->mr.rwlock); lkey = mr_lookup_dev(dev, &entry, addr); rte_rwlock_read_unlock(&priv->mr.rwlock); if (lkey != UINT32_MAX) return; mr = rte_zmalloc_socket(NULL, RTE_ALIGN_CEIL(sizeof(*mr), RTE_CACHE_LINE_SIZE), RTE_CACHE_LINE_SIZE, mp->socket_id); if (mr == NULL) { WARN("port %u unable to allocate memory for a new MR of" " mempool (%s).", dev->data->port_id, mp->name); data->ret = -1; return; } DEBUG("port %u register MR for chunk #%d of mempool (%s)", dev->data->port_id, mem_idx, mp->name); mr->ibv_mr = mlx4_glue->reg_mr(priv->pd, (void *)addr, len, IBV_ACCESS_LOCAL_WRITE); if (mr->ibv_mr == NULL) { WARN("port %u fail to create a verbs MR for address (%p)", dev->data->port_id, (void *)addr); rte_free(mr); data->ret = -1; return; } mr->msl = NULL; /* Mark it is external memory. */ mr->ms_bmp = NULL; mr->ms_n = 1; mr->ms_bmp_n = 1; rte_rwlock_write_lock(&priv->mr.rwlock); LIST_INSERT_HEAD(&priv->mr.mr_list, mr, mr); DEBUG("port %u MR CREATED (%p) for external memory %p:\n" " [0x%" PRIxPTR ", 0x%" PRIxPTR ")," " lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u", dev->data->port_id, (void *)mr, (void *)addr, addr, addr + len, rte_cpu_to_be_32(mr->ibv_mr->lkey), mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n); /* Insert to the global cache table. */ mr_insert_dev_cache(dev, mr); rte_rwlock_write_unlock(&priv->mr.rwlock); /* Insert to the local cache table */ mlx4_mr_addr2mr_bh(dev, mr_ctrl, addr); } /** * Register MR for entire memory chunks in a Mempool having externally allocated * memory and fill in local cache. * * @param dev * Pointer to Ethernet device. * @param mr_ctrl * Pointer to per-queue MR control structure. * @param mp * Pointer to registering Mempool. * * @return * 0 on success, -1 on failure. */ static uint32_t mlx4_mr_update_ext_mp(struct rte_eth_dev *dev, struct mlx4_mr_ctrl *mr_ctrl, struct rte_mempool *mp) { struct mr_update_mp_data data = { .dev = dev, .mr_ctrl = mr_ctrl, .ret = 0, }; rte_mempool_mem_iter(mp, mlx4_mr_update_ext_mp_cb, &data); return data.ret; } /** * Register MR entire memory chunks in a Mempool having externally allocated * memory and search LKey of the address to return. * * @param dev * Pointer to Ethernet device. * @param addr * Search key. * @param mp * Pointer to registering Mempool where addr belongs. * * @return * LKey for address on success, UINT32_MAX on failure. */ uint32_t mlx4_tx_update_ext_mp(struct txq *txq, uintptr_t addr, struct rte_mempool *mp) { struct mlx4_mr_ctrl *mr_ctrl = &txq->mr_ctrl; struct mlx4_priv *priv = txq->priv; if (rte_eal_process_type() != RTE_PROC_PRIMARY) { WARN("port %u using address (%p) from unregistered mempool" " having externally allocated memory" " in secondary process, please create mempool" " prior to rte_eth_dev_start()", PORT_ID(priv), (void *)addr); return UINT32_MAX; } mlx4_mr_update_ext_mp(ETH_DEV(priv), mr_ctrl, mp); return mlx4_tx_addr2mr_bh(txq, addr); } /* Called during rte_mempool_mem_iter() by mlx4_mr_update_mp(). */ static void mlx4_mr_update_mp_cb(struct rte_mempool *mp __rte_unused, void *opaque, struct rte_mempool_memhdr *memhdr, unsigned mem_idx __rte_unused) { struct mr_update_mp_data *data = opaque; uint32_t lkey; /* Stop iteration if failed in the previous walk. */ if (data->ret < 0) return; /* Register address of the chunk and update local caches. */ lkey = mlx4_mr_addr2mr_bh(data->dev, data->mr_ctrl, (uintptr_t)memhdr->addr); if (lkey == UINT32_MAX) data->ret = -1; } /** * Register entire memory chunks in a Mempool. * * @param dev * Pointer to Ethernet device. * @param mr_ctrl * Pointer to per-queue MR control structure. * @param mp * Pointer to registering Mempool. * * @return * 0 on success, -1 on failure. */ int mlx4_mr_update_mp(struct rte_eth_dev *dev, struct mlx4_mr_ctrl *mr_ctrl, struct rte_mempool *mp) { struct mr_update_mp_data data = { .dev = dev, .mr_ctrl = mr_ctrl, .ret = 0, }; rte_mempool_mem_iter(mp, mlx4_mr_update_mp_cb, &data); if (data.ret < 0 && rte_errno == ENXIO) { /* Mempool may have externally allocated memory. */ return mlx4_mr_update_ext_mp(dev, mr_ctrl, mp); } return data.ret; } #ifndef NDEBUG /** * Dump all the created MRs and the global cache entries. * * @param dev * Pointer to Ethernet device. */ void mlx4_mr_dump_dev(struct rte_eth_dev *dev) { struct mlx4_priv *priv = dev->data->dev_private; struct mlx4_mr *mr; int mr_n = 0; int chunk_n = 0; rte_rwlock_read_lock(&priv->mr.rwlock); /* Iterate all the existing MRs. */ LIST_FOREACH(mr, &priv->mr.mr_list, mr) { unsigned int n; DEBUG("port %u MR[%u], LKey = 0x%x, ms_n = %u, ms_bmp_n = %u", dev->data->port_id, mr_n++, rte_cpu_to_be_32(mr->ibv_mr->lkey), mr->ms_n, mr->ms_bmp_n); if (mr->ms_n == 0) continue; for (n = 0; n < mr->ms_bmp_n; ) { struct mlx4_mr_cache ret; memset(&ret, 0, sizeof(ret)); n = mr_find_next_chunk(mr, &ret, n); if (!ret.end) break; DEBUG(" chunk[%u], [0x%" PRIxPTR ", 0x%" PRIxPTR ")", chunk_n++, ret.start, ret.end); } } DEBUG("port %u dumping global cache", dev->data->port_id); mlx4_mr_btree_dump(&priv->mr.cache); rte_rwlock_read_unlock(&priv->mr.rwlock); } #endif /** * Release all the created MRs and resources. Remove device from memory callback * list. * * @param dev * Pointer to Ethernet device. */ void mlx4_mr_release(struct rte_eth_dev *dev) { struct mlx4_priv *priv = dev->data->dev_private; struct mlx4_mr *mr_next; /* Remove from memory callback device list. */ rte_rwlock_write_lock(&mlx4_shared_data->mem_event_rwlock); LIST_REMOVE(priv, mem_event_cb); rte_rwlock_write_unlock(&mlx4_shared_data->mem_event_rwlock); #ifndef NDEBUG mlx4_mr_dump_dev(dev); #endif rte_rwlock_write_lock(&priv->mr.rwlock); /* Detach from MR list and move to free list. */ mr_next = LIST_FIRST(&priv->mr.mr_list); while (mr_next != NULL) { struct mlx4_mr *mr = mr_next; mr_next = LIST_NEXT(mr, mr); LIST_REMOVE(mr, mr); LIST_INSERT_HEAD(&priv->mr.mr_free_list, mr, mr); } LIST_INIT(&priv->mr.mr_list); /* Free global cache. */ mlx4_mr_btree_free(&priv->mr.cache); rte_rwlock_write_unlock(&priv->mr.rwlock); /* Free all remaining MRs. */ mlx4_mr_garbage_collect(dev); }