/*- * BSD LICENSE * * Copyright(c) 2010-2013 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include #include #include #include #include #include #include #include #include #include "rte_sched.h" #include "rte_bitmap.h" #include "rte_sched_common.h" #include "rte_approx.h" #ifdef __INTEL_COMPILER #pragma warning(disable:2259) /* conversion may lose significant bits */ #endif #ifndef RTE_SCHED_DEBUG #define RTE_SCHED_DEBUG 0 #endif #ifndef RTE_SCHED_OPTIMIZATIONS #define RTE_SCHED_OPTIMIZATIONS 0 #endif #if RTE_SCHED_OPTIMIZATIONS #include #endif #define RTE_SCHED_ENQUEUE 1 #define RTE_SCHED_TS 1 #if RTE_SCHED_TS == 0 /* Infinite credits. Traffic shaping disabled. */ #define RTE_SCHED_TS_CREDITS_UPDATE 0 #define RTE_SCHED_TS_CREDITS_CHECK 0 #else /* Real Credits. Full traffic shaping implemented. */ #define RTE_SCHED_TS_CREDITS_UPDATE 1 #define RTE_SCHED_TS_CREDITS_CHECK 1 #endif #ifndef RTE_SCHED_TB_RATE_CONFIG_ERR #define RTE_SCHED_TB_RATE_CONFIG_ERR (1e-7) #endif #define RTE_SCHED_WRR 1 #ifndef RTE_SCHED_WRR_SHIFT #define RTE_SCHED_WRR_SHIFT 3 #endif #ifndef RTE_SCHED_PORT_N_GRINDERS #define RTE_SCHED_PORT_N_GRINDERS 8 #endif #if (RTE_SCHED_PORT_N_GRINDERS == 0) || (RTE_SCHED_PORT_N_GRINDERS & (RTE_SCHED_PORT_N_GRINDERS - 1)) #error Number of grinders must be non-zero and a power of 2 #endif #if (RTE_SCHED_OPTIMIZATIONS && (RTE_SCHED_PORT_N_GRINDERS != 8)) #error Number of grinders must be 8 when RTE_SCHED_OPTIMIZATIONS is set #endif #define RTE_SCHED_GRINDER_PCACHE_SIZE (64 / RTE_SCHED_QUEUES_PER_PIPE) #define RTE_SCHED_PIPE_INVALID UINT32_MAX #define RTE_SCHED_BMP_POS_INVALID UINT32_MAX struct rte_sched_subport { /* Token bucket (TB) */ uint64_t tb_time; /* time of last update */ uint32_t tb_period; uint32_t tb_credits_per_period; uint32_t tb_size; uint32_t tb_credits; /* Traffic classes (TCs) */ uint64_t tc_time; /* time of next update */ uint32_t tc_credits_per_period[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE]; uint32_t tc_credits[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE]; uint32_t tc_period; /* TC oversubscription */ uint32_t tc_ov_period; uint64_t tc_ov_time; uint32_t tc_ov_credits[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE]; uint8_t tc_ov_period_id; uint8_t tc_ov[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE]; uint32_t tc_ov_n[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE]; double tc_ov_rate[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE]; /* Statistics */ struct rte_sched_subport_stats stats; }; struct rte_sched_pipe_profile { /* Token bucket (TB) */ uint32_t tb_period; uint32_t tb_credits_per_period; uint32_t tb_size; /* Pipe traffic classes */ uint32_t tc_period; uint32_t tc_credits_per_period[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE]; uint8_t tc_ov_weight[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE]; /* Pipe queues */ uint8_t wrr_cost[RTE_SCHED_QUEUES_PER_PIPE]; }; struct rte_sched_pipe { /* Token bucket (TB) */ uint64_t tb_time; /* time of last update */ uint32_t tb_credits; /* Pipe profile and flags */ uint32_t profile; /* Traffic classes (TCs) */ uint64_t tc_time; /* time of next update */ uint32_t tc_credits[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE]; /* Weighted Round Robin (WRR) */ uint8_t wrr_tokens[RTE_SCHED_QUEUES_PER_PIPE]; /* TC oversubscription */ #ifdef RTE_SCHED_SUBPORT_TC_OV uint32_t tc_ov_credits[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE]; uint8_t tc_ov_period_id; #else uint64_t reserved; #endif } __rte_cache_aligned; struct rte_sched_queue { uint16_t qw; uint16_t qr; }; struct rte_sched_queue_extra { struct rte_sched_queue_stats stats; #ifdef RTE_SCHED_RED struct rte_red red; #endif }; enum grinder_state { e_GRINDER_PREFETCH_PIPE = 0, e_GRINDER_PREFETCH_TC_QUEUE_ARRAYS, e_GRINDER_PREFETCH_MBUF, e_GRINDER_READ_MBUF }; struct rte_sched_grinder { /* Pipe cache */ uint16_t pcache_qmask[RTE_SCHED_GRINDER_PCACHE_SIZE]; uint32_t pcache_qindex[RTE_SCHED_GRINDER_PCACHE_SIZE]; uint32_t pcache_w; uint32_t pcache_r; /* Current pipe */ enum grinder_state state; uint32_t productive; uint32_t pindex; struct rte_sched_subport *subport; struct rte_sched_pipe *pipe; struct rte_sched_pipe_profile *pipe_params; /* TC cache */ uint8_t tccache_qmask[4]; uint32_t tccache_qindex[4]; uint32_t tccache_w; uint32_t tccache_r; /* Current TC */ uint32_t tc_index; struct rte_sched_queue *queue[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE]; struct rte_mbuf **qbase[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE]; uint32_t qindex[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE]; uint16_t qsize; uint32_t qmask; uint32_t qpos; struct rte_mbuf *pkt; double ov_coef; uint16_t wrr_tokens[RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS]; uint16_t wrr_mask[RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS]; uint8_t wrr_cost[RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS]; }; struct rte_sched_port { /* User parameters */ uint32_t n_subports_per_port; uint32_t n_pipes_per_subport; uint32_t rate; uint32_t frame_overhead; uint16_t qsize[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE]; uint32_t n_pipe_profiles; #ifdef RTE_SCHED_RED struct rte_red_config red_config[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE][e_RTE_METER_COLORS]; #endif /* Timing */ uint64_t time_cpu_cycles; /* Current CPU time measured in CPU cyles */ uint64_t time_cpu_bytes; /* Current CPU time measured in bytes */ uint64_t time; /* Current NIC TX time measured in bytes */ double cycles_per_byte; /* CPU cycles per byte */ /* Scheduling loop detection */ uint32_t pipe_loop; uint32_t pipe_exhaustion; /* Bitmap */ struct rte_bitmap bmp; uint32_t grinder_base_bmp_pos[RTE_SCHED_PORT_N_GRINDERS] __rte_aligned_16; /* Grinders */ struct rte_sched_grinder grinder[RTE_SCHED_PORT_N_GRINDERS]; uint32_t busy_grinders; struct rte_mbuf **pkts_out; uint32_t n_pkts_out; /* Queue base calculation */ uint32_t qsize_add[RTE_SCHED_QUEUES_PER_PIPE]; uint32_t qsize_sum; /* Large data structures */ struct rte_sched_subport *subport; struct rte_sched_pipe *pipe; struct rte_sched_queue *queue; struct rte_sched_queue_extra *queue_extra; struct rte_sched_pipe_profile *pipe_profiles; uint8_t *bmp_array; struct rte_mbuf **queue_array; uint8_t memory[0] __rte_cache_aligned; } __rte_cache_aligned; enum rte_sched_port_array { e_RTE_SCHED_PORT_ARRAY_SUBPORT = 0, e_RTE_SCHED_PORT_ARRAY_PIPE, e_RTE_SCHED_PORT_ARRAY_QUEUE, e_RTE_SCHED_PORT_ARRAY_QUEUE_EXTRA, e_RTE_SCHED_PORT_ARRAY_PIPE_PROFILES, e_RTE_SCHED_PORT_ARRAY_BMP_ARRAY, e_RTE_SCHED_PORT_ARRAY_QUEUE_ARRAY, e_RTE_SCHED_PORT_ARRAY_TOTAL, }; #ifdef RTE_SCHED_COLLECT_STATS static inline uint32_t rte_sched_port_queues_per_subport(struct rte_sched_port *port) { return RTE_SCHED_QUEUES_PER_PIPE * port->n_pipes_per_subport; } #endif static inline uint32_t rte_sched_port_queues_per_port(struct rte_sched_port *port) { return RTE_SCHED_QUEUES_PER_PIPE * port->n_pipes_per_subport * port->n_subports_per_port; } static int rte_sched_port_check_params(struct rte_sched_port_params *params) { uint32_t i, j; if (params == NULL) { return -1; } /* name */ if (params->name == NULL) { return -2; } /* socket */ if ((params->socket < 0) || (params->socket >= RTE_MAX_NUMA_NODES)) { return -3; } /* rate */ if (params->rate == 0) { return -4; } /* n_subports_per_port: non-zero, power of 2 */ if ((params->n_subports_per_port == 0) || (!rte_is_power_of_2(params->n_subports_per_port))) { return -5; } /* n_pipes_per_subport: non-zero, power of 2 */ if ((params->n_pipes_per_subport == 0) || (!rte_is_power_of_2(params->n_pipes_per_subport))) { return -6; } /* qsize: non-zero, power of 2, no bigger than 32K (due to 16-bit read/write pointers) */ for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i ++) { uint16_t qsize = params->qsize[i]; if ((qsize == 0) || (!rte_is_power_of_2(qsize))) { return -7; } } /* pipe_profiles and n_pipe_profiles */ if ((params->pipe_profiles == NULL) || (params->n_pipe_profiles == 0) || (params->n_pipe_profiles > RTE_SCHED_PIPE_PROFILES_PER_PORT)) { return -8; } for (i = 0; i < params->n_pipe_profiles; i ++) { struct rte_sched_pipe_params *p = params->pipe_profiles + i; /* TB rate: non-zero, not greater than port rate */ if ((p->tb_rate == 0) || (p->tb_rate > params->rate)) { return -9; } /* TB size: non-zero */ if (p->tb_size == 0) { return -10; } /* TC rate: non-zero, less than pipe rate */ for (j = 0; j < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; j ++) { if ((p->tc_rate[j] == 0) || (p->tc_rate[j] > p->tb_rate)) { return -11; } } /* TC period: non-zero */ if (p->tc_period == 0) { return -12; } #ifdef RTE_SCHED_SUBPORT_TC_OV /* TC oversubscription weights: non-zero */ for (j = 0; j < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; j ++) { if (p->tc_ov_weight[j] == 0) { return -13; } } #endif /* Queue WRR weights: non-zero */ for (j = 0; j < RTE_SCHED_QUEUES_PER_PIPE; j ++) { if (p->wrr_weights[j] == 0) { return -14; } } } return 0; } static uint32_t rte_sched_port_get_array_base(struct rte_sched_port_params *params, enum rte_sched_port_array array) { uint32_t n_subports_per_port = params->n_subports_per_port; uint32_t n_pipes_per_subport = params->n_pipes_per_subport; uint32_t n_pipes_per_port = n_pipes_per_subport * n_subports_per_port; uint32_t n_queues_per_port = RTE_SCHED_QUEUES_PER_PIPE * n_pipes_per_subport * n_subports_per_port; uint32_t size_subport = n_subports_per_port * sizeof(struct rte_sched_subport); uint32_t size_pipe = n_pipes_per_port * sizeof(struct rte_sched_pipe); uint32_t size_queue = n_queues_per_port * sizeof(struct rte_sched_queue); uint32_t size_queue_extra = n_queues_per_port * sizeof(struct rte_sched_queue_extra); uint32_t size_pipe_profiles = RTE_SCHED_PIPE_PROFILES_PER_PORT * sizeof(struct rte_sched_pipe_profile); uint32_t size_bmp_array = n_queues_per_port / 8; uint32_t size_per_pipe_queue_array, size_queue_array; uint32_t base, i; size_per_pipe_queue_array = 0; for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i ++) { size_per_pipe_queue_array += RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS * params->qsize[i] * sizeof(struct rte_mbuf *); } size_queue_array = n_pipes_per_port * size_per_pipe_queue_array; base = 0; if (array == e_RTE_SCHED_PORT_ARRAY_SUBPORT) return base; base += CACHE_LINE_ROUNDUP(size_subport); if (array == e_RTE_SCHED_PORT_ARRAY_PIPE) return base; base += CACHE_LINE_ROUNDUP(size_pipe); if (array == e_RTE_SCHED_PORT_ARRAY_QUEUE) return base; base += CACHE_LINE_ROUNDUP(size_queue); if (array == e_RTE_SCHED_PORT_ARRAY_QUEUE_EXTRA) return base; base += CACHE_LINE_ROUNDUP(size_queue_extra); if (array == e_RTE_SCHED_PORT_ARRAY_PIPE_PROFILES) return base; base += CACHE_LINE_ROUNDUP(size_pipe_profiles); if (array == e_RTE_SCHED_PORT_ARRAY_BMP_ARRAY) return base; base += CACHE_LINE_ROUNDUP(size_bmp_array); if (array == e_RTE_SCHED_PORT_ARRAY_QUEUE_ARRAY) return base; base += CACHE_LINE_ROUNDUP(size_queue_array); return base; } uint32_t rte_sched_port_get_memory_footprint(struct rte_sched_port_params *params) { uint32_t size0, size1; int status; status = rte_sched_port_check_params(params); if (status != 0) { RTE_LOG(INFO, SCHED, "Port scheduler params check failed (%d)\n", status); return 0; } size0 = sizeof(struct rte_sched_port); size1 = rte_sched_port_get_array_base(params, e_RTE_SCHED_PORT_ARRAY_TOTAL); return (size0 + size1); } static void rte_sched_port_config_qsize(struct rte_sched_port *port) { /* TC 0 */ port->qsize_add[0] = 0; port->qsize_add[1] = port->qsize_add[0] + port->qsize[0]; port->qsize_add[2] = port->qsize_add[1] + port->qsize[0]; port->qsize_add[3] = port->qsize_add[2] + port->qsize[0]; /* TC 1 */ port->qsize_add[4] = port->qsize_add[3] + port->qsize[0]; port->qsize_add[5] = port->qsize_add[4] + port->qsize[1]; port->qsize_add[6] = port->qsize_add[5] + port->qsize[1]; port->qsize_add[7] = port->qsize_add[6] + port->qsize[1]; /* TC 2 */ port->qsize_add[8] = port->qsize_add[7] + port->qsize[1]; port->qsize_add[9] = port->qsize_add[8] + port->qsize[2]; port->qsize_add[10] = port->qsize_add[9] + port->qsize[2]; port->qsize_add[11] = port->qsize_add[10] + port->qsize[2]; /* TC 3 */ port->qsize_add[12] = port->qsize_add[11] + port->qsize[2]; port->qsize_add[13] = port->qsize_add[12] + port->qsize[3]; port->qsize_add[14] = port->qsize_add[13] + port->qsize[3]; port->qsize_add[15] = port->qsize_add[14] + port->qsize[3]; port->qsize_sum = port->qsize_add[15] + port->qsize[3]; } static void rte_sched_port_log_pipe_profile(struct rte_sched_port *port, uint32_t i) { struct rte_sched_pipe_profile *p = port->pipe_profiles + i; RTE_LOG(INFO, SCHED, "Low level config for pipe profile %u:\n" "\tToken bucket: period = %u, credits per period = %u, size = %u\n" "\tTraffic classes: period = %u, credits per period = [%u, %u, %u, %u], ov weights = [%hhu, %hhu, %hhu, %hhu]\n" "\tWRR cost: [%hhu, %hhu, %hhu, %hhu], [%hhu, %hhu, %hhu, %hhu], [%hhu, %hhu, %hhu, %hhu], [%hhu, %hhu, %hhu, %hhu]\n", i, /* Token bucket */ p->tb_period, p->tb_credits_per_period, p->tb_size, /* Traffic classes */ p->tc_period, p->tc_credits_per_period[0], p->tc_credits_per_period[1], p->tc_credits_per_period[2], p->tc_credits_per_period[3], p->tc_ov_weight[0], p->tc_ov_weight[1], p->tc_ov_weight[2], p->tc_ov_weight[3], /* WRR */ p->wrr_cost[ 0], p->wrr_cost[ 1], p->wrr_cost[ 2], p->wrr_cost[ 3], p->wrr_cost[ 4], p->wrr_cost[ 5], p->wrr_cost[ 6], p->wrr_cost[ 7], p->wrr_cost[ 8], p->wrr_cost[ 9], p->wrr_cost[10], p->wrr_cost[11], p->wrr_cost[12], p->wrr_cost[13], p->wrr_cost[14], p->wrr_cost[15]); } static inline uint64_t rte_sched_time_ms_to_bytes(uint32_t time_ms, uint32_t rate) { uint64_t time = time_ms; time = (time * rate) / 1000; return time; } static void rte_sched_port_config_pipe_profile_table(struct rte_sched_port *port, struct rte_sched_port_params *params) { uint32_t i, j; for (i = 0; i < port->n_pipe_profiles; i ++) { struct rte_sched_pipe_params *src = params->pipe_profiles + i; struct rte_sched_pipe_profile *dst = port->pipe_profiles + i; /* Token Bucket */ if (src->tb_rate == params->rate) { dst->tb_credits_per_period = 1; dst->tb_period = 1; } else { double tb_rate = ((double) src->tb_rate) / ((double) params->rate); double d = RTE_SCHED_TB_RATE_CONFIG_ERR; rte_approx(tb_rate, d, &dst->tb_credits_per_period, &dst->tb_period); } dst->tb_size = src->tb_size; /* Traffic Classes */ dst->tc_period = (uint32_t) rte_sched_time_ms_to_bytes(src->tc_period, params->rate); for (j = 0; j < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; j ++) { dst->tc_credits_per_period[j] = (uint32_t) rte_sched_time_ms_to_bytes(src->tc_period, src->tc_rate[j]); } #ifdef RTE_SCHED_SUBPORT_TC_OV for (j = 0; j < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; j ++) { dst->tc_ov_weight[j] = src->tc_ov_weight[j]; } #endif /* WRR */ for (j = 0; j < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; j ++) { uint32_t wrr_cost[RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS]; uint32_t lcd, lcd1, lcd2; uint32_t qindex; qindex = j * RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS; wrr_cost[0] = src->wrr_weights[qindex]; wrr_cost[1] = src->wrr_weights[qindex + 1]; wrr_cost[2] = src->wrr_weights[qindex + 2]; wrr_cost[3] = src->wrr_weights[qindex + 3]; lcd1 = rte_get_lcd(wrr_cost[0], wrr_cost[1]); lcd2 = rte_get_lcd(wrr_cost[2], wrr_cost[3]); lcd = rte_get_lcd(lcd1, lcd2); wrr_cost[0] = lcd / wrr_cost[0]; wrr_cost[1] = lcd / wrr_cost[1]; wrr_cost[2] = lcd / wrr_cost[2]; wrr_cost[3] = lcd / wrr_cost[3]; dst->wrr_cost[qindex] = (uint8_t) wrr_cost[0]; dst->wrr_cost[qindex + 1] = (uint8_t) wrr_cost[1]; dst->wrr_cost[qindex + 2] = (uint8_t) wrr_cost[2]; dst->wrr_cost[qindex + 3] = (uint8_t) wrr_cost[3]; } rte_sched_port_log_pipe_profile(port, i); } } struct rte_sched_port * rte_sched_port_config(struct rte_sched_port_params *params) { struct rte_sched_port *port = NULL; const struct rte_memzone *mz = NULL; uint32_t mem_size, i; /* Check user parameters. Determine the amount of memory to allocate */ mem_size = rte_sched_port_get_memory_footprint(params); if (mem_size == 0) { return NULL; } /* Allocate memory to store the data structures */ mz = rte_memzone_lookup(params->name); if (mz) { /* Use existing memzone, provided that its size is big enough */ if (mz->len < mem_size) { return NULL; } } else { /* Create new memzone */ mz = rte_memzone_reserve(params->name, mem_size, params->socket, 0); if (mz == NULL) { return NULL; } } memset(mz->addr, 0, mem_size); port = (struct rte_sched_port *) mz->addr; /* User parameters */ port->n_subports_per_port = params->n_subports_per_port; port->n_pipes_per_subport = params->n_pipes_per_subport; port->rate = params->rate; port->frame_overhead = params->frame_overhead; memcpy(port->qsize, params->qsize, sizeof(params->qsize)); port->n_pipe_profiles = params->n_pipe_profiles; #ifdef RTE_SCHED_RED for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++) { uint32_t j; for (j = 0; j < e_RTE_METER_COLORS; j++) { if (rte_red_config_init(&port->red_config[i][j], params->red_params[i][j].wq_log2, params->red_params[i][j].min_th, params->red_params[i][j].max_th, params->red_params[i][j].maxp_inv) != 0) { return NULL; } } } #endif /* Timing */ port->time_cpu_cycles = rte_get_tsc_cycles(); port->time_cpu_bytes = 0; port->time = 0; port->cycles_per_byte = ((double) rte_get_tsc_hz()) / ((double) params->rate); /* Scheduling loop detection */ port->pipe_loop = RTE_SCHED_PIPE_INVALID; port->pipe_exhaustion = 0; /* Grinders */ port->busy_grinders = 0; port->pkts_out = NULL; port->n_pkts_out = 0; /* Queue base calculation */ rte_sched_port_config_qsize(port); /* Large data structures */ port->subport = (struct rte_sched_subport *) (port->memory + rte_sched_port_get_array_base(params, e_RTE_SCHED_PORT_ARRAY_SUBPORT)); port->pipe = (struct rte_sched_pipe *) (port->memory + rte_sched_port_get_array_base(params, e_RTE_SCHED_PORT_ARRAY_PIPE)); port->queue = (struct rte_sched_queue *) (port->memory + rte_sched_port_get_array_base(params, e_RTE_SCHED_PORT_ARRAY_QUEUE)); port->queue_extra = (struct rte_sched_queue_extra *) (port->memory + rte_sched_port_get_array_base(params, e_RTE_SCHED_PORT_ARRAY_QUEUE_EXTRA)); port->pipe_profiles = (struct rte_sched_pipe_profile *) (port->memory + rte_sched_port_get_array_base(params, e_RTE_SCHED_PORT_ARRAY_PIPE_PROFILES)); port->bmp_array = port->memory + rte_sched_port_get_array_base(params, e_RTE_SCHED_PORT_ARRAY_BMP_ARRAY); port->queue_array = (struct rte_mbuf **) (port->memory + rte_sched_port_get_array_base(params, e_RTE_SCHED_PORT_ARRAY_QUEUE_ARRAY)); /* Pipe profile table */ rte_sched_port_config_pipe_profile_table(port, params); /* Bitmap */ if (rte_bitmap_init(&port->bmp, port->bmp_array, rte_sched_port_queues_per_port(port)) != 0) { RTE_LOG(INFO, SCHED, "Bitmap init error\n"); return NULL; } for (i = 0; i < RTE_SCHED_PORT_N_GRINDERS; i ++) { port->grinder_base_bmp_pos[i] = RTE_SCHED_PIPE_INVALID; } return port; } void rte_sched_port_free(struct rte_sched_port *port) { /* Check user parameters */ if (port == NULL){ return; } rte_bitmap_free(&port->bmp); return; } static void rte_sched_port_log_subport_config(struct rte_sched_port *port, uint32_t i) { struct rte_sched_subport *s = port->subport + i; RTE_LOG(INFO, SCHED, "Low level config for subport %u:\n" "\tToken bucket: period = %u, credits per period = %u, size = %u\n" "\tTraffic classes: period = %u, credits per period = [%u, %u, %u, %u], ov period = %u\n", i, /* Token bucket */ s->tb_period, s->tb_credits_per_period, s->tb_size, /* Traffic classes */ s->tc_period, s->tc_credits_per_period[0], s->tc_credits_per_period[1], s->tc_credits_per_period[2], s->tc_credits_per_period[3], s->tc_ov_period); } int rte_sched_subport_config(struct rte_sched_port *port, uint32_t subport_id, struct rte_sched_subport_params *params) { struct rte_sched_subport *s; uint32_t i; /* Check user parameters */ if ((port == NULL) || (subport_id >= port->n_subports_per_port) || (params == NULL)) { return -1; } if ((params->tb_rate == 0) || (params->tb_rate > port->rate)) { return -2; } if (params->tb_size == 0) { return -3; } for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i ++) { if ((params->tc_rate[i] == 0) || (params->tc_rate[i] > params->tb_rate)) { return -4; } } if (params->tc_period == 0) { return -5; } #ifdef RTE_SCHED_SUBPORT_TC_OV if ((params->tc_ov_period == 0) || (params->tc_ov_period > params->tc_period)) { return -6; } #endif s = port->subport + subport_id; /* Token Bucket (TB) */ if (params->tb_rate == port->rate) { s->tb_credits_per_period = 1; s->tb_period = 1; } else { double tb_rate = ((double) params->tb_rate) / ((double) port->rate); double d = RTE_SCHED_TB_RATE_CONFIG_ERR; rte_approx(tb_rate, d, &s->tb_credits_per_period, &s->tb_period); } s->tb_size = params->tb_size; s->tb_time = port->time; s->tb_credits = s->tb_size / 2; /* Traffic Classes (TCs) */ s->tc_period = (uint32_t) rte_sched_time_ms_to_bytes(params->tc_period, port->rate); for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i ++) { s->tc_credits_per_period[i] = (uint32_t) rte_sched_time_ms_to_bytes(params->tc_period, params->tc_rate[i]); } s->tc_time = port->time + s->tc_period; for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i ++) { s->tc_credits[i] = s->tc_credits_per_period[i]; } #ifdef RTE_SCHED_SUBPORT_TC_OV /* TC oversubscription */ s->tc_ov_period = (uint32_t) rte_sched_time_ms_to_bytes(params->tc_ov_period, port->rate); s->tc_ov_time = port->time + s->tc_ov_period; s->tc_ov_period_id = 0; for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i ++) { s->tc_ov[i] = 0; s->tc_ov_n[i] = 0; s->tc_ov_rate[i] = 0; s->tc_ov_credits[i] = 0; } #endif rte_sched_port_log_subport_config(port, subport_id); return 0; } int rte_sched_pipe_config(struct rte_sched_port *port, uint32_t subport_id, uint32_t pipe_id, int32_t pipe_profile) { struct rte_sched_subport *s; struct rte_sched_pipe *p; struct rte_sched_pipe_profile *params; uint32_t deactivate, profile, i; /* Check user parameters */ profile = (uint32_t) pipe_profile; deactivate = (pipe_profile < 0); if ((port == NULL) || (subport_id >= port->n_subports_per_port) || (pipe_id >= port->n_pipes_per_subport) || ((!deactivate) && (profile >= port->n_pipe_profiles))) { return -1; } /* Check that subport configuration is valid */ s = port->subport + subport_id; if (s->tb_period == 0) { return -2; } p = port->pipe + (subport_id * port->n_pipes_per_subport + pipe_id); /* Handle the case when pipe already has a valid configuration */ if (p->tb_time) { params = port->pipe_profiles + p->profile; #ifdef RTE_SCHED_SUBPORT_TC_OV /* Unplug pipe from its subport */ for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i ++) { s->tc_ov_n[i] -= params->tc_ov_weight[i]; s->tc_ov_rate[i] -= ((double) params->tc_credits_per_period[i]) / ((double) params->tc_period); s->tc_ov[i] = s->tc_ov_rate[i] > (((double) s->tc_credits_per_period[i]) / ((double) s->tc_period)); } #endif /* Reset the pipe */ memset(p, 0, sizeof(struct rte_sched_pipe)); } if (deactivate) { return 0; } /* Apply the new pipe configuration */ p->profile = profile; params = port->pipe_profiles + p->profile; /* Token Bucket (TB) */ p->tb_time = port->time; p->tb_credits = params->tb_size / 2; /* Traffic Classes (TCs) */ p->tc_time = port->time + params->tc_period; for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i ++) { p->tc_credits[i] = params->tc_credits_per_period[i]; } #ifdef RTE_SCHED_SUBPORT_TC_OV /* Subport TC oversubscription */ for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i ++) { s->tc_ov_n[i] += params->tc_ov_weight[i]; s->tc_ov_rate[i] += ((double) params->tc_credits_per_period[i]) / ((double) params->tc_period); s->tc_ov[i] = s->tc_ov_rate[i] > (((double) s->tc_credits_per_period[i]) / ((double) s->tc_period)); } p->tc_ov_period_id = s->tc_ov_period_id; for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i ++) { p->tc_ov_credits[i] = 0; } #endif return 0; } int rte_sched_subport_read_stats(struct rte_sched_port *port, uint32_t subport_id, struct rte_sched_subport_stats *stats, uint32_t *tc_ov) { struct rte_sched_subport *s; uint32_t mask, i; /* Check user parameters */ if ((port == NULL) || (subport_id >= port->n_subports_per_port) || (stats == NULL) || (tc_ov == NULL)) { return -1; } s = port->subport + subport_id; /* Copy subport stats and clear */ memcpy(stats, &s->stats, sizeof(struct rte_sched_subport_stats)); memset(&s->stats, 0, sizeof(struct rte_sched_subport_stats)); /* Subport TC ovesubscription status */ mask = 0; for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i ++) { mask |= ((uint32_t) s->tc_ov[i]) << i; } *tc_ov = mask; return 0; } int rte_sched_queue_read_stats(struct rte_sched_port *port, uint32_t queue_id, struct rte_sched_queue_stats *stats, uint16_t *qlen) { struct rte_sched_queue *q; struct rte_sched_queue_extra *qe; /* Check user parameters */ if ((port == NULL) || (queue_id >= rte_sched_port_queues_per_port(port)) || (stats == NULL) || (qlen == NULL)) { return -1; } q = port->queue + queue_id; qe = port->queue_extra + queue_id; /* Copy queue stats and clear */ memcpy(stats, &qe->stats, sizeof(struct rte_sched_queue_stats)); memset(&qe->stats, 0, sizeof(struct rte_sched_queue_stats)); /* Queue length */ *qlen = q->qw - q->qr; return 0; } static inline uint32_t rte_sched_port_qindex(struct rte_sched_port *port, uint32_t subport, uint32_t pipe, uint32_t traffic_class, uint32_t queue) { uint32_t result; result = subport * port->n_pipes_per_subport + pipe; result = result * RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE + traffic_class; result = result * RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS + queue; return result; } static inline struct rte_mbuf ** rte_sched_port_qbase(struct rte_sched_port *port, uint32_t qindex) { uint32_t pindex = qindex >> 4; uint32_t qpos = qindex & 0xF; return (port->queue_array + pindex * port->qsize_sum + port->qsize_add[qpos]); } static inline uint16_t rte_sched_port_qsize(struct rte_sched_port *port, uint32_t qindex) { uint32_t tc = (qindex >> 2) & 0x3; return port->qsize[tc]; } #if RTE_SCHED_DEBUG static inline int rte_sched_port_queue_is_empty(struct rte_sched_port *port, uint32_t qindex) { struct rte_sched_queue *queue = port->queue + qindex; return (queue->qr == queue->qw); } static inline int rte_sched_port_queue_is_full(struct rte_sched_port *port, uint32_t qindex) { struct rte_sched_queue *queue = port->queue + qindex; uint16_t qsize = rte_sched_port_qsize(port, qindex); uint16_t qlen = q->qw - q->qr; return (qlen >= qsize); } #endif /* RTE_SCHED_DEBUG */ #ifdef RTE_SCHED_COLLECT_STATS static inline void rte_sched_port_update_subport_stats(struct rte_sched_port *port, uint32_t qindex, struct rte_mbuf *pkt) { struct rte_sched_subport *s = port->subport + (qindex / rte_sched_port_queues_per_subport(port)); uint32_t tc_index = (qindex >> 2) & 0x3; uint32_t pkt_len = pkt->pkt.pkt_len; s->stats.n_pkts_tc[tc_index] += 1; s->stats.n_bytes_tc[tc_index] += pkt_len; } static inline void rte_sched_port_update_subport_stats_on_drop(struct rte_sched_port *port, uint32_t qindex, struct rte_mbuf *pkt) { struct rte_sched_subport *s = port->subport + (qindex / rte_sched_port_queues_per_subport(port)); uint32_t tc_index = (qindex >> 2) & 0x3; uint32_t pkt_len = pkt->pkt.pkt_len; s->stats.n_pkts_tc_dropped[tc_index] += 1; s->stats.n_bytes_tc_dropped[tc_index] += pkt_len; } static inline void rte_sched_port_update_queue_stats(struct rte_sched_port *port, uint32_t qindex, struct rte_mbuf *pkt) { struct rte_sched_queue_extra *qe = port->queue_extra + qindex; uint32_t pkt_len = pkt->pkt.pkt_len; qe->stats.n_pkts += 1; qe->stats.n_bytes += pkt_len; } static inline void rte_sched_port_update_queue_stats_on_drop(struct rte_sched_port *port, uint32_t qindex, struct rte_mbuf *pkt) { struct rte_sched_queue_extra *qe = port->queue_extra + qindex; uint32_t pkt_len = pkt->pkt.pkt_len; qe->stats.n_pkts_dropped += 1; qe->stats.n_bytes_dropped += pkt_len; } #endif /* RTE_SCHED_COLLECT_STATS */ #ifdef RTE_SCHED_RED static inline int rte_sched_port_red_drop(struct rte_sched_port *port, struct rte_mbuf *pkt, uint32_t qindex, uint16_t qlen) { struct rte_sched_queue_extra *qe; struct rte_red_config *red_cfg; struct rte_red *red; uint32_t tc_index; enum rte_meter_color color; tc_index = (qindex >> 2) & 0x3; color = rte_sched_port_pkt_read_color(pkt); red_cfg = &port->red_config[tc_index][color]; qe = port->queue_extra + qindex; red = &qe->red; return rte_red_enqueue(red_cfg, red, qlen, port->time); } static inline void rte_sched_port_set_queue_empty_timestamp(struct rte_sched_port *port, uint32_t qindex) { struct rte_sched_queue_extra *qe; struct rte_red *red; qe = port->queue_extra + qindex; red = &qe->red; rte_red_mark_queue_empty(red, port->time); } #else #define rte_sched_port_red_drop(port, pkt, qindex, qlen) 0 #define rte_sched_port_set_queue_empty_timestamp(port, qindex) #endif /* RTE_SCHED_RED */ #if RTE_SCHED_DEBUG static inline int debug_pipe_is_empty(struct rte_sched_port *port, uint32_t pindex) { uint32_t qindex, i; qindex = pindex << 4; for (i = 0; i < 16; i ++){ uint32_t queue_empty = rte_sched_port_queue_is_empty(port, qindex + i); uint32_t bmp_bit_clear = (rte_bitmap_get(&port->bmp, qindex + i) == 0); if (queue_empty != bmp_bit_clear){ rte_panic("Queue status mismatch for queue %u of pipe %u\n", i, pindex); } if (!queue_empty){ return 0; } } return 1; } static inline void debug_check_queue_slab(struct rte_sched_port *port, uint32_t bmp_pos, uint64_t bmp_slab) { uint64_t mask; uint32_t i, panic; if (bmp_slab == 0){ rte_panic("Empty slab at position %u\n", bmp_pos); } panic = 0; for (i = 0, mask = 1; i < 64; i ++, mask <<= 1) { if (mask & bmp_slab){ if (rte_sched_port_queue_is_empty(port, bmp_pos + i)) { printf("Queue %u (slab offset %u) is empty\n", bmp_pos + i, i); panic = 1; } } } if (panic){ rte_panic("Empty queues in slab 0x%" PRIx64 "starting at position %u\n", bmp_slab, bmp_pos); } } #endif /* RTE_SCHED_DEBUG */ static inline uint32_t rte_sched_port_enqueue_qptrs_prefetch0(struct rte_sched_port *port, struct rte_mbuf *pkt) { struct rte_sched_queue *q; #ifdef RTE_SCHED_COLLECT_STATS struct rte_sched_queue_extra *qe; #endif uint32_t subport, pipe, traffic_class, queue, qindex; rte_sched_port_pkt_read_tree_path(pkt, &subport, &pipe, &traffic_class, &queue); qindex = rte_sched_port_qindex(port, subport, pipe, traffic_class, queue); q = port->queue + qindex; rte_prefetch0(q); #ifdef RTE_SCHED_COLLECT_STATS qe = port->queue_extra + qindex; rte_prefetch0(qe); #endif return qindex; } static inline void rte_sched_port_enqueue_qwa_prefetch0(struct rte_sched_port *port, uint32_t qindex, struct rte_mbuf **qbase) { struct rte_sched_queue *q; struct rte_mbuf **q_qw; uint16_t qsize; q = port->queue + qindex; qsize = rte_sched_port_qsize(port, qindex); q_qw = qbase + (q->qw & (qsize - 1)); rte_prefetch0(q_qw); rte_bitmap_prefetch0(&port->bmp, qindex); } static inline int rte_sched_port_enqueue_qwa(struct rte_sched_port *port, uint32_t qindex, struct rte_mbuf **qbase, struct rte_mbuf *pkt) { struct rte_sched_queue *q; uint16_t qsize; uint16_t qlen; q = port->queue + qindex; qsize = rte_sched_port_qsize(port, qindex); qlen = q->qw - q->qr; /* Drop the packet (and update drop stats) when queue is full */ if (unlikely(rte_sched_port_red_drop(port, pkt, qindex, qlen) || (qlen >= qsize))) { rte_pktmbuf_free(pkt); #ifdef RTE_SCHED_COLLECT_STATS rte_sched_port_update_subport_stats_on_drop(port, qindex, pkt); rte_sched_port_update_queue_stats_on_drop(port, qindex, pkt); #endif return 0; } /* Enqueue packet */ qbase[q->qw & (qsize - 1)] = pkt; q->qw ++; /* Activate queue in the port bitmap */ rte_bitmap_set(&port->bmp, qindex); /* Statistics */ #ifdef RTE_SCHED_COLLECT_STATS rte_sched_port_update_subport_stats(port, qindex, pkt); rte_sched_port_update_queue_stats(port, qindex, pkt); #endif return 1; } #if RTE_SCHED_ENQUEUE == 0 int rte_sched_port_enqueue(struct rte_sched_port *port, struct rte_mbuf **pkts, uint32_t n_pkts) { uint32_t result, i; result = 0; for (i = 0; i < n_pkts; i ++) { struct rte_mbuf *pkt; struct rte_mbuf **q_base; uint32_t subport, pipe, traffic_class, queue, qindex; pkt = pkts[i]; rte_sched_port_pkt_read_tree_path(pkt, &subport, &pipe, &traffic_class, &queue); qindex = rte_sched_port_qindex(port, subport, pipe, traffic_class, queue); q_base = rte_sched_port_qbase(port, qindex); result += rte_sched_port_enqueue_qwa(port, qindex, q_base, pkt); } return result; } #else /* The enqueue function implements a 4-level pipeline with each stage processing * two different packets. The purpose of using a pipeline is to hide the latency * of prefetching the data structures. The naming convention is presented in the * diagram below: * * p00 _______ p10 _______ p20 _______ p30 _______ * ----->| |----->| |----->| |----->| |-----> * | 0 | | 1 | | 2 | | 3 | * ----->|_______|----->|_______|----->|_______|----->|_______|-----> * p01 p11 p21 p31 * ***/ int rte_sched_port_enqueue(struct rte_sched_port *port, struct rte_mbuf **pkts, uint32_t n_pkts) { struct rte_mbuf *pkt00, *pkt01, *pkt10, *pkt11, *pkt20, *pkt21, *pkt30, *pkt31, *pkt_last; struct rte_mbuf **q00_base, **q01_base, **q10_base, **q11_base, **q20_base, **q21_base, **q30_base, **q31_base, **q_last_base; uint32_t q00, q01, q10, q11, q20, q21, q30, q31, q_last; uint32_t r00, r01, r10, r11, r20, r21, r30, r31, r_last; uint32_t result, i; result = 0; /* Less then 6 input packets available, which is not enough to feed the pipeline */ if (unlikely(n_pkts < 6)) { struct rte_mbuf **q_base[5]; uint32_t q[5]; /* Prefetch the mbuf structure of each packet */ for (i = 0; i < n_pkts; i ++) { rte_prefetch0(pkts[i]); } /* Prefetch the queue structure for each queue */ for (i = 0; i < n_pkts; i ++) { q[i] = rte_sched_port_enqueue_qptrs_prefetch0(port, pkts[i]); } /* Prefetch the write pointer location of each queue */ for (i = 0; i < n_pkts; i ++) { q_base[i] = rte_sched_port_qbase(port, q[i]); rte_sched_port_enqueue_qwa_prefetch0(port, q[i], q_base[i]); } /* Write each packet to its queue */ for (i = 0; i < n_pkts; i ++) { result += rte_sched_port_enqueue_qwa(port, q[i], q_base[i], pkts[i]); } return result; } /* Feed the first 3 stages of the pipeline (6 packets needed) */ pkt20 = pkts[0]; pkt21 = pkts[1]; rte_prefetch0(pkt20); rte_prefetch0(pkt21); pkt10 = pkts[2]; pkt11 = pkts[3]; rte_prefetch0(pkt10); rte_prefetch0(pkt11); q20 = rte_sched_port_enqueue_qptrs_prefetch0(port, pkt20); q21 = rte_sched_port_enqueue_qptrs_prefetch0(port, pkt21); pkt00 = pkts[4]; pkt01 = pkts[5]; rte_prefetch0(pkt00); rte_prefetch0(pkt01); q10 = rte_sched_port_enqueue_qptrs_prefetch0(port, pkt10); q11 = rte_sched_port_enqueue_qptrs_prefetch0(port, pkt11); q20_base = rte_sched_port_qbase(port, q20); q21_base = rte_sched_port_qbase(port, q21); rte_sched_port_enqueue_qwa_prefetch0(port, q20, q20_base); rte_sched_port_enqueue_qwa_prefetch0(port, q21, q21_base); /* Run the pipeline */ for (i = 6; i < (n_pkts & (~1)); i += 2) { /* Propagate stage inputs */ pkt30 = pkt20; pkt31 = pkt21; pkt20 = pkt10; pkt21 = pkt11; pkt10 = pkt00; pkt11 = pkt01; q30 = q20; q31 = q21; q20 = q10; q21 = q11; q30_base = q20_base; q31_base = q21_base; /* Stage 0: Get packets in */ pkt00 = pkts[i]; pkt01 = pkts[i + 1]; rte_prefetch0(pkt00); rte_prefetch0(pkt01); /* Stage 1: Prefetch queue structure storing queue pointers */ q10 = rte_sched_port_enqueue_qptrs_prefetch0(port, pkt10); q11 = rte_sched_port_enqueue_qptrs_prefetch0(port, pkt11); /* Stage 2: Prefetch queue write location */ q20_base = rte_sched_port_qbase(port, q20); q21_base = rte_sched_port_qbase(port, q21); rte_sched_port_enqueue_qwa_prefetch0(port, q20, q20_base); rte_sched_port_enqueue_qwa_prefetch0(port, q21, q21_base); /* Stage 3: Write packet to queue and activate queue */ r30 = rte_sched_port_enqueue_qwa(port, q30, q30_base, pkt30); r31 = rte_sched_port_enqueue_qwa(port, q31, q31_base, pkt31); result += r30 + r31; } /* Drain the pipeline (exactly 6 packets). Handle the last packet in the case of an odd number of input packets. */ pkt_last = pkts[n_pkts - 1]; rte_prefetch0(pkt_last); q00 = rte_sched_port_enqueue_qptrs_prefetch0(port, pkt00); q01 = rte_sched_port_enqueue_qptrs_prefetch0(port, pkt01); q10_base = rte_sched_port_qbase(port, q10); q11_base = rte_sched_port_qbase(port, q11); rte_sched_port_enqueue_qwa_prefetch0(port, q10, q10_base); rte_sched_port_enqueue_qwa_prefetch0(port, q11, q11_base); r20 = rte_sched_port_enqueue_qwa(port, q20, q20_base, pkt20); r21 = rte_sched_port_enqueue_qwa(port, q21, q21_base, pkt21); result += r20 + r21; q_last = rte_sched_port_enqueue_qptrs_prefetch0(port, pkt_last); q00_base = rte_sched_port_qbase(port, q00); q01_base = rte_sched_port_qbase(port, q01); rte_sched_port_enqueue_qwa_prefetch0(port, q00, q00_base); rte_sched_port_enqueue_qwa_prefetch0(port, q01, q01_base); r10 = rte_sched_port_enqueue_qwa(port, q10, q10_base, pkt10); r11 = rte_sched_port_enqueue_qwa(port, q11, q11_base, pkt11); result += r10 + r11; q_last_base = rte_sched_port_qbase(port, q_last); rte_sched_port_enqueue_qwa_prefetch0(port, q_last, q_last_base); r00 = rte_sched_port_enqueue_qwa(port, q00, q00_base, pkt00); r01 = rte_sched_port_enqueue_qwa(port, q01, q01_base, pkt01); result += r00 + r01; if (n_pkts & 1) { r_last = rte_sched_port_enqueue_qwa(port, q_last, q_last_base, pkt_last); result += r_last; } return result; } #endif /* RTE_SCHED_ENQUEUE */ #if RTE_SCHED_TS_CREDITS_UPDATE == 0 #define grinder_credits_update(port, pos) #elif !defined(RTE_SCHED_SUBPORT_TC_OV) static inline void grinder_credits_update(struct rte_sched_port *port, uint32_t pos) { struct rte_sched_grinder *grinder = port->grinder + pos; struct rte_sched_subport *subport = grinder->subport; struct rte_sched_pipe *pipe = grinder->pipe; struct rte_sched_pipe_profile *params = grinder->pipe_params; uint64_t n_periods; /* Subport TB */ n_periods = (port->time - subport->tb_time) / subport->tb_period; subport->tb_credits += n_periods * subport->tb_credits_per_period; subport->tb_credits = rte_sched_min_val_2_u32(subport->tb_credits, subport->tb_size); subport->tb_time += n_periods * subport->tb_period; /* Pipe TB */ n_periods = (port->time - pipe->tb_time) / params->tb_period; pipe->tb_credits += n_periods * params->tb_credits_per_period; pipe->tb_credits = rte_sched_min_val_2_u32(pipe->tb_credits, params->tb_size); pipe->tb_time += n_periods * params->tb_period; /* Subport TCs */ if (unlikely(port->time >= subport->tc_time)) { subport->tc_credits[0] = subport->tc_credits_per_period[0]; subport->tc_credits[1] = subport->tc_credits_per_period[1]; subport->tc_credits[2] = subport->tc_credits_per_period[2]; subport->tc_credits[3] = subport->tc_credits_per_period[3]; subport->tc_time = port->time + subport->tc_period; } /* Pipe TCs */ if (unlikely(port->time >= pipe->tc_time)) { pipe->tc_credits[0] = params->tc_credits_per_period[0]; pipe->tc_credits[1] = params->tc_credits_per_period[1]; pipe->tc_credits[2] = params->tc_credits_per_period[2]; pipe->tc_credits[3] = params->tc_credits_per_period[3]; pipe->tc_time = port->time + params->tc_period; } } #else static inline void grinder_credits_update(struct rte_sched_port *port, uint32_t pos) { struct rte_sched_grinder *grinder = port->grinder + pos; struct rte_sched_subport *subport = grinder->subport; struct rte_sched_pipe *pipe = grinder->pipe; struct rte_sched_pipe_profile *params = grinder->pipe_params; uint64_t n_periods; /* Subport TB */ n_periods = (port->time - subport->tb_time) / subport->tb_period; subport->tb_credits += n_periods * subport->tb_credits_per_period; subport->tb_credits = rte_sched_min_val_2_u32(subport->tb_credits, subport->tb_size); subport->tb_time += n_periods * subport->tb_period; /* Pipe TB */ n_periods = (port->time - pipe->tb_time) / params->tb_period; pipe->tb_credits += n_periods * params->tb_credits_per_period; pipe->tb_credits = rte_sched_min_val_2_u32(pipe->tb_credits, params->tb_size); pipe->tb_time += n_periods * params->tb_period; /* Subport TCs */ if (unlikely(port->time >= subport->tc_ov_time)) { uint64_t n_ov_periods; if (unlikely(port->time >= subport->tc_time)) { subport->tc_credits[0] = subport->tc_credits_per_period[0]; subport->tc_credits[1] = subport->tc_credits_per_period[1]; subport->tc_credits[2] = subport->tc_credits_per_period[2]; subport->tc_credits[3] = subport->tc_credits_per_period[3]; subport->tc_time = port->time + subport->tc_period; } n_ov_periods = (subport->tc_time - port->time + subport->tc_ov_period - 1) / subport->tc_ov_period; subport->tc_ov_credits[0] = subport->tc_credits[0] / (n_ov_periods * subport->tc_ov_n[0]); subport->tc_ov_credits[1] = subport->tc_credits[1] / (n_ov_periods * subport->tc_ov_n[1]); subport->tc_ov_credits[2] = subport->tc_credits[2] / (n_ov_periods * subport->tc_ov_n[2]); subport->tc_ov_credits[3] = subport->tc_credits[3] / (n_ov_periods * subport->tc_ov_n[3]); subport->tc_ov_time = port->time + subport->tc_ov_period; subport->tc_ov_period_id ++; } /* Pipe TCs */ if (unlikely(port->time >= pipe->tc_time)) { pipe->tc_credits[0] = params->tc_credits_per_period[0]; pipe->tc_credits[1] = params->tc_credits_per_period[1]; pipe->tc_credits[2] = params->tc_credits_per_period[2]; pipe->tc_credits[3] = params->tc_credits_per_period[3]; pipe->tc_time = port->time + params->tc_period; } if (unlikely(pipe->tc_ov_period_id != subport->tc_ov_period_id)) { uint32_t pipe_tc_ov_credits[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE]; uint32_t tc_mask[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE]; uint32_t mask[] = {UINT32_MAX, 0}; tc_mask[0] = mask[subport->tc_ov[0]]; tc_mask[1] = mask[subport->tc_ov[1]]; tc_mask[2] = mask[subport->tc_ov[2]]; tc_mask[3] = mask[subport->tc_ov[3]]; pipe_tc_ov_credits[0] = subport->tc_ov_credits[0] * params->tc_ov_weight[0]; pipe_tc_ov_credits[1] = subport->tc_ov_credits[1] * params->tc_ov_weight[1]; pipe_tc_ov_credits[2] = subport->tc_ov_credits[2] * params->tc_ov_weight[2]; pipe_tc_ov_credits[3] = subport->tc_ov_credits[3] * params->tc_ov_weight[3]; pipe->tc_ov_credits[0] = (tc_mask[0] & pipe->tc_credits[0]) | ((~ tc_mask[0]) & pipe_tc_ov_credits[0]); pipe->tc_ov_credits[1] = (tc_mask[1] & pipe->tc_credits[1]) | ((~ tc_mask[1]) & pipe_tc_ov_credits[1]); pipe->tc_ov_credits[2] = (tc_mask[2] & pipe->tc_credits[2]) | ((~ tc_mask[2]) & pipe_tc_ov_credits[2]); pipe->tc_ov_credits[3] = (tc_mask[3] & pipe->tc_credits[3]) | ((~ tc_mask[3]) & pipe_tc_ov_credits[3]); pipe->tc_ov_period_id = subport->tc_ov_period_id; } } #endif /* RTE_SCHED_TS_CREDITS_UPDATE, RTE_SCHED_SUBPORT_TC_OV */ #ifndef RTE_SCHED_SUBPORT_TC_OV static inline int grinder_credits_check(struct rte_sched_port *port, uint32_t pos) { struct rte_sched_grinder *grinder = port->grinder + pos; struct rte_sched_subport *subport = grinder->subport; struct rte_sched_pipe *pipe = grinder->pipe; struct rte_mbuf *pkt = grinder->pkt; uint32_t tc_index = grinder->tc_index; uint32_t pkt_len = pkt->pkt.pkt_len + port->frame_overhead; int enough_credits; /* Check queue credits */ enough_credits = (pkt_len <= subport->tb_credits) && (pkt_len <= subport->tc_credits[tc_index]) && (pkt_len <= pipe->tb_credits) && (pkt_len <= pipe->tc_credits[tc_index]); if (!enough_credits) { return 0; } /* Update port credits */ subport->tb_credits -= pkt_len; subport->tc_credits[tc_index] -= pkt_len; pipe->tb_credits -= pkt_len; pipe->tc_credits[tc_index] -= pkt_len; return 1; } #else static inline int grinder_credits_check(struct rte_sched_port *port, uint32_t pos) { struct rte_sched_grinder *grinder = port->grinder + pos; struct rte_sched_subport *subport = grinder->subport; struct rte_sched_pipe *pipe = grinder->pipe; struct rte_mbuf *pkt = grinder->pkt; uint32_t tc_index = grinder->tc_index; uint32_t pkt_len = pkt->pkt.pkt_len + port->frame_overhead; uint32_t subport_tb_credits = subport->tb_credits; uint32_t subport_tc_credits = subport->tc_credits[tc_index]; uint32_t pipe_tb_credits = pipe->tb_credits; uint32_t pipe_tc_credits = pipe->tc_credits[tc_index]; uint32_t pipe_tc_ov_credits = pipe->tc_ov_credits[tc_index]; int enough_credits; /* Check pipe and subport credits */ enough_credits = (pkt_len <= subport_tb_credits) && (pkt_len <= subport_tc_credits) && (pkt_len <= pipe_tb_credits) && (pkt_len <= pipe_tc_credits) && (pkt_len <= pipe_tc_ov_credits); if (!enough_credits) { return 0; } /* Update pipe and subport credits */ subport->tb_credits -= pkt_len; subport->tc_credits[tc_index] -= pkt_len; pipe->tb_credits -= pkt_len; pipe->tc_credits[tc_index] -= pkt_len; pipe->tc_ov_credits[tc_index] -= pkt_len; return 1; } #endif /* RTE_SCHED_SUBPORT_TC_OV */ static inline int grinder_schedule(struct rte_sched_port *port, uint32_t pos) { struct rte_sched_grinder *grinder = port->grinder + pos; struct rte_sched_queue *queue = grinder->queue[grinder->qpos]; struct rte_mbuf *pkt = grinder->pkt; uint32_t pkt_len = pkt->pkt.pkt_len + port->frame_overhead; #if RTE_SCHED_TS_CREDITS_CHECK if (!grinder_credits_check(port, pos)) { return 0; } #endif /* Advance port time */ port->time += pkt_len; /* Send packet */ port->pkts_out[port->n_pkts_out ++] = pkt; queue->qr ++; grinder->wrr_tokens[grinder->qpos] += pkt_len * grinder->wrr_cost[grinder->qpos]; if (queue->qr == queue->qw) { uint32_t qindex = grinder->qindex[grinder->qpos]; rte_bitmap_clear(&port->bmp, qindex); grinder->qmask &= ~(1 << grinder->qpos); grinder->wrr_mask[grinder->qpos] = 0; rte_sched_port_set_queue_empty_timestamp(port, qindex); } /* Reset pipe loop detection */ port->pipe_loop = RTE_SCHED_PIPE_INVALID; grinder->productive = 1; return 1; } #if RTE_SCHED_OPTIMIZATIONS static inline int grinder_pipe_exists(struct rte_sched_port *port, uint32_t base_pipe) { __m128i index = _mm_set1_epi32 (base_pipe); __m128i pipes = _mm_load_si128((__m128i *)port->grinder_base_bmp_pos); __m128i res = _mm_cmpeq_epi32(pipes, index); pipes = _mm_load_si128((__m128i *)(port->grinder_base_bmp_pos + 4)); pipes = _mm_cmpeq_epi32(pipes, index); res = _mm_or_si128(res, pipes); if (_mm_testz_si128(res, res)) return 0; return 1; } #else static inline int grinder_pipe_exists(struct rte_sched_port *port, uint32_t base_pipe) { uint32_t i; for (i = 0; i < RTE_SCHED_PORT_N_GRINDERS; i ++) { if (port->grinder_base_bmp_pos[i] == base_pipe) { return 1; } } return 0; } #endif /* RTE_SCHED_OPTIMIZATIONS */ static inline void grinder_pcache_populate(struct rte_sched_port *port, uint32_t pos, uint32_t bmp_pos, uint64_t bmp_slab) { struct rte_sched_grinder *grinder = port->grinder + pos; uint16_t w[4]; grinder->pcache_w = 0; grinder->pcache_r = 0; w[0] = (uint16_t) bmp_slab; w[1] = (uint16_t) (bmp_slab >> 16); w[2] = (uint16_t) (bmp_slab >> 32); w[3] = (uint16_t) (bmp_slab >> 48); grinder->pcache_qmask[grinder->pcache_w] = w[0]; grinder->pcache_qindex[grinder->pcache_w] = bmp_pos; grinder->pcache_w += (w[0] != 0); grinder->pcache_qmask[grinder->pcache_w] = w[1]; grinder->pcache_qindex[grinder->pcache_w] = bmp_pos + 16; grinder->pcache_w += (w[1] != 0); grinder->pcache_qmask[grinder->pcache_w] = w[2]; grinder->pcache_qindex[grinder->pcache_w] = bmp_pos + 32; grinder->pcache_w += (w[2] != 0); grinder->pcache_qmask[grinder->pcache_w] = w[3]; grinder->pcache_qindex[grinder->pcache_w] = bmp_pos + 48; grinder->pcache_w += (w[3] != 0); } static inline void grinder_tccache_populate(struct rte_sched_port *port, uint32_t pos, uint32_t qindex, uint16_t qmask) { struct rte_sched_grinder *grinder = port->grinder + pos; uint8_t b[4]; grinder->tccache_w = 0; grinder->tccache_r = 0; b[0] = (uint8_t) (qmask & 0xF); b[1] = (uint8_t) ((qmask >> 4) & 0xF); b[2] = (uint8_t) ((qmask >> 8) & 0xF); b[3] = (uint8_t) ((qmask >> 12) & 0xF); grinder->tccache_qmask[grinder->tccache_w] = b[0]; grinder->tccache_qindex[grinder->tccache_w] = qindex; grinder->tccache_w += (b[0] != 0); grinder->tccache_qmask[grinder->tccache_w] = b[1]; grinder->tccache_qindex[grinder->tccache_w] = qindex + 4; grinder->tccache_w += (b[1] != 0); grinder->tccache_qmask[grinder->tccache_w] = b[2]; grinder->tccache_qindex[grinder->tccache_w] = qindex + 8; grinder->tccache_w += (b[2] != 0); grinder->tccache_qmask[grinder->tccache_w] = b[3]; grinder->tccache_qindex[grinder->tccache_w] = qindex + 12; grinder->tccache_w += (b[3] != 0); } static inline int grinder_next_tc(struct rte_sched_port *port, uint32_t pos) { struct rte_sched_grinder *grinder = port->grinder + pos; struct rte_mbuf **qbase; uint32_t qindex; uint16_t qsize; if (grinder->tccache_r == grinder->tccache_w) { return 0; } qindex = grinder->tccache_qindex[grinder->tccache_r]; qbase = rte_sched_port_qbase(port, qindex); qsize = rte_sched_port_qsize(port, qindex); grinder->tc_index = (qindex >> 2) & 0x3; grinder->qmask = grinder->tccache_qmask[grinder->tccache_r]; grinder->qsize = qsize; grinder->qindex[0] = qindex; grinder->qindex[1] = qindex + 1; grinder->qindex[2] = qindex + 2; grinder->qindex[3] = qindex + 3; grinder->queue[0] = port->queue + qindex; grinder->queue[1] = port->queue + qindex + 1; grinder->queue[2] = port->queue + qindex + 2; grinder->queue[3] = port->queue + qindex + 3; grinder->qbase[0] = qbase; grinder->qbase[1] = qbase + qsize; grinder->qbase[2] = qbase + 2 * qsize; grinder->qbase[3] = qbase + 3 * qsize; grinder->tccache_r ++; return 1; } static inline int grinder_next_pipe(struct rte_sched_port *port, uint32_t pos) { struct rte_sched_grinder *grinder = port->grinder + pos; uint32_t pipe_qindex; uint16_t pipe_qmask; if (grinder->pcache_r < grinder->pcache_w) { pipe_qmask = grinder->pcache_qmask[grinder->pcache_r]; pipe_qindex = grinder->pcache_qindex[grinder->pcache_r]; grinder->pcache_r ++; } else { uint64_t bmp_slab = 0; uint32_t bmp_pos = 0; /* Get another non-empty pipe group */ if (unlikely(rte_bitmap_scan(&port->bmp, &bmp_pos, &bmp_slab) <= 0)) { return 0; } #if RTE_SCHED_DEBUG debug_check_queue_slab(port, bmp_pos, bmp_slab); #endif /* Return if pipe group already in one of the other grinders */ port->grinder_base_bmp_pos[pos] = RTE_SCHED_BMP_POS_INVALID; if (unlikely(grinder_pipe_exists(port, bmp_pos))) { return 0; } port->grinder_base_bmp_pos[pos] = bmp_pos; /* Install new pipe group into grinder's pipe cache */ grinder_pcache_populate(port, pos, bmp_pos, bmp_slab); pipe_qmask = grinder->pcache_qmask[0]; pipe_qindex = grinder->pcache_qindex[0]; grinder->pcache_r = 1; } /* Install new pipe in the grinder */ grinder->pindex = pipe_qindex >> 4; grinder->subport = port->subport + (grinder->pindex / port->n_pipes_per_subport); grinder->pipe = port->pipe + grinder->pindex; grinder->pipe_params = NULL; /* to be set after the pipe structure is prefetched */ grinder->productive = 0; grinder_tccache_populate(port, pos, pipe_qindex, pipe_qmask); grinder_next_tc(port, pos); /* Check for pipe exhaustion */ if (grinder->pindex == port->pipe_loop) { port->pipe_exhaustion = 1; port->pipe_loop = RTE_SCHED_PIPE_INVALID; } return 1; } #if RTE_SCHED_WRR == 0 #define grinder_wrr_load(a,b) #define grinder_wrr_store(a,b) static inline void grinder_wrr(struct rte_sched_port *port, uint32_t pos) { struct rte_sched_grinder *grinder = port->grinder + pos; uint64_t slab = grinder->qmask; if (rte_bsf64(slab, &grinder->qpos) == 0) { rte_panic("grinder wrr\n"); } } #elif RTE_SCHED_WRR == 1 static inline void grinder_wrr_load(struct rte_sched_port *port, uint32_t pos) { struct rte_sched_grinder *grinder = port->grinder + pos; struct rte_sched_pipe *pipe = grinder->pipe; struct rte_sched_pipe_profile *pipe_params = grinder->pipe_params; uint32_t tc_index = grinder->tc_index; uint32_t qmask = grinder->qmask; uint32_t qindex; qindex = tc_index * 4; grinder->wrr_tokens[0] = ((uint16_t) pipe->wrr_tokens[qindex]) << RTE_SCHED_WRR_SHIFT; grinder->wrr_tokens[1] = ((uint16_t) pipe->wrr_tokens[qindex + 1]) << RTE_SCHED_WRR_SHIFT; grinder->wrr_tokens[2] = ((uint16_t) pipe->wrr_tokens[qindex + 2]) << RTE_SCHED_WRR_SHIFT; grinder->wrr_tokens[3] = ((uint16_t) pipe->wrr_tokens[qindex + 3]) << RTE_SCHED_WRR_SHIFT; grinder->wrr_mask[0] = (qmask & 0x1) * 0xFFFF; grinder->wrr_mask[1] = ((qmask >> 1) & 0x1) * 0xFFFF; grinder->wrr_mask[2] = ((qmask >> 2) & 0x1) * 0xFFFF; grinder->wrr_mask[3] = ((qmask >> 3) & 0x1) * 0xFFFF; grinder->wrr_cost[0] = pipe_params->wrr_cost[qindex]; grinder->wrr_cost[1] = pipe_params->wrr_cost[qindex + 1]; grinder->wrr_cost[2] = pipe_params->wrr_cost[qindex + 2]; grinder->wrr_cost[3] = pipe_params->wrr_cost[qindex + 3]; } static inline void grinder_wrr_store(struct rte_sched_port *port, uint32_t pos) { struct rte_sched_grinder *grinder = port->grinder + pos; struct rte_sched_pipe *pipe = grinder->pipe; uint32_t tc_index = grinder->tc_index; uint32_t qindex; qindex = tc_index * 4; pipe->wrr_tokens[qindex] = (uint8_t) ((grinder->wrr_tokens[0] & grinder->wrr_mask[0]) >> RTE_SCHED_WRR_SHIFT); pipe->wrr_tokens[qindex + 1] = (uint8_t) ((grinder->wrr_tokens[1] & grinder->wrr_mask[1]) >> RTE_SCHED_WRR_SHIFT); pipe->wrr_tokens[qindex + 2] = (uint8_t) ((grinder->wrr_tokens[2] & grinder->wrr_mask[2]) >> RTE_SCHED_WRR_SHIFT); pipe->wrr_tokens[qindex + 3] = (uint8_t) ((grinder->wrr_tokens[3] & grinder->wrr_mask[3]) >> RTE_SCHED_WRR_SHIFT); } static inline void grinder_wrr(struct rte_sched_port *port, uint32_t pos) { struct rte_sched_grinder *grinder = port->grinder + pos; uint16_t wrr_tokens_min; grinder->wrr_tokens[0] |= ~grinder->wrr_mask[0]; grinder->wrr_tokens[1] |= ~grinder->wrr_mask[1]; grinder->wrr_tokens[2] |= ~grinder->wrr_mask[2]; grinder->wrr_tokens[3] |= ~grinder->wrr_mask[3]; grinder->qpos = rte_min_pos_4_u16(grinder->wrr_tokens); wrr_tokens_min = grinder->wrr_tokens[grinder->qpos]; grinder->wrr_tokens[0] -= wrr_tokens_min; grinder->wrr_tokens[1] -= wrr_tokens_min; grinder->wrr_tokens[2] -= wrr_tokens_min; grinder->wrr_tokens[3] -= wrr_tokens_min; } #else #error Invalid value for RTE_SCHED_WRR #endif /* RTE_SCHED_WRR */ #define grinder_evict(port, pos) static inline void grinder_prefetch_pipe(struct rte_sched_port *port, uint32_t pos) { struct rte_sched_grinder *grinder = port->grinder + pos; rte_prefetch0(grinder->pipe); rte_prefetch0(grinder->queue[0]); } static inline void grinder_prefetch_tc_queue_arrays(struct rte_sched_port *port, uint32_t pos) { struct rte_sched_grinder *grinder = port->grinder + pos; uint16_t qsize, qr[4]; qsize = grinder->qsize; qr[0] = grinder->queue[0]->qr & (qsize - 1); qr[1] = grinder->queue[1]->qr & (qsize - 1); qr[2] = grinder->queue[2]->qr & (qsize - 1); qr[3] = grinder->queue[3]->qr & (qsize - 1); rte_prefetch0(grinder->qbase[0] + qr[0]); rte_prefetch0(grinder->qbase[1] + qr[1]); grinder_wrr_load(port, pos); grinder_wrr(port, pos); rte_prefetch0(grinder->qbase[2] + qr[2]); rte_prefetch0(grinder->qbase[3] + qr[3]); } static inline void grinder_prefetch_mbuf(struct rte_sched_port *port, uint32_t pos) { struct rte_sched_grinder *grinder = port->grinder + pos; uint32_t qpos = grinder->qpos; struct rte_mbuf **qbase = grinder->qbase[qpos]; uint16_t qsize = grinder->qsize; uint16_t qr = grinder->queue[qpos]->qr & (qsize - 1); grinder->pkt = qbase[qr]; rte_prefetch0(grinder->pkt); if (unlikely((qr & 0x7) == 7)) { uint16_t qr_next = (grinder->queue[qpos]->qr + 1) & (qsize - 1); rte_prefetch0(qbase + qr_next); } } static inline uint32_t grinder_handle(struct rte_sched_port *port, uint32_t pos) { struct rte_sched_grinder *grinder = port->grinder + pos; switch (grinder->state) { case e_GRINDER_PREFETCH_PIPE: { if (grinder_next_pipe(port, pos)) { grinder_prefetch_pipe(port, pos); port->busy_grinders ++; grinder->state = e_GRINDER_PREFETCH_TC_QUEUE_ARRAYS; return 0; } return 0; } case e_GRINDER_PREFETCH_TC_QUEUE_ARRAYS: { struct rte_sched_pipe *pipe = grinder->pipe; grinder->pipe_params = port->pipe_profiles + pipe->profile; grinder_prefetch_tc_queue_arrays(port, pos); grinder_credits_update(port, pos); grinder->state = e_GRINDER_PREFETCH_MBUF; return 0; } case e_GRINDER_PREFETCH_MBUF: { grinder_prefetch_mbuf(port, pos); grinder->state = e_GRINDER_READ_MBUF; return 0; } case e_GRINDER_READ_MBUF: { uint32_t result = 0; result = grinder_schedule(port, pos); /* Look for next packet within the same TC */ if (result && grinder->qmask) { grinder_wrr(port, pos); grinder_prefetch_mbuf(port, pos); return 1; } grinder_wrr_store(port, pos); /* Look for another active TC within same pipe */ if (grinder_next_tc(port, pos)) { grinder_prefetch_tc_queue_arrays(port, pos); grinder->state = e_GRINDER_PREFETCH_MBUF; return result; } if ((grinder->productive == 0) && (port->pipe_loop == RTE_SCHED_PIPE_INVALID)) { port->pipe_loop = grinder->pindex; } grinder_evict(port, pos); /* Look for another active pipe */ if (grinder_next_pipe(port, pos)) { grinder_prefetch_pipe(port, pos); grinder->state = e_GRINDER_PREFETCH_TC_QUEUE_ARRAYS; return result; } /* No active pipe found */ port->busy_grinders --; grinder->state = e_GRINDER_PREFETCH_PIPE; return result; } default: rte_panic("Algorithmic error (invalid state)\n"); return 0; } } static inline void rte_sched_port_time_resync(struct rte_sched_port *port) { uint64_t cycles = rte_get_tsc_cycles(); uint64_t cycles_diff = cycles - port->time_cpu_cycles; double bytes_diff = ((double) cycles_diff) / port->cycles_per_byte; /* Advance port time */ port->time_cpu_cycles = cycles; port->time_cpu_bytes += (uint64_t) bytes_diff; if (port->time < port->time_cpu_bytes) { port->time = port->time_cpu_bytes; } /* Reset pipe loop detection */ port->pipe_loop = RTE_SCHED_PIPE_INVALID; } static inline int rte_sched_port_exceptions(struct rte_sched_port *port) { int exceptions; /* Check if any exception flag is set */ exceptions = (port->busy_grinders == 0) || (port->pipe_exhaustion == 1); /* Clear exception flags */ port->pipe_exhaustion = 0; return exceptions; } int rte_sched_port_dequeue(struct rte_sched_port *port, struct rte_mbuf **pkts, uint32_t n_pkts) { uint32_t i, count; port->pkts_out = pkts; port->n_pkts_out = 0; rte_sched_port_time_resync(port); /* Take each queue in the grinder one step further */ for (i = 0, count = 0; ; i ++) { count += grinder_handle(port, i & (RTE_SCHED_PORT_N_GRINDERS - 1)); if ((count == n_pkts) || rte_sched_port_exceptions(port)) { break; } } return count; }