/*- * BSD LICENSE * * Copyright(c) 2010-2016 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* BSD LICENSE * * Copyright 2013-2014 6WIND S.A. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of 6WIND S.A. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "testpmd.h" static char *flowtype_to_str(uint16_t flow_type); static const struct { enum tx_pkt_split split; const char *name; } tx_split_name[] = { { .split = TX_PKT_SPLIT_OFF, .name = "off", }, { .split = TX_PKT_SPLIT_ON, .name = "on", }, { .split = TX_PKT_SPLIT_RND, .name = "rand", }, }; struct rss_type_info { char str[32]; uint64_t rss_type; }; static const struct rss_type_info rss_type_table[] = { { "ipv4", ETH_RSS_IPV4 }, { "ipv4-frag", ETH_RSS_FRAG_IPV4 }, { "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP }, { "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP }, { "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP }, { "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER }, { "ipv6", ETH_RSS_IPV6 }, { "ipv6-frag", ETH_RSS_FRAG_IPV6 }, { "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP }, { "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP }, { "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP }, { "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER }, { "l2-payload", ETH_RSS_L2_PAYLOAD }, { "ipv6-ex", ETH_RSS_IPV6_EX }, { "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX }, { "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX }, }; static void print_ethaddr(const char *name, struct ether_addr *eth_addr) { char buf[ETHER_ADDR_FMT_SIZE]; ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); printf("%s%s", name, buf); } void nic_stats_display(portid_t port_id) { static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS]; static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS]; static uint64_t prev_cycles[RTE_MAX_ETHPORTS]; uint64_t diff_pkts_rx, diff_pkts_tx, diff_cycles; uint64_t mpps_rx, mpps_tx; struct rte_eth_stats stats; struct rte_port *port = &ports[port_id]; uint8_t i; portid_t pid; static const char *nic_stats_border = "########################"; if (port_id_is_invalid(port_id, ENABLED_WARN)) { printf("Valid port range is [0"); FOREACH_PORT(pid, ports) printf(", %d", pid); printf("]\n"); return; } rte_eth_stats_get(port_id, &stats); printf("\n %s NIC statistics for port %-2d %s\n", nic_stats_border, port_id, nic_stats_border); if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) { printf(" RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes: " "%-"PRIu64"\n", stats.ipackets, stats.imissed, stats.ibytes); printf(" RX-errors: %-"PRIu64"\n", stats.ierrors); printf(" RX-nombuf: %-10"PRIu64"\n", stats.rx_nombuf); printf(" TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes: " "%-"PRIu64"\n", stats.opackets, stats.oerrors, stats.obytes); } else { printf(" RX-packets: %10"PRIu64" RX-errors: %10"PRIu64 " RX-bytes: %10"PRIu64"\n", stats.ipackets, stats.ierrors, stats.ibytes); printf(" RX-errors: %10"PRIu64"\n", stats.ierrors); printf(" RX-nombuf: %10"PRIu64"\n", stats.rx_nombuf); printf(" TX-packets: %10"PRIu64" TX-errors: %10"PRIu64 " TX-bytes: %10"PRIu64"\n", stats.opackets, stats.oerrors, stats.obytes); } if (port->rx_queue_stats_mapping_enabled) { printf("\n"); for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) { printf(" Stats reg %2d RX-packets: %10"PRIu64 " RX-errors: %10"PRIu64 " RX-bytes: %10"PRIu64"\n", i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]); } } if (port->tx_queue_stats_mapping_enabled) { printf("\n"); for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) { printf(" Stats reg %2d TX-packets: %10"PRIu64 " TX-bytes: %10"PRIu64"\n", i, stats.q_opackets[i], stats.q_obytes[i]); } } diff_cycles = prev_cycles[port_id]; prev_cycles[port_id] = rte_rdtsc(); if (diff_cycles > 0) diff_cycles = prev_cycles[port_id] - diff_cycles; diff_pkts_rx = stats.ipackets - prev_pkts_rx[port_id]; diff_pkts_tx = stats.opackets - prev_pkts_tx[port_id]; prev_pkts_rx[port_id] = stats.ipackets; prev_pkts_tx[port_id] = stats.opackets; mpps_rx = diff_cycles > 0 ? diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0; mpps_tx = diff_cycles > 0 ? diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0; printf("\n Throughput (since last show)\n"); printf(" Rx-pps: %12"PRIu64"\n Tx-pps: %12"PRIu64"\n", mpps_rx, mpps_tx); printf(" %s############################%s\n", nic_stats_border, nic_stats_border); } void nic_stats_clear(portid_t port_id) { portid_t pid; if (port_id_is_invalid(port_id, ENABLED_WARN)) { printf("Valid port range is [0"); FOREACH_PORT(pid, ports) printf(", %d", pid); printf("]\n"); return; } rte_eth_stats_reset(port_id); printf("\n NIC statistics for port %d cleared\n", port_id); } void nic_xstats_display(portid_t port_id) { struct rte_eth_xstat *xstats; int cnt_xstats, idx_xstat, idx_name; struct rte_eth_xstat_name *xstats_names; printf("###### NIC extended statistics for port %-2d\n", port_id); if (!rte_eth_dev_is_valid_port(port_id)) { printf("Error: Invalid port number %i\n", port_id); return; } /* Get count */ cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0); if (cnt_xstats < 0) { printf("Error: Cannot get count of xstats\n"); return; } /* Get id-name lookup table */ xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats); if (xstats_names == NULL) { printf("Cannot allocate memory for xstats lookup\n"); return; } if (cnt_xstats != rte_eth_xstats_get_names( port_id, xstats_names, cnt_xstats)) { printf("Error: Cannot get xstats lookup\n"); return; } /* Get stats themselves */ xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats); if (xstats == NULL) { printf("Cannot allocate memory for xstats\n"); free(xstats_names); return; } if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) { printf("Error: Unable to get xstats\n"); return; } /* Display xstats */ for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) for (idx_name = 0; idx_name < cnt_xstats; idx_name++) if (xstats_names[idx_name].id == xstats[idx_xstat].id) { printf("%s: %"PRIu64"\n", xstats_names[idx_name].name, xstats[idx_xstat].value); break; } free(xstats_names); free(xstats); } void nic_xstats_clear(portid_t port_id) { rte_eth_xstats_reset(port_id); } void nic_stats_mapping_display(portid_t port_id) { struct rte_port *port = &ports[port_id]; uint16_t i; portid_t pid; static const char *nic_stats_mapping_border = "########################"; if (port_id_is_invalid(port_id, ENABLED_WARN)) { printf("Valid port range is [0"); FOREACH_PORT(pid, ports) printf(", %d", pid); printf("]\n"); return; } if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) { printf("Port id %d - either does not support queue statistic mapping or" " no queue statistic mapping set\n", port_id); return; } printf("\n %s NIC statistics mapping for port %-2d %s\n", nic_stats_mapping_border, port_id, nic_stats_mapping_border); if (port->rx_queue_stats_mapping_enabled) { for (i = 0; i < nb_rx_queue_stats_mappings; i++) { if (rx_queue_stats_mappings[i].port_id == port_id) { printf(" RX-queue %2d mapped to Stats Reg %2d\n", rx_queue_stats_mappings[i].queue_id, rx_queue_stats_mappings[i].stats_counter_id); } } printf("\n"); } if (port->tx_queue_stats_mapping_enabled) { for (i = 0; i < nb_tx_queue_stats_mappings; i++) { if (tx_queue_stats_mappings[i].port_id == port_id) { printf(" TX-queue %2d mapped to Stats Reg %2d\n", tx_queue_stats_mappings[i].queue_id, tx_queue_stats_mappings[i].stats_counter_id); } } } printf(" %s####################################%s\n", nic_stats_mapping_border, nic_stats_mapping_border); } void rx_queue_infos_display(portid_t port_id, uint16_t queue_id) { struct rte_eth_rxq_info qinfo; int32_t rc; static const char *info_border = "*********************"; rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo); if (rc != 0) { printf("Failed to retrieve information for port: %hhu, " "RX queue: %hu\nerror desc: %s(%d)\n", port_id, queue_id, strerror(-rc), rc); return; } printf("\n%s Infos for port %-2u, RX queue %-2u %s", info_border, port_id, queue_id, info_border); printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name); printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh); printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh); printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh); printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh); printf("\nRX drop packets: %s", (qinfo.conf.rx_drop_en != 0) ? "on" : "off"); printf("\nRX deferred start: %s", (qinfo.conf.rx_deferred_start != 0) ? "on" : "off"); printf("\nRX scattered packets: %s", (qinfo.scattered_rx != 0) ? "on" : "off"); printf("\nNumber of RXDs: %hu", qinfo.nb_desc); printf("\n"); } void tx_queue_infos_display(portid_t port_id, uint16_t queue_id) { struct rte_eth_txq_info qinfo; int32_t rc; static const char *info_border = "*********************"; rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo); if (rc != 0) { printf("Failed to retrieve information for port: %hhu, " "TX queue: %hu\nerror desc: %s(%d)\n", port_id, queue_id, strerror(-rc), rc); return; } printf("\n%s Infos for port %-2u, TX queue %-2u %s", info_border, port_id, queue_id, info_border); printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh); printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh); printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh); printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh); printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh); printf("\nTX flags: %#x", qinfo.conf.txq_flags); printf("\nTX deferred start: %s", (qinfo.conf.tx_deferred_start != 0) ? "on" : "off"); printf("\nNumber of TXDs: %hu", qinfo.nb_desc); printf("\n"); } void port_infos_display(portid_t port_id) { struct rte_port *port; struct ether_addr mac_addr; struct rte_eth_link link; struct rte_eth_dev_info dev_info; int vlan_offload; struct rte_mempool * mp; static const char *info_border = "*********************"; portid_t pid; if (port_id_is_invalid(port_id, ENABLED_WARN)) { printf("Valid port range is [0"); FOREACH_PORT(pid, ports) printf(", %d", pid); printf("]\n"); return; } port = &ports[port_id]; rte_eth_link_get_nowait(port_id, &link); printf("\n%s Infos for port %-2d %s\n", info_border, port_id, info_border); rte_eth_macaddr_get(port_id, &mac_addr); print_ethaddr("MAC address: ", &mac_addr); printf("\nConnect to socket: %u", port->socket_id); if (port_numa[port_id] != NUMA_NO_CONFIG) { mp = mbuf_pool_find(port_numa[port_id]); if (mp) printf("\nmemory allocation on the socket: %d", port_numa[port_id]); } else printf("\nmemory allocation on the socket: %u",port->socket_id); printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down")); printf("Link speed: %u Mbps\n", (unsigned) link.link_speed); printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? ("full-duplex") : ("half-duplex")); printf("Promiscuous mode: %s\n", rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled"); printf("Allmulticast mode: %s\n", rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled"); printf("Maximum number of MAC addresses: %u\n", (unsigned int)(port->dev_info.max_mac_addrs)); printf("Maximum number of MAC addresses of hash filtering: %u\n", (unsigned int)(port->dev_info.max_hash_mac_addrs)); vlan_offload = rte_eth_dev_get_vlan_offload(port_id); if (vlan_offload >= 0){ printf("VLAN offload: \n"); if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD) printf(" strip on \n"); else printf(" strip off \n"); if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD) printf(" filter on \n"); else printf(" filter off \n"); if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) printf(" qinq(extend) on \n"); else printf(" qinq(extend) off \n"); } memset(&dev_info, 0, sizeof(dev_info)); rte_eth_dev_info_get(port_id, &dev_info); if (dev_info.hash_key_size > 0) printf("Hash key size in bytes: %u\n", dev_info.hash_key_size); if (dev_info.reta_size > 0) printf("Redirection table size: %u\n", dev_info.reta_size); if (!dev_info.flow_type_rss_offloads) printf("No flow type is supported.\n"); else { uint16_t i; char *p; printf("Supported flow types:\n"); for (i = RTE_ETH_FLOW_UNKNOWN + 1; i < RTE_ETH_FLOW_MAX; i++) { if (!(dev_info.flow_type_rss_offloads & (1ULL << i))) continue; p = flowtype_to_str(i); printf(" %s\n", (p ? p : "unknown")); } } printf("Max possible RX queues: %u\n", dev_info.max_rx_queues); printf("Max possible number of RXDs per queue: %hu\n", dev_info.rx_desc_lim.nb_max); printf("Min possible number of RXDs per queue: %hu\n", dev_info.rx_desc_lim.nb_min); printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align); printf("Max possible TX queues: %u\n", dev_info.max_tx_queues); printf("Max possible number of TXDs per queue: %hu\n", dev_info.tx_desc_lim.nb_max); printf("Min possible number of TXDs per queue: %hu\n", dev_info.tx_desc_lim.nb_min); printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align); } int port_id_is_invalid(portid_t port_id, enum print_warning warning) { if (port_id == (portid_t)RTE_PORT_ALL) return 0; if (port_id < RTE_MAX_ETHPORTS && ports[port_id].enabled) return 0; if (warning == ENABLED_WARN) printf("Invalid port %d\n", port_id); return 1; } static int vlan_id_is_invalid(uint16_t vlan_id) { if (vlan_id < 4096) return 0; printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id); return 1; } static int port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off) { uint64_t pci_len; if (reg_off & 0x3) { printf("Port register offset 0x%X not aligned on a 4-byte " "boundary\n", (unsigned)reg_off); return 1; } pci_len = ports[port_id].dev_info.pci_dev->mem_resource[0].len; if (reg_off >= pci_len) { printf("Port %d: register offset %u (0x%X) out of port PCI " "resource (length=%"PRIu64")\n", port_id, (unsigned)reg_off, (unsigned)reg_off, pci_len); return 1; } return 0; } static int reg_bit_pos_is_invalid(uint8_t bit_pos) { if (bit_pos <= 31) return 0; printf("Invalid bit position %d (must be <= 31)\n", bit_pos); return 1; } #define display_port_and_reg_off(port_id, reg_off) \ printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off)) static inline void display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v) { display_port_and_reg_off(port_id, (unsigned)reg_off); printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v); } void port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x) { uint32_t reg_v; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; if (port_reg_off_is_invalid(port_id, reg_off)) return; if (reg_bit_pos_is_invalid(bit_x)) return; reg_v = port_id_pci_reg_read(port_id, reg_off); display_port_and_reg_off(port_id, (unsigned)reg_off); printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x)); } void port_reg_bit_field_display(portid_t port_id, uint32_t reg_off, uint8_t bit1_pos, uint8_t bit2_pos) { uint32_t reg_v; uint8_t l_bit; uint8_t h_bit; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; if (port_reg_off_is_invalid(port_id, reg_off)) return; if (reg_bit_pos_is_invalid(bit1_pos)) return; if (reg_bit_pos_is_invalid(bit2_pos)) return; if (bit1_pos > bit2_pos) l_bit = bit2_pos, h_bit = bit1_pos; else l_bit = bit1_pos, h_bit = bit2_pos; reg_v = port_id_pci_reg_read(port_id, reg_off); reg_v >>= l_bit; if (h_bit < 31) reg_v &= ((1 << (h_bit - l_bit + 1)) - 1); display_port_and_reg_off(port_id, (unsigned)reg_off); printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit, ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v); } void port_reg_display(portid_t port_id, uint32_t reg_off) { uint32_t reg_v; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; if (port_reg_off_is_invalid(port_id, reg_off)) return; reg_v = port_id_pci_reg_read(port_id, reg_off); display_port_reg_value(port_id, reg_off, reg_v); } void port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos, uint8_t bit_v) { uint32_t reg_v; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; if (port_reg_off_is_invalid(port_id, reg_off)) return; if (reg_bit_pos_is_invalid(bit_pos)) return; if (bit_v > 1) { printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v); return; } reg_v = port_id_pci_reg_read(port_id, reg_off); if (bit_v == 0) reg_v &= ~(1 << bit_pos); else reg_v |= (1 << bit_pos); port_id_pci_reg_write(port_id, reg_off, reg_v); display_port_reg_value(port_id, reg_off, reg_v); } void port_reg_bit_field_set(portid_t port_id, uint32_t reg_off, uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value) { uint32_t max_v; uint32_t reg_v; uint8_t l_bit; uint8_t h_bit; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; if (port_reg_off_is_invalid(port_id, reg_off)) return; if (reg_bit_pos_is_invalid(bit1_pos)) return; if (reg_bit_pos_is_invalid(bit2_pos)) return; if (bit1_pos > bit2_pos) l_bit = bit2_pos, h_bit = bit1_pos; else l_bit = bit1_pos, h_bit = bit2_pos; if ((h_bit - l_bit) < 31) max_v = (1 << (h_bit - l_bit + 1)) - 1; else max_v = 0xFFFFFFFF; if (value > max_v) { printf("Invalid value %u (0x%x) must be < %u (0x%x)\n", (unsigned)value, (unsigned)value, (unsigned)max_v, (unsigned)max_v); return; } reg_v = port_id_pci_reg_read(port_id, reg_off); reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */ reg_v |= (value << l_bit); /* Set changed bits */ port_id_pci_reg_write(port_id, reg_off, reg_v); display_port_reg_value(port_id, reg_off, reg_v); } void port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v) { if (port_id_is_invalid(port_id, ENABLED_WARN)) return; if (port_reg_off_is_invalid(port_id, reg_off)) return; port_id_pci_reg_write(port_id, reg_off, reg_v); display_port_reg_value(port_id, reg_off, reg_v); } void port_mtu_set(portid_t port_id, uint16_t mtu) { int diag; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; diag = rte_eth_dev_set_mtu(port_id, mtu); if (diag == 0) return; printf("Set MTU failed. diag=%d\n", diag); } /* * RX/TX ring descriptors display functions. */ int rx_queue_id_is_invalid(queueid_t rxq_id) { if (rxq_id < nb_rxq) return 0; printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq); return 1; } int tx_queue_id_is_invalid(queueid_t txq_id) { if (txq_id < nb_txq) return 0; printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq); return 1; } static int rx_desc_id_is_invalid(uint16_t rxdesc_id) { if (rxdesc_id < nb_rxd) return 0; printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n", rxdesc_id, nb_rxd); return 1; } static int tx_desc_id_is_invalid(uint16_t txdesc_id) { if (txdesc_id < nb_txd) return 0; printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n", txdesc_id, nb_txd); return 1; } static const struct rte_memzone * ring_dma_zone_lookup(const char *ring_name, uint8_t port_id, uint16_t q_id) { char mz_name[RTE_MEMZONE_NAMESIZE]; const struct rte_memzone *mz; snprintf(mz_name, sizeof(mz_name), "%s_%s_%d_%d", ports[port_id].dev_info.driver_name, ring_name, port_id, q_id); mz = rte_memzone_lookup(mz_name); if (mz == NULL) printf("%s ring memory zoneof (port %d, queue %d) not" "found (zone name = %s\n", ring_name, port_id, q_id, mz_name); return mz; } union igb_ring_dword { uint64_t dword; struct { #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN uint32_t lo; uint32_t hi; #else uint32_t hi; uint32_t lo; #endif } words; }; struct igb_ring_desc_32_bytes { union igb_ring_dword lo_dword; union igb_ring_dword hi_dword; union igb_ring_dword resv1; union igb_ring_dword resv2; }; struct igb_ring_desc_16_bytes { union igb_ring_dword lo_dword; union igb_ring_dword hi_dword; }; static void ring_rxd_display_dword(union igb_ring_dword dword) { printf(" 0x%08X - 0x%08X\n", (unsigned)dword.words.lo, (unsigned)dword.words.hi); } static void ring_rx_descriptor_display(const struct rte_memzone *ring_mz, #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC uint8_t port_id, #else __rte_unused uint8_t port_id, #endif uint16_t desc_id) { struct igb_ring_desc_16_bytes *ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr; #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC struct rte_eth_dev_info dev_info; memset(&dev_info, 0, sizeof(dev_info)); rte_eth_dev_info_get(port_id, &dev_info); if (strstr(dev_info.driver_name, "i40e") != NULL) { /* 32 bytes RX descriptor, i40e only */ struct igb_ring_desc_32_bytes *ring = (struct igb_ring_desc_32_bytes *)ring_mz->addr; ring[desc_id].lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); ring_rxd_display_dword(ring[desc_id].lo_dword); ring[desc_id].hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); ring_rxd_display_dword(ring[desc_id].hi_dword); ring[desc_id].resv1.dword = rte_le_to_cpu_64(ring[desc_id].resv1.dword); ring_rxd_display_dword(ring[desc_id].resv1); ring[desc_id].resv2.dword = rte_le_to_cpu_64(ring[desc_id].resv2.dword); ring_rxd_display_dword(ring[desc_id].resv2); return; } #endif /* 16 bytes RX descriptor */ ring[desc_id].lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); ring_rxd_display_dword(ring[desc_id].lo_dword); ring[desc_id].hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); ring_rxd_display_dword(ring[desc_id].hi_dword); } static void ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id) { struct igb_ring_desc_16_bytes *ring; struct igb_ring_desc_16_bytes txd; ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr; txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); printf(" 0x%08X - 0x%08X / 0x%08X - 0x%08X\n", (unsigned)txd.lo_dword.words.lo, (unsigned)txd.lo_dword.words.hi, (unsigned)txd.hi_dword.words.lo, (unsigned)txd.hi_dword.words.hi); } void rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id) { const struct rte_memzone *rx_mz; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; if (rx_queue_id_is_invalid(rxq_id)) return; if (rx_desc_id_is_invalid(rxd_id)) return; rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id); if (rx_mz == NULL) return; ring_rx_descriptor_display(rx_mz, port_id, rxd_id); } void tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id) { const struct rte_memzone *tx_mz; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; if (tx_queue_id_is_invalid(txq_id)) return; if (tx_desc_id_is_invalid(txd_id)) return; tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id); if (tx_mz == NULL) return; ring_tx_descriptor_display(tx_mz, txd_id); } void fwd_lcores_config_display(void) { lcoreid_t lc_id; printf("List of forwarding lcores:"); for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++) printf(" %2u", fwd_lcores_cpuids[lc_id]); printf("\n"); } void rxtx_config_display(void) { printf(" %s packet forwarding%s - CRC stripping %s - " "packets/burst=%d\n", cur_fwd_eng->fwd_mode_name, retry_enabled == 0 ? "" : " with retry", rx_mode.hw_strip_crc ? "enabled" : "disabled", nb_pkt_per_burst); if (cur_fwd_eng == &tx_only_engine) printf(" packet len=%u - nb packet segments=%d\n", (unsigned)tx_pkt_length, (int) tx_pkt_nb_segs); struct rte_eth_rxconf *rx_conf = &ports[0].rx_conf; struct rte_eth_txconf *tx_conf = &ports[0].tx_conf; printf(" nb forwarding cores=%d - nb forwarding ports=%d\n", nb_fwd_lcores, nb_fwd_ports); printf(" RX queues=%d - RX desc=%d - RX free threshold=%d\n", nb_rxq, nb_rxd, rx_conf->rx_free_thresh); printf(" RX threshold registers: pthresh=%d hthresh=%d wthresh=%d\n", rx_conf->rx_thresh.pthresh, rx_conf->rx_thresh.hthresh, rx_conf->rx_thresh.wthresh); printf(" TX queues=%d - TX desc=%d - TX free threshold=%d\n", nb_txq, nb_txd, tx_conf->tx_free_thresh); printf(" TX threshold registers: pthresh=%d hthresh=%d wthresh=%d\n", tx_conf->tx_thresh.pthresh, tx_conf->tx_thresh.hthresh, tx_conf->tx_thresh.wthresh); printf(" TX RS bit threshold=%d - TXQ flags=0x%"PRIx32"\n", tx_conf->tx_rs_thresh, tx_conf->txq_flags); } void port_rss_reta_info(portid_t port_id, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t nb_entries) { uint16_t i, idx, shift; int ret; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries); if (ret != 0) { printf("Failed to get RSS RETA info, return code = %d\n", ret); return; } for (i = 0; i < nb_entries; i++) { idx = i / RTE_RETA_GROUP_SIZE; shift = i % RTE_RETA_GROUP_SIZE; if (!(reta_conf[idx].mask & (1ULL << shift))) continue; printf("RSS RETA configuration: hash index=%u, queue=%u\n", i, reta_conf[idx].reta[shift]); } } /* * Displays the RSS hash functions of a port, and, optionaly, the RSS hash * key of the port. */ void port_rss_hash_conf_show(portid_t port_id, char rss_info[], int show_rss_key) { struct rte_eth_rss_conf rss_conf; uint8_t rss_key[10 * 4] = ""; uint64_t rss_hf; uint8_t i; int diag; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; rss_conf.rss_hf = 0; for (i = 0; i < RTE_DIM(rss_type_table); i++) { if (!strcmp(rss_info, rss_type_table[i].str)) rss_conf.rss_hf = rss_type_table[i].rss_type; } /* Get RSS hash key if asked to display it */ rss_conf.rss_key = (show_rss_key) ? rss_key : NULL; rss_conf.rss_key_len = sizeof(rss_key); diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf); if (diag != 0) { switch (diag) { case -ENODEV: printf("port index %d invalid\n", port_id); break; case -ENOTSUP: printf("operation not supported by device\n"); break; default: printf("operation failed - diag=%d\n", diag); break; } return; } rss_hf = rss_conf.rss_hf; if (rss_hf == 0) { printf("RSS disabled\n"); return; } printf("RSS functions:\n "); for (i = 0; i < RTE_DIM(rss_type_table); i++) { if (rss_hf & rss_type_table[i].rss_type) printf("%s ", rss_type_table[i].str); } printf("\n"); if (!show_rss_key) return; printf("RSS key:\n"); for (i = 0; i < sizeof(rss_key); i++) printf("%02X", rss_key[i]); printf("\n"); } void port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key, uint hash_key_len) { struct rte_eth_rss_conf rss_conf; int diag; unsigned int i; rss_conf.rss_key = NULL; rss_conf.rss_key_len = hash_key_len; rss_conf.rss_hf = 0; for (i = 0; i < RTE_DIM(rss_type_table); i++) { if (!strcmp(rss_type_table[i].str, rss_type)) rss_conf.rss_hf = rss_type_table[i].rss_type; } diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf); if (diag == 0) { rss_conf.rss_key = hash_key; diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf); } if (diag == 0) return; switch (diag) { case -ENODEV: printf("port index %d invalid\n", port_id); break; case -ENOTSUP: printf("operation not supported by device\n"); break; default: printf("operation failed - diag=%d\n", diag); break; } } /* * Setup forwarding configuration for each logical core. */ static void setup_fwd_config_of_each_lcore(struct fwd_config *cfg) { streamid_t nb_fs_per_lcore; streamid_t nb_fs; streamid_t sm_id; lcoreid_t nb_extra; lcoreid_t nb_fc; lcoreid_t nb_lc; lcoreid_t lc_id; nb_fs = cfg->nb_fwd_streams; nb_fc = cfg->nb_fwd_lcores; if (nb_fs <= nb_fc) { nb_fs_per_lcore = 1; nb_extra = 0; } else { nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc); nb_extra = (lcoreid_t) (nb_fs % nb_fc); } nb_lc = (lcoreid_t) (nb_fc - nb_extra); sm_id = 0; for (lc_id = 0; lc_id < nb_lc; lc_id++) { fwd_lcores[lc_id]->stream_idx = sm_id; fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore; sm_id = (streamid_t) (sm_id + nb_fs_per_lcore); } /* * Assign extra remaining streams, if any. */ nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1); for (lc_id = 0; lc_id < nb_extra; lc_id++) { fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id; fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore; sm_id = (streamid_t) (sm_id + nb_fs_per_lcore); } } static void simple_fwd_config_setup(void) { portid_t i; portid_t j; portid_t inc = 2; if (port_topology == PORT_TOPOLOGY_CHAINED || port_topology == PORT_TOPOLOGY_LOOP) { inc = 1; } else if (nb_fwd_ports % 2) { printf("\nWarning! Cannot handle an odd number of ports " "with the current port topology. Configuration " "must be changed to have an even number of ports, " "or relaunch application with " "--port-topology=chained\n\n"); } cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports; cur_fwd_config.nb_fwd_streams = (streamid_t) cur_fwd_config.nb_fwd_ports; /* reinitialize forwarding streams */ init_fwd_streams(); /* * In the simple forwarding test, the number of forwarding cores * must be lower or equal to the number of forwarding ports. */ cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports) cur_fwd_config.nb_fwd_lcores = (lcoreid_t) cur_fwd_config.nb_fwd_ports; setup_fwd_config_of_each_lcore(&cur_fwd_config); for (i = 0; i < cur_fwd_config.nb_fwd_ports; i = (portid_t) (i + inc)) { if (port_topology != PORT_TOPOLOGY_LOOP) j = (portid_t) ((i + 1) % cur_fwd_config.nb_fwd_ports); else j = i; fwd_streams[i]->rx_port = fwd_ports_ids[i]; fwd_streams[i]->rx_queue = 0; fwd_streams[i]->tx_port = fwd_ports_ids[j]; fwd_streams[i]->tx_queue = 0; fwd_streams[i]->peer_addr = j; fwd_streams[i]->retry_enabled = retry_enabled; if (port_topology == PORT_TOPOLOGY_PAIRED) { fwd_streams[j]->rx_port = fwd_ports_ids[j]; fwd_streams[j]->rx_queue = 0; fwd_streams[j]->tx_port = fwd_ports_ids[i]; fwd_streams[j]->tx_queue = 0; fwd_streams[j]->peer_addr = i; fwd_streams[j]->retry_enabled = retry_enabled; } } } /** * For the RSS forwarding test, each core is assigned on every port a transmit * queue whose index is the index of the core itself. This approach limits the * maximumm number of processing cores of the RSS test to the maximum number of * TX queues supported by the devices. * * Each core is assigned a single stream, each stream being composed of * a RX queue to poll on a RX port for input messages, associated with * a TX queue of a TX port where to send forwarded packets. * All packets received on the RX queue of index "RxQj" of the RX port "RxPi" * are sent on the TX queue "TxQl" of the TX port "TxPk" according to the two * following rules: * - TxPk = (RxPi + 1) if RxPi is even, (RxPi - 1) if RxPi is odd * - TxQl = RxQj */ static void rss_fwd_config_setup(void) { portid_t rxp; portid_t txp; queueid_t rxq; queueid_t nb_q; lcoreid_t lc_id; nb_q = nb_rxq; if (nb_q > nb_txq) nb_q = nb_txq; cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; cur_fwd_config.nb_fwd_ports = nb_fwd_ports; cur_fwd_config.nb_fwd_streams = (streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports); /* reinitialize forwarding streams */ init_fwd_streams(); setup_fwd_config_of_each_lcore(&cur_fwd_config); rxp = 0; rxq = 0; for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_streams; lc_id++) { struct fwd_stream *fs; fs = fwd_streams[lc_id]; if ((rxp & 0x1) == 0) txp = (portid_t) (rxp + 1); else txp = (portid_t) (rxp - 1); /* * if we are in loopback, simply send stuff out through the * ingress port */ if (port_topology == PORT_TOPOLOGY_LOOP) txp = rxp; fs->rx_port = fwd_ports_ids[rxp]; fs->rx_queue = rxq; fs->tx_port = fwd_ports_ids[txp]; fs->tx_queue = rxq; fs->peer_addr = fs->tx_port; fs->retry_enabled = retry_enabled; rxq = (queueid_t) (rxq + 1); if (rxq < nb_q) continue; /* * rxq == nb_q * Restart from RX queue 0 on next RX port */ rxq = 0; if (numa_support && (nb_fwd_ports <= (nb_ports >> 1))) rxp = (portid_t) (rxp + ((nb_ports >> 1) / nb_fwd_ports)); else rxp = (portid_t) (rxp + 1); } } /** * For the DCB forwarding test, each core is assigned on each traffic class. * * Each core is assigned a multi-stream, each stream being composed of * a RX queue to poll on a RX port for input messages, associated with * a TX queue of a TX port where to send forwarded packets. All RX and * TX queues are mapping to the same traffic class. * If VMDQ and DCB co-exist, each traffic class on different POOLs share * the same core */ static void dcb_fwd_config_setup(void) { struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info; portid_t txp, rxp = 0; queueid_t txq, rxq = 0; lcoreid_t lc_id; uint16_t nb_rx_queue, nb_tx_queue; uint16_t i, j, k, sm_id = 0; uint8_t tc = 0; cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; cur_fwd_config.nb_fwd_ports = nb_fwd_ports; cur_fwd_config.nb_fwd_streams = (streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports); /* reinitialize forwarding streams */ init_fwd_streams(); sm_id = 0; txp = 1; /* get the dcb info on the first RX and TX ports */ (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info); (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info); for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) { fwd_lcores[lc_id]->stream_nb = 0; fwd_lcores[lc_id]->stream_idx = sm_id; for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) { /* if the nb_queue is zero, means this tc is * not enabled on the POOL */ if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0) break; k = fwd_lcores[lc_id]->stream_nb + fwd_lcores[lc_id]->stream_idx; rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base; txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base; nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue; nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue; for (j = 0; j < nb_rx_queue; j++) { struct fwd_stream *fs; fs = fwd_streams[k + j]; fs->rx_port = fwd_ports_ids[rxp]; fs->rx_queue = rxq + j; fs->tx_port = fwd_ports_ids[txp]; fs->tx_queue = txq + j % nb_tx_queue; fs->peer_addr = fs->tx_port; fs->retry_enabled = retry_enabled; } fwd_lcores[lc_id]->stream_nb += rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue; } sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb); tc++; if (tc < rxp_dcb_info.nb_tcs) continue; /* Restart from TC 0 on next RX port */ tc = 0; if (numa_support && (nb_fwd_ports <= (nb_ports >> 1))) rxp = (portid_t) (rxp + ((nb_ports >> 1) / nb_fwd_ports)); else rxp++; if (rxp >= nb_fwd_ports) return; /* get the dcb information on next RX and TX ports */ if ((rxp & 0x1) == 0) txp = (portid_t) (rxp + 1); else txp = (portid_t) (rxp - 1); rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info); rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info); } } static void icmp_echo_config_setup(void) { portid_t rxp; queueid_t rxq; lcoreid_t lc_id; uint16_t sm_id; if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores) cur_fwd_config.nb_fwd_lcores = (lcoreid_t) (nb_txq * nb_fwd_ports); else cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; cur_fwd_config.nb_fwd_ports = nb_fwd_ports; cur_fwd_config.nb_fwd_streams = (streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports); if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores) cur_fwd_config.nb_fwd_lcores = (lcoreid_t)cur_fwd_config.nb_fwd_streams; if (verbose_level > 0) { printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n", __FUNCTION__, cur_fwd_config.nb_fwd_lcores, cur_fwd_config.nb_fwd_ports, cur_fwd_config.nb_fwd_streams); } /* reinitialize forwarding streams */ init_fwd_streams(); setup_fwd_config_of_each_lcore(&cur_fwd_config); rxp = 0; rxq = 0; for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) { if (verbose_level > 0) printf(" core=%d: \n", lc_id); for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) { struct fwd_stream *fs; fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id]; fs->rx_port = fwd_ports_ids[rxp]; fs->rx_queue = rxq; fs->tx_port = fs->rx_port; fs->tx_queue = rxq; fs->peer_addr = fs->tx_port; fs->retry_enabled = retry_enabled; if (verbose_level > 0) printf(" stream=%d port=%d rxq=%d txq=%d\n", sm_id, fs->rx_port, fs->rx_queue, fs->tx_queue); rxq = (queueid_t) (rxq + 1); if (rxq == nb_rxq) { rxq = 0; rxp = (portid_t) (rxp + 1); } } } } void fwd_config_setup(void) { cur_fwd_config.fwd_eng = cur_fwd_eng; if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) { icmp_echo_config_setup(); return; } if ((nb_rxq > 1) && (nb_txq > 1)){ if (dcb_config) dcb_fwd_config_setup(); else rss_fwd_config_setup(); } else simple_fwd_config_setup(); } void pkt_fwd_config_display(struct fwd_config *cfg) { struct fwd_stream *fs; lcoreid_t lc_id; streamid_t sm_id; printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - " "NUMA support %s, MP over anonymous pages %s\n", cfg->fwd_eng->fwd_mode_name, retry_enabled == 0 ? "" : " with retry", cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams, numa_support == 1 ? "enabled" : "disabled", mp_anon != 0 ? "enabled" : "disabled"); if (retry_enabled) printf("TX retry num: %u, delay between TX retries: %uus\n", burst_tx_retry_num, burst_tx_delay_time); for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) { printf("Logical Core %u (socket %u) forwards packets on " "%d streams:", fwd_lcores_cpuids[lc_id], rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]), fwd_lcores[lc_id]->stream_nb); for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) { fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id]; printf("\n RX P=%d/Q=%d (socket %u) -> TX " "P=%d/Q=%d (socket %u) ", fs->rx_port, fs->rx_queue, ports[fs->rx_port].socket_id, fs->tx_port, fs->tx_queue, ports[fs->tx_port].socket_id); print_ethaddr("peer=", &peer_eth_addrs[fs->peer_addr]); } printf("\n"); } printf("\n"); } int set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc) { unsigned int i; unsigned int lcore_cpuid; int record_now; record_now = 0; again: for (i = 0; i < nb_lc; i++) { lcore_cpuid = lcorelist[i]; if (! rte_lcore_is_enabled(lcore_cpuid)) { printf("lcore %u not enabled\n", lcore_cpuid); return -1; } if (lcore_cpuid == rte_get_master_lcore()) { printf("lcore %u cannot be masked on for running " "packet forwarding, which is the master lcore " "and reserved for command line parsing only\n", lcore_cpuid); return -1; } if (record_now) fwd_lcores_cpuids[i] = lcore_cpuid; } if (record_now == 0) { record_now = 1; goto again; } nb_cfg_lcores = (lcoreid_t) nb_lc; if (nb_fwd_lcores != (lcoreid_t) nb_lc) { printf("previous number of forwarding cores %u - changed to " "number of configured cores %u\n", (unsigned int) nb_fwd_lcores, nb_lc); nb_fwd_lcores = (lcoreid_t) nb_lc; } return 0; } int set_fwd_lcores_mask(uint64_t lcoremask) { unsigned int lcorelist[64]; unsigned int nb_lc; unsigned int i; if (lcoremask == 0) { printf("Invalid NULL mask of cores\n"); return -1; } nb_lc = 0; for (i = 0; i < 64; i++) { if (! ((uint64_t)(1ULL << i) & lcoremask)) continue; lcorelist[nb_lc++] = i; } return set_fwd_lcores_list(lcorelist, nb_lc); } void set_fwd_lcores_number(uint16_t nb_lc) { if (nb_lc > nb_cfg_lcores) { printf("nb fwd cores %u > %u (max. number of configured " "lcores) - ignored\n", (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores); return; } nb_fwd_lcores = (lcoreid_t) nb_lc; printf("Number of forwarding cores set to %u\n", (unsigned int) nb_fwd_lcores); } void set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt) { unsigned int i; portid_t port_id; int record_now; record_now = 0; again: for (i = 0; i < nb_pt; i++) { port_id = (portid_t) portlist[i]; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; if (record_now) fwd_ports_ids[i] = port_id; } if (record_now == 0) { record_now = 1; goto again; } nb_cfg_ports = (portid_t) nb_pt; if (nb_fwd_ports != (portid_t) nb_pt) { printf("previous number of forwarding ports %u - changed to " "number of configured ports %u\n", (unsigned int) nb_fwd_ports, nb_pt); nb_fwd_ports = (portid_t) nb_pt; } } void set_fwd_ports_mask(uint64_t portmask) { unsigned int portlist[64]; unsigned int nb_pt; unsigned int i; if (portmask == 0) { printf("Invalid NULL mask of ports\n"); return; } nb_pt = 0; for (i = 0; i < (unsigned)RTE_MIN(64, RTE_MAX_ETHPORTS); i++) { if (! ((uint64_t)(1ULL << i) & portmask)) continue; portlist[nb_pt++] = i; } set_fwd_ports_list(portlist, nb_pt); } void set_fwd_ports_number(uint16_t nb_pt) { if (nb_pt > nb_cfg_ports) { printf("nb fwd ports %u > %u (number of configured " "ports) - ignored\n", (unsigned int) nb_pt, (unsigned int) nb_cfg_ports); return; } nb_fwd_ports = (portid_t) nb_pt; printf("Number of forwarding ports set to %u\n", (unsigned int) nb_fwd_ports); } int port_is_forwarding(portid_t port_id) { unsigned int i; if (port_id_is_invalid(port_id, ENABLED_WARN)) return -1; for (i = 0; i < nb_fwd_ports; i++) { if (fwd_ports_ids[i] == port_id) return 1; } return 0; } void set_nb_pkt_per_burst(uint16_t nb) { if (nb > MAX_PKT_BURST) { printf("nb pkt per burst: %u > %u (maximum packet per burst) " " ignored\n", (unsigned int) nb, (unsigned int) MAX_PKT_BURST); return; } nb_pkt_per_burst = nb; printf("Number of packets per burst set to %u\n", (unsigned int) nb_pkt_per_burst); } static const char * tx_split_get_name(enum tx_pkt_split split) { uint32_t i; for (i = 0; i != RTE_DIM(tx_split_name); i++) { if (tx_split_name[i].split == split) return tx_split_name[i].name; } return NULL; } void set_tx_pkt_split(const char *name) { uint32_t i; for (i = 0; i != RTE_DIM(tx_split_name); i++) { if (strcmp(tx_split_name[i].name, name) == 0) { tx_pkt_split = tx_split_name[i].split; return; } } printf("unknown value: \"%s\"\n", name); } void show_tx_pkt_segments(void) { uint32_t i, n; const char *split; n = tx_pkt_nb_segs; split = tx_split_get_name(tx_pkt_split); printf("Number of segments: %u\n", n); printf("Segment sizes: "); for (i = 0; i != n - 1; i++) printf("%hu,", tx_pkt_seg_lengths[i]); printf("%hu\n", tx_pkt_seg_lengths[i]); printf("Split packet: %s\n", split); } void set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs) { uint16_t tx_pkt_len; unsigned i; if (nb_segs >= (unsigned) nb_txd) { printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n", nb_segs, (unsigned int) nb_txd); return; } /* * Check that each segment length is greater or equal than * the mbuf data sise. * Check also that the total packet length is greater or equal than the * size of an empty UDP/IP packet (sizeof(struct ether_hdr) + 20 + 8). */ tx_pkt_len = 0; for (i = 0; i < nb_segs; i++) { if (seg_lengths[i] > (unsigned) mbuf_data_size) { printf("length[%u]=%u > mbuf_data_size=%u - give up\n", i, seg_lengths[i], (unsigned) mbuf_data_size); return; } tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]); } if (tx_pkt_len < (sizeof(struct ether_hdr) + 20 + 8)) { printf("total packet length=%u < %d - give up\n", (unsigned) tx_pkt_len, (int)(sizeof(struct ether_hdr) + 20 + 8)); return; } for (i = 0; i < nb_segs; i++) tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i]; tx_pkt_length = tx_pkt_len; tx_pkt_nb_segs = (uint8_t) nb_segs; } char* list_pkt_forwarding_modes(void) { static char fwd_modes[128] = ""; const char *separator = "|"; struct fwd_engine *fwd_eng; unsigned i = 0; if (strlen (fwd_modes) == 0) { while ((fwd_eng = fwd_engines[i++]) != NULL) { strncat(fwd_modes, fwd_eng->fwd_mode_name, sizeof(fwd_modes) - strlen(fwd_modes) - 1); strncat(fwd_modes, separator, sizeof(fwd_modes) - strlen(fwd_modes) - 1); } fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0'; } return fwd_modes; } char* list_pkt_forwarding_retry_modes(void) { static char fwd_modes[128] = ""; const char *separator = "|"; struct fwd_engine *fwd_eng; unsigned i = 0; if (strlen(fwd_modes) == 0) { while ((fwd_eng = fwd_engines[i++]) != NULL) { if (fwd_eng == &rx_only_engine) continue; strncat(fwd_modes, fwd_eng->fwd_mode_name, sizeof(fwd_modes) - strlen(fwd_modes) - 1); strncat(fwd_modes, separator, sizeof(fwd_modes) - strlen(fwd_modes) - 1); } fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0'; } return fwd_modes; } void set_pkt_forwarding_mode(const char *fwd_mode_name) { struct fwd_engine *fwd_eng; unsigned i; i = 0; while ((fwd_eng = fwd_engines[i]) != NULL) { if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) { printf("Set %s packet forwarding mode%s\n", fwd_mode_name, retry_enabled == 0 ? "" : " with retry"); cur_fwd_eng = fwd_eng; return; } i++; } printf("Invalid %s packet forwarding mode\n", fwd_mode_name); } void set_verbose_level(uint16_t vb_level) { printf("Change verbose level from %u to %u\n", (unsigned int) verbose_level, (unsigned int) vb_level); verbose_level = vb_level; } void vlan_extend_set(portid_t port_id, int on) { int diag; int vlan_offload; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; vlan_offload = rte_eth_dev_get_vlan_offload(port_id); if (on) vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD; else vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD; diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); if (diag < 0) printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed " "diag=%d\n", port_id, on, diag); } void rx_vlan_strip_set(portid_t port_id, int on) { int diag; int vlan_offload; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; vlan_offload = rte_eth_dev_get_vlan_offload(port_id); if (on) vlan_offload |= ETH_VLAN_STRIP_OFFLOAD; else vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD; diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); if (diag < 0) printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed " "diag=%d\n", port_id, on, diag); } void rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on) { int diag; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on); if (diag < 0) printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed " "diag=%d\n", port_id, queue_id, on, diag); } void rx_vlan_filter_set(portid_t port_id, int on) { int diag; int vlan_offload; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; vlan_offload = rte_eth_dev_get_vlan_offload(port_id); if (on) vlan_offload |= ETH_VLAN_FILTER_OFFLOAD; else vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD; diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); if (diag < 0) printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed " "diag=%d\n", port_id, on, diag); } int rx_vft_set(portid_t port_id, uint16_t vlan_id, int on) { int diag; if (port_id_is_invalid(port_id, ENABLED_WARN)) return 1; if (vlan_id_is_invalid(vlan_id)) return 1; diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on); if (diag == 0) return 0; printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed " "diag=%d\n", port_id, vlan_id, on, diag); return -1; } void rx_vlan_all_filter_set(portid_t port_id, int on) { uint16_t vlan_id; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; for (vlan_id = 0; vlan_id < 4096; vlan_id++) { if (rx_vft_set(port_id, vlan_id, on)) break; } } void vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id) { int diag; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id); if (diag == 0) return; printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed " "diag=%d\n", port_id, vlan_type, tp_id, diag); } void tx_vlan_set(portid_t port_id, uint16_t vlan_id) { int vlan_offload; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; if (vlan_id_is_invalid(vlan_id)) return; vlan_offload = rte_eth_dev_get_vlan_offload(port_id); if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) { printf("Error, as QinQ has been enabled.\n"); return; } tx_vlan_reset(port_id); ports[port_id].tx_ol_flags |= TESTPMD_TX_OFFLOAD_INSERT_VLAN; ports[port_id].tx_vlan_id = vlan_id; } void tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer) { int vlan_offload; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; if (vlan_id_is_invalid(vlan_id)) return; if (vlan_id_is_invalid(vlan_id_outer)) return; vlan_offload = rte_eth_dev_get_vlan_offload(port_id); if (!(vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)) { printf("Error, as QinQ hasn't been enabled.\n"); return; } tx_vlan_reset(port_id); ports[port_id].tx_ol_flags |= TESTPMD_TX_OFFLOAD_INSERT_QINQ; ports[port_id].tx_vlan_id = vlan_id; ports[port_id].tx_vlan_id_outer = vlan_id_outer; } void tx_vlan_reset(portid_t port_id) { if (port_id_is_invalid(port_id, ENABLED_WARN)) return; ports[port_id].tx_ol_flags &= ~(TESTPMD_TX_OFFLOAD_INSERT_VLAN | TESTPMD_TX_OFFLOAD_INSERT_QINQ); ports[port_id].tx_vlan_id = 0; ports[port_id].tx_vlan_id_outer = 0; } void tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on) { if (port_id_is_invalid(port_id, ENABLED_WARN)) return; rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on); } void set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value) { uint16_t i; uint8_t existing_mapping_found = 0; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id))) return; if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) { printf("map_value not in required range 0..%d\n", RTE_ETHDEV_QUEUE_STAT_CNTRS - 1); return; } if (!is_rx) { /*then tx*/ for (i = 0; i < nb_tx_queue_stats_mappings; i++) { if ((tx_queue_stats_mappings[i].port_id == port_id) && (tx_queue_stats_mappings[i].queue_id == queue_id)) { tx_queue_stats_mappings[i].stats_counter_id = map_value; existing_mapping_found = 1; break; } } if (!existing_mapping_found) { /* A new additional mapping... */ tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id; tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id; tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value; nb_tx_queue_stats_mappings++; } } else { /*rx*/ for (i = 0; i < nb_rx_queue_stats_mappings; i++) { if ((rx_queue_stats_mappings[i].port_id == port_id) && (rx_queue_stats_mappings[i].queue_id == queue_id)) { rx_queue_stats_mappings[i].stats_counter_id = map_value; existing_mapping_found = 1; break; } } if (!existing_mapping_found) { /* A new additional mapping... */ rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id; rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id; rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value; nb_rx_queue_stats_mappings++; } } } static inline void print_fdir_mask(struct rte_eth_fdir_masks *mask) { printf("\n vlan_tci: 0x%04x, ", mask->vlan_tci_mask); if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) printf("mac_addr: 0x%02x", mask->mac_addr_byte_mask); else if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL) printf("mac_addr: 0x%02x, tunnel_type: 0x%01x, tunnel_id: 0x%08x", mask->mac_addr_byte_mask, mask->tunnel_type_mask, mask->tunnel_id_mask); else { printf("src_ipv4: 0x%08x, dst_ipv4: 0x%08x," " src_port: 0x%04x, dst_port: 0x%04x", mask->ipv4_mask.src_ip, mask->ipv4_mask.dst_ip, mask->src_port_mask, mask->dst_port_mask); printf("\n src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x," " dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x", mask->ipv6_mask.src_ip[0], mask->ipv6_mask.src_ip[1], mask->ipv6_mask.src_ip[2], mask->ipv6_mask.src_ip[3], mask->ipv6_mask.dst_ip[0], mask->ipv6_mask.dst_ip[1], mask->ipv6_mask.dst_ip[2], mask->ipv6_mask.dst_ip[3]); } printf("\n"); } static inline void print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num) { struct rte_eth_flex_payload_cfg *cfg; uint32_t i, j; for (i = 0; i < flex_conf->nb_payloads; i++) { cfg = &flex_conf->flex_set[i]; if (cfg->type == RTE_ETH_RAW_PAYLOAD) printf("\n RAW: "); else if (cfg->type == RTE_ETH_L2_PAYLOAD) printf("\n L2_PAYLOAD: "); else if (cfg->type == RTE_ETH_L3_PAYLOAD) printf("\n L3_PAYLOAD: "); else if (cfg->type == RTE_ETH_L4_PAYLOAD) printf("\n L4_PAYLOAD: "); else printf("\n UNKNOWN PAYLOAD(%u): ", cfg->type); for (j = 0; j < num; j++) printf(" %-5u", cfg->src_offset[j]); } printf("\n"); } static char * flowtype_to_str(uint16_t flow_type) { struct flow_type_info { char str[32]; uint16_t ftype; }; uint8_t i; static struct flow_type_info flowtype_str_table[] = { {"raw", RTE_ETH_FLOW_RAW}, {"ipv4", RTE_ETH_FLOW_IPV4}, {"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4}, {"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP}, {"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP}, {"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP}, {"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER}, {"ipv6", RTE_ETH_FLOW_IPV6}, {"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6}, {"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP}, {"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP}, {"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP}, {"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER}, {"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD}, }; for (i = 0; i < RTE_DIM(flowtype_str_table); i++) { if (flowtype_str_table[i].ftype == flow_type) return flowtype_str_table[i].str; } return NULL; } static inline void print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num) { struct rte_eth_fdir_flex_mask *mask; uint32_t i, j; char *p; for (i = 0; i < flex_conf->nb_flexmasks; i++) { mask = &flex_conf->flex_mask[i]; p = flowtype_to_str(mask->flow_type); printf("\n %s:\t", p ? p : "unknown"); for (j = 0; j < num; j++) printf(" %02x", mask->mask[j]); } printf("\n"); } static inline void print_fdir_flow_type(uint32_t flow_types_mask) { int i; char *p; for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) { if (!(flow_types_mask & (1 << i))) continue; p = flowtype_to_str(i); if (p) printf(" %s", p); else printf(" unknown"); } printf("\n"); } void fdir_get_infos(portid_t port_id) { struct rte_eth_fdir_stats fdir_stat; struct rte_eth_fdir_info fdir_info; int ret; static const char *fdir_stats_border = "########################"; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR); if (ret < 0) { printf("\n FDIR is not supported on port %-2d\n", port_id); return; } memset(&fdir_info, 0, sizeof(fdir_info)); rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR, RTE_ETH_FILTER_INFO, &fdir_info); memset(&fdir_stat, 0, sizeof(fdir_stat)); rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR, RTE_ETH_FILTER_STATS, &fdir_stat); printf("\n %s FDIR infos for port %-2d %s\n", fdir_stats_border, port_id, fdir_stats_border); printf(" MODE: "); if (fdir_info.mode == RTE_FDIR_MODE_PERFECT) printf(" PERFECT\n"); else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) printf(" PERFECT-MAC-VLAN\n"); else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL) printf(" PERFECT-TUNNEL\n"); else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE) printf(" SIGNATURE\n"); else printf(" DISABLE\n"); if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN && fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) { printf(" SUPPORTED FLOW TYPE: "); print_fdir_flow_type(fdir_info.flow_types_mask[0]); } printf(" FLEX PAYLOAD INFO:\n"); printf(" max_len: %-10"PRIu32" payload_limit: %-10"PRIu32"\n" " payload_unit: %-10"PRIu32" payload_seg: %-10"PRIu32"\n" " bitmask_unit: %-10"PRIu32" bitmask_num: %-10"PRIu32"\n", fdir_info.max_flexpayload, fdir_info.flex_payload_limit, fdir_info.flex_payload_unit, fdir_info.max_flex_payload_segment_num, fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num); printf(" MASK: "); print_fdir_mask(&fdir_info.mask); if (fdir_info.flex_conf.nb_payloads > 0) { printf(" FLEX PAYLOAD SRC OFFSET:"); print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload); } if (fdir_info.flex_conf.nb_flexmasks > 0) { printf(" FLEX MASK CFG:"); print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload); } printf(" guarant_count: %-10"PRIu32" best_count: %"PRIu32"\n", fdir_stat.guarant_cnt, fdir_stat.best_cnt); printf(" guarant_space: %-10"PRIu32" best_space: %"PRIu32"\n", fdir_info.guarant_spc, fdir_info.best_spc); printf(" collision: %-10"PRIu32" free: %"PRIu32"\n" " maxhash: %-10"PRIu32" maxlen: %"PRIu32"\n" " add: %-10"PRIu64" remove: %"PRIu64"\n" " f_add: %-10"PRIu64" f_remove: %"PRIu64"\n", fdir_stat.collision, fdir_stat.free, fdir_stat.maxhash, fdir_stat.maxlen, fdir_stat.add, fdir_stat.remove, fdir_stat.f_add, fdir_stat.f_remove); printf(" %s############################%s\n", fdir_stats_border, fdir_stats_border); } void fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg) { struct rte_port *port; struct rte_eth_fdir_flex_conf *flex_conf; int i, idx = 0; port = &ports[port_id]; flex_conf = &port->dev_conf.fdir_conf.flex_conf; for (i = 0; i < RTE_ETH_FLOW_MAX; i++) { if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) { idx = i; break; } } if (i >= RTE_ETH_FLOW_MAX) { if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) { idx = flex_conf->nb_flexmasks; flex_conf->nb_flexmasks++; } else { printf("The flex mask table is full. Can not set flex" " mask for flow_type(%u).", cfg->flow_type); return; } } (void)rte_memcpy(&flex_conf->flex_mask[idx], cfg, sizeof(struct rte_eth_fdir_flex_mask)); } void fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg) { struct rte_port *port; struct rte_eth_fdir_flex_conf *flex_conf; int i, idx = 0; port = &ports[port_id]; flex_conf = &port->dev_conf.fdir_conf.flex_conf; for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) { if (cfg->type == flex_conf->flex_set[i].type) { idx = i; break; } } if (i >= RTE_ETH_PAYLOAD_MAX) { if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) { idx = flex_conf->nb_payloads; flex_conf->nb_payloads++; } else { printf("The flex payload table is full. Can not set" " flex payload for type(%u).", cfg->type); return; } } (void)rte_memcpy(&flex_conf->flex_set[idx], cfg, sizeof(struct rte_eth_flex_payload_cfg)); } void set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on) { int diag; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; if (is_rx) diag = rte_eth_dev_set_vf_rx(port_id,vf,on); else diag = rte_eth_dev_set_vf_tx(port_id,vf,on); if (diag == 0) return; if(is_rx) printf("rte_eth_dev_set_vf_rx for port_id=%d failed " "diag=%d\n", port_id, diag); else printf("rte_eth_dev_set_vf_tx for port_id=%d failed " "diag=%d\n", port_id, diag); } void set_vf_rx_vlan(portid_t port_id, uint16_t vlan_id, uint64_t vf_mask, uint8_t on) { int diag; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; if (vlan_id_is_invalid(vlan_id)) return; diag = rte_eth_dev_set_vf_vlan_filter(port_id, vlan_id, vf_mask, on); if (diag == 0) return; printf("rte_eth_dev_set_vf_vlan_filter for port_id=%d failed " "diag=%d\n", port_id, diag); } int set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate) { int diag; struct rte_eth_link link; if (port_id_is_invalid(port_id, ENABLED_WARN)) return 1; rte_eth_link_get_nowait(port_id, &link); if (rate > link.link_speed) { printf("Invalid rate value:%u bigger than link speed: %u\n", rate, link.link_speed); return 1; } diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate); if (diag == 0) return diag; printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n", port_id, diag); return diag; } int set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk) { int diag; struct rte_eth_link link; if (q_msk == 0) return 0; if (port_id_is_invalid(port_id, ENABLED_WARN)) return 1; rte_eth_link_get_nowait(port_id, &link); if (rate > link.link_speed) { printf("Invalid rate value:%u bigger than link speed: %u\n", rate, link.link_speed); return 1; } diag = rte_eth_set_vf_rate_limit(port_id, vf, rate, q_msk); if (diag == 0) return diag; printf("rte_eth_set_vf_rate_limit for port_id=%d failed diag=%d\n", port_id, diag); return diag; } /* * Functions to manage the set of filtered Multicast MAC addresses. * * A pool of filtered multicast MAC addresses is associated with each port. * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses. * The address of the pool and the number of valid multicast MAC addresses * recorded in the pool are stored in the fields "mc_addr_pool" and * "mc_addr_nb" of the "rte_port" data structure. * * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes * to be supplied a contiguous array of multicast MAC addresses. * To comply with this constraint, the set of multicast addresses recorded * into the pool are systematically compacted at the beginning of the pool. * Hence, when a multicast address is removed from the pool, all following * addresses, if any, are copied back to keep the set contiguous. */ #define MCAST_POOL_INC 32 static int mcast_addr_pool_extend(struct rte_port *port) { struct ether_addr *mc_pool; size_t mc_pool_size; /* * If a free entry is available at the end of the pool, just * increment the number of recorded multicast addresses. */ if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) { port->mc_addr_nb++; return 0; } /* * [re]allocate a pool with MCAST_POOL_INC more entries. * The previous test guarantees that port->mc_addr_nb is a multiple * of MCAST_POOL_INC. */ mc_pool_size = sizeof(struct ether_addr) * (port->mc_addr_nb + MCAST_POOL_INC); mc_pool = (struct ether_addr *) realloc(port->mc_addr_pool, mc_pool_size); if (mc_pool == NULL) { printf("allocation of pool of %u multicast addresses failed\n", port->mc_addr_nb + MCAST_POOL_INC); return -ENOMEM; } port->mc_addr_pool = mc_pool; port->mc_addr_nb++; return 0; } static void mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx) { port->mc_addr_nb--; if (addr_idx == port->mc_addr_nb) { /* No need to recompact the set of multicast addressses. */ if (port->mc_addr_nb == 0) { /* free the pool of multicast addresses. */ free(port->mc_addr_pool); port->mc_addr_pool = NULL; } return; } memmove(&port->mc_addr_pool[addr_idx], &port->mc_addr_pool[addr_idx + 1], sizeof(struct ether_addr) * (port->mc_addr_nb - addr_idx)); } static void eth_port_multicast_addr_list_set(uint8_t port_id) { struct rte_port *port; int diag; port = &ports[port_id]; diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool, port->mc_addr_nb); if (diag == 0) return; printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n", port->mc_addr_nb, port_id, -diag); } void mcast_addr_add(uint8_t port_id, struct ether_addr *mc_addr) { struct rte_port *port; uint32_t i; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; port = &ports[port_id]; /* * Check that the added multicast MAC address is not already recorded * in the pool of multicast addresses. */ for (i = 0; i < port->mc_addr_nb; i++) { if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) { printf("multicast address already filtered by port\n"); return; } } if (mcast_addr_pool_extend(port) != 0) return; ether_addr_copy(mc_addr, &port->mc_addr_pool[i]); eth_port_multicast_addr_list_set(port_id); } void mcast_addr_remove(uint8_t port_id, struct ether_addr *mc_addr) { struct rte_port *port; uint32_t i; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; port = &ports[port_id]; /* * Search the pool of multicast MAC addresses for the removed address. */ for (i = 0; i < port->mc_addr_nb; i++) { if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) break; } if (i == port->mc_addr_nb) { printf("multicast address not filtered by port %d\n", port_id); return; } mcast_addr_pool_remove(port, i); eth_port_multicast_addr_list_set(port_id); } void port_dcb_info_display(uint8_t port_id) { struct rte_eth_dcb_info dcb_info; uint16_t i; int ret; static const char *border = "================"; if (port_id_is_invalid(port_id, ENABLED_WARN)) return; ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info); if (ret) { printf("\n Failed to get dcb infos on port %-2d\n", port_id); return; } printf("\n %s DCB infos for port %-2d %s\n", border, port_id, border); printf(" TC NUMBER: %d\n", dcb_info.nb_tcs); printf("\n TC : "); for (i = 0; i < dcb_info.nb_tcs; i++) printf("\t%4d", i); printf("\n Priority : "); for (i = 0; i < dcb_info.nb_tcs; i++) printf("\t%4d", dcb_info.prio_tc[i]); printf("\n BW percent :"); for (i = 0; i < dcb_info.nb_tcs; i++) printf("\t%4d%%", dcb_info.tc_bws[i]); printf("\n RXQ base : "); for (i = 0; i < dcb_info.nb_tcs; i++) printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base); printf("\n RXQ number :"); for (i = 0; i < dcb_info.nb_tcs; i++) printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue); printf("\n TXQ base : "); for (i = 0; i < dcb_info.nb_tcs; i++) printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base); printf("\n TXQ number :"); for (i = 0; i < dcb_info.nb_tcs; i++) printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue); printf("\n"); }