/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2013-2017 Wind River Systems, Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "rte_avp_common.h" #include "rte_avp_fifo.h" #include "avp_logs.h" int avp_logtype_driver; static int avp_dev_create(struct rte_pci_device *pci_dev, struct rte_eth_dev *eth_dev); static int avp_dev_configure(struct rte_eth_dev *dev); static int avp_dev_start(struct rte_eth_dev *dev); static void avp_dev_stop(struct rte_eth_dev *dev); static void avp_dev_close(struct rte_eth_dev *dev); static void avp_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info); static int avp_vlan_offload_set(struct rte_eth_dev *dev, int mask); static int avp_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete); static void avp_dev_promiscuous_enable(struct rte_eth_dev *dev); static void avp_dev_promiscuous_disable(struct rte_eth_dev *dev); static int avp_dev_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, uint16_t nb_rx_desc, unsigned int socket_id, const struct rte_eth_rxconf *rx_conf, struct rte_mempool *pool); static int avp_dev_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, uint16_t nb_tx_desc, unsigned int socket_id, const struct rte_eth_txconf *tx_conf); static uint16_t avp_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts); static uint16_t avp_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts); static uint16_t avp_xmit_scattered_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts); static uint16_t avp_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts); static void avp_dev_rx_queue_release(void *rxq); static void avp_dev_tx_queue_release(void *txq); static int avp_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats); static void avp_dev_stats_reset(struct rte_eth_dev *dev); #define AVP_MAX_RX_BURST 64 #define AVP_MAX_TX_BURST 64 #define AVP_MAX_MAC_ADDRS 1 #define AVP_MIN_RX_BUFSIZE ETHER_MIN_LEN /* * Defines the number of microseconds to wait before checking the response * queue for completion. */ #define AVP_REQUEST_DELAY_USECS (5000) /* * Defines the number times to check the response queue for completion before * declaring a timeout. */ #define AVP_MAX_REQUEST_RETRY (100) /* Defines the current PCI driver version number */ #define AVP_DPDK_DRIVER_VERSION RTE_AVP_CURRENT_GUEST_VERSION /* * The set of PCI devices this driver supports */ static const struct rte_pci_id pci_id_avp_map[] = { { .vendor_id = RTE_AVP_PCI_VENDOR_ID, .device_id = RTE_AVP_PCI_DEVICE_ID, .subsystem_vendor_id = RTE_AVP_PCI_SUB_VENDOR_ID, .subsystem_device_id = RTE_AVP_PCI_SUB_DEVICE_ID, .class_id = RTE_CLASS_ANY_ID, }, { .vendor_id = 0, /* sentinel */ }, }; /* * dev_ops for avp, bare necessities for basic operation */ static const struct eth_dev_ops avp_eth_dev_ops = { .dev_configure = avp_dev_configure, .dev_start = avp_dev_start, .dev_stop = avp_dev_stop, .dev_close = avp_dev_close, .dev_infos_get = avp_dev_info_get, .vlan_offload_set = avp_vlan_offload_set, .stats_get = avp_dev_stats_get, .stats_reset = avp_dev_stats_reset, .link_update = avp_dev_link_update, .promiscuous_enable = avp_dev_promiscuous_enable, .promiscuous_disable = avp_dev_promiscuous_disable, .rx_queue_setup = avp_dev_rx_queue_setup, .rx_queue_release = avp_dev_rx_queue_release, .tx_queue_setup = avp_dev_tx_queue_setup, .tx_queue_release = avp_dev_tx_queue_release, }; /**@{ AVP device flags */ #define AVP_F_PROMISC (1 << 1) #define AVP_F_CONFIGURED (1 << 2) #define AVP_F_LINKUP (1 << 3) #define AVP_F_DETACHED (1 << 4) /**@} */ /* Ethernet device validation marker */ #define AVP_ETHDEV_MAGIC 0x92972862 /* * Defines the AVP device attributes which are attached to an RTE ethernet * device */ struct avp_dev { uint32_t magic; /**< Memory validation marker */ uint64_t device_id; /**< Unique system identifier */ struct ether_addr ethaddr; /**< Host specified MAC address */ struct rte_eth_dev_data *dev_data; /**< Back pointer to ethernet device data */ volatile uint32_t flags; /**< Device operational flags */ uint16_t port_id; /**< Ethernet port identifier */ struct rte_mempool *pool; /**< pkt mbuf mempool */ unsigned int guest_mbuf_size; /**< local pool mbuf size */ unsigned int host_mbuf_size; /**< host mbuf size */ unsigned int max_rx_pkt_len; /**< maximum receive unit */ uint32_t host_features; /**< Supported feature bitmap */ uint32_t features; /**< Enabled feature bitmap */ unsigned int num_tx_queues; /**< Negotiated number of transmit queues */ unsigned int max_tx_queues; /**< Maximum number of transmit queues */ unsigned int num_rx_queues; /**< Negotiated number of receive queues */ unsigned int max_rx_queues; /**< Maximum number of receive queues */ struct rte_avp_fifo *tx_q[RTE_AVP_MAX_QUEUES]; /**< TX queue */ struct rte_avp_fifo *rx_q[RTE_AVP_MAX_QUEUES]; /**< RX queue */ struct rte_avp_fifo *alloc_q[RTE_AVP_MAX_QUEUES]; /**< Allocated mbufs queue */ struct rte_avp_fifo *free_q[RTE_AVP_MAX_QUEUES]; /**< To be freed mbufs queue */ /* mutual exclusion over the 'flag' and 'resp_q/req_q' fields */ rte_spinlock_t lock; /* For request & response */ struct rte_avp_fifo *req_q; /**< Request queue */ struct rte_avp_fifo *resp_q; /**< Response queue */ void *host_sync_addr; /**< (host) Req/Resp Mem address */ void *sync_addr; /**< Req/Resp Mem address */ void *host_mbuf_addr; /**< (host) MBUF pool start address */ void *mbuf_addr; /**< MBUF pool start address */ } __rte_cache_aligned; /* RTE ethernet private data */ struct avp_adapter { struct avp_dev avp; } __rte_cache_aligned; /* 32-bit MMIO register write */ #define AVP_WRITE32(_value, _addr) rte_write32_relaxed((_value), (_addr)) /* 32-bit MMIO register read */ #define AVP_READ32(_addr) rte_read32_relaxed((_addr)) /* Macro to cast the ethernet device private data to a AVP object */ #define AVP_DEV_PRIVATE_TO_HW(adapter) \ (&((struct avp_adapter *)adapter)->avp) /* * Defines the structure of a AVP device queue for the purpose of handling the * receive and transmit burst callback functions */ struct avp_queue { struct rte_eth_dev_data *dev_data; /**< Backpointer to ethernet device data */ struct avp_dev *avp; /**< Backpointer to AVP device */ uint16_t queue_id; /**< Queue identifier used for indexing current queue */ uint16_t queue_base; /**< Base queue identifier for queue servicing */ uint16_t queue_limit; /**< Maximum queue identifier for queue servicing */ uint64_t packets; uint64_t bytes; uint64_t errors; }; /* send a request and wait for a response * * @warning must be called while holding the avp->lock spinlock. */ static int avp_dev_process_request(struct avp_dev *avp, struct rte_avp_request *request) { unsigned int retry = AVP_MAX_REQUEST_RETRY; void *resp_addr = NULL; unsigned int count; int ret; PMD_DRV_LOG(DEBUG, "Sending request %u to host\n", request->req_id); request->result = -ENOTSUP; /* Discard any stale responses before starting a new request */ while (avp_fifo_get(avp->resp_q, (void **)&resp_addr, 1)) PMD_DRV_LOG(DEBUG, "Discarding stale response\n"); rte_memcpy(avp->sync_addr, request, sizeof(*request)); count = avp_fifo_put(avp->req_q, &avp->host_sync_addr, 1); if (count < 1) { PMD_DRV_LOG(ERR, "Cannot send request %u to host\n", request->req_id); ret = -EBUSY; goto done; } while (retry--) { /* wait for a response */ usleep(AVP_REQUEST_DELAY_USECS); count = avp_fifo_count(avp->resp_q); if (count >= 1) { /* response received */ break; } if ((count < 1) && (retry == 0)) { PMD_DRV_LOG(ERR, "Timeout while waiting for a response for %u\n", request->req_id); ret = -ETIME; goto done; } } /* retrieve the response */ count = avp_fifo_get(avp->resp_q, (void **)&resp_addr, 1); if ((count != 1) || (resp_addr != avp->host_sync_addr)) { PMD_DRV_LOG(ERR, "Invalid response from host, count=%u resp=%p host_sync_addr=%p\n", count, resp_addr, avp->host_sync_addr); ret = -ENODATA; goto done; } /* copy to user buffer */ rte_memcpy(request, avp->sync_addr, sizeof(*request)); ret = 0; PMD_DRV_LOG(DEBUG, "Result %d received for request %u\n", request->result, request->req_id); done: return ret; } static int avp_dev_ctrl_set_link_state(struct rte_eth_dev *eth_dev, unsigned int state) { struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); struct rte_avp_request request; int ret; /* setup a link state change request */ memset(&request, 0, sizeof(request)); request.req_id = RTE_AVP_REQ_CFG_NETWORK_IF; request.if_up = state; ret = avp_dev_process_request(avp, &request); return ret == 0 ? request.result : ret; } static int avp_dev_ctrl_set_config(struct rte_eth_dev *eth_dev, struct rte_avp_device_config *config) { struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); struct rte_avp_request request; int ret; /* setup a configure request */ memset(&request, 0, sizeof(request)); request.req_id = RTE_AVP_REQ_CFG_DEVICE; memcpy(&request.config, config, sizeof(request.config)); ret = avp_dev_process_request(avp, &request); return ret == 0 ? request.result : ret; } static int avp_dev_ctrl_shutdown(struct rte_eth_dev *eth_dev) { struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); struct rte_avp_request request; int ret; /* setup a shutdown request */ memset(&request, 0, sizeof(request)); request.req_id = RTE_AVP_REQ_SHUTDOWN_DEVICE; ret = avp_dev_process_request(avp, &request); return ret == 0 ? request.result : ret; } /* translate from host mbuf virtual address to guest virtual address */ static inline void * avp_dev_translate_buffer(struct avp_dev *avp, void *host_mbuf_address) { return RTE_PTR_ADD(RTE_PTR_SUB(host_mbuf_address, (uintptr_t)avp->host_mbuf_addr), (uintptr_t)avp->mbuf_addr); } /* translate from host physical address to guest virtual address */ static void * avp_dev_translate_address(struct rte_eth_dev *eth_dev, rte_iova_t host_phys_addr) { struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); struct rte_mem_resource *resource; struct rte_avp_memmap_info *info; struct rte_avp_memmap *map; off_t offset; void *addr; unsigned int i; addr = pci_dev->mem_resource[RTE_AVP_PCI_MEMORY_BAR].addr; resource = &pci_dev->mem_resource[RTE_AVP_PCI_MEMMAP_BAR]; info = (struct rte_avp_memmap_info *)resource->addr; offset = 0; for (i = 0; i < info->nb_maps; i++) { /* search all segments looking for a matching address */ map = &info->maps[i]; if ((host_phys_addr >= map->phys_addr) && (host_phys_addr < (map->phys_addr + map->length))) { /* address is within this segment */ offset += (host_phys_addr - map->phys_addr); addr = RTE_PTR_ADD(addr, (uintptr_t)offset); PMD_DRV_LOG(DEBUG, "Translating host physical 0x%" PRIx64 " to guest virtual 0x%p\n", host_phys_addr, addr); return addr; } offset += map->length; } return NULL; } /* verify that the incoming device version is compatible with our version */ static int avp_dev_version_check(uint32_t version) { uint32_t driver = RTE_AVP_STRIP_MINOR_VERSION(AVP_DPDK_DRIVER_VERSION); uint32_t device = RTE_AVP_STRIP_MINOR_VERSION(version); if (device <= driver) { /* the host driver version is less than or equal to ours */ return 0; } return 1; } /* verify that memory regions have expected version and validation markers */ static int avp_dev_check_regions(struct rte_eth_dev *eth_dev) { struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); struct rte_avp_memmap_info *memmap; struct rte_avp_device_info *info; struct rte_mem_resource *resource; unsigned int i; /* Dump resource info for debug */ for (i = 0; i < PCI_MAX_RESOURCE; i++) { resource = &pci_dev->mem_resource[i]; if ((resource->phys_addr == 0) || (resource->len == 0)) continue; PMD_DRV_LOG(DEBUG, "resource[%u]: phys=0x%" PRIx64 " len=%" PRIu64 " addr=%p\n", i, resource->phys_addr, resource->len, resource->addr); switch (i) { case RTE_AVP_PCI_MEMMAP_BAR: memmap = (struct rte_avp_memmap_info *)resource->addr; if ((memmap->magic != RTE_AVP_MEMMAP_MAGIC) || (memmap->version != RTE_AVP_MEMMAP_VERSION)) { PMD_DRV_LOG(ERR, "Invalid memmap magic 0x%08x and version %u\n", memmap->magic, memmap->version); return -EINVAL; } break; case RTE_AVP_PCI_DEVICE_BAR: info = (struct rte_avp_device_info *)resource->addr; if ((info->magic != RTE_AVP_DEVICE_MAGIC) || avp_dev_version_check(info->version)) { PMD_DRV_LOG(ERR, "Invalid device info magic 0x%08x or version 0x%08x > 0x%08x\n", info->magic, info->version, AVP_DPDK_DRIVER_VERSION); return -EINVAL; } break; case RTE_AVP_PCI_MEMORY_BAR: case RTE_AVP_PCI_MMIO_BAR: if (resource->addr == NULL) { PMD_DRV_LOG(ERR, "Missing address space for BAR%u\n", i); return -EINVAL; } break; case RTE_AVP_PCI_MSIX_BAR: default: /* no validation required */ break; } } return 0; } static int avp_dev_detach(struct rte_eth_dev *eth_dev) { struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); int ret; PMD_DRV_LOG(NOTICE, "Detaching port %u from AVP device 0x%" PRIx64 "\n", eth_dev->data->port_id, avp->device_id); rte_spinlock_lock(&avp->lock); if (avp->flags & AVP_F_DETACHED) { PMD_DRV_LOG(NOTICE, "port %u already detached\n", eth_dev->data->port_id); ret = 0; goto unlock; } /* shutdown the device first so the host stops sending us packets. */ ret = avp_dev_ctrl_shutdown(eth_dev); if (ret < 0) { PMD_DRV_LOG(ERR, "Failed to send/recv shutdown to host, ret=%d\n", ret); avp->flags &= ~AVP_F_DETACHED; goto unlock; } avp->flags |= AVP_F_DETACHED; rte_wmb(); /* wait for queues to acknowledge the presence of the detach flag */ rte_delay_ms(1); ret = 0; unlock: rte_spinlock_unlock(&avp->lock); return ret; } static void _avp_set_rx_queue_mappings(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id) { struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); struct avp_queue *rxq; uint16_t queue_count; uint16_t remainder; rxq = (struct avp_queue *)eth_dev->data->rx_queues[rx_queue_id]; /* * Must map all AVP fifos as evenly as possible between the configured * device queues. Each device queue will service a subset of the AVP * fifos. If there is an odd number of device queues the first set of * device queues will get the extra AVP fifos. */ queue_count = avp->num_rx_queues / eth_dev->data->nb_rx_queues; remainder = avp->num_rx_queues % eth_dev->data->nb_rx_queues; if (rx_queue_id < remainder) { /* these queues must service one extra FIFO */ rxq->queue_base = rx_queue_id * (queue_count + 1); rxq->queue_limit = rxq->queue_base + (queue_count + 1) - 1; } else { /* these queues service the regular number of FIFO */ rxq->queue_base = ((remainder * (queue_count + 1)) + ((rx_queue_id - remainder) * queue_count)); rxq->queue_limit = rxq->queue_base + queue_count - 1; } PMD_DRV_LOG(DEBUG, "rxq %u at %p base %u limit %u\n", rx_queue_id, rxq, rxq->queue_base, rxq->queue_limit); rxq->queue_id = rxq->queue_base; } static void _avp_set_queue_counts(struct rte_eth_dev *eth_dev) { struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); struct rte_avp_device_info *host_info; void *addr; addr = pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR].addr; host_info = (struct rte_avp_device_info *)addr; /* * the transmit direction is not negotiated beyond respecting the max * number of queues because the host can handle arbitrary guest tx * queues (host rx queues). */ avp->num_tx_queues = eth_dev->data->nb_tx_queues; /* * the receive direction is more restrictive. The host requires a * minimum number of guest rx queues (host tx queues) therefore * negotiate a value that is at least as large as the host minimum * requirement. If the host and guest values are not identical then a * mapping will be established in the receive_queue_setup function. */ avp->num_rx_queues = RTE_MAX(host_info->min_rx_queues, eth_dev->data->nb_rx_queues); PMD_DRV_LOG(DEBUG, "Requesting %u Tx and %u Rx queues from host\n", avp->num_tx_queues, avp->num_rx_queues); } static int avp_dev_attach(struct rte_eth_dev *eth_dev) { struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); struct rte_avp_device_config config; unsigned int i; int ret; PMD_DRV_LOG(NOTICE, "Attaching port %u to AVP device 0x%" PRIx64 "\n", eth_dev->data->port_id, avp->device_id); rte_spinlock_lock(&avp->lock); if (!(avp->flags & AVP_F_DETACHED)) { PMD_DRV_LOG(NOTICE, "port %u already attached\n", eth_dev->data->port_id); ret = 0; goto unlock; } /* * make sure that the detached flag is set prior to reconfiguring the * queues. */ avp->flags |= AVP_F_DETACHED; rte_wmb(); /* * re-run the device create utility which will parse the new host info * and setup the AVP device queue pointers. */ ret = avp_dev_create(RTE_ETH_DEV_TO_PCI(eth_dev), eth_dev); if (ret < 0) { PMD_DRV_LOG(ERR, "Failed to re-create AVP device, ret=%d\n", ret); goto unlock; } if (avp->flags & AVP_F_CONFIGURED) { /* * Update the receive queue mapping to handle cases where the * source and destination hosts have different queue * requirements. As long as the DETACHED flag is asserted the * queue table should not be referenced so it should be safe to * update it. */ _avp_set_queue_counts(eth_dev); for (i = 0; i < eth_dev->data->nb_rx_queues; i++) _avp_set_rx_queue_mappings(eth_dev, i); /* * Update the host with our config details so that it knows the * device is active. */ memset(&config, 0, sizeof(config)); config.device_id = avp->device_id; config.driver_type = RTE_AVP_DRIVER_TYPE_DPDK; config.driver_version = AVP_DPDK_DRIVER_VERSION; config.features = avp->features; config.num_tx_queues = avp->num_tx_queues; config.num_rx_queues = avp->num_rx_queues; config.if_up = !!(avp->flags & AVP_F_LINKUP); ret = avp_dev_ctrl_set_config(eth_dev, &config); if (ret < 0) { PMD_DRV_LOG(ERR, "Config request failed by host, ret=%d\n", ret); goto unlock; } } rte_wmb(); avp->flags &= ~AVP_F_DETACHED; ret = 0; unlock: rte_spinlock_unlock(&avp->lock); return ret; } static void avp_dev_interrupt_handler(void *data) { struct rte_eth_dev *eth_dev = data; struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr; uint32_t status, value; int ret; if (registers == NULL) rte_panic("no mapped MMIO register space\n"); /* read the interrupt status register * note: this register clears on read so all raised interrupts must be * handled or remembered for later processing */ status = AVP_READ32( RTE_PTR_ADD(registers, RTE_AVP_INTERRUPT_STATUS_OFFSET)); if (status & RTE_AVP_MIGRATION_INTERRUPT_MASK) { /* handle interrupt based on current status */ value = AVP_READ32( RTE_PTR_ADD(registers, RTE_AVP_MIGRATION_STATUS_OFFSET)); switch (value) { case RTE_AVP_MIGRATION_DETACHED: ret = avp_dev_detach(eth_dev); break; case RTE_AVP_MIGRATION_ATTACHED: ret = avp_dev_attach(eth_dev); break; default: PMD_DRV_LOG(ERR, "unexpected migration status, status=%u\n", value); ret = -EINVAL; } /* acknowledge the request by writing out our current status */ value = (ret == 0 ? value : RTE_AVP_MIGRATION_ERROR); AVP_WRITE32(value, RTE_PTR_ADD(registers, RTE_AVP_MIGRATION_ACK_OFFSET)); PMD_DRV_LOG(NOTICE, "AVP migration interrupt handled\n"); } if (status & ~RTE_AVP_MIGRATION_INTERRUPT_MASK) PMD_DRV_LOG(WARNING, "AVP unexpected interrupt, status=0x%08x\n", status); /* re-enable UIO interrupt handling */ ret = rte_intr_enable(&pci_dev->intr_handle); if (ret < 0) { PMD_DRV_LOG(ERR, "Failed to re-enable UIO interrupts, ret=%d\n", ret); /* continue */ } } static int avp_dev_enable_interrupts(struct rte_eth_dev *eth_dev) { struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr; int ret; if (registers == NULL) return -EINVAL; /* enable UIO interrupt handling */ ret = rte_intr_enable(&pci_dev->intr_handle); if (ret < 0) { PMD_DRV_LOG(ERR, "Failed to enable UIO interrupts, ret=%d\n", ret); return ret; } /* inform the device that all interrupts are enabled */ AVP_WRITE32(RTE_AVP_APP_INTERRUPTS_MASK, RTE_PTR_ADD(registers, RTE_AVP_INTERRUPT_MASK_OFFSET)); return 0; } static int avp_dev_disable_interrupts(struct rte_eth_dev *eth_dev) { struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr; int ret; if (registers == NULL) return 0; /* inform the device that all interrupts are disabled */ AVP_WRITE32(RTE_AVP_NO_INTERRUPTS_MASK, RTE_PTR_ADD(registers, RTE_AVP_INTERRUPT_MASK_OFFSET)); /* enable UIO interrupt handling */ ret = rte_intr_disable(&pci_dev->intr_handle); if (ret < 0) { PMD_DRV_LOG(ERR, "Failed to disable UIO interrupts, ret=%d\n", ret); return ret; } return 0; } static int avp_dev_setup_interrupts(struct rte_eth_dev *eth_dev) { struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); int ret; /* register a callback handler with UIO for interrupt notifications */ ret = rte_intr_callback_register(&pci_dev->intr_handle, avp_dev_interrupt_handler, (void *)eth_dev); if (ret < 0) { PMD_DRV_LOG(ERR, "Failed to register UIO interrupt callback, ret=%d\n", ret); return ret; } /* enable interrupt processing */ return avp_dev_enable_interrupts(eth_dev); } static int avp_dev_migration_pending(struct rte_eth_dev *eth_dev) { struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr; uint32_t value; if (registers == NULL) return 0; value = AVP_READ32(RTE_PTR_ADD(registers, RTE_AVP_MIGRATION_STATUS_OFFSET)); if (value == RTE_AVP_MIGRATION_DETACHED) { /* migration is in progress; ack it if we have not already */ AVP_WRITE32(value, RTE_PTR_ADD(registers, RTE_AVP_MIGRATION_ACK_OFFSET)); return 1; } return 0; } /* * create a AVP device using the supplied device info by first translating it * to guest address space(s). */ static int avp_dev_create(struct rte_pci_device *pci_dev, struct rte_eth_dev *eth_dev) { struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); struct rte_avp_device_info *host_info; struct rte_mem_resource *resource; unsigned int i; resource = &pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR]; if (resource->addr == NULL) { PMD_DRV_LOG(ERR, "BAR%u is not mapped\n", RTE_AVP_PCI_DEVICE_BAR); return -EFAULT; } host_info = (struct rte_avp_device_info *)resource->addr; if ((host_info->magic != RTE_AVP_DEVICE_MAGIC) || avp_dev_version_check(host_info->version)) { PMD_DRV_LOG(ERR, "Invalid AVP PCI device, magic 0x%08x version 0x%08x > 0x%08x\n", host_info->magic, host_info->version, AVP_DPDK_DRIVER_VERSION); return -EINVAL; } PMD_DRV_LOG(DEBUG, "AVP host device is v%u.%u.%u\n", RTE_AVP_GET_RELEASE_VERSION(host_info->version), RTE_AVP_GET_MAJOR_VERSION(host_info->version), RTE_AVP_GET_MINOR_VERSION(host_info->version)); PMD_DRV_LOG(DEBUG, "AVP host supports %u to %u TX queue(s)\n", host_info->min_tx_queues, host_info->max_tx_queues); PMD_DRV_LOG(DEBUG, "AVP host supports %u to %u RX queue(s)\n", host_info->min_rx_queues, host_info->max_rx_queues); PMD_DRV_LOG(DEBUG, "AVP host supports features 0x%08x\n", host_info->features); if (avp->magic != AVP_ETHDEV_MAGIC) { /* * First time initialization (i.e., not during a VM * migration) */ memset(avp, 0, sizeof(*avp)); avp->magic = AVP_ETHDEV_MAGIC; avp->dev_data = eth_dev->data; avp->port_id = eth_dev->data->port_id; avp->host_mbuf_size = host_info->mbuf_size; avp->host_features = host_info->features; rte_spinlock_init(&avp->lock); memcpy(&avp->ethaddr.addr_bytes[0], host_info->ethaddr, ETHER_ADDR_LEN); /* adjust max values to not exceed our max */ avp->max_tx_queues = RTE_MIN(host_info->max_tx_queues, RTE_AVP_MAX_QUEUES); avp->max_rx_queues = RTE_MIN(host_info->max_rx_queues, RTE_AVP_MAX_QUEUES); } else { /* Re-attaching during migration */ /* TODO... requires validation of host values */ if ((host_info->features & avp->features) != avp->features) { PMD_DRV_LOG(ERR, "AVP host features mismatched; 0x%08x, host=0x%08x\n", avp->features, host_info->features); /* this should not be possible; continue for now */ } } /* the device id is allowed to change over migrations */ avp->device_id = host_info->device_id; /* translate incoming host addresses to guest address space */ PMD_DRV_LOG(DEBUG, "AVP first host tx queue at 0x%" PRIx64 "\n", host_info->tx_phys); PMD_DRV_LOG(DEBUG, "AVP first host alloc queue at 0x%" PRIx64 "\n", host_info->alloc_phys); for (i = 0; i < avp->max_tx_queues; i++) { avp->tx_q[i] = avp_dev_translate_address(eth_dev, host_info->tx_phys + (i * host_info->tx_size)); avp->alloc_q[i] = avp_dev_translate_address(eth_dev, host_info->alloc_phys + (i * host_info->alloc_size)); } PMD_DRV_LOG(DEBUG, "AVP first host rx queue at 0x%" PRIx64 "\n", host_info->rx_phys); PMD_DRV_LOG(DEBUG, "AVP first host free queue at 0x%" PRIx64 "\n", host_info->free_phys); for (i = 0; i < avp->max_rx_queues; i++) { avp->rx_q[i] = avp_dev_translate_address(eth_dev, host_info->rx_phys + (i * host_info->rx_size)); avp->free_q[i] = avp_dev_translate_address(eth_dev, host_info->free_phys + (i * host_info->free_size)); } PMD_DRV_LOG(DEBUG, "AVP host request queue at 0x%" PRIx64 "\n", host_info->req_phys); PMD_DRV_LOG(DEBUG, "AVP host response queue at 0x%" PRIx64 "\n", host_info->resp_phys); PMD_DRV_LOG(DEBUG, "AVP host sync address at 0x%" PRIx64 "\n", host_info->sync_phys); PMD_DRV_LOG(DEBUG, "AVP host mbuf address at 0x%" PRIx64 "\n", host_info->mbuf_phys); avp->req_q = avp_dev_translate_address(eth_dev, host_info->req_phys); avp->resp_q = avp_dev_translate_address(eth_dev, host_info->resp_phys); avp->sync_addr = avp_dev_translate_address(eth_dev, host_info->sync_phys); avp->mbuf_addr = avp_dev_translate_address(eth_dev, host_info->mbuf_phys); /* * store the host mbuf virtual address so that we can calculate * relative offsets for each mbuf as they are processed */ avp->host_mbuf_addr = host_info->mbuf_va; avp->host_sync_addr = host_info->sync_va; /* * store the maximum packet length that is supported by the host. */ avp->max_rx_pkt_len = host_info->max_rx_pkt_len; PMD_DRV_LOG(DEBUG, "AVP host max receive packet length is %u\n", host_info->max_rx_pkt_len); return 0; } /* * This function is based on probe() function in avp_pci.c * It returns 0 on success. */ static int eth_avp_dev_init(struct rte_eth_dev *eth_dev) { struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); struct rte_pci_device *pci_dev; int ret; pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); eth_dev->dev_ops = &avp_eth_dev_ops; eth_dev->rx_pkt_burst = &avp_recv_pkts; eth_dev->tx_pkt_burst = &avp_xmit_pkts; if (rte_eal_process_type() != RTE_PROC_PRIMARY) { /* * no setup required on secondary processes. All data is saved * in dev_private by the primary process. All resource should * be mapped to the same virtual address so all pointers should * be valid. */ if (eth_dev->data->scattered_rx) { PMD_DRV_LOG(NOTICE, "AVP device configured for chained mbufs\n"); eth_dev->rx_pkt_burst = avp_recv_scattered_pkts; eth_dev->tx_pkt_burst = avp_xmit_scattered_pkts; } return 0; } rte_eth_copy_pci_info(eth_dev, pci_dev); /* Check current migration status */ if (avp_dev_migration_pending(eth_dev)) { PMD_DRV_LOG(ERR, "VM live migration operation in progress\n"); return -EBUSY; } /* Check BAR resources */ ret = avp_dev_check_regions(eth_dev); if (ret < 0) { PMD_DRV_LOG(ERR, "Failed to validate BAR resources, ret=%d\n", ret); return ret; } /* Enable interrupts */ ret = avp_dev_setup_interrupts(eth_dev); if (ret < 0) { PMD_DRV_LOG(ERR, "Failed to enable interrupts, ret=%d\n", ret); return ret; } /* Handle each subtype */ ret = avp_dev_create(pci_dev, eth_dev); if (ret < 0) { PMD_DRV_LOG(ERR, "Failed to create device, ret=%d\n", ret); return ret; } /* Allocate memory for storing MAC addresses */ eth_dev->data->mac_addrs = rte_zmalloc("avp_ethdev", ETHER_ADDR_LEN, 0); if (eth_dev->data->mac_addrs == NULL) { PMD_DRV_LOG(ERR, "Failed to allocate %d bytes needed to store MAC addresses\n", ETHER_ADDR_LEN); return -ENOMEM; } /* Get a mac from device config */ ether_addr_copy(&avp->ethaddr, ð_dev->data->mac_addrs[0]); return 0; } static int eth_avp_dev_uninit(struct rte_eth_dev *eth_dev) { int ret; if (rte_eal_process_type() != RTE_PROC_PRIMARY) return -EPERM; if (eth_dev->data == NULL) return 0; ret = avp_dev_disable_interrupts(eth_dev); if (ret != 0) { PMD_DRV_LOG(ERR, "Failed to disable interrupts, ret=%d\n", ret); return ret; } if (eth_dev->data->mac_addrs != NULL) { rte_free(eth_dev->data->mac_addrs); eth_dev->data->mac_addrs = NULL; } return 0; } static int eth_avp_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, struct rte_pci_device *pci_dev) { return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct avp_adapter), eth_avp_dev_init); } static int eth_avp_pci_remove(struct rte_pci_device *pci_dev) { return rte_eth_dev_pci_generic_remove(pci_dev, eth_avp_dev_uninit); } static struct rte_pci_driver rte_avp_pmd = { .id_table = pci_id_avp_map, .drv_flags = RTE_PCI_DRV_NEED_MAPPING, .probe = eth_avp_pci_probe, .remove = eth_avp_pci_remove, }; static int avp_dev_enable_scattered(struct rte_eth_dev *eth_dev, struct avp_dev *avp) { unsigned int max_rx_pkt_len; max_rx_pkt_len = eth_dev->data->dev_conf.rxmode.max_rx_pkt_len; if ((max_rx_pkt_len > avp->guest_mbuf_size) || (max_rx_pkt_len > avp->host_mbuf_size)) { /* * If the guest MTU is greater than either the host or guest * buffers then chained mbufs have to be enabled in the TX * direction. It is assumed that the application will not need * to send packets larger than their max_rx_pkt_len (MRU). */ return 1; } if ((avp->max_rx_pkt_len > avp->guest_mbuf_size) || (avp->max_rx_pkt_len > avp->host_mbuf_size)) { /* * If the host MRU is greater than its own mbuf size or the * guest mbuf size then chained mbufs have to be enabled in the * RX direction. */ return 1; } return 0; } static int avp_dev_rx_queue_setup(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id, uint16_t nb_rx_desc, unsigned int socket_id, const struct rte_eth_rxconf *rx_conf, struct rte_mempool *pool) { struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); struct rte_pktmbuf_pool_private *mbp_priv; struct avp_queue *rxq; if (rx_queue_id >= eth_dev->data->nb_rx_queues) { PMD_DRV_LOG(ERR, "RX queue id is out of range: rx_queue_id=%u, nb_rx_queues=%u\n", rx_queue_id, eth_dev->data->nb_rx_queues); return -EINVAL; } /* Save mbuf pool pointer */ avp->pool = pool; /* Save the local mbuf size */ mbp_priv = rte_mempool_get_priv(pool); avp->guest_mbuf_size = (uint16_t)(mbp_priv->mbuf_data_room_size); avp->guest_mbuf_size -= RTE_PKTMBUF_HEADROOM; if (avp_dev_enable_scattered(eth_dev, avp)) { if (!eth_dev->data->scattered_rx) { PMD_DRV_LOG(NOTICE, "AVP device configured for chained mbufs\n"); eth_dev->data->scattered_rx = 1; eth_dev->rx_pkt_burst = avp_recv_scattered_pkts; eth_dev->tx_pkt_burst = avp_xmit_scattered_pkts; } } PMD_DRV_LOG(DEBUG, "AVP max_rx_pkt_len=(%u,%u) mbuf_size=(%u,%u)\n", avp->max_rx_pkt_len, eth_dev->data->dev_conf.rxmode.max_rx_pkt_len, avp->host_mbuf_size, avp->guest_mbuf_size); /* allocate a queue object */ rxq = rte_zmalloc_socket("ethdev RX queue", sizeof(struct avp_queue), RTE_CACHE_LINE_SIZE, socket_id); if (rxq == NULL) { PMD_DRV_LOG(ERR, "Failed to allocate new Rx queue object\n"); return -ENOMEM; } /* save back pointers to AVP and Ethernet devices */ rxq->avp = avp; rxq->dev_data = eth_dev->data; eth_dev->data->rx_queues[rx_queue_id] = (void *)rxq; /* setup the queue receive mapping for the current queue. */ _avp_set_rx_queue_mappings(eth_dev, rx_queue_id); PMD_DRV_LOG(DEBUG, "Rx queue %u setup at %p\n", rx_queue_id, rxq); (void)nb_rx_desc; (void)rx_conf; return 0; } static int avp_dev_tx_queue_setup(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id, uint16_t nb_tx_desc, unsigned int socket_id, const struct rte_eth_txconf *tx_conf) { struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); struct avp_queue *txq; if (tx_queue_id >= eth_dev->data->nb_tx_queues) { PMD_DRV_LOG(ERR, "TX queue id is out of range: tx_queue_id=%u, nb_tx_queues=%u\n", tx_queue_id, eth_dev->data->nb_tx_queues); return -EINVAL; } /* allocate a queue object */ txq = rte_zmalloc_socket("ethdev TX queue", sizeof(struct avp_queue), RTE_CACHE_LINE_SIZE, socket_id); if (txq == NULL) { PMD_DRV_LOG(ERR, "Failed to allocate new Tx queue object\n"); return -ENOMEM; } /* only the configured set of transmit queues are used */ txq->queue_id = tx_queue_id; txq->queue_base = tx_queue_id; txq->queue_limit = tx_queue_id; /* save back pointers to AVP and Ethernet devices */ txq->avp = avp; txq->dev_data = eth_dev->data; eth_dev->data->tx_queues[tx_queue_id] = (void *)txq; PMD_DRV_LOG(DEBUG, "Tx queue %u setup at %p\n", tx_queue_id, txq); (void)nb_tx_desc; (void)tx_conf; return 0; } static inline int _avp_cmp_ether_addr(struct ether_addr *a, struct ether_addr *b) { uint16_t *_a = (uint16_t *)&a->addr_bytes[0]; uint16_t *_b = (uint16_t *)&b->addr_bytes[0]; return (_a[0] ^ _b[0]) | (_a[1] ^ _b[1]) | (_a[2] ^ _b[2]); } static inline int _avp_mac_filter(struct avp_dev *avp, struct rte_mbuf *m) { struct ether_hdr *eth = rte_pktmbuf_mtod(m, struct ether_hdr *); if (likely(_avp_cmp_ether_addr(&avp->ethaddr, ð->d_addr) == 0)) { /* allow all packets destined to our address */ return 0; } if (likely(is_broadcast_ether_addr(ð->d_addr))) { /* allow all broadcast packets */ return 0; } if (likely(is_multicast_ether_addr(ð->d_addr))) { /* allow all multicast packets */ return 0; } if (avp->flags & AVP_F_PROMISC) { /* allow all packets when in promiscuous mode */ return 0; } return -1; } #ifdef RTE_LIBRTE_AVP_DEBUG_BUFFERS static inline void __avp_dev_buffer_sanity_check(struct avp_dev *avp, struct rte_avp_desc *buf) { struct rte_avp_desc *first_buf; struct rte_avp_desc *pkt_buf; unsigned int pkt_len; unsigned int nb_segs; void *pkt_data; unsigned int i; first_buf = avp_dev_translate_buffer(avp, buf); i = 0; pkt_len = 0; nb_segs = first_buf->nb_segs; do { /* Adjust pointers for guest addressing */ pkt_buf = avp_dev_translate_buffer(avp, buf); if (pkt_buf == NULL) rte_panic("bad buffer: segment %u has an invalid address %p\n", i, buf); pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data); if (pkt_data == NULL) rte_panic("bad buffer: segment %u has a NULL data pointer\n", i); if (pkt_buf->data_len == 0) rte_panic("bad buffer: segment %u has 0 data length\n", i); pkt_len += pkt_buf->data_len; nb_segs--; i++; } while (nb_segs && (buf = pkt_buf->next) != NULL); if (nb_segs != 0) rte_panic("bad buffer: expected %u segments found %u\n", first_buf->nb_segs, (first_buf->nb_segs - nb_segs)); if (pkt_len != first_buf->pkt_len) rte_panic("bad buffer: expected length %u found %u\n", first_buf->pkt_len, pkt_len); } #define avp_dev_buffer_sanity_check(a, b) \ __avp_dev_buffer_sanity_check((a), (b)) #else /* RTE_LIBRTE_AVP_DEBUG_BUFFERS */ #define avp_dev_buffer_sanity_check(a, b) do {} while (0) #endif /* * Copy a host buffer chain to a set of mbufs. This function assumes that * there exactly the required number of mbufs to copy all source bytes. */ static inline struct rte_mbuf * avp_dev_copy_from_buffers(struct avp_dev *avp, struct rte_avp_desc *buf, struct rte_mbuf **mbufs, unsigned int count) { struct rte_mbuf *m_previous = NULL; struct rte_avp_desc *pkt_buf; unsigned int total_length = 0; unsigned int copy_length; unsigned int src_offset; struct rte_mbuf *m; uint16_t ol_flags; uint16_t vlan_tci; void *pkt_data; unsigned int i; avp_dev_buffer_sanity_check(avp, buf); /* setup the first source buffer */ pkt_buf = avp_dev_translate_buffer(avp, buf); pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data); total_length = pkt_buf->pkt_len; src_offset = 0; if (pkt_buf->ol_flags & RTE_AVP_RX_VLAN_PKT) { ol_flags = PKT_RX_VLAN; vlan_tci = pkt_buf->vlan_tci; } else { ol_flags = 0; vlan_tci = 0; } for (i = 0; (i < count) && (buf != NULL); i++) { /* fill each destination buffer */ m = mbufs[i]; if (m_previous != NULL) m_previous->next = m; m_previous = m; do { /* * Copy as many source buffers as will fit in the * destination buffer. */ copy_length = RTE_MIN((avp->guest_mbuf_size - rte_pktmbuf_data_len(m)), (pkt_buf->data_len - src_offset)); rte_memcpy(RTE_PTR_ADD(rte_pktmbuf_mtod(m, void *), rte_pktmbuf_data_len(m)), RTE_PTR_ADD(pkt_data, src_offset), copy_length); rte_pktmbuf_data_len(m) += copy_length; src_offset += copy_length; if (likely(src_offset == pkt_buf->data_len)) { /* need a new source buffer */ buf = pkt_buf->next; if (buf != NULL) { pkt_buf = avp_dev_translate_buffer( avp, buf); pkt_data = avp_dev_translate_buffer( avp, pkt_buf->data); src_offset = 0; } } if (unlikely(rte_pktmbuf_data_len(m) == avp->guest_mbuf_size)) { /* need a new destination mbuf */ break; } } while (buf != NULL); } m = mbufs[0]; m->ol_flags = ol_flags; m->nb_segs = count; rte_pktmbuf_pkt_len(m) = total_length; m->vlan_tci = vlan_tci; __rte_mbuf_sanity_check(m, 1); return m; } static uint16_t avp_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { struct avp_queue *rxq = (struct avp_queue *)rx_queue; struct rte_avp_desc *avp_bufs[AVP_MAX_RX_BURST]; struct rte_mbuf *mbufs[RTE_AVP_MAX_MBUF_SEGMENTS]; struct avp_dev *avp = rxq->avp; struct rte_avp_desc *pkt_buf; struct rte_avp_fifo *free_q; struct rte_avp_fifo *rx_q; struct rte_avp_desc *buf; unsigned int count, avail, n; unsigned int guest_mbuf_size; struct rte_mbuf *m; unsigned int required; unsigned int buf_len; unsigned int port_id; unsigned int i; if (unlikely(avp->flags & AVP_F_DETACHED)) { /* VM live migration in progress */ return 0; } guest_mbuf_size = avp->guest_mbuf_size; port_id = avp->port_id; rx_q = avp->rx_q[rxq->queue_id]; free_q = avp->free_q[rxq->queue_id]; /* setup next queue to service */ rxq->queue_id = (rxq->queue_id < rxq->queue_limit) ? (rxq->queue_id + 1) : rxq->queue_base; /* determine how many slots are available in the free queue */ count = avp_fifo_free_count(free_q); /* determine how many packets are available in the rx queue */ avail = avp_fifo_count(rx_q); /* determine how many packets can be received */ count = RTE_MIN(count, avail); count = RTE_MIN(count, nb_pkts); count = RTE_MIN(count, (unsigned int)AVP_MAX_RX_BURST); if (unlikely(count == 0)) { /* no free buffers, or no buffers on the rx queue */ return 0; } /* retrieve pending packets */ n = avp_fifo_get(rx_q, (void **)&avp_bufs, count); PMD_RX_LOG(DEBUG, "Receiving %u packets from Rx queue at %p\n", count, rx_q); count = 0; for (i = 0; i < n; i++) { /* prefetch next entry while processing current one */ if (i + 1 < n) { pkt_buf = avp_dev_translate_buffer(avp, avp_bufs[i + 1]); rte_prefetch0(pkt_buf); } buf = avp_bufs[i]; /* Peek into the first buffer to determine the total length */ pkt_buf = avp_dev_translate_buffer(avp, buf); buf_len = pkt_buf->pkt_len; /* Allocate enough mbufs to receive the entire packet */ required = (buf_len + guest_mbuf_size - 1) / guest_mbuf_size; if (rte_pktmbuf_alloc_bulk(avp->pool, mbufs, required)) { rxq->dev_data->rx_mbuf_alloc_failed++; continue; } /* Copy the data from the buffers to our mbufs */ m = avp_dev_copy_from_buffers(avp, buf, mbufs, required); /* finalize mbuf */ m->port = port_id; if (_avp_mac_filter(avp, m) != 0) { /* silently discard packets not destined to our MAC */ rte_pktmbuf_free(m); continue; } /* return new mbuf to caller */ rx_pkts[count++] = m; rxq->bytes += buf_len; } rxq->packets += count; /* return the buffers to the free queue */ avp_fifo_put(free_q, (void **)&avp_bufs[0], n); return count; } static uint16_t avp_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { struct avp_queue *rxq = (struct avp_queue *)rx_queue; struct rte_avp_desc *avp_bufs[AVP_MAX_RX_BURST]; struct avp_dev *avp = rxq->avp; struct rte_avp_desc *pkt_buf; struct rte_avp_fifo *free_q; struct rte_avp_fifo *rx_q; unsigned int count, avail, n; unsigned int pkt_len; struct rte_mbuf *m; char *pkt_data; unsigned int i; if (unlikely(avp->flags & AVP_F_DETACHED)) { /* VM live migration in progress */ return 0; } rx_q = avp->rx_q[rxq->queue_id]; free_q = avp->free_q[rxq->queue_id]; /* setup next queue to service */ rxq->queue_id = (rxq->queue_id < rxq->queue_limit) ? (rxq->queue_id + 1) : rxq->queue_base; /* determine how many slots are available in the free queue */ count = avp_fifo_free_count(free_q); /* determine how many packets are available in the rx queue */ avail = avp_fifo_count(rx_q); /* determine how many packets can be received */ count = RTE_MIN(count, avail); count = RTE_MIN(count, nb_pkts); count = RTE_MIN(count, (unsigned int)AVP_MAX_RX_BURST); if (unlikely(count == 0)) { /* no free buffers, or no buffers on the rx queue */ return 0; } /* retrieve pending packets */ n = avp_fifo_get(rx_q, (void **)&avp_bufs, count); PMD_RX_LOG(DEBUG, "Receiving %u packets from Rx queue at %p\n", count, rx_q); count = 0; for (i = 0; i < n; i++) { /* prefetch next entry while processing current one */ if (i < n - 1) { pkt_buf = avp_dev_translate_buffer(avp, avp_bufs[i + 1]); rte_prefetch0(pkt_buf); } /* Adjust host pointers for guest addressing */ pkt_buf = avp_dev_translate_buffer(avp, avp_bufs[i]); pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data); pkt_len = pkt_buf->pkt_len; if (unlikely((pkt_len > avp->guest_mbuf_size) || (pkt_buf->nb_segs > 1))) { /* * application should be using the scattered receive * function */ rxq->errors++; continue; } /* process each packet to be transmitted */ m = rte_pktmbuf_alloc(avp->pool); if (unlikely(m == NULL)) { rxq->dev_data->rx_mbuf_alloc_failed++; continue; } /* copy data out of the host buffer to our buffer */ m->data_off = RTE_PKTMBUF_HEADROOM; rte_memcpy(rte_pktmbuf_mtod(m, void *), pkt_data, pkt_len); /* initialize the local mbuf */ rte_pktmbuf_data_len(m) = pkt_len; rte_pktmbuf_pkt_len(m) = pkt_len; m->port = avp->port_id; if (pkt_buf->ol_flags & RTE_AVP_RX_VLAN_PKT) { m->ol_flags = PKT_RX_VLAN; m->vlan_tci = pkt_buf->vlan_tci; } if (_avp_mac_filter(avp, m) != 0) { /* silently discard packets not destined to our MAC */ rte_pktmbuf_free(m); continue; } /* return new mbuf to caller */ rx_pkts[count++] = m; rxq->bytes += pkt_len; } rxq->packets += count; /* return the buffers to the free queue */ avp_fifo_put(free_q, (void **)&avp_bufs[0], n); return count; } /* * Copy a chained mbuf to a set of host buffers. This function assumes that * there are sufficient destination buffers to contain the entire source * packet. */ static inline uint16_t avp_dev_copy_to_buffers(struct avp_dev *avp, struct rte_mbuf *mbuf, struct rte_avp_desc **buffers, unsigned int count) { struct rte_avp_desc *previous_buf = NULL; struct rte_avp_desc *first_buf = NULL; struct rte_avp_desc *pkt_buf; struct rte_avp_desc *buf; size_t total_length; struct rte_mbuf *m; size_t copy_length; size_t src_offset; char *pkt_data; unsigned int i; __rte_mbuf_sanity_check(mbuf, 1); m = mbuf; src_offset = 0; total_length = rte_pktmbuf_pkt_len(m); for (i = 0; (i < count) && (m != NULL); i++) { /* fill each destination buffer */ buf = buffers[i]; if (i < count - 1) { /* prefetch next entry while processing this one */ pkt_buf = avp_dev_translate_buffer(avp, buffers[i + 1]); rte_prefetch0(pkt_buf); } /* Adjust pointers for guest addressing */ pkt_buf = avp_dev_translate_buffer(avp, buf); pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data); /* setup the buffer chain */ if (previous_buf != NULL) previous_buf->next = buf; else first_buf = pkt_buf; previous_buf = pkt_buf; do { /* * copy as many source mbuf segments as will fit in the * destination buffer. */ copy_length = RTE_MIN((avp->host_mbuf_size - pkt_buf->data_len), (rte_pktmbuf_data_len(m) - src_offset)); rte_memcpy(RTE_PTR_ADD(pkt_data, pkt_buf->data_len), RTE_PTR_ADD(rte_pktmbuf_mtod(m, void *), src_offset), copy_length); pkt_buf->data_len += copy_length; src_offset += copy_length; if (likely(src_offset == rte_pktmbuf_data_len(m))) { /* need a new source buffer */ m = m->next; src_offset = 0; } if (unlikely(pkt_buf->data_len == avp->host_mbuf_size)) { /* need a new destination buffer */ break; } } while (m != NULL); } first_buf->nb_segs = count; first_buf->pkt_len = total_length; if (mbuf->ol_flags & PKT_TX_VLAN_PKT) { first_buf->ol_flags |= RTE_AVP_TX_VLAN_PKT; first_buf->vlan_tci = mbuf->vlan_tci; } avp_dev_buffer_sanity_check(avp, buffers[0]); return total_length; } static uint16_t avp_xmit_scattered_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct rte_avp_desc *avp_bufs[(AVP_MAX_TX_BURST * RTE_AVP_MAX_MBUF_SEGMENTS)]; struct avp_queue *txq = (struct avp_queue *)tx_queue; struct rte_avp_desc *tx_bufs[AVP_MAX_TX_BURST]; struct avp_dev *avp = txq->avp; struct rte_avp_fifo *alloc_q; struct rte_avp_fifo *tx_q; unsigned int count, avail, n; unsigned int orig_nb_pkts; struct rte_mbuf *m; unsigned int required; unsigned int segments; unsigned int tx_bytes; unsigned int i; orig_nb_pkts = nb_pkts; if (unlikely(avp->flags & AVP_F_DETACHED)) { /* VM live migration in progress */ /* TODO ... buffer for X packets then drop? */ txq->errors += nb_pkts; return 0; } tx_q = avp->tx_q[txq->queue_id]; alloc_q = avp->alloc_q[txq->queue_id]; /* limit the number of transmitted packets to the max burst size */ if (unlikely(nb_pkts > AVP_MAX_TX_BURST)) nb_pkts = AVP_MAX_TX_BURST; /* determine how many buffers are available to copy into */ avail = avp_fifo_count(alloc_q); if (unlikely(avail > (AVP_MAX_TX_BURST * RTE_AVP_MAX_MBUF_SEGMENTS))) avail = AVP_MAX_TX_BURST * RTE_AVP_MAX_MBUF_SEGMENTS; /* determine how many slots are available in the transmit queue */ count = avp_fifo_free_count(tx_q); /* determine how many packets can be sent */ nb_pkts = RTE_MIN(count, nb_pkts); /* determine how many packets will fit in the available buffers */ count = 0; segments = 0; for (i = 0; i < nb_pkts; i++) { m = tx_pkts[i]; if (likely(i < (unsigned int)nb_pkts - 1)) { /* prefetch next entry while processing this one */ rte_prefetch0(tx_pkts[i + 1]); } required = (rte_pktmbuf_pkt_len(m) + avp->host_mbuf_size - 1) / avp->host_mbuf_size; if (unlikely((required == 0) || (required > RTE_AVP_MAX_MBUF_SEGMENTS))) break; else if (unlikely(required + segments > avail)) break; segments += required; count++; } nb_pkts = count; if (unlikely(nb_pkts == 0)) { /* no available buffers, or no space on the tx queue */ txq->errors += orig_nb_pkts; return 0; } PMD_TX_LOG(DEBUG, "Sending %u packets on Tx queue at %p\n", nb_pkts, tx_q); /* retrieve sufficient send buffers */ n = avp_fifo_get(alloc_q, (void **)&avp_bufs, segments); if (unlikely(n != segments)) { PMD_TX_LOG(DEBUG, "Failed to allocate buffers " "n=%u, segments=%u, orig=%u\n", n, segments, orig_nb_pkts); txq->errors += orig_nb_pkts; return 0; } tx_bytes = 0; count = 0; for (i = 0; i < nb_pkts; i++) { /* process each packet to be transmitted */ m = tx_pkts[i]; /* determine how many buffers are required for this packet */ required = (rte_pktmbuf_pkt_len(m) + avp->host_mbuf_size - 1) / avp->host_mbuf_size; tx_bytes += avp_dev_copy_to_buffers(avp, m, &avp_bufs[count], required); tx_bufs[i] = avp_bufs[count]; count += required; /* free the original mbuf */ rte_pktmbuf_free(m); } txq->packets += nb_pkts; txq->bytes += tx_bytes; #ifdef RTE_LIBRTE_AVP_DEBUG_BUFFERS for (i = 0; i < nb_pkts; i++) avp_dev_buffer_sanity_check(avp, tx_bufs[i]); #endif /* send the packets */ n = avp_fifo_put(tx_q, (void **)&tx_bufs[0], nb_pkts); if (unlikely(n != orig_nb_pkts)) txq->errors += (orig_nb_pkts - n); return n; } static uint16_t avp_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct avp_queue *txq = (struct avp_queue *)tx_queue; struct rte_avp_desc *avp_bufs[AVP_MAX_TX_BURST]; struct avp_dev *avp = txq->avp; struct rte_avp_desc *pkt_buf; struct rte_avp_fifo *alloc_q; struct rte_avp_fifo *tx_q; unsigned int count, avail, n; struct rte_mbuf *m; unsigned int pkt_len; unsigned int tx_bytes; char *pkt_data; unsigned int i; if (unlikely(avp->flags & AVP_F_DETACHED)) { /* VM live migration in progress */ /* TODO ... buffer for X packets then drop?! */ txq->errors++; return 0; } tx_q = avp->tx_q[txq->queue_id]; alloc_q = avp->alloc_q[txq->queue_id]; /* limit the number of transmitted packets to the max burst size */ if (unlikely(nb_pkts > AVP_MAX_TX_BURST)) nb_pkts = AVP_MAX_TX_BURST; /* determine how many buffers are available to copy into */ avail = avp_fifo_count(alloc_q); /* determine how many slots are available in the transmit queue */ count = avp_fifo_free_count(tx_q); /* determine how many packets can be sent */ count = RTE_MIN(count, avail); count = RTE_MIN(count, nb_pkts); if (unlikely(count == 0)) { /* no available buffers, or no space on the tx queue */ txq->errors += nb_pkts; return 0; } PMD_TX_LOG(DEBUG, "Sending %u packets on Tx queue at %p\n", count, tx_q); /* retrieve sufficient send buffers */ n = avp_fifo_get(alloc_q, (void **)&avp_bufs, count); if (unlikely(n != count)) { txq->errors++; return 0; } tx_bytes = 0; for (i = 0; i < count; i++) { /* prefetch next entry while processing the current one */ if (i < count - 1) { pkt_buf = avp_dev_translate_buffer(avp, avp_bufs[i + 1]); rte_prefetch0(pkt_buf); } /* process each packet to be transmitted */ m = tx_pkts[i]; /* Adjust pointers for guest addressing */ pkt_buf = avp_dev_translate_buffer(avp, avp_bufs[i]); pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data); pkt_len = rte_pktmbuf_pkt_len(m); if (unlikely((pkt_len > avp->guest_mbuf_size) || (pkt_len > avp->host_mbuf_size))) { /* * application should be using the scattered transmit * function; send it truncated to avoid the performance * hit of having to manage returning the already * allocated buffer to the free list. This should not * happen since the application should have set the * max_rx_pkt_len based on its MTU and it should be * policing its own packet sizes. */ txq->errors++; pkt_len = RTE_MIN(avp->guest_mbuf_size, avp->host_mbuf_size); } /* copy data out of our mbuf and into the AVP buffer */ rte_memcpy(pkt_data, rte_pktmbuf_mtod(m, void *), pkt_len); pkt_buf->pkt_len = pkt_len; pkt_buf->data_len = pkt_len; pkt_buf->nb_segs = 1; pkt_buf->next = NULL; if (m->ol_flags & PKT_TX_VLAN_PKT) { pkt_buf->ol_flags |= RTE_AVP_TX_VLAN_PKT; pkt_buf->vlan_tci = m->vlan_tci; } tx_bytes += pkt_len; /* free the original mbuf */ rte_pktmbuf_free(m); } txq->packets += count; txq->bytes += tx_bytes; /* send the packets */ n = avp_fifo_put(tx_q, (void **)&avp_bufs[0], count); return n; } static void avp_dev_rx_queue_release(void *rx_queue) { struct avp_queue *rxq = (struct avp_queue *)rx_queue; struct avp_dev *avp = rxq->avp; struct rte_eth_dev_data *data = avp->dev_data; unsigned int i; for (i = 0; i < avp->num_rx_queues; i++) { if (data->rx_queues[i] == rxq) data->rx_queues[i] = NULL; } } static void avp_dev_tx_queue_release(void *tx_queue) { struct avp_queue *txq = (struct avp_queue *)tx_queue; struct avp_dev *avp = txq->avp; struct rte_eth_dev_data *data = avp->dev_data; unsigned int i; for (i = 0; i < avp->num_tx_queues; i++) { if (data->tx_queues[i] == txq) data->tx_queues[i] = NULL; } } static int avp_dev_configure(struct rte_eth_dev *eth_dev) { struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); struct rte_avp_device_info *host_info; struct rte_avp_device_config config; int mask = 0; void *addr; int ret; rte_spinlock_lock(&avp->lock); if (avp->flags & AVP_F_DETACHED) { PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n"); ret = -ENOTSUP; goto unlock; } addr = pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR].addr; host_info = (struct rte_avp_device_info *)addr; /* Setup required number of queues */ _avp_set_queue_counts(eth_dev); mask = (ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | ETH_VLAN_EXTEND_MASK); ret = avp_vlan_offload_set(eth_dev, mask); if (ret < 0) { PMD_DRV_LOG(ERR, "VLAN offload set failed by host, ret=%d\n", ret); goto unlock; } /* update device config */ memset(&config, 0, sizeof(config)); config.device_id = host_info->device_id; config.driver_type = RTE_AVP_DRIVER_TYPE_DPDK; config.driver_version = AVP_DPDK_DRIVER_VERSION; config.features = avp->features; config.num_tx_queues = avp->num_tx_queues; config.num_rx_queues = avp->num_rx_queues; ret = avp_dev_ctrl_set_config(eth_dev, &config); if (ret < 0) { PMD_DRV_LOG(ERR, "Config request failed by host, ret=%d\n", ret); goto unlock; } avp->flags |= AVP_F_CONFIGURED; ret = 0; unlock: rte_spinlock_unlock(&avp->lock); return ret; } static int avp_dev_start(struct rte_eth_dev *eth_dev) { struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); int ret; rte_spinlock_lock(&avp->lock); if (avp->flags & AVP_F_DETACHED) { PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n"); ret = -ENOTSUP; goto unlock; } /* update link state */ ret = avp_dev_ctrl_set_link_state(eth_dev, 1); if (ret < 0) { PMD_DRV_LOG(ERR, "Link state change failed by host, ret=%d\n", ret); goto unlock; } /* remember current link state */ avp->flags |= AVP_F_LINKUP; ret = 0; unlock: rte_spinlock_unlock(&avp->lock); return ret; } static void avp_dev_stop(struct rte_eth_dev *eth_dev) { struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); int ret; rte_spinlock_lock(&avp->lock); if (avp->flags & AVP_F_DETACHED) { PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n"); goto unlock; } /* remember current link state */ avp->flags &= ~AVP_F_LINKUP; /* update link state */ ret = avp_dev_ctrl_set_link_state(eth_dev, 0); if (ret < 0) { PMD_DRV_LOG(ERR, "Link state change failed by host, ret=%d\n", ret); } unlock: rte_spinlock_unlock(&avp->lock); } static void avp_dev_close(struct rte_eth_dev *eth_dev) { struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); int ret; rte_spinlock_lock(&avp->lock); if (avp->flags & AVP_F_DETACHED) { PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n"); goto unlock; } /* remember current link state */ avp->flags &= ~AVP_F_LINKUP; avp->flags &= ~AVP_F_CONFIGURED; ret = avp_dev_disable_interrupts(eth_dev); if (ret < 0) { PMD_DRV_LOG(ERR, "Failed to disable interrupts\n"); /* continue */ } /* update device state */ ret = avp_dev_ctrl_shutdown(eth_dev); if (ret < 0) { PMD_DRV_LOG(ERR, "Device shutdown failed by host, ret=%d\n", ret); /* continue */ } unlock: rte_spinlock_unlock(&avp->lock); } static int avp_dev_link_update(struct rte_eth_dev *eth_dev, __rte_unused int wait_to_complete) { struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); struct rte_eth_link *link = ð_dev->data->dev_link; link->link_speed = ETH_SPEED_NUM_10G; link->link_duplex = ETH_LINK_FULL_DUPLEX; link->link_status = !!(avp->flags & AVP_F_LINKUP); return -1; } static void avp_dev_promiscuous_enable(struct rte_eth_dev *eth_dev) { struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); rte_spinlock_lock(&avp->lock); if ((avp->flags & AVP_F_PROMISC) == 0) { avp->flags |= AVP_F_PROMISC; PMD_DRV_LOG(DEBUG, "Promiscuous mode enabled on %u\n", eth_dev->data->port_id); } rte_spinlock_unlock(&avp->lock); } static void avp_dev_promiscuous_disable(struct rte_eth_dev *eth_dev) { struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); rte_spinlock_lock(&avp->lock); if ((avp->flags & AVP_F_PROMISC) != 0) { avp->flags &= ~AVP_F_PROMISC; PMD_DRV_LOG(DEBUG, "Promiscuous mode disabled on %u\n", eth_dev->data->port_id); } rte_spinlock_unlock(&avp->lock); } static void avp_dev_info_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *dev_info) { struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); dev_info->max_rx_queues = avp->max_rx_queues; dev_info->max_tx_queues = avp->max_tx_queues; dev_info->min_rx_bufsize = AVP_MIN_RX_BUFSIZE; dev_info->max_rx_pktlen = avp->max_rx_pkt_len; dev_info->max_mac_addrs = AVP_MAX_MAC_ADDRS; if (avp->host_features & RTE_AVP_FEATURE_VLAN_OFFLOAD) { dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP; dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT; } } static int avp_vlan_offload_set(struct rte_eth_dev *eth_dev, int mask) { struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); struct rte_eth_conf *dev_conf = ð_dev->data->dev_conf; uint64_t offloads = dev_conf->rxmode.offloads; if (mask & ETH_VLAN_STRIP_MASK) { if (avp->host_features & RTE_AVP_FEATURE_VLAN_OFFLOAD) { if (offloads & DEV_RX_OFFLOAD_VLAN_STRIP) avp->features |= RTE_AVP_FEATURE_VLAN_OFFLOAD; else avp->features &= ~RTE_AVP_FEATURE_VLAN_OFFLOAD; } else { PMD_DRV_LOG(ERR, "VLAN strip offload not supported\n"); } } if (mask & ETH_VLAN_FILTER_MASK) { if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) PMD_DRV_LOG(ERR, "VLAN filter offload not supported\n"); } if (mask & ETH_VLAN_EXTEND_MASK) { if (offloads & DEV_RX_OFFLOAD_VLAN_EXTEND) PMD_DRV_LOG(ERR, "VLAN extend offload not supported\n"); } return 0; } static int avp_dev_stats_get(struct rte_eth_dev *eth_dev, struct rte_eth_stats *stats) { struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); unsigned int i; for (i = 0; i < avp->num_rx_queues; i++) { struct avp_queue *rxq = avp->dev_data->rx_queues[i]; if (rxq) { stats->ipackets += rxq->packets; stats->ibytes += rxq->bytes; stats->ierrors += rxq->errors; stats->q_ipackets[i] += rxq->packets; stats->q_ibytes[i] += rxq->bytes; stats->q_errors[i] += rxq->errors; } } for (i = 0; i < avp->num_tx_queues; i++) { struct avp_queue *txq = avp->dev_data->tx_queues[i]; if (txq) { stats->opackets += txq->packets; stats->obytes += txq->bytes; stats->oerrors += txq->errors; stats->q_opackets[i] += txq->packets; stats->q_obytes[i] += txq->bytes; stats->q_errors[i] += txq->errors; } } return 0; } static void avp_dev_stats_reset(struct rte_eth_dev *eth_dev) { struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); unsigned int i; for (i = 0; i < avp->num_rx_queues; i++) { struct avp_queue *rxq = avp->dev_data->rx_queues[i]; if (rxq) { rxq->bytes = 0; rxq->packets = 0; rxq->errors = 0; } } for (i = 0; i < avp->num_tx_queues; i++) { struct avp_queue *txq = avp->dev_data->tx_queues[i]; if (txq) { txq->bytes = 0; txq->packets = 0; txq->errors = 0; } } } RTE_PMD_REGISTER_PCI(net_avp, rte_avp_pmd); RTE_PMD_REGISTER_PCI_TABLE(net_avp, pci_id_avp_map); RTE_INIT(avp_init_log) { avp_logtype_driver = rte_log_register("pmd.net.avp.driver"); if (avp_logtype_driver >= 0) rte_log_set_level(avp_logtype_driver, RTE_LOG_NOTICE); }