/*- * BSD LICENSE * * Copyright(c) 2010-2015 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "main.h" #include #include "rte_byteorder.h" #include "rte_cpuflags.h" #include "rte_eth_bond.h" #define RTE_LOGTYPE_DCB RTE_LOGTYPE_USER1 #define NB_MBUF (1024*8) #define MAX_PKT_BURST 32 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ #define BURST_RX_INTERVAL_NS (10) /* RX poll interval ~100ns */ /* * RX and TX Prefetch, Host, and Write-back threshold values should be * carefully set for optimal performance. Consult the network * controller's datasheet and supporting DPDK documentation for guidance * on how these parameters should be set. */ #define RX_PTHRESH 8 /**< Default values of RX prefetch threshold reg. */ #define RX_HTHRESH 8 /**< Default values of RX host threshold reg. */ #define RX_WTHRESH 4 /**< Default values of RX write-back threshold reg. */ #define RX_FTHRESH (MAX_PKT_BURST * 2)/**< Default values of RX free threshold reg. */ /* * These default values are optimized for use with the Intel(R) 82599 10 GbE * Controller and the DPDK ixgbe PMD. Consider using other values for other * network controllers and/or network drivers. */ #define TX_PTHRESH 36 /**< Default values of TX prefetch threshold reg. */ #define TX_HTHRESH 0 /**< Default values of TX host threshold reg. */ #define TX_WTHRESH 0 /**< Default values of TX write-back threshold reg. */ /* * Configurable number of RX/TX ring descriptors */ #define RTE_RX_DESC_DEFAULT 128 #define RTE_TX_DESC_DEFAULT 512 #define BOND_IP_1 7 #define BOND_IP_2 0 #define BOND_IP_3 0 #define BOND_IP_4 10 /* not defined under linux */ #ifndef NIPQUAD #define NIPQUAD_FMT "%u.%u.%u.%u" #endif #define MAX_PORTS 4 #define PRINT_MAC(addr) printf("%02"PRIx8":%02"PRIx8":%02"PRIx8 \ ":%02"PRIx8":%02"PRIx8":%02"PRIx8, \ addr.addr_bytes[0], addr.addr_bytes[1], addr.addr_bytes[2], \ addr.addr_bytes[3], addr.addr_bytes[4], addr.addr_bytes[5]) uint8_t slaves[RTE_MAX_ETHPORTS]; uint8_t slaves_count; static uint8_t BOND_PORT = 0xff; static struct rte_mempool *mbuf_pool; static struct rte_eth_conf port_conf = { .rxmode = { .mq_mode = ETH_MQ_RX_NONE, .max_rx_pkt_len = ETHER_MAX_LEN, .split_hdr_size = 0, .header_split = 0, /**< Header Split disabled */ .hw_ip_checksum = 0, /**< IP checksum offload enabled */ .hw_vlan_filter = 0, /**< VLAN filtering disabled */ .jumbo_frame = 0, /**< Jumbo Frame Support disabled */ .hw_strip_crc = 1, /**< CRC stripped by hardware */ }, .rx_adv_conf = { .rss_conf = { .rss_key = NULL, .rss_hf = ETH_RSS_IP, }, }, .txmode = { .mq_mode = ETH_MQ_TX_NONE, }, }; static void slave_port_init(uint8_t portid, struct rte_mempool *mbuf_pool) { int retval; if (portid >= rte_eth_dev_count()) rte_exit(EXIT_FAILURE, "Invalid port\n"); retval = rte_eth_dev_configure(portid, 1, 1, &port_conf); if (retval != 0) rte_exit(EXIT_FAILURE, "port %u: configuration failed (res=%d)\n", portid, retval); /* RX setup */ retval = rte_eth_rx_queue_setup(portid, 0, RTE_RX_DESC_DEFAULT, rte_eth_dev_socket_id(portid), NULL, mbuf_pool); if (retval < 0) rte_exit(retval, " port %u: RX queue 0 setup failed (res=%d)", portid, retval); /* TX setup */ retval = rte_eth_tx_queue_setup(portid, 0, RTE_TX_DESC_DEFAULT, rte_eth_dev_socket_id(portid), NULL); if (retval < 0) rte_exit(retval, "port %u: TX queue 0 setup failed (res=%d)", portid, retval); retval = rte_eth_dev_start(portid); if (retval < 0) rte_exit(retval, "Start port %d failed (res=%d)", portid, retval); struct ether_addr addr; rte_eth_macaddr_get(portid, &addr); printf("Port %u MAC: ", (unsigned)portid); PRINT_MAC(addr); printf("\n"); } static void bond_port_init(struct rte_mempool *mbuf_pool) { int retval; uint8_t i; retval = rte_eth_bond_create("bond0", BONDING_MODE_ALB, 0 /*SOCKET_ID_ANY*/); if (retval < 0) rte_exit(EXIT_FAILURE, "Faled to create bond port\n"); BOND_PORT = (uint8_t)retval; retval = rte_eth_dev_configure(BOND_PORT, 1, 1, &port_conf); if (retval != 0) rte_exit(EXIT_FAILURE, "port %u: configuration failed (res=%d)\n", BOND_PORT, retval); /* RX setup */ retval = rte_eth_rx_queue_setup(BOND_PORT, 0, RTE_RX_DESC_DEFAULT, rte_eth_dev_socket_id(BOND_PORT), NULL, mbuf_pool); if (retval < 0) rte_exit(retval, " port %u: RX queue 0 setup failed (res=%d)", BOND_PORT, retval); /* TX setup */ retval = rte_eth_tx_queue_setup(BOND_PORT, 0, RTE_TX_DESC_DEFAULT, rte_eth_dev_socket_id(BOND_PORT), NULL); if (retval < 0) rte_exit(retval, "port %u: TX queue 0 setup failed (res=%d)", BOND_PORT, retval); for (i = 0; i < slaves_count; i++) { if (rte_eth_bond_slave_add(BOND_PORT, slaves[i]) == -1) rte_exit(-1, "Oooops! adding slave (%u) to bond (%u) failed!\n", slaves[i], BOND_PORT); } retval = rte_eth_dev_start(BOND_PORT); if (retval < 0) rte_exit(retval, "Start port %d failed (res=%d)", BOND_PORT, retval); rte_eth_promiscuous_enable(BOND_PORT); struct ether_addr addr; rte_eth_macaddr_get(BOND_PORT, &addr); printf("Port %u MAC: ", (unsigned)BOND_PORT); PRINT_MAC(addr); printf("\n"); } static inline size_t get_vlan_offset(struct ether_hdr *eth_hdr, uint16_t *proto) { size_t vlan_offset = 0; if (rte_cpu_to_be_16(ETHER_TYPE_VLAN) == *proto) { struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1); vlan_offset = sizeof(struct vlan_hdr); *proto = vlan_hdr->eth_proto; if (rte_cpu_to_be_16(ETHER_TYPE_VLAN) == *proto) { vlan_hdr = vlan_hdr + 1; *proto = vlan_hdr->eth_proto; vlan_offset += sizeof(struct vlan_hdr); } } return vlan_offset; } struct global_flag_stru_t { int LcoreMainIsRunning; int LcoreMainCore; uint32_t port_packets[4]; rte_spinlock_t lock; }; struct global_flag_stru_t global_flag_stru; struct global_flag_stru_t *global_flag_stru_p = &global_flag_stru; /* * Main thread that does the work, reading from INPUT_PORT * and writing to OUTPUT_PORT */ static int lcore_main(__attribute__((unused)) void *arg1) { struct rte_mbuf *pkts[MAX_PKT_BURST] __rte_cache_aligned; struct ether_addr d_addr; struct ether_hdr *eth_hdr; struct arp_hdr *arp_hdr; struct ipv4_hdr *ipv4_hdr; uint16_t ether_type, offset; uint16_t rx_cnt; uint32_t bond_ip; int i = 0; uint8_t is_free; bond_ip = BOND_IP_1 | (BOND_IP_2 << 8) | (BOND_IP_3 << 16) | (BOND_IP_4 << 24); rte_spinlock_trylock(&global_flag_stru_p->lock); while (global_flag_stru_p->LcoreMainIsRunning) { rte_spinlock_unlock(&global_flag_stru_p->lock); rx_cnt = rte_eth_rx_burst(BOND_PORT, 0, pkts, MAX_PKT_BURST); is_free = 0; /* If didn't receive any packets, wait and go to next iteration */ if (rx_cnt == 0) { rte_delay_us(50); continue; } /* Search incoming data for ARP packets and prepare response */ for (i = 0; i < rx_cnt; i++) { if (rte_spinlock_trylock(&global_flag_stru_p->lock) == 1) { global_flag_stru_p->port_packets[0]++; rte_spinlock_unlock(&global_flag_stru_p->lock); } eth_hdr = rte_pktmbuf_mtod(pkts[i], struct ether_hdr *); ether_type = eth_hdr->ether_type; if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_VLAN)) printf("VLAN taged frame, offset:"); offset = get_vlan_offset(eth_hdr, ðer_type); if (offset > 0) printf("%d\n", offset); if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_ARP)) { if (rte_spinlock_trylock(&global_flag_stru_p->lock) == 1) { global_flag_stru_p->port_packets[1]++; rte_spinlock_unlock(&global_flag_stru_p->lock); } arp_hdr = (struct arp_hdr *)((char *)(eth_hdr + 1) + offset); if (arp_hdr->arp_data.arp_tip == bond_ip) { if (arp_hdr->arp_op == rte_cpu_to_be_16(ARP_OP_REQUEST)) { arp_hdr->arp_op = rte_cpu_to_be_16(ARP_OP_REPLY); /* Switch src and dst data and set bonding MAC */ ether_addr_copy(ð_hdr->s_addr, ð_hdr->d_addr); rte_eth_macaddr_get(BOND_PORT, ð_hdr->s_addr); ether_addr_copy(&arp_hdr->arp_data.arp_sha, &arp_hdr->arp_data.arp_tha); arp_hdr->arp_data.arp_tip = arp_hdr->arp_data.arp_sip; rte_eth_macaddr_get(BOND_PORT, &d_addr); ether_addr_copy(&d_addr, &arp_hdr->arp_data.arp_sha); arp_hdr->arp_data.arp_sip = bond_ip; rte_eth_tx_burst(BOND_PORT, 0, &pkts[i], 1); is_free = 1; } else { rte_eth_tx_burst(BOND_PORT, 0, NULL, 0); } } } else if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv4)) { if (rte_spinlock_trylock(&global_flag_stru_p->lock) == 1) { global_flag_stru_p->port_packets[2]++; rte_spinlock_unlock(&global_flag_stru_p->lock); } ipv4_hdr = (struct ipv4_hdr *)((char *)(eth_hdr + 1) + offset); if (ipv4_hdr->dst_addr == bond_ip) { ether_addr_copy(ð_hdr->s_addr, ð_hdr->d_addr); rte_eth_macaddr_get(BOND_PORT, ð_hdr->s_addr); ipv4_hdr->dst_addr = ipv4_hdr->src_addr; ipv4_hdr->src_addr = bond_ip; rte_eth_tx_burst(BOND_PORT, 0, &pkts[i], 1); } } /* Free processed packets */ if (is_free == 0) rte_pktmbuf_free(pkts[i]); } rte_spinlock_trylock(&global_flag_stru_p->lock); } rte_spinlock_unlock(&global_flag_stru_p->lock); printf("BYE lcore_main\n"); return 0; } struct cmd_obj_send_result { cmdline_fixed_string_t action; cmdline_ipaddr_t ip; }; static inline void get_string(struct cmd_obj_send_result *res, char *buf, uint8_t size) { snprintf(buf, size, NIPQUAD_FMT, ((unsigned)((unsigned char *)&(res->ip.addr.ipv4))[0]), ((unsigned)((unsigned char *)&(res->ip.addr.ipv4))[1]), ((unsigned)((unsigned char *)&(res->ip.addr.ipv4))[2]), ((unsigned)((unsigned char *)&(res->ip.addr.ipv4))[3]) ); } static void cmd_obj_send_parsed(void *parsed_result, __attribute__((unused)) struct cmdline *cl, __attribute__((unused)) void *data) { struct cmd_obj_send_result *res = parsed_result; char ip_str[INET6_ADDRSTRLEN]; struct rte_mbuf *created_pkt; struct ether_hdr *eth_hdr; struct arp_hdr *arp_hdr; uint32_t bond_ip; size_t pkt_size; if (res->ip.family == AF_INET) get_string(res, ip_str, INET_ADDRSTRLEN); else cmdline_printf(cl, "Wrong IP format. Only IPv4 is supported\n"); bond_ip = BOND_IP_1 | (BOND_IP_2 << 8) | (BOND_IP_3 << 16) | (BOND_IP_4 << 24); created_pkt = rte_pktmbuf_alloc(mbuf_pool); pkt_size = sizeof(struct ether_hdr) + sizeof(struct arp_hdr); created_pkt->data_len = pkt_size; created_pkt->pkt_len = pkt_size; eth_hdr = rte_pktmbuf_mtod(created_pkt, struct ether_hdr *); rte_eth_macaddr_get(BOND_PORT, ð_hdr->s_addr); memset(ð_hdr->d_addr, 0xFF, ETHER_ADDR_LEN); eth_hdr->ether_type = rte_cpu_to_be_16(ETHER_TYPE_ARP); arp_hdr = (struct arp_hdr *)((char *)eth_hdr + sizeof(struct ether_hdr)); arp_hdr->arp_hrd = rte_cpu_to_be_16(ARP_HRD_ETHER); arp_hdr->arp_pro = rte_cpu_to_be_16(ETHER_TYPE_IPv4); arp_hdr->arp_hln = ETHER_ADDR_LEN; arp_hdr->arp_pln = sizeof(uint32_t); arp_hdr->arp_op = rte_cpu_to_be_16(ARP_OP_REQUEST); rte_eth_macaddr_get(BOND_PORT, &arp_hdr->arp_data.arp_sha); arp_hdr->arp_data.arp_sip = bond_ip; memset(&arp_hdr->arp_data.arp_tha, 0, ETHER_ADDR_LEN); arp_hdr->arp_data.arp_tip = ((unsigned char *)&res->ip.addr.ipv4)[0] | (((unsigned char *)&res->ip.addr.ipv4)[1] << 8) | (((unsigned char *)&res->ip.addr.ipv4)[2] << 16) | (((unsigned char *)&res->ip.addr.ipv4)[3] << 24); rte_eth_tx_burst(BOND_PORT, 0, &created_pkt, 1); rte_delay_ms(100); cmdline_printf(cl, "\n"); } cmdline_parse_token_string_t cmd_obj_action_send = TOKEN_STRING_INITIALIZER(struct cmd_obj_send_result, action, "send"); cmdline_parse_token_ipaddr_t cmd_obj_ip = TOKEN_IPV4_INITIALIZER(struct cmd_obj_send_result, ip); cmdline_parse_inst_t cmd_obj_send = { .f = cmd_obj_send_parsed, /* function to call */ .data = NULL, /* 2nd arg of func */ .help_str = "send client_ip", .tokens = { /* token list, NULL terminated */ (void *)&cmd_obj_action_send, (void *)&cmd_obj_ip, NULL, }, }; struct cmd_start_result { cmdline_fixed_string_t start; }; static void cmd_start_parsed(__attribute__((unused)) void *parsed_result, struct cmdline *cl, __attribute__((unused)) void *data) { int slave_core_id = rte_lcore_id(); rte_spinlock_trylock(&global_flag_stru_p->lock); if (global_flag_stru_p->LcoreMainIsRunning == 0) { if (lcore_config[global_flag_stru_p->LcoreMainCore].state != WAIT) { rte_spinlock_unlock(&global_flag_stru_p->lock); return; } rte_spinlock_unlock(&global_flag_stru_p->lock); } else { cmdline_printf(cl, "lcore_main already running on core:%d\n", global_flag_stru_p->LcoreMainCore); rte_spinlock_unlock(&global_flag_stru_p->lock); return; } /* start lcore main on core != master_core - ARP response thread */ slave_core_id = rte_get_next_lcore(rte_lcore_id(), 1, 0); if ((slave_core_id >= RTE_MAX_LCORE) || (slave_core_id == 0)) return; rte_spinlock_trylock(&global_flag_stru_p->lock); global_flag_stru_p->LcoreMainIsRunning = 1; rte_spinlock_unlock(&global_flag_stru_p->lock); cmdline_printf(cl, "Starting lcore_main on core %d:%d " "Our IP:%d.%d.%d.%d\n", slave_core_id, rte_eal_remote_launch(lcore_main, NULL, slave_core_id), BOND_IP_1, BOND_IP_2, BOND_IP_3, BOND_IP_4 ); } cmdline_parse_token_string_t cmd_start_start = TOKEN_STRING_INITIALIZER(struct cmd_start_result, start, "start"); cmdline_parse_inst_t cmd_start = { .f = cmd_start_parsed, /* function to call */ .data = NULL, /* 2nd arg of func */ .help_str = "starts listening if not started at startup", .tokens = { /* token list, NULL terminated */ (void *)&cmd_start_start, NULL, }, }; struct cmd_help_result { cmdline_fixed_string_t help; }; static void cmd_help_parsed(__attribute__((unused)) void *parsed_result, struct cmdline *cl, __attribute__((unused)) void *data) { cmdline_printf(cl, "ALB - link bonding mode 6 example\n" "send IP - sends one ARPrequest through bonding for IP.\n" "start - starts listening ARPs.\n" "stop - stops lcore_main.\n" "show - shows some bond info: ex. active slaves etc.\n" "help - prints help.\n" "quit - terminate all threads and quit.\n" ); } cmdline_parse_token_string_t cmd_help_help = TOKEN_STRING_INITIALIZER(struct cmd_help_result, help, "help"); cmdline_parse_inst_t cmd_help = { .f = cmd_help_parsed, /* function to call */ .data = NULL, /* 2nd arg of func */ .help_str = "show help", .tokens = { /* token list, NULL terminated */ (void *)&cmd_help_help, NULL, }, }; struct cmd_stop_result { cmdline_fixed_string_t stop; }; static void cmd_stop_parsed(__attribute__((unused)) void *parsed_result, struct cmdline *cl, __attribute__((unused)) void *data) { rte_spinlock_trylock(&global_flag_stru_p->lock); if (global_flag_stru_p->LcoreMainIsRunning == 0) { cmdline_printf(cl, "lcore_main not running on core:%d\n", global_flag_stru_p->LcoreMainCore); rte_spinlock_unlock(&global_flag_stru_p->lock); return; } global_flag_stru_p->LcoreMainIsRunning = 0; if (rte_eal_wait_lcore(global_flag_stru_p->LcoreMainCore) < 0) cmdline_printf(cl, "error: lcore_main can not stop on core:%d\n", global_flag_stru_p->LcoreMainCore); else cmdline_printf(cl, "lcore_main stopped on core:%d\n", global_flag_stru_p->LcoreMainCore); rte_spinlock_unlock(&global_flag_stru_p->lock); } cmdline_parse_token_string_t cmd_stop_stop = TOKEN_STRING_INITIALIZER(struct cmd_stop_result, stop, "stop"); cmdline_parse_inst_t cmd_stop = { .f = cmd_stop_parsed, /* function to call */ .data = NULL, /* 2nd arg of func */ .help_str = "this command do not handle any arguments", .tokens = { /* token list, NULL terminated */ (void *)&cmd_stop_stop, NULL, }, }; struct cmd_quit_result { cmdline_fixed_string_t quit; }; static void cmd_quit_parsed(__attribute__((unused)) void *parsed_result, struct cmdline *cl, __attribute__((unused)) void *data) { rte_spinlock_trylock(&global_flag_stru_p->lock); if (global_flag_stru_p->LcoreMainIsRunning == 0) { cmdline_printf(cl, "lcore_main not running on core:%d\n", global_flag_stru_p->LcoreMainCore); rte_spinlock_unlock(&global_flag_stru_p->lock); cmdline_quit(cl); return; } global_flag_stru_p->LcoreMainIsRunning = 0; if (rte_eal_wait_lcore(global_flag_stru_p->LcoreMainCore) < 0) cmdline_printf(cl, "error: lcore_main can not stop on core:%d\n", global_flag_stru_p->LcoreMainCore); else cmdline_printf(cl, "lcore_main stopped on core:%d\n", global_flag_stru_p->LcoreMainCore); rte_spinlock_unlock(&global_flag_stru_p->lock); cmdline_quit(cl); } cmdline_parse_token_string_t cmd_quit_quit = TOKEN_STRING_INITIALIZER(struct cmd_quit_result, quit, "quit"); cmdline_parse_inst_t cmd_quit = { .f = cmd_quit_parsed, /* function to call */ .data = NULL, /* 2nd arg of func */ .help_str = "this command do not handle any arguments", .tokens = { /* token list, NULL terminated */ (void *)&cmd_quit_quit, NULL, }, }; struct cmd_show_result { cmdline_fixed_string_t show; }; static void cmd_show_parsed(__attribute__((unused)) void *parsed_result, struct cmdline *cl, __attribute__((unused)) void *data) { uint8_t slaves[16] = {0}; uint8_t len = 16; struct ether_addr addr; uint8_t i = 0; while (i < slaves_count) { rte_eth_macaddr_get(i, &addr); PRINT_MAC(addr); printf("\n"); i++; } rte_spinlock_trylock(&global_flag_stru_p->lock); cmdline_printf(cl, "Active_slaves:%d " "packets received:Tot:%d Arp:%d IPv4:%d\n", rte_eth_bond_active_slaves_get(BOND_PORT, slaves, len), global_flag_stru_p->port_packets[0], global_flag_stru_p->port_packets[1], global_flag_stru_p->port_packets[2]); rte_spinlock_unlock(&global_flag_stru_p->lock); } cmdline_parse_token_string_t cmd_show_show = TOKEN_STRING_INITIALIZER(struct cmd_show_result, show, "show"); cmdline_parse_inst_t cmd_show = { .f = cmd_show_parsed, /* function to call */ .data = NULL, /* 2nd arg of func */ .help_str = "this command do not handle any arguments", .tokens = { /* token list, NULL terminated */ (void *)&cmd_show_show, NULL, }, }; /****** CONTEXT (list of instruction) */ cmdline_parse_ctx_t main_ctx[] = { (cmdline_parse_inst_t *)&cmd_start, (cmdline_parse_inst_t *)&cmd_obj_send, (cmdline_parse_inst_t *)&cmd_stop, (cmdline_parse_inst_t *)&cmd_show, (cmdline_parse_inst_t *)&cmd_quit, (cmdline_parse_inst_t *)&cmd_help, NULL, }; /* prompt function, called from main on MASTER lcore */ static void prompt(__attribute__((unused)) void *arg1) { struct cmdline *cl; cl = cmdline_stdin_new(main_ctx, "bond6>"); if (cl != NULL) { cmdline_interact(cl); cmdline_stdin_exit(cl); } } /* Main function, does initialisation and calls the per-lcore functions */ int main(int argc, char *argv[]) { int ret; uint8_t nb_ports, i; /* init EAL */ ret = rte_eal_init(argc, argv); rte_eal_devargs_dump(stdout); if (ret < 0) rte_exit(EXIT_FAILURE, "Error with EAL initialization\n"); argc -= ret; argv += ret; nb_ports = rte_eth_dev_count(); if (nb_ports == 0) rte_exit(EXIT_FAILURE, "Give at least one port\n"); else if (nb_ports > MAX_PORTS) rte_exit(EXIT_FAILURE, "You can have max 4 ports\n"); mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NB_MBUF, 32, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id()); if (mbuf_pool == NULL) rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n"); /* initialize all ports */ slaves_count = nb_ports; for (i = 0; i < nb_ports; i++) { slave_port_init(i, mbuf_pool); slaves[i] = i; } bond_port_init(mbuf_pool); rte_spinlock_init(&global_flag_stru_p->lock); int slave_core_id = rte_lcore_id(); /* check state of lcores */ RTE_LCORE_FOREACH_SLAVE(slave_core_id) { if (lcore_config[slave_core_id].state != WAIT) return -EBUSY; } /* start lcore main on core != master_core - ARP response thread */ slave_core_id = rte_get_next_lcore(rte_lcore_id(), 1, 0); if ((slave_core_id >= RTE_MAX_LCORE) || (slave_core_id == 0)) return -EPERM; global_flag_stru_p->LcoreMainIsRunning = 1; global_flag_stru_p->LcoreMainCore = slave_core_id; printf("Starting lcore_main on core %d:%d Our IP:%d.%d.%d.%d\n", slave_core_id, rte_eal_remote_launch((lcore_function_t *)lcore_main, NULL, slave_core_id), BOND_IP_1, BOND_IP_2, BOND_IP_3, BOND_IP_4 ); /* Start prompt for user interact */ prompt(NULL); rte_delay_ms(100); return 0; }