/*- * BSD LICENSE * * Copyright(c) 2010-2013 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "main.h" struct app_params app; static const char usage[] = " \n" " load_balancer -- \n" " \n" "Application manadatory parameters: \n" " --rx \"(PORT, QUEUE, LCORE), ...\" : List of NIC RX ports and queues \n" " handled by the I/O RX lcores \n" " --tx \"(PORT, LCORE), ...\" : List of NIC TX ports handled by the I/O TX \n" " lcores \n" " --w \"LCORE, ...\" : List of the worker lcores \n" " --lpm \"IP / PREFIX => PORT; ...\" : List of LPM rules used by the worker \n" " lcores for packet forwarding \n" " \n" "Application optional parameters: \n" " --rsz \"A, B, C, D\" : Ring sizes \n" " A = Size (in number of buffer descriptors) of each of the NIC RX \n" " rings read by the I/O RX lcores (default value is %u) \n" " B = Size (in number of elements) of each of the SW rings used by the\n" " I/O RX lcores to send packets to worker lcores (default value is\n" " %u) \n" " C = Size (in number of elements) of each of the SW rings used by the\n" " worker lcores to send packets to I/O TX lcores (default value is\n" " %u) \n" " D = Size (in number of buffer descriptors) of each of the NIC TX \n" " rings written by I/O TX lcores (default value is %u) \n" " --bsz \"(A, B), (C, D), (E, F)\" : Burst sizes \n" " A = I/O RX lcore read burst size from NIC RX (default value is %u) \n" " B = I/O RX lcore write burst size to output SW rings (default value \n" " is %u) \n" " C = Worker lcore read burst size from input SW rings (default value \n" " is %u) \n" " D = Worker lcore write burst size to output SW rings (default value \n" " is %u) \n" " E = I/O TX lcore read burst size from input SW rings (default value \n" " is %u) \n" " F = I/O TX lcore write burst size to NIC TX (default value is %u) \n" " --pos-lb POS : Position of the 1-byte field within the input packet used by\n" " the I/O RX lcores to identify the worker lcore for the current \n" " packet (default value is %u) \n"; void app_print_usage(void) { printf(usage, APP_DEFAULT_NIC_RX_RING_SIZE, APP_DEFAULT_RING_RX_SIZE, APP_DEFAULT_RING_TX_SIZE, APP_DEFAULT_NIC_TX_RING_SIZE, APP_DEFAULT_BURST_SIZE_IO_RX_READ, APP_DEFAULT_BURST_SIZE_IO_RX_WRITE, APP_DEFAULT_BURST_SIZE_WORKER_READ, APP_DEFAULT_BURST_SIZE_WORKER_WRITE, APP_DEFAULT_BURST_SIZE_IO_TX_READ, APP_DEFAULT_BURST_SIZE_IO_TX_WRITE, APP_DEFAULT_IO_RX_LB_POS ); } #ifndef APP_ARG_RX_MAX_CHARS #define APP_ARG_RX_MAX_CHARS 4096 #endif #ifndef APP_ARG_RX_MAX_TUPLES #define APP_ARG_RX_MAX_TUPLES 128 #endif static int str_to_unsigned_array( const char *s, size_t sbuflen, char separator, unsigned num_vals, unsigned *vals) { char str[sbuflen+1]; char *splits[num_vals]; char *endptr = NULL; int i, num_splits = 0; /* copy s so we don't modify original string */ rte_snprintf(str, sizeof(str), "%s", s); num_splits = rte_strsplit(str, sizeof(str), splits, num_vals, separator); errno = 0; for (i = 0; i < num_splits; i++) { vals[i] = strtoul(splits[i], &endptr, 0); if (errno != 0 || *endptr != '\0') return -1; } return num_splits; } static int str_to_unsigned_vals( const char *s, size_t sbuflen, char separator, unsigned num_vals, ...) { unsigned i, vals[num_vals]; va_list ap; num_vals = str_to_unsigned_array(s, sbuflen, separator, num_vals, vals); va_start(ap, num_vals); for (i = 0; i < num_vals; i++) { unsigned *u = va_arg(ap, unsigned *); *u = vals[i]; } va_end(ap); return num_vals; } static int parse_arg_rx(const char *arg) { const char *p0 = arg, *p = arg; uint32_t n_tuples; if (strnlen(arg, APP_ARG_RX_MAX_CHARS + 1) == APP_ARG_RX_MAX_CHARS + 1) { return -1; } n_tuples = 0; while ((p = strchr(p0,'(')) != NULL) { struct app_lcore_params *lp; uint32_t port, queue, lcore, i; p0 = strchr(p++, ')'); if ((p0 == NULL) || (str_to_unsigned_vals(p, p0 - p, ',', 3, &port, &queue, &lcore) != 3)) { return -2; } /* Enable port and queue for later initialization */ if ((port >= APP_MAX_NIC_PORTS) || (queue >= APP_MAX_RX_QUEUES_PER_NIC_PORT)) { return -3; } if (app.nic_rx_queue_mask[port][queue] != 0) { return -4; } app.nic_rx_queue_mask[port][queue] = 1; /* Check and assign (port, queue) to I/O lcore */ if (rte_lcore_is_enabled(lcore) == 0) { return -5; } if (lcore >= APP_MAX_LCORES) { return -6; } lp = &app.lcore_params[lcore]; if (lp->type == e_APP_LCORE_WORKER) { return -7; } lp->type = e_APP_LCORE_IO; for (i = 0; i < lp->io.rx.n_nic_queues; i ++) { if ((lp->io.rx.nic_queues[i].port == port) && (lp->io.rx.nic_queues[i].queue == queue)) { return -8; } } if (lp->io.rx.n_nic_queues >= APP_MAX_NIC_RX_QUEUES_PER_IO_LCORE) { return -9; } lp->io.rx.nic_queues[lp->io.rx.n_nic_queues].port = (uint8_t) port; lp->io.rx.nic_queues[lp->io.rx.n_nic_queues].queue = (uint8_t) queue; lp->io.rx.n_nic_queues ++; n_tuples ++; if (n_tuples > APP_ARG_RX_MAX_TUPLES) { return -10; } } if (n_tuples == 0) { return -11; } return 0; } #ifndef APP_ARG_TX_MAX_CHARS #define APP_ARG_TX_MAX_CHARS 4096 #endif #ifndef APP_ARG_TX_MAX_TUPLES #define APP_ARG_TX_MAX_TUPLES 128 #endif static int parse_arg_tx(const char *arg) { const char *p0 = arg, *p = arg; uint32_t n_tuples; if (strnlen(arg, APP_ARG_TX_MAX_CHARS + 1) == APP_ARG_TX_MAX_CHARS + 1) { return -1; } n_tuples = 0; while ((p = strchr(p0,'(')) != NULL) { struct app_lcore_params *lp; uint32_t port, lcore, i; p0 = strchr(p++, ')'); if ((p0 == NULL) || (str_to_unsigned_vals(p, p0 - p, ',', 2, &port, &lcore) != 2)) { return -2; } /* Enable port and queue for later initialization */ if (port >= APP_MAX_NIC_PORTS) { return -3; } if (app.nic_tx_port_mask[port] != 0) { return -4; } app.nic_tx_port_mask[port] = 1; /* Check and assign (port, queue) to I/O lcore */ if (rte_lcore_is_enabled(lcore) == 0) { return -5; } if (lcore >= APP_MAX_LCORES) { return -6; } lp = &app.lcore_params[lcore]; if (lp->type == e_APP_LCORE_WORKER) { return -7; } lp->type = e_APP_LCORE_IO; for (i = 0; i < lp->io.tx.n_nic_ports; i ++) { if (lp->io.tx.nic_ports[i] == port) { return -8; } } if (lp->io.tx.n_nic_ports >= APP_MAX_NIC_TX_PORTS_PER_IO_LCORE) { return -9; } lp->io.tx.nic_ports[lp->io.tx.n_nic_ports] = (uint8_t) port; lp->io.tx.n_nic_ports ++; n_tuples ++; if (n_tuples > APP_ARG_TX_MAX_TUPLES) { return -10; } } if (n_tuples == 0) { return -11; } return 0; } #ifndef APP_ARG_W_MAX_CHARS #define APP_ARG_W_MAX_CHARS 4096 #endif #ifndef APP_ARG_W_MAX_TUPLES #define APP_ARG_W_MAX_TUPLES APP_MAX_WORKER_LCORES #endif static int parse_arg_w(const char *arg) { const char *p = arg; uint32_t n_tuples; if (strnlen(arg, APP_ARG_W_MAX_CHARS + 1) == APP_ARG_W_MAX_CHARS + 1) { return -1; } n_tuples = 0; while (*p != 0) { struct app_lcore_params *lp; uint32_t lcore; errno = 0; lcore = strtoul(p, NULL, 0); if ((errno != 0)) { return -2; } /* Check and enable worker lcore */ if (rte_lcore_is_enabled(lcore) == 0) { return -3; } if (lcore >= APP_MAX_LCORES) { return -4; } lp = &app.lcore_params[lcore]; if (lp->type == e_APP_LCORE_IO) { return -5; } lp->type = e_APP_LCORE_WORKER; n_tuples ++; if (n_tuples > APP_ARG_W_MAX_TUPLES) { return -6; } p = strchr(p, ','); if (p == NULL) { break; } p ++; } if (n_tuples == 0) { return -7; } if ((n_tuples & (n_tuples - 1)) != 0) { return -8; } return 0; } #ifndef APP_ARG_LPM_MAX_CHARS #define APP_ARG_LPM_MAX_CHARS 4096 #endif static int parse_arg_lpm(const char *arg) { const char *p = arg, *p0; if (strnlen(arg, APP_ARG_LPM_MAX_CHARS + 1) == APP_ARG_TX_MAX_CHARS + 1) { return -1; } while (*p != 0) { uint32_t ip_a, ip_b, ip_c, ip_d, ip, depth, if_out; char *endptr; p0 = strchr(p, '/'); if ((p0 == NULL) || (str_to_unsigned_vals(p, p0 - p, '.', 4, &ip_a, &ip_b, &ip_c, &ip_d) != 4)) { return -2; } p = p0 + 1; errno = 0; depth = strtoul(p, &endptr, 0); if (errno != 0 || *endptr != '=') { return -3; } p = strchr(p, '>'); if (p == NULL) { return -4; } if_out = strtoul(++p, &endptr, 0); if (errno != 0 || (*endptr != '\0' && *endptr != ';')) { return -5; } if ((ip_a >= 256) || (ip_b >= 256) || (ip_c >= 256) || (ip_d >= 256) || (depth == 0) || (depth >= 32) || (if_out >= APP_MAX_NIC_PORTS)) { return -6; } ip = (ip_a << 24) | (ip_b << 16) | (ip_c << 8) | ip_d; if (app.n_lpm_rules >= APP_MAX_LPM_RULES) { return -7; } app.lpm_rules[app.n_lpm_rules].ip = ip; app.lpm_rules[app.n_lpm_rules].depth = (uint8_t) depth; app.lpm_rules[app.n_lpm_rules].if_out = (uint8_t) if_out; app.n_lpm_rules ++; p = strchr(p, ';'); if (p == NULL) { return -8; } p ++; } if (app.n_lpm_rules == 0) { return -9; } return 0; } static int app_check_lpm_table(void) { uint32_t rule; /* For each rule, check that the output I/F is enabled */ for (rule = 0; rule < app.n_lpm_rules; rule ++) { uint32_t port = app.lpm_rules[rule].if_out; if (app.nic_tx_port_mask[port] == 0) { return -1; } } return 0; } static int app_check_every_rx_port_is_tx_enabled(void) { uint8_t port; for (port = 0; port < APP_MAX_NIC_PORTS; port ++) { if ((app_get_nic_rx_queues_per_port(port) > 0) && (app.nic_tx_port_mask[port] == 0)) { return -1; } } return 0; } #ifndef APP_ARG_RSZ_CHARS #define APP_ARG_RSZ_CHARS 63 #endif static int parse_arg_rsz(const char *arg) { if (strnlen(arg, APP_ARG_RSZ_CHARS + 1) == APP_ARG_RSZ_CHARS + 1) { return -1; } if (str_to_unsigned_vals(arg, APP_ARG_RSZ_CHARS, ',', 4, &app.nic_rx_ring_size, &app.ring_rx_size, &app.ring_tx_size, &app.nic_tx_ring_size) != 4) return -2; if ((app.nic_rx_ring_size == 0) || (app.nic_tx_ring_size == 0) || (app.ring_rx_size == 0) || (app.ring_tx_size == 0)) { return -3; } return 0; } #ifndef APP_ARG_BSZ_CHARS #define APP_ARG_BSZ_CHARS 63 #endif static int parse_arg_bsz(const char *arg) { const char *p = arg, *p0; if (strnlen(arg, APP_ARG_BSZ_CHARS + 1) == APP_ARG_BSZ_CHARS + 1) { return -1; } p0 = strchr(p++, ')'); if ((p0 == NULL) || (str_to_unsigned_vals(p, p0 - p, ',', 2, &app.burst_size_io_rx_read, &app.burst_size_io_rx_write) != 2)) { return -2; } p = strchr(p0, '('); if (p == NULL) { return -3; } p0 = strchr(p++, ')'); if ((p0 == NULL) || (str_to_unsigned_vals(p, p0 - p, ',', 2, &app.burst_size_worker_read, &app.burst_size_worker_write) != 2)) { return -4; } p = strchr(p0, '('); if (p == NULL) { return -5; } p0 = strchr(p++, ')'); if ((p0 == NULL) || (str_to_unsigned_vals(p, p0 - p, ',', 2, &app.burst_size_io_tx_read, &app.burst_size_io_tx_write) != 2)) { return -6; } if ((app.burst_size_io_rx_read == 0) || (app.burst_size_io_rx_write == 0) || (app.burst_size_worker_read == 0) || (app.burst_size_worker_write == 0) || (app.burst_size_io_tx_read == 0) || (app.burst_size_io_tx_write == 0)) { return -7; } if ((app.burst_size_io_rx_read > APP_MBUF_ARRAY_SIZE) || (app.burst_size_io_rx_write > APP_MBUF_ARRAY_SIZE) || (app.burst_size_worker_read > APP_MBUF_ARRAY_SIZE) || (app.burst_size_worker_write > APP_MBUF_ARRAY_SIZE) || ((2 * app.burst_size_io_tx_read) > APP_MBUF_ARRAY_SIZE) || (app.burst_size_io_tx_write > APP_MBUF_ARRAY_SIZE)) { return -8; } return 0; } #ifndef APP_ARG_NUMERICAL_SIZE_CHARS #define APP_ARG_NUMERICAL_SIZE_CHARS 15 #endif static int parse_arg_pos_lb(const char *arg) { uint32_t x; char *endpt; if (strnlen(arg, APP_ARG_NUMERICAL_SIZE_CHARS + 1) == APP_ARG_NUMERICAL_SIZE_CHARS + 1) { return -1; } errno = 0; x = strtoul(arg, &endpt, 10); if (errno != 0 || endpt == arg || *endpt != '\0'){ return -2; } if (x >= 64) { return -3; } app.pos_lb = (uint8_t) x; return 0; } /* Parse the argument given in the command line of the application */ int app_parse_args(int argc, char **argv) { int opt, ret; char **argvopt; int option_index; char *prgname = argv[0]; static struct option lgopts[] = { {"rx", 1, 0, 0}, {"tx", 1, 0, 0}, {"w", 1, 0, 0}, {"lpm", 1, 0, 0}, {"rsz", 1, 0, 0}, {"bsz", 1, 0, 0}, {"pos-lb", 1, 0, 0}, {NULL, 0, 0, 0} }; uint32_t arg_w = 0; uint32_t arg_rx = 0; uint32_t arg_tx = 0; uint32_t arg_lpm = 0; uint32_t arg_rsz = 0; uint32_t arg_bsz = 0; uint32_t arg_pos_lb = 0; argvopt = argv; while ((opt = getopt_long(argc, argvopt, "", lgopts, &option_index)) != EOF) { switch (opt) { /* long options */ case 0: if (!strcmp(lgopts[option_index].name, "rx")) { arg_rx = 1; ret = parse_arg_rx(optarg); if (ret) { printf("Incorrect value for --rx argument (%d)\n", ret); return -1; } } if (!strcmp(lgopts[option_index].name, "tx")) { arg_tx = 1; ret = parse_arg_tx(optarg); if (ret) { printf("Incorrect value for --tx argument (%d)\n", ret); return -1; } } if (!strcmp(lgopts[option_index].name, "w")) { arg_w = 1; ret = parse_arg_w(optarg); if (ret) { printf("Incorrect value for --w argument (%d)\n", ret); return -1; } } if (!strcmp(lgopts[option_index].name, "lpm")) { arg_lpm = 1; ret = parse_arg_lpm(optarg); if (ret) { printf("Incorrect value for --lpm argument (%d)\n", ret); return -1; } } if (!strcmp(lgopts[option_index].name, "rsz")) { arg_rsz = 1; ret = parse_arg_rsz(optarg); if (ret) { printf("Incorrect value for --rsz argument (%d)\n", ret); return -1; } } if (!strcmp(lgopts[option_index].name, "bsz")) { arg_bsz = 1; ret = parse_arg_bsz(optarg); if (ret) { printf("Incorrect value for --bsz argument (%d)\n", ret); return -1; } } if (!strcmp(lgopts[option_index].name, "pos-lb")) { arg_pos_lb = 1; ret = parse_arg_pos_lb(optarg); if (ret) { printf("Incorrect value for --pos-lb argument (%d)\n", ret); return -1; } } break; default: return -1; } } /* Check that all mandatory arguments are provided */ if ((arg_rx == 0) || (arg_tx == 0) || (arg_w == 0) || (arg_lpm == 0)){ printf("Not all mandatory arguments are present\n"); return -1; } /* Assign default values for the optional arguments not provided */ if (arg_rsz == 0) { app.nic_rx_ring_size = APP_DEFAULT_NIC_RX_RING_SIZE; app.nic_tx_ring_size = APP_DEFAULT_NIC_TX_RING_SIZE; app.ring_rx_size = APP_DEFAULT_RING_RX_SIZE; app.ring_tx_size = APP_DEFAULT_RING_TX_SIZE; } if (arg_bsz == 0) { app.burst_size_io_rx_read = APP_DEFAULT_BURST_SIZE_IO_RX_READ; app.burst_size_io_rx_write = APP_DEFAULT_BURST_SIZE_IO_RX_WRITE; app.burst_size_io_tx_read = APP_DEFAULT_BURST_SIZE_IO_TX_READ; app.burst_size_io_tx_write = APP_DEFAULT_BURST_SIZE_IO_TX_WRITE; app.burst_size_worker_read = APP_DEFAULT_BURST_SIZE_WORKER_READ; app.burst_size_worker_write = APP_DEFAULT_BURST_SIZE_WORKER_WRITE; } if (arg_pos_lb == 0) { app.pos_lb = APP_DEFAULT_IO_RX_LB_POS; } /* Check cross-consistency of arguments */ if ((ret = app_check_lpm_table()) < 0) { printf("At least one LPM rule is inconsistent (%d)\n", ret); return -1; } if (app_check_every_rx_port_is_tx_enabled() < 0) { printf("On LPM lookup miss, packet is sent back on the input port.\n"); printf("At least one RX port is not enabled for TX.\n"); return -2; } if (optind >= 0) argv[optind - 1] = prgname; ret = optind - 1; optind = 0; /* reset getopt lib */ return ret; } int app_get_nic_rx_queues_per_port(uint8_t port) { uint32_t i, count; if (port >= APP_MAX_NIC_PORTS) { return -1; } count = 0; for (i = 0; i < APP_MAX_RX_QUEUES_PER_NIC_PORT; i ++) { if (app.nic_rx_queue_mask[port][i] == 1) { count ++; } } return count; } int app_get_lcore_for_nic_rx(uint8_t port, uint8_t queue, uint32_t *lcore_out) { uint32_t lcore; for (lcore = 0; lcore < APP_MAX_LCORES; lcore ++) { struct app_lcore_params_io *lp = &app.lcore_params[lcore].io; uint32_t i; if (app.lcore_params[lcore].type != e_APP_LCORE_IO) { continue; } for (i = 0; i < lp->rx.n_nic_queues; i ++) { if ((lp->rx.nic_queues[i].port == port) && (lp->rx.nic_queues[i].queue == queue)) { *lcore_out = lcore; return 0; } } } return -1; } int app_get_lcore_for_nic_tx(uint8_t port, uint32_t *lcore_out) { uint32_t lcore; for (lcore = 0; lcore < APP_MAX_LCORES; lcore ++) { struct app_lcore_params_io *lp = &app.lcore_params[lcore].io; uint32_t i; if (app.lcore_params[lcore].type != e_APP_LCORE_IO) { continue; } for (i = 0; i < lp->tx.n_nic_ports; i ++) { if (lp->tx.nic_ports[i] == port) { *lcore_out = lcore; return 0; } } } return -1; } int app_is_socket_used(uint32_t socket) { uint32_t lcore; for (lcore = 0; lcore < APP_MAX_LCORES; lcore ++) { if (app.lcore_params[lcore].type == e_APP_LCORE_DISABLED) { continue; } if (socket == rte_lcore_to_socket_id(lcore)) { return 1; } } return 0; } uint32_t app_get_lcores_io_rx(void) { uint32_t lcore, count; count = 0; for (lcore = 0; lcore < APP_MAX_LCORES; lcore ++) { struct app_lcore_params_io *lp_io = &app.lcore_params[lcore].io; if ((app.lcore_params[lcore].type != e_APP_LCORE_IO) || (lp_io->rx.n_nic_queues == 0)) { continue; } count ++; } return count; } uint32_t app_get_lcores_worker(void) { uint32_t lcore, count; count = 0; for (lcore = 0; lcore < APP_MAX_LCORES; lcore ++) { if (app.lcore_params[lcore].type != e_APP_LCORE_WORKER) { continue; } count ++; } if (count > APP_MAX_WORKER_LCORES) { rte_panic("Algorithmic error (too many worker lcores)\n"); return 0; } return count; } void app_print_params(void) { unsigned port, queue, lcore, rule, i, j; /* Print NIC RX configuration */ printf("NIC RX ports: "); for (port = 0; port < APP_MAX_NIC_PORTS; port ++) { uint32_t n_rx_queues = app_get_nic_rx_queues_per_port((uint8_t) port); if (n_rx_queues == 0) { continue; } printf("%u (", port); for (queue = 0; queue < APP_MAX_RX_QUEUES_PER_NIC_PORT; queue ++) { if (app.nic_rx_queue_mask[port][queue] == 1) { printf("%u ", queue); } } printf(") "); } printf(";\n"); /* Print I/O lcore RX params */ for (lcore = 0; lcore < APP_MAX_LCORES; lcore ++) { struct app_lcore_params_io *lp = &app.lcore_params[lcore].io; if ((app.lcore_params[lcore].type != e_APP_LCORE_IO) || (lp->rx.n_nic_queues == 0)) { continue; } printf("I/O lcore %u (socket %u): ", lcore, rte_lcore_to_socket_id(lcore)); printf("RX ports "); for (i = 0; i < lp->rx.n_nic_queues; i ++) { printf("(%u, %u) ", (unsigned) lp->rx.nic_queues[i].port, (unsigned) lp->rx.nic_queues[i].queue); } printf("; "); printf("Output rings "); for (i = 0; i < lp->rx.n_rings; i ++) { printf("%p ", lp->rx.rings[i]); } printf(";\n"); } /* Print worker lcore RX params */ for (lcore = 0; lcore < APP_MAX_LCORES; lcore ++) { struct app_lcore_params_worker *lp = &app.lcore_params[lcore].worker; if (app.lcore_params[lcore].type != e_APP_LCORE_WORKER) { continue; } printf("Worker lcore %u (socket %u) ID %u: ", lcore, rte_lcore_to_socket_id(lcore), (unsigned)lp->worker_id); printf("Input rings "); for (i = 0; i < lp->n_rings_in; i ++) { printf("%p ", lp->rings_in[i]); } printf(";\n"); } printf("\n"); /* Print NIC TX configuration */ printf("NIC TX ports: "); for (port = 0; port < APP_MAX_NIC_PORTS; port ++) { if (app.nic_tx_port_mask[port] == 1) { printf("%u ", port); } } printf(";\n"); /* Print I/O TX lcore params */ for (lcore = 0; lcore < APP_MAX_LCORES; lcore ++) { struct app_lcore_params_io *lp = &app.lcore_params[lcore].io; uint32_t n_workers = app_get_lcores_worker(); if ((app.lcore_params[lcore].type != e_APP_LCORE_IO) || (lp->tx.n_nic_ports == 0)) { continue; } printf("I/O lcore %u (socket %u): ", lcore, rte_lcore_to_socket_id(lcore)); printf("Input rings per TX port "); for (i = 0; i < lp->tx.n_nic_ports; i ++) { port = lp->tx.nic_ports[i]; printf("%u (", port); for (j = 0; j < n_workers; j ++) { printf("%p ", lp->tx.rings[port][j]); } printf(") "); } printf(";\n"); } /* Print worker lcore TX params */ for (lcore = 0; lcore < APP_MAX_LCORES; lcore ++) { struct app_lcore_params_worker *lp = &app.lcore_params[lcore].worker; if (app.lcore_params[lcore].type != e_APP_LCORE_WORKER) { continue; } printf("Worker lcore %u (socket %u) ID %u: \n", lcore, rte_lcore_to_socket_id(lcore), (unsigned)lp->worker_id); printf("Output rings per TX port "); for (port = 0; port < APP_MAX_NIC_PORTS; port ++) { if (lp->rings_out[port] != NULL) { printf("%u (%p) ", port, lp->rings_out[port]); } } printf(";\n"); } /* Print LPM rules */ printf("LPM rules: \n"); for (rule = 0; rule < app.n_lpm_rules; rule ++) { uint32_t ip = app.lpm_rules[rule].ip; uint8_t depth = app.lpm_rules[rule].depth; uint8_t if_out = app.lpm_rules[rule].if_out; printf("\t%u: %u.%u.%u.%u/%u => %u;\n", rule, (unsigned) (ip & 0xFF000000) >> 24, (unsigned) (ip & 0x00FF0000) >> 16, (unsigned) (ip & 0x0000FF00) >> 8, (unsigned) ip & 0x000000FF, (unsigned) depth, (unsigned) if_out ); } /* Rings */ printf("Ring sizes: NIC RX = %u; Worker in = %u; Worker out = %u; NIC TX = %u;\n", (unsigned) app.nic_rx_ring_size, (unsigned) app.ring_rx_size, (unsigned) app.ring_tx_size, (unsigned) app.nic_tx_ring_size); /* Bursts */ printf("Burst sizes: I/O RX (rd = %u, wr = %u); Worker (rd = %u, wr = %u); I/O TX (rd = %u, wr = %u)\n", (unsigned) app.burst_size_io_rx_read, (unsigned) app.burst_size_io_rx_write, (unsigned) app.burst_size_worker_read, (unsigned) app.burst_size_worker_write, (unsigned) app.burst_size_io_tx_read, (unsigned) app.burst_size_io_tx_write); }