/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation */ #include #include "tb_mem.h" #include "acl.h" #define ACL_POOL_ALIGN 8 #define ACL_POOL_ALLOC_MIN 0x800000 /* number of pointers per alloc */ #define ACL_PTR_ALLOC 32 /* macros for dividing rule sets heuristics */ #define NODE_MAX 0x4000 #define NODE_MIN 0x800 /* TALLY are statistics per field */ enum { TALLY_0 = 0, /* number of rules that are 0% or more wild. */ TALLY_25, /* number of rules that are 25% or more wild. */ TALLY_50, TALLY_75, TALLY_100, TALLY_DEACTIVATED, /* deactivated fields (100% wild in all rules). */ TALLY_DEPTH, /* number of rules that are 100% wild for this field and higher. */ TALLY_NUM }; static const uint32_t wild_limits[TALLY_DEACTIVATED] = {0, 25, 50, 75, 100}; enum { ACL_INTERSECT_NONE = 0, ACL_INTERSECT_A = 1, /* set A is a superset of A and B intersect */ ACL_INTERSECT_B = 2, /* set B is a superset of A and B intersect */ ACL_INTERSECT = 4, /* sets A and B intersect */ }; enum { ACL_PRIORITY_EQUAL = 0, ACL_PRIORITY_NODE_A = 1, ACL_PRIORITY_NODE_B = 2, ACL_PRIORITY_MIXED = 3 }; struct acl_mem_block { uint32_t block_size; void *mem_ptr; }; #define MEM_BLOCK_NUM 16 /* Single ACL rule, build representation.*/ struct rte_acl_build_rule { struct rte_acl_build_rule *next; struct rte_acl_config *config; /**< configuration for each field in the rule. */ const struct rte_acl_rule *f; uint32_t *wildness; }; /* Context for build phase */ struct acl_build_context { const struct rte_acl_ctx *acx; struct rte_acl_build_rule *build_rules; struct rte_acl_config cfg; int32_t node_max; int32_t cur_node_max; uint32_t node; uint32_t num_nodes; uint32_t category_mask; uint32_t num_rules; uint32_t node_id; uint32_t src_mask; uint32_t num_build_rules; uint32_t num_tries; struct tb_mem_pool pool; struct rte_acl_trie tries[RTE_ACL_MAX_TRIES]; struct rte_acl_bld_trie bld_tries[RTE_ACL_MAX_TRIES]; uint32_t data_indexes[RTE_ACL_MAX_TRIES][RTE_ACL_MAX_FIELDS]; /* memory free lists for nodes and blocks used for node ptrs */ struct acl_mem_block blocks[MEM_BLOCK_NUM]; struct rte_acl_node *node_free_list; }; static int acl_merge_trie(struct acl_build_context *context, struct rte_acl_node *node_a, struct rte_acl_node *node_b, uint32_t level, struct rte_acl_node **node_c); static void acl_deref_ptr(struct acl_build_context *context, struct rte_acl_node *node, int index); static void * acl_build_alloc(struct acl_build_context *context, size_t n, size_t s) { uint32_t m; void *p; size_t alloc_size = n * s; /* * look for memory in free lists */ for (m = 0; m < RTE_DIM(context->blocks); m++) { if (context->blocks[m].block_size == alloc_size && context->blocks[m].mem_ptr != NULL) { p = context->blocks[m].mem_ptr; context->blocks[m].mem_ptr = *((void **)p); memset(p, 0, alloc_size); return p; } } /* * return allocation from memory pool */ p = tb_alloc(&context->pool, alloc_size); return p; } /* * Free memory blocks (kept in context for reuse). */ static void acl_build_free(struct acl_build_context *context, size_t s, void *p) { uint32_t n; for (n = 0; n < RTE_DIM(context->blocks); n++) { if (context->blocks[n].block_size == s) { *((void **)p) = context->blocks[n].mem_ptr; context->blocks[n].mem_ptr = p; return; } } for (n = 0; n < RTE_DIM(context->blocks); n++) { if (context->blocks[n].block_size == 0) { context->blocks[n].block_size = s; *((void **)p) = NULL; context->blocks[n].mem_ptr = p; return; } } } /* * Allocate and initialize a new node. */ static struct rte_acl_node * acl_alloc_node(struct acl_build_context *context, int level) { struct rte_acl_node *node; if (context->node_free_list != NULL) { node = context->node_free_list; context->node_free_list = node->next; memset(node, 0, sizeof(struct rte_acl_node)); } else { node = acl_build_alloc(context, sizeof(struct rte_acl_node), 1); } if (node != NULL) { node->num_ptrs = 0; node->level = level; node->node_type = RTE_ACL_NODE_UNDEFINED; node->node_index = RTE_ACL_NODE_UNDEFINED; context->num_nodes++; node->id = context->node_id++; } return node; } /* * Dereference all nodes to which this node points */ static void acl_free_node(struct acl_build_context *context, struct rte_acl_node *node) { uint32_t n; if (node->prev != NULL) node->prev->next = NULL; for (n = 0; n < node->num_ptrs; n++) acl_deref_ptr(context, node, n); /* free mrt if this is a match node */ if (node->mrt != NULL) { acl_build_free(context, sizeof(struct rte_acl_match_results), node->mrt); node->mrt = NULL; } /* free transitions to other nodes */ if (node->ptrs != NULL) { acl_build_free(context, node->max_ptrs * sizeof(struct rte_acl_ptr_set), node->ptrs); node->ptrs = NULL; } /* put it on the free list */ context->num_nodes--; node->next = context->node_free_list; context->node_free_list = node; } /* * Include src bitset in dst bitset */ static void acl_include(struct rte_acl_bitset *dst, struct rte_acl_bitset *src, bits_t mask) { uint32_t n; for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++) dst->bits[n] = (dst->bits[n] & mask) | src->bits[n]; } /* * Set dst to bits of src1 that are not in src2 */ static int acl_exclude(struct rte_acl_bitset *dst, struct rte_acl_bitset *src1, struct rte_acl_bitset *src2) { uint32_t n; bits_t all_bits = 0; for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++) { dst->bits[n] = src1->bits[n] & ~src2->bits[n]; all_bits |= dst->bits[n]; } return all_bits != 0; } /* * Add a pointer (ptr) to a node. */ static int acl_add_ptr(struct acl_build_context *context, struct rte_acl_node *node, struct rte_acl_node *ptr, struct rte_acl_bitset *bits) { uint32_t n, num_ptrs; struct rte_acl_ptr_set *ptrs = NULL; /* * If there's already a pointer to the same node, just add to the bitset */ for (n = 0; n < node->num_ptrs; n++) { if (node->ptrs[n].ptr != NULL) { if (node->ptrs[n].ptr == ptr) { acl_include(&node->ptrs[n].values, bits, -1); acl_include(&node->values, bits, -1); return 0; } } } /* if there's no room for another pointer, make room */ if (node->num_ptrs >= node->max_ptrs) { /* add room for more pointers */ num_ptrs = node->max_ptrs + ACL_PTR_ALLOC; ptrs = acl_build_alloc(context, num_ptrs, sizeof(*ptrs)); /* copy current points to new memory allocation */ if (node->ptrs != NULL) { memcpy(ptrs, node->ptrs, node->num_ptrs * sizeof(*ptrs)); acl_build_free(context, node->max_ptrs * sizeof(*ptrs), node->ptrs); } node->ptrs = ptrs; node->max_ptrs = num_ptrs; } /* Find available ptr and add a new pointer to this node */ for (n = node->min_add; n < node->max_ptrs; n++) { if (node->ptrs[n].ptr == NULL) { node->ptrs[n].ptr = ptr; acl_include(&node->ptrs[n].values, bits, 0); acl_include(&node->values, bits, -1); if (ptr != NULL) ptr->ref_count++; if (node->num_ptrs <= n) node->num_ptrs = n + 1; return 0; } } return 0; } /* * Add a pointer for a range of values */ static int acl_add_ptr_range(struct acl_build_context *context, struct rte_acl_node *root, struct rte_acl_node *node, uint8_t low, uint8_t high) { uint32_t n; struct rte_acl_bitset bitset; /* clear the bitset values */ for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++) bitset.bits[n] = 0; /* for each bit in range, add bit to set */ for (n = 0; n < UINT8_MAX + 1; n++) if (n >= low && n <= high) bitset.bits[n / (sizeof(bits_t) * 8)] |= 1U << (n % (sizeof(bits_t) * CHAR_BIT)); return acl_add_ptr(context, root, node, &bitset); } /* * Generate a bitset from a byte value and mask. */ static int acl_gen_mask(struct rte_acl_bitset *bitset, uint32_t value, uint32_t mask) { int range = 0; uint32_t n; /* clear the bitset values */ for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++) bitset->bits[n] = 0; /* for each bit in value/mask, add bit to set */ for (n = 0; n < UINT8_MAX + 1; n++) { if ((n & mask) == value) { range++; bitset->bits[n / (sizeof(bits_t) * 8)] |= 1U << (n % (sizeof(bits_t) * CHAR_BIT)); } } return range; } /* * Determine how A and B intersect. * Determine if A and/or B are supersets of the intersection. */ static int acl_intersect_type(const struct rte_acl_bitset *a_bits, const struct rte_acl_bitset *b_bits, struct rte_acl_bitset *intersect) { uint32_t n; bits_t intersect_bits = 0; bits_t a_superset = 0; bits_t b_superset = 0; /* * calculate and store intersection and check if A and/or B have * bits outside the intersection (superset) */ for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++) { intersect->bits[n] = a_bits->bits[n] & b_bits->bits[n]; a_superset |= a_bits->bits[n] ^ intersect->bits[n]; b_superset |= b_bits->bits[n] ^ intersect->bits[n]; intersect_bits |= intersect->bits[n]; } n = (intersect_bits == 0 ? ACL_INTERSECT_NONE : ACL_INTERSECT) | (b_superset == 0 ? 0 : ACL_INTERSECT_B) | (a_superset == 0 ? 0 : ACL_INTERSECT_A); return n; } /* * Duplicate a node */ static struct rte_acl_node * acl_dup_node(struct acl_build_context *context, struct rte_acl_node *node) { uint32_t n; struct rte_acl_node *next; next = acl_alloc_node(context, node->level); /* allocate the pointers */ if (node->num_ptrs > 0) { next->ptrs = acl_build_alloc(context, node->max_ptrs, sizeof(struct rte_acl_ptr_set)); next->max_ptrs = node->max_ptrs; } /* copy over the pointers */ for (n = 0; n < node->num_ptrs; n++) { if (node->ptrs[n].ptr != NULL) { next->ptrs[n].ptr = node->ptrs[n].ptr; next->ptrs[n].ptr->ref_count++; acl_include(&next->ptrs[n].values, &node->ptrs[n].values, -1); } } next->num_ptrs = node->num_ptrs; /* copy over node's match results */ if (node->match_flag == 0) next->match_flag = 0; else { next->match_flag = -1; next->mrt = acl_build_alloc(context, 1, sizeof(*next->mrt)); memcpy(next->mrt, node->mrt, sizeof(*next->mrt)); } /* copy over node's bitset */ acl_include(&next->values, &node->values, -1); node->next = next; next->prev = node; return next; } /* * Dereference a pointer from a node */ static void acl_deref_ptr(struct acl_build_context *context, struct rte_acl_node *node, int index) { struct rte_acl_node *ref_node; /* De-reference the node at the specified pointer */ if (node != NULL && node->ptrs[index].ptr != NULL) { ref_node = node->ptrs[index].ptr; ref_node->ref_count--; if (ref_node->ref_count == 0) acl_free_node(context, ref_node); } } /* * acl_exclude rte_acl_bitset from src and copy remaining pointer to dst */ static int acl_copy_ptr(struct acl_build_context *context, struct rte_acl_node *dst, struct rte_acl_node *src, int index, struct rte_acl_bitset *b_bits) { int rc; struct rte_acl_bitset bits; if (b_bits != NULL) if (!acl_exclude(&bits, &src->ptrs[index].values, b_bits)) return 0; rc = acl_add_ptr(context, dst, src->ptrs[index].ptr, &bits); if (rc < 0) return rc; return 1; } /* * Fill in gaps in ptrs list with the ptr at the end of the list */ static void acl_compact_node_ptrs(struct rte_acl_node *node_a) { uint32_t n; int min_add = node_a->min_add; while (node_a->num_ptrs > 0 && node_a->ptrs[node_a->num_ptrs - 1].ptr == NULL) node_a->num_ptrs--; for (n = min_add; n + 1 < node_a->num_ptrs; n++) { /* if this entry is empty */ if (node_a->ptrs[n].ptr == NULL) { /* move the last pointer to this entry */ acl_include(&node_a->ptrs[n].values, &node_a->ptrs[node_a->num_ptrs - 1].values, 0); node_a->ptrs[n].ptr = node_a->ptrs[node_a->num_ptrs - 1].ptr; /* * mark the end as empty and adjust the number * of used pointer enum_tries */ node_a->ptrs[node_a->num_ptrs - 1].ptr = NULL; while (node_a->num_ptrs > 0 && node_a->ptrs[node_a->num_ptrs - 1].ptr == NULL) node_a->num_ptrs--; } } } static int acl_resolve_leaf(struct acl_build_context *context, struct rte_acl_node *node_a, struct rte_acl_node *node_b, struct rte_acl_node **node_c) { uint32_t n; int combined_priority = ACL_PRIORITY_EQUAL; for (n = 0; n < context->cfg.num_categories; n++) { if (node_a->mrt->priority[n] != node_b->mrt->priority[n]) { combined_priority |= (node_a->mrt->priority[n] > node_b->mrt->priority[n]) ? ACL_PRIORITY_NODE_A : ACL_PRIORITY_NODE_B; } } /* * if node a is higher or equal priority for all categories, * then return node_a. */ if (combined_priority == ACL_PRIORITY_NODE_A || combined_priority == ACL_PRIORITY_EQUAL) { *node_c = node_a; return 0; } /* * if node b is higher or equal priority for all categories, * then return node_b. */ if (combined_priority == ACL_PRIORITY_NODE_B) { *node_c = node_b; return 0; } /* * mixed priorities - create a new node with the highest priority * for each category. */ /* force new duplication. */ node_a->next = NULL; *node_c = acl_dup_node(context, node_a); for (n = 0; n < context->cfg.num_categories; n++) { if ((*node_c)->mrt->priority[n] < node_b->mrt->priority[n]) { (*node_c)->mrt->priority[n] = node_b->mrt->priority[n]; (*node_c)->mrt->results[n] = node_b->mrt->results[n]; } } return 0; } /* * Merge nodes A and B together, * returns a node that is the path for the intersection * * If match node (leaf on trie) * For each category * return node = highest priority result * * Create C as a duplicate of A to point to child intersections * If any pointers in C intersect with any in B * For each intersection * merge children * remove intersection from C pointer * add a pointer from C to child intersection node * Compact the pointers in A and B * Copy any B pointers that are outside of the intersection to C * If C has no references to the B trie * free C and return A * Else If C has no references to the A trie * free C and return B * Else * return C */ static int acl_merge_trie(struct acl_build_context *context, struct rte_acl_node *node_a, struct rte_acl_node *node_b, uint32_t level, struct rte_acl_node **return_c) { uint32_t n, m, ptrs_c, ptrs_b; uint32_t min_add_c, min_add_b; int node_intersect_type; struct rte_acl_bitset node_intersect; struct rte_acl_node *node_c; struct rte_acl_node *node_a_next; int node_b_refs; int node_a_refs; node_c = node_a; node_a_next = node_a->next; min_add_c = 0; min_add_b = 0; node_a_refs = node_a->num_ptrs; node_b_refs = 0; node_intersect_type = 0; /* Resolve leaf nodes (matches) */ if (node_a->match_flag != 0) { acl_resolve_leaf(context, node_a, node_b, return_c); return 0; } /* * Create node C as a copy of node A, and do: C = merge(A,B); * If node A can be used instead (A==C), then later we'll * destroy C and return A. */ if (level > 0) node_c = acl_dup_node(context, node_a); /* * If the two node transitions intersect then merge the transitions. * Check intersection for entire node (all pointers) */ node_intersect_type = acl_intersect_type(&node_c->values, &node_b->values, &node_intersect); if (node_intersect_type & ACL_INTERSECT) { min_add_b = node_b->min_add; node_b->min_add = node_b->num_ptrs; ptrs_b = node_b->num_ptrs; min_add_c = node_c->min_add; node_c->min_add = node_c->num_ptrs; ptrs_c = node_c->num_ptrs; for (n = 0; n < ptrs_c; n++) { if (node_c->ptrs[n].ptr == NULL) { node_a_refs--; continue; } node_c->ptrs[n].ptr->next = NULL; for (m = 0; m < ptrs_b; m++) { struct rte_acl_bitset child_intersect; int child_intersect_type; struct rte_acl_node *child_node_c = NULL; if (node_b->ptrs[m].ptr == NULL || node_c->ptrs[n].ptr == node_b->ptrs[m].ptr) continue; child_intersect_type = acl_intersect_type( &node_c->ptrs[n].values, &node_b->ptrs[m].values, &child_intersect); if ((child_intersect_type & ACL_INTERSECT) != 0) { if (acl_merge_trie(context, node_c->ptrs[n].ptr, node_b->ptrs[m].ptr, level + 1, &child_node_c)) return 1; if (child_node_c != NULL && child_node_c != node_c->ptrs[n].ptr) { node_b_refs++; /* * Added link from C to * child_C for all transitions * in the intersection. */ acl_add_ptr(context, node_c, child_node_c, &child_intersect); /* * inc refs if pointer is not * to node b. */ node_a_refs += (child_node_c != node_b->ptrs[m].ptr); /* * Remove intersection from C * pointer. */ if (!acl_exclude( &node_c->ptrs[n].values, &node_c->ptrs[n].values, &child_intersect)) { acl_deref_ptr(context, node_c, n); node_c->ptrs[n].ptr = NULL; node_a_refs--; } } } } } /* Compact pointers */ node_c->min_add = min_add_c; acl_compact_node_ptrs(node_c); node_b->min_add = min_add_b; acl_compact_node_ptrs(node_b); } /* * Copy pointers outside of the intersection from B to C */ if ((node_intersect_type & ACL_INTERSECT_B) != 0) { node_b_refs++; for (m = 0; m < node_b->num_ptrs; m++) if (node_b->ptrs[m].ptr != NULL) acl_copy_ptr(context, node_c, node_b, m, &node_intersect); } /* * Free node C if top of trie is contained in A or B * if node C is a duplicate of node A && * node C was not an existing duplicate */ if (node_c != node_a && node_c != node_a_next) { /* * if the intersection has no references to the * B side, then it is contained in A */ if (node_b_refs == 0) { acl_free_node(context, node_c); node_c = node_a; } else { /* * if the intersection has no references to the * A side, then it is contained in B. */ if (node_a_refs == 0) { acl_free_node(context, node_c); node_c = node_b; } } } if (return_c != NULL) *return_c = node_c; if (level == 0) acl_free_node(context, node_b); return 0; } /* * Reset current runtime fields before next build: * - free allocated RT memory. * - reset all RT related fields to zero. */ static void acl_build_reset(struct rte_acl_ctx *ctx) { rte_free(ctx->mem); memset(&ctx->num_categories, 0, sizeof(*ctx) - offsetof(struct rte_acl_ctx, num_categories)); } static void acl_gen_full_range(struct acl_build_context *context, struct rte_acl_node *root, struct rte_acl_node *end, int size, int level) { struct rte_acl_node *node, *prev; uint32_t n; prev = root; for (n = size - 1; n > 0; n--) { node = acl_alloc_node(context, level++); acl_add_ptr_range(context, prev, node, 0, UINT8_MAX); prev = node; } acl_add_ptr_range(context, prev, end, 0, UINT8_MAX); } static void acl_gen_range_mdl(struct acl_build_context *context, struct rte_acl_node *root, struct rte_acl_node *end, uint8_t lo, uint8_t hi, int size, int level) { struct rte_acl_node *node; node = acl_alloc_node(context, level++); acl_add_ptr_range(context, root, node, lo, hi); acl_gen_full_range(context, node, end, size - 1, level); } static void acl_gen_range_low(struct acl_build_context *context, struct rte_acl_node *root, struct rte_acl_node *end, const uint8_t *lo, int size, int level) { struct rte_acl_node *node; uint32_t n; n = size - 1; if (n == 0) { acl_add_ptr_range(context, root, end, lo[0], UINT8_MAX); return; } node = acl_alloc_node(context, level++); acl_add_ptr_range(context, root, node, lo[n], lo[n]); /* generate lower-bound sub-trie */ acl_gen_range_low(context, node, end, lo, n, level); /* generate middle sub-trie */ if (n > 1 && lo[n - 1] != UINT8_MAX) acl_gen_range_mdl(context, node, end, lo[n - 1] + 1, UINT8_MAX, n, level); } static void acl_gen_range_high(struct acl_build_context *context, struct rte_acl_node *root, struct rte_acl_node *end, const uint8_t *hi, int size, int level) { struct rte_acl_node *node; uint32_t n; n = size - 1; if (n == 0) { acl_add_ptr_range(context, root, end, 0, hi[0]); return; } node = acl_alloc_node(context, level++); acl_add_ptr_range(context, root, node, hi[n], hi[n]); /* generate upper-bound sub-trie */ acl_gen_range_high(context, node, end, hi, n, level); /* generate middle sub-trie */ if (n > 1 && hi[n - 1] != 0) acl_gen_range_mdl(context, node, end, 0, hi[n - 1] - 1, n, level); } static struct rte_acl_node * acl_gen_range_trie(struct acl_build_context *context, const void *min, const void *max, int size, int level, struct rte_acl_node **pend) { int32_t k, n; uint8_t hi_ff, lo_00; struct rte_acl_node *node, *prev, *root; const uint8_t *lo; const uint8_t *hi; lo = min; hi = max; *pend = acl_alloc_node(context, level + size); root = acl_alloc_node(context, level++); prev = root; /* build common sub-trie till possible */ for (n = size - 1; n > 0 && lo[n] == hi[n]; n--) { node = acl_alloc_node(context, level++); acl_add_ptr_range(context, prev, node, lo[n], hi[n]); prev = node; } /* no branch needed, just one sub-trie */ if (n == 0) { acl_add_ptr_range(context, prev, *pend, lo[0], hi[0]); return root; } /* gather information about divirgent paths */ lo_00 = 0; hi_ff = UINT8_MAX; for (k = n - 1; k >= 0; k--) { hi_ff &= hi[k]; lo_00 |= lo[k]; } /* generate left (lower-bound) sub-trie */ if (lo_00 != 0) acl_gen_range_low(context, prev, *pend, lo, n + 1, level); /* generate right (upper-bound) sub-trie */ if (hi_ff != UINT8_MAX) acl_gen_range_high(context, prev, *pend, hi, n + 1, level); /* generate sub-trie in the middle */ if (lo[n] + 1 != hi[n] || lo_00 == 0 || hi_ff == UINT8_MAX) { lo_00 = lo[n] + (lo_00 != 0); hi_ff = hi[n] - (hi_ff != UINT8_MAX); acl_gen_range_mdl(context, prev, *pend, lo_00, hi_ff, n + 1, level); } return root; } static struct rte_acl_node * acl_gen_mask_trie(struct acl_build_context *context, const void *value, const void *mask, int size, int level, struct rte_acl_node **pend) { int32_t n; struct rte_acl_node *root; struct rte_acl_node *node, *prev; struct rte_acl_bitset bits; const uint8_t *val = value; const uint8_t *msk = mask; root = acl_alloc_node(context, level++); prev = root; for (n = size - 1; n >= 0; n--) { node = acl_alloc_node(context, level++); acl_gen_mask(&bits, val[n] & msk[n], msk[n]); acl_add_ptr(context, prev, node, &bits); prev = node; } *pend = prev; return root; } static struct rte_acl_node * build_trie(struct acl_build_context *context, struct rte_acl_build_rule *head, struct rte_acl_build_rule **last, uint32_t *count) { uint32_t n, m; int field_index, node_count; struct rte_acl_node *trie; struct rte_acl_build_rule *prev, *rule; struct rte_acl_node *end, *merge, *root, *end_prev; const struct rte_acl_field *fld; prev = head; rule = head; *last = prev; trie = acl_alloc_node(context, 0); while (rule != NULL) { root = acl_alloc_node(context, 0); root->ref_count = 1; end = root; for (n = 0; n < rule->config->num_fields; n++) { field_index = rule->config->defs[n].field_index; fld = rule->f->field + field_index; end_prev = end; /* build a mini-trie for this field */ switch (rule->config->defs[n].type) { case RTE_ACL_FIELD_TYPE_BITMASK: merge = acl_gen_mask_trie(context, &fld->value, &fld->mask_range, rule->config->defs[n].size, end->level + 1, &end); break; case RTE_ACL_FIELD_TYPE_MASK: { /* * set msb for the size of the field and * all higher bits. */ uint64_t mask; mask = RTE_ACL_MASKLEN_TO_BITMASK( fld->mask_range.u32, rule->config->defs[n].size); /* gen a mini-trie for this field */ merge = acl_gen_mask_trie(context, &fld->value, (char *)&mask, rule->config->defs[n].size, end->level + 1, &end); } break; case RTE_ACL_FIELD_TYPE_RANGE: merge = acl_gen_range_trie(context, &rule->f->field[field_index].value, &rule->f->field[field_index].mask_range, rule->config->defs[n].size, end->level + 1, &end); break; default: RTE_LOG(ERR, ACL, "Error in rule[%u] type - %hhu\n", rule->f->data.userdata, rule->config->defs[n].type); return NULL; } /* merge this field on to the end of the rule */ if (acl_merge_trie(context, end_prev, merge, 0, NULL) != 0) { return NULL; } } end->match_flag = ++context->num_build_rules; /* * Setup the results for this rule. * The result and priority of each category. */ if (end->mrt == NULL) end->mrt = acl_build_alloc(context, 1, sizeof(*end->mrt)); for (m = context->cfg.num_categories; 0 != m--; ) { if (rule->f->data.category_mask & (1U << m)) { end->mrt->results[m] = rule->f->data.userdata; end->mrt->priority[m] = rule->f->data.priority; } else { end->mrt->results[m] = 0; end->mrt->priority[m] = 0; } } node_count = context->num_nodes; (*count)++; /* merge this rule into the trie */ if (acl_merge_trie(context, trie, root, 0, NULL)) return NULL; node_count = context->num_nodes - node_count; if (node_count > context->cur_node_max) { *last = prev; return trie; } prev = rule; rule = rule->next; } *last = NULL; return trie; } static void acl_calc_wildness(struct rte_acl_build_rule *head, const struct rte_acl_config *config) { uint32_t n; struct rte_acl_build_rule *rule; for (rule = head; rule != NULL; rule = rule->next) { for (n = 0; n < config->num_fields; n++) { double wild = 0; uint32_t bit_len = CHAR_BIT * config->defs[n].size; uint64_t msk_val = RTE_LEN2MASK(bit_len, typeof(msk_val)); double size = bit_len; int field_index = config->defs[n].field_index; const struct rte_acl_field *fld = rule->f->field + field_index; switch (rule->config->defs[n].type) { case RTE_ACL_FIELD_TYPE_BITMASK: wild = (size - __builtin_popcountll( fld->mask_range.u64 & msk_val)) / size; break; case RTE_ACL_FIELD_TYPE_MASK: wild = (size - fld->mask_range.u32) / size; break; case RTE_ACL_FIELD_TYPE_RANGE: wild = (fld->mask_range.u64 & msk_val) - (fld->value.u64 & msk_val); wild = wild / msk_val; break; } rule->wildness[field_index] = (uint32_t)(wild * 100); } } } static void acl_rule_stats(struct rte_acl_build_rule *head, struct rte_acl_config *config) { struct rte_acl_build_rule *rule; uint32_t n, m, fields_deactivated = 0; uint32_t start = 0, deactivate = 0; int tally[RTE_ACL_MAX_LEVELS][TALLY_NUM]; memset(tally, 0, sizeof(tally)); for (rule = head; rule != NULL; rule = rule->next) { for (n = 0; n < config->num_fields; n++) { uint32_t field_index = config->defs[n].field_index; tally[n][TALLY_0]++; for (m = 1; m < RTE_DIM(wild_limits); m++) { if (rule->wildness[field_index] >= wild_limits[m]) tally[n][m]++; } } for (n = config->num_fields - 1; n > 0; n--) { uint32_t field_index = config->defs[n].field_index; if (rule->wildness[field_index] == 100) tally[n][TALLY_DEPTH]++; else break; } } /* * Look for any field that is always wild and drop it from the config * Only deactivate if all fields for a given input loop are deactivated. */ for (n = 1; n < config->num_fields; n++) { if (config->defs[n].input_index != config->defs[n - 1].input_index) { for (m = start; m < n; m++) tally[m][TALLY_DEACTIVATED] = deactivate; fields_deactivated += deactivate; start = n; deactivate = 1; } /* if the field is not always completely wild */ if (tally[n][TALLY_100] != tally[n][TALLY_0]) deactivate = 0; } for (m = start; m < n; m++) tally[m][TALLY_DEACTIVATED] = deactivate; fields_deactivated += deactivate; /* remove deactivated fields */ if (fields_deactivated) { uint32_t k, l = 0; for (k = 0; k < config->num_fields; k++) { if (tally[k][TALLY_DEACTIVATED] == 0) { memmove(&tally[l][0], &tally[k][0], TALLY_NUM * sizeof(tally[0][0])); memmove(&config->defs[l++], &config->defs[k], sizeof(struct rte_acl_field_def)); } } config->num_fields = l; } } static int rule_cmp_wildness(struct rte_acl_build_rule *r1, struct rte_acl_build_rule *r2) { uint32_t n; for (n = 1; n < r1->config->num_fields; n++) { int field_index = r1->config->defs[n].field_index; if (r1->wildness[field_index] != r2->wildness[field_index]) return r1->wildness[field_index] - r2->wildness[field_index]; } return 0; } /* * Split the rte_acl_build_rule list into two lists. */ static void rule_list_split(struct rte_acl_build_rule *source, struct rte_acl_build_rule **list_a, struct rte_acl_build_rule **list_b) { struct rte_acl_build_rule *fast; struct rte_acl_build_rule *slow; if (source == NULL || source->next == NULL) { /* length < 2 cases */ *list_a = source; *list_b = NULL; } else { slow = source; fast = source->next; /* Advance 'fast' two nodes, and advance 'slow' one node */ while (fast != NULL) { fast = fast->next; if (fast != NULL) { slow = slow->next; fast = fast->next; } } /* 'slow' is before the midpoint in the list, so split it in two at that point. */ *list_a = source; *list_b = slow->next; slow->next = NULL; } } /* * Merge two sorted lists. */ static struct rte_acl_build_rule * rule_list_sorted_merge(struct rte_acl_build_rule *a, struct rte_acl_build_rule *b) { struct rte_acl_build_rule *result = NULL; struct rte_acl_build_rule **last_next = &result; while (1) { if (a == NULL) { *last_next = b; break; } else if (b == NULL) { *last_next = a; break; } if (rule_cmp_wildness(a, b) >= 0) { *last_next = a; last_next = &a->next; a = a->next; } else { *last_next = b; last_next = &b->next; b = b->next; } } return result; } /* * Sort list of rules based on the rules wildness. * Use recursive mergesort algorithm. */ static struct rte_acl_build_rule * sort_rules(struct rte_acl_build_rule *head) { struct rte_acl_build_rule *a; struct rte_acl_build_rule *b; /* Base case -- length 0 or 1 */ if (head == NULL || head->next == NULL) return head; /* Split head into 'a' and 'b' sublists */ rule_list_split(head, &a, &b); /* Recursively sort the sublists */ a = sort_rules(a); b = sort_rules(b); /* answer = merge the two sorted lists together */ return rule_list_sorted_merge(a, b); } static uint32_t acl_build_index(const struct rte_acl_config *config, uint32_t *data_index) { uint32_t n, m; int32_t last_header; m = 0; last_header = -1; for (n = 0; n < config->num_fields; n++) { if (last_header != config->defs[n].input_index) { last_header = config->defs[n].input_index; data_index[m++] = config->defs[n].offset; } } return m; } static struct rte_acl_build_rule * build_one_trie(struct acl_build_context *context, struct rte_acl_build_rule *rule_sets[RTE_ACL_MAX_TRIES], uint32_t n, int32_t node_max) { struct rte_acl_build_rule *last; struct rte_acl_config *config; config = rule_sets[n]->config; acl_rule_stats(rule_sets[n], config); rule_sets[n] = sort_rules(rule_sets[n]); context->tries[n].type = RTE_ACL_FULL_TRIE; context->tries[n].count = 0; context->tries[n].num_data_indexes = acl_build_index(config, context->data_indexes[n]); context->tries[n].data_index = context->data_indexes[n]; context->cur_node_max = node_max; context->bld_tries[n].trie = build_trie(context, rule_sets[n], &last, &context->tries[n].count); return last; } static int acl_build_tries(struct acl_build_context *context, struct rte_acl_build_rule *head) { uint32_t n, num_tries; struct rte_acl_config *config; struct rte_acl_build_rule *last; struct rte_acl_build_rule *rule_sets[RTE_ACL_MAX_TRIES]; config = head->config; rule_sets[0] = head; /* initialize tries */ for (n = 0; n < RTE_DIM(context->tries); n++) { context->tries[n].type = RTE_ACL_UNUSED_TRIE; context->bld_tries[n].trie = NULL; context->tries[n].count = 0; } context->tries[0].type = RTE_ACL_FULL_TRIE; /* calc wildness of each field of each rule */ acl_calc_wildness(head, config); for (n = 0;; n = num_tries) { num_tries = n + 1; last = build_one_trie(context, rule_sets, n, context->node_max); if (context->bld_tries[n].trie == NULL) { RTE_LOG(ERR, ACL, "Build of %u-th trie failed\n", n); return -ENOMEM; } /* Build of the last trie completed. */ if (last == NULL) break; if (num_tries == RTE_DIM(context->tries)) { RTE_LOG(ERR, ACL, "Exceeded max number of tries: %u\n", num_tries); return -ENOMEM; } /* Trie is getting too big, split remaining rule set. */ rule_sets[num_tries] = last->next; last->next = NULL; acl_free_node(context, context->bld_tries[n].trie); /* Create a new copy of config for remaining rules. */ config = acl_build_alloc(context, 1, sizeof(*config)); memcpy(config, rule_sets[n]->config, sizeof(*config)); /* Make remaining rules use new config. */ for (head = rule_sets[num_tries]; head != NULL; head = head->next) head->config = config; /* * Rebuild the trie for the reduced rule-set. * Don't try to split it any further. */ last = build_one_trie(context, rule_sets, n, INT32_MAX); if (context->bld_tries[n].trie == NULL || last != NULL) { RTE_LOG(ERR, ACL, "Build of %u-th trie failed\n", n); return -ENOMEM; } } context->num_tries = num_tries; return 0; } static void acl_build_log(const struct acl_build_context *ctx) { uint32_t n; RTE_LOG(DEBUG, ACL, "Build phase for ACL \"%s\":\n" "node limit for tree split: %u\n" "nodes created: %u\n" "memory consumed: %zu\n", ctx->acx->name, ctx->node_max, ctx->num_nodes, ctx->pool.alloc); for (n = 0; n < RTE_DIM(ctx->tries); n++) { if (ctx->tries[n].count != 0) RTE_LOG(DEBUG, ACL, "trie %u: number of rules: %u, indexes: %u\n", n, ctx->tries[n].count, ctx->tries[n].num_data_indexes); } } static int acl_build_rules(struct acl_build_context *bcx) { struct rte_acl_build_rule *br, *head; const struct rte_acl_rule *rule; uint32_t *wp; uint32_t fn, i, n, num; size_t ofs, sz; fn = bcx->cfg.num_fields; n = bcx->acx->num_rules; ofs = n * sizeof(*br); sz = ofs + n * fn * sizeof(*wp); br = tb_alloc(&bcx->pool, sz); wp = (uint32_t *)((uintptr_t)br + ofs); num = 0; head = NULL; for (i = 0; i != n; i++) { rule = (const struct rte_acl_rule *) ((uintptr_t)bcx->acx->rules + bcx->acx->rule_sz * i); if ((rule->data.category_mask & bcx->category_mask) != 0) { br[num].next = head; br[num].config = &bcx->cfg; br[num].f = rule; br[num].wildness = wp; wp += fn; head = br + num; num++; } } bcx->num_rules = num; bcx->build_rules = head; return 0; } /* * Copy data_indexes for each trie into RT location. */ static void acl_set_data_indexes(struct rte_acl_ctx *ctx) { uint32_t i, n, ofs; ofs = 0; for (i = 0; i != ctx->num_tries; i++) { n = ctx->trie[i].num_data_indexes; memcpy(ctx->data_indexes + ofs, ctx->trie[i].data_index, n * sizeof(ctx->data_indexes[0])); ctx->trie[i].data_index = ctx->data_indexes + ofs; ofs += RTE_ACL_MAX_FIELDS; } } /* * Internal routine, performs 'build' phase of trie generation: * - setups build context. * - analizes given set of rules. * - builds internal tree(s). */ static int acl_bld(struct acl_build_context *bcx, struct rte_acl_ctx *ctx, const struct rte_acl_config *cfg, uint32_t node_max) { int32_t rc; /* setup build context. */ memset(bcx, 0, sizeof(*bcx)); bcx->acx = ctx; bcx->pool.alignment = ACL_POOL_ALIGN; bcx->pool.min_alloc = ACL_POOL_ALLOC_MIN; bcx->cfg = *cfg; bcx->category_mask = RTE_LEN2MASK(bcx->cfg.num_categories, typeof(bcx->category_mask)); bcx->node_max = node_max; rc = sigsetjmp(bcx->pool.fail, 0); /* build phase runs out of memory. */ if (rc != 0) { RTE_LOG(ERR, ACL, "ACL context: %s, %s() failed with error code: %d\n", bcx->acx->name, __func__, rc); return rc; } /* Create a build rules copy. */ rc = acl_build_rules(bcx); if (rc != 0) return rc; /* No rules to build for that context+config */ if (bcx->build_rules == NULL) { rc = -EINVAL; } else { /* build internal trie representation. */ rc = acl_build_tries(bcx, bcx->build_rules); } return rc; } /* * Check that parameters for acl_build() are valid. */ static int acl_check_bld_param(struct rte_acl_ctx *ctx, const struct rte_acl_config *cfg) { static const size_t field_sizes[] = { sizeof(uint8_t), sizeof(uint16_t), sizeof(uint32_t), sizeof(uint64_t), }; uint32_t i, j; if (ctx == NULL || cfg == NULL || cfg->num_categories == 0 || cfg->num_categories > RTE_ACL_MAX_CATEGORIES || cfg->num_fields == 0 || cfg->num_fields > RTE_ACL_MAX_FIELDS) return -EINVAL; for (i = 0; i != cfg->num_fields; i++) { if (cfg->defs[i].type > RTE_ACL_FIELD_TYPE_BITMASK) { RTE_LOG(ERR, ACL, "ACL context: %s, invalid type: %hhu for %u-th field\n", ctx->name, cfg->defs[i].type, i); return -EINVAL; } for (j = 0; j != RTE_DIM(field_sizes) && cfg->defs[i].size != field_sizes[j]; j++) ; if (j == RTE_DIM(field_sizes)) { RTE_LOG(ERR, ACL, "ACL context: %s, invalid size: %hhu for %u-th field\n", ctx->name, cfg->defs[i].size, i); return -EINVAL; } } return 0; } /* * With current ACL implementation first field in the rule definition * has always to be one byte long. Though for optimising *classify* * implementation it might be useful to be able to use 4B reads * (as we do for rest of the fields). * This function checks input config to determine is it safe to do 4B * loads for first ACL field. For that we need to make sure that * first field in our rule definition doesn't have the biggest offset, * i.e. we still do have other fields located after the first one. * Contrary if first field has the largest offset, then it means * first field can occupy the very last byte in the input data buffer, * and we have to do single byte load for it. */ static uint32_t get_first_load_size(const struct rte_acl_config *cfg) { uint32_t i, max_ofs, ofs; ofs = 0; max_ofs = 0; for (i = 0; i != cfg->num_fields; i++) { if (cfg->defs[i].field_index == 0) ofs = cfg->defs[i].offset; else if (max_ofs < cfg->defs[i].offset) max_ofs = cfg->defs[i].offset; } return (ofs < max_ofs) ? sizeof(uint32_t) : sizeof(uint8_t); } int rte_acl_build(struct rte_acl_ctx *ctx, const struct rte_acl_config *cfg) { int32_t rc; uint32_t n; size_t max_size; struct acl_build_context bcx; rc = acl_check_bld_param(ctx, cfg); if (rc != 0) return rc; acl_build_reset(ctx); if (cfg->max_size == 0) { n = NODE_MIN; max_size = SIZE_MAX; } else { n = NODE_MAX; max_size = cfg->max_size; } for (rc = -ERANGE; n >= NODE_MIN && rc == -ERANGE; n /= 2) { /* perform build phase. */ rc = acl_bld(&bcx, ctx, cfg, n); if (rc == 0) { /* allocate and fill run-time structures. */ rc = rte_acl_gen(ctx, bcx.tries, bcx.bld_tries, bcx.num_tries, bcx.cfg.num_categories, RTE_ACL_MAX_FIELDS * RTE_DIM(bcx.tries) * sizeof(ctx->data_indexes[0]), max_size); if (rc == 0) { /* set data indexes. */ acl_set_data_indexes(ctx); /* determine can we always do 4B load */ ctx->first_load_sz = get_first_load_size(cfg); /* copy in build config. */ ctx->config = *cfg; } } acl_build_log(&bcx); /* cleanup after build. */ tb_free_pool(&bcx.pool); } return rc; }