/*- * BSD LICENSE * * Copyright (c) 2016-2017 Solarflare Communications Inc. * All rights reserved. * * This software was jointly developed between OKTET Labs (under contract * for Solarflare) and Solarflare Communications, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* sysconf() */ #include #include #include "efx.h" #include "sfc.h" #include "sfc_log.h" #include "sfc_ev.h" #include "sfc_rx.h" #include "sfc_tx.h" int sfc_dma_alloc(const struct sfc_adapter *sa, const char *name, uint16_t id, size_t len, int socket_id, efsys_mem_t *esmp) { const struct rte_memzone *mz; sfc_log_init(sa, "name=%s id=%u len=%lu socket_id=%d", name, id, len, socket_id); mz = rte_eth_dma_zone_reserve(sa->eth_dev, name, id, len, sysconf(_SC_PAGESIZE), socket_id); if (mz == NULL) { sfc_err(sa, "cannot reserve DMA zone for %s:%u %#x@%d: %s", name, (unsigned int)id, (unsigned int)len, socket_id, rte_strerror(rte_errno)); return ENOMEM; } esmp->esm_addr = rte_mem_phy2mch(mz->memseg_id, mz->phys_addr); if (esmp->esm_addr == RTE_BAD_PHYS_ADDR) { (void)rte_memzone_free(mz); return EFAULT; } esmp->esm_mz = mz; esmp->esm_base = mz->addr; return 0; } void sfc_dma_free(const struct sfc_adapter *sa, efsys_mem_t *esmp) { int rc; sfc_log_init(sa, "name=%s", esmp->esm_mz->name); rc = rte_memzone_free(esmp->esm_mz); if (rc != 0) sfc_err(sa, "rte_memzone_free(() failed: %d", rc); memset(esmp, 0, sizeof(*esmp)); } static uint32_t sfc_phy_cap_from_link_speeds(uint32_t speeds) { uint32_t phy_caps = 0; if (~speeds & ETH_LINK_SPEED_FIXED) { phy_caps |= (1 << EFX_PHY_CAP_AN); /* * If no speeds are specified in the mask, any supported * may be negotiated */ if (speeds == ETH_LINK_SPEED_AUTONEG) phy_caps |= (1 << EFX_PHY_CAP_1000FDX) | (1 << EFX_PHY_CAP_10000FDX) | (1 << EFX_PHY_CAP_40000FDX); } if (speeds & ETH_LINK_SPEED_1G) phy_caps |= (1 << EFX_PHY_CAP_1000FDX); if (speeds & ETH_LINK_SPEED_10G) phy_caps |= (1 << EFX_PHY_CAP_10000FDX); if (speeds & ETH_LINK_SPEED_40G) phy_caps |= (1 << EFX_PHY_CAP_40000FDX); return phy_caps; } /* * Check requested device level configuration. * Receive and transmit configuration is checked in corresponding * modules. */ static int sfc_check_conf(struct sfc_adapter *sa) { const struct rte_eth_conf *conf = &sa->eth_dev->data->dev_conf; int rc = 0; sa->port.phy_adv_cap = sfc_phy_cap_from_link_speeds(conf->link_speeds) & sa->port.phy_adv_cap_mask; if ((sa->port.phy_adv_cap & ~(1 << EFX_PHY_CAP_AN)) == 0) { sfc_err(sa, "No link speeds from mask %#x are supported", conf->link_speeds); rc = EINVAL; } if (conf->lpbk_mode != 0) { sfc_err(sa, "Loopback not supported"); rc = EINVAL; } if (conf->dcb_capability_en != 0) { sfc_err(sa, "Priority-based flow control not supported"); rc = EINVAL; } if (conf->fdir_conf.mode != RTE_FDIR_MODE_NONE) { sfc_err(sa, "Flow Director not supported"); rc = EINVAL; } if ((conf->intr_conf.lsc != 0) && (sa->intr.type != EFX_INTR_LINE) && (sa->intr.type != EFX_INTR_MESSAGE)) { sfc_err(sa, "Link status change interrupt not supported"); rc = EINVAL; } if (conf->intr_conf.rxq != 0) { sfc_err(sa, "Receive queue interrupt not supported"); rc = EINVAL; } return rc; } /* * Find out maximum number of receive and transmit queues which could be * advertised. * * NIC is kept initialized on success to allow other modules acquire * defaults and capabilities. */ static int sfc_estimate_resource_limits(struct sfc_adapter *sa) { const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); efx_drv_limits_t limits; int rc; uint32_t evq_allocated; uint32_t rxq_allocated; uint32_t txq_allocated; memset(&limits, 0, sizeof(limits)); /* Request at least one Rx and Tx queue */ limits.edl_min_rxq_count = 1; limits.edl_min_txq_count = 1; /* Management event queue plus event queue for each Tx and Rx queue */ limits.edl_min_evq_count = 1 + limits.edl_min_rxq_count + limits.edl_min_txq_count; /* Divide by number of functions to guarantee that all functions * will get promised resources */ /* FIXME Divide by number of functions (not 2) below */ limits.edl_max_evq_count = encp->enc_evq_limit / 2; SFC_ASSERT(limits.edl_max_evq_count >= limits.edl_min_rxq_count); /* Split equally between receive and transmit */ limits.edl_max_rxq_count = MIN(encp->enc_rxq_limit, (limits.edl_max_evq_count - 1) / 2); SFC_ASSERT(limits.edl_max_rxq_count >= limits.edl_min_rxq_count); limits.edl_max_txq_count = MIN(encp->enc_txq_limit, limits.edl_max_evq_count - 1 - limits.edl_max_rxq_count); if (sa->tso) limits.edl_max_txq_count = MIN(limits.edl_max_txq_count, encp->enc_fw_assisted_tso_v2_n_contexts / encp->enc_hw_pf_count); SFC_ASSERT(limits.edl_max_txq_count >= limits.edl_min_rxq_count); /* Configure the minimum required resources needed for the * driver to operate, and the maximum desired resources that the * driver is capable of using. */ efx_nic_set_drv_limits(sa->nic, &limits); sfc_log_init(sa, "init nic"); rc = efx_nic_init(sa->nic); if (rc != 0) goto fail_nic_init; /* Find resource dimensions assigned by firmware to this function */ rc = efx_nic_get_vi_pool(sa->nic, &evq_allocated, &rxq_allocated, &txq_allocated); if (rc != 0) goto fail_get_vi_pool; /* It still may allocate more than maximum, ensure limit */ evq_allocated = MIN(evq_allocated, limits.edl_max_evq_count); rxq_allocated = MIN(rxq_allocated, limits.edl_max_rxq_count); txq_allocated = MIN(txq_allocated, limits.edl_max_txq_count); /* Subtract management EVQ not used for traffic */ SFC_ASSERT(evq_allocated > 0); evq_allocated--; /* Right now we use separate EVQ for Rx and Tx */ sa->rxq_max = MIN(rxq_allocated, evq_allocated / 2); sa->txq_max = MIN(txq_allocated, evq_allocated - sa->rxq_max); /* Keep NIC initialized */ return 0; fail_get_vi_pool: fail_nic_init: efx_nic_fini(sa->nic); return rc; } static int sfc_set_drv_limits(struct sfc_adapter *sa) { const struct rte_eth_dev_data *data = sa->eth_dev->data; efx_drv_limits_t lim; memset(&lim, 0, sizeof(lim)); /* Limits are strict since take into account initial estimation */ lim.edl_min_evq_count = lim.edl_max_evq_count = 1 + data->nb_rx_queues + data->nb_tx_queues; lim.edl_min_rxq_count = lim.edl_max_rxq_count = data->nb_rx_queues; lim.edl_min_txq_count = lim.edl_max_txq_count = data->nb_tx_queues; return efx_nic_set_drv_limits(sa->nic, &lim); } int sfc_start(struct sfc_adapter *sa) { int rc; sfc_log_init(sa, "entry"); SFC_ASSERT(sfc_adapter_is_locked(sa)); switch (sa->state) { case SFC_ADAPTER_CONFIGURED: break; case SFC_ADAPTER_STARTED: sfc_info(sa, "already started"); return 0; default: rc = EINVAL; goto fail_bad_state; } sa->state = SFC_ADAPTER_STARTING; sfc_log_init(sa, "set resource limits"); rc = sfc_set_drv_limits(sa); if (rc != 0) goto fail_set_drv_limits; sfc_log_init(sa, "init nic"); rc = efx_nic_init(sa->nic); if (rc != 0) goto fail_nic_init; rc = sfc_intr_start(sa); if (rc != 0) goto fail_intr_start; rc = sfc_ev_start(sa); if (rc != 0) goto fail_ev_start; rc = sfc_port_start(sa); if (rc != 0) goto fail_port_start; rc = sfc_rx_start(sa); if (rc != 0) goto fail_rx_start; rc = sfc_tx_start(sa); if (rc != 0) goto fail_tx_start; rc = sfc_flow_start(sa); if (rc != 0) goto fail_flows_insert; sa->state = SFC_ADAPTER_STARTED; sfc_log_init(sa, "done"); return 0; fail_flows_insert: sfc_tx_stop(sa); fail_tx_start: sfc_rx_stop(sa); fail_rx_start: sfc_port_stop(sa); fail_port_start: sfc_ev_stop(sa); fail_ev_start: sfc_intr_stop(sa); fail_intr_start: efx_nic_fini(sa->nic); fail_nic_init: fail_set_drv_limits: sa->state = SFC_ADAPTER_CONFIGURED; fail_bad_state: sfc_log_init(sa, "failed %d", rc); return rc; } void sfc_stop(struct sfc_adapter *sa) { sfc_log_init(sa, "entry"); SFC_ASSERT(sfc_adapter_is_locked(sa)); switch (sa->state) { case SFC_ADAPTER_STARTED: break; case SFC_ADAPTER_CONFIGURED: sfc_info(sa, "already stopped"); return; default: sfc_err(sa, "stop in unexpected state %u", sa->state); SFC_ASSERT(B_FALSE); return; } sa->state = SFC_ADAPTER_STOPPING; sfc_flow_stop(sa); sfc_tx_stop(sa); sfc_rx_stop(sa); sfc_port_stop(sa); sfc_ev_stop(sa); sfc_intr_stop(sa); efx_nic_fini(sa->nic); sa->state = SFC_ADAPTER_CONFIGURED; sfc_log_init(sa, "done"); } int sfc_configure(struct sfc_adapter *sa) { int rc; sfc_log_init(sa, "entry"); SFC_ASSERT(sfc_adapter_is_locked(sa)); SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); sa->state = SFC_ADAPTER_CONFIGURING; rc = sfc_check_conf(sa); if (rc != 0) goto fail_check_conf; rc = sfc_intr_configure(sa); if (rc != 0) goto fail_intr_configure; rc = sfc_ev_init(sa); if (rc != 0) goto fail_ev_init; rc = sfc_port_init(sa); if (rc != 0) goto fail_port_init; rc = sfc_rx_init(sa); if (rc != 0) goto fail_rx_init; rc = sfc_tx_init(sa); if (rc != 0) goto fail_tx_init; sa->state = SFC_ADAPTER_CONFIGURED; sfc_log_init(sa, "done"); return 0; fail_tx_init: sfc_rx_fini(sa); fail_rx_init: sfc_port_fini(sa); fail_port_init: sfc_ev_fini(sa); fail_ev_init: sfc_intr_close(sa); fail_intr_configure: fail_check_conf: sa->state = SFC_ADAPTER_INITIALIZED; sfc_log_init(sa, "failed %d", rc); return rc; } void sfc_close(struct sfc_adapter *sa) { sfc_log_init(sa, "entry"); SFC_ASSERT(sfc_adapter_is_locked(sa)); SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); sa->state = SFC_ADAPTER_CLOSING; sfc_tx_fini(sa); sfc_rx_fini(sa); sfc_port_fini(sa); sfc_ev_fini(sa); sfc_intr_close(sa); sa->state = SFC_ADAPTER_INITIALIZED; sfc_log_init(sa, "done"); } static int sfc_mem_bar_init(struct sfc_adapter *sa) { struct rte_eth_dev *eth_dev = sa->eth_dev; struct rte_pci_device *pci_dev = SFC_DEV_TO_PCI(eth_dev); efsys_bar_t *ebp = &sa->mem_bar; unsigned int i; struct rte_mem_resource *res; for (i = 0; i < RTE_DIM(pci_dev->mem_resource); i++) { res = &pci_dev->mem_resource[i]; if ((res->len != 0) && (res->phys_addr != 0)) { /* Found first memory BAR */ SFC_BAR_LOCK_INIT(ebp, eth_dev->data->name); ebp->esb_rid = i; ebp->esb_dev = pci_dev; ebp->esb_base = res->addr; return 0; } } return EFAULT; } static void sfc_mem_bar_fini(struct sfc_adapter *sa) { efsys_bar_t *ebp = &sa->mem_bar; SFC_BAR_LOCK_DESTROY(ebp); memset(ebp, 0, sizeof(*ebp)); } #if EFSYS_OPT_RX_SCALE /* * A fixed RSS key which has a property of being symmetric * (symmetrical flows are distributed to the same CPU) * and also known to give a uniform distribution * (a good distribution of traffic between different CPUs) */ static const uint8_t default_rss_key[SFC_RSS_KEY_SIZE] = { 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, }; #endif static int sfc_set_rss_defaults(struct sfc_adapter *sa) { #if EFSYS_OPT_RX_SCALE int rc; rc = efx_intr_init(sa->nic, sa->intr.type, NULL); if (rc != 0) goto fail_intr_init; rc = efx_ev_init(sa->nic); if (rc != 0) goto fail_ev_init; rc = efx_rx_init(sa->nic); if (rc != 0) goto fail_rx_init; rc = efx_rx_scale_support_get(sa->nic, &sa->rss_support); if (rc != 0) goto fail_scale_support_get; rc = efx_rx_hash_support_get(sa->nic, &sa->hash_support); if (rc != 0) goto fail_hash_support_get; efx_rx_fini(sa->nic); efx_ev_fini(sa->nic); efx_intr_fini(sa->nic); sa->rss_hash_types = sfc_rte_to_efx_hash_type(SFC_RSS_OFFLOADS); rte_memcpy(sa->rss_key, default_rss_key, sizeof(sa->rss_key)); return 0; fail_hash_support_get: fail_scale_support_get: fail_rx_init: efx_ev_fini(sa->nic); fail_ev_init: efx_intr_fini(sa->nic); fail_intr_init: return rc; #else return 0; #endif } int sfc_attach(struct sfc_adapter *sa) { const efx_nic_cfg_t *encp; efx_nic_t *enp = sa->nic; int rc; sfc_log_init(sa, "entry"); SFC_ASSERT(sfc_adapter_is_locked(sa)); efx_mcdi_new_epoch(enp); sfc_log_init(sa, "reset nic"); rc = efx_nic_reset(enp); if (rc != 0) goto fail_nic_reset; encp = efx_nic_cfg_get(sa->nic); if (sa->dp_tx->features & SFC_DP_TX_FEAT_TSO) { sa->tso = encp->enc_fw_assisted_tso_v2_enabled; if (!sa->tso) sfc_warn(sa, "TSO support isn't available on this adapter"); } sfc_log_init(sa, "estimate resource limits"); rc = sfc_estimate_resource_limits(sa); if (rc != 0) goto fail_estimate_rsrc_limits; sa->txq_max_entries = encp->enc_txq_max_ndescs; SFC_ASSERT(rte_is_power_of_2(sa->txq_max_entries)); rc = sfc_intr_attach(sa); if (rc != 0) goto fail_intr_attach; efx_phy_adv_cap_get(sa->nic, EFX_PHY_CAP_PERM, &sa->port.phy_adv_cap_mask); rc = sfc_set_rss_defaults(sa); if (rc != 0) goto fail_set_rss_defaults; rc = sfc_filter_attach(sa); if (rc != 0) goto fail_filter_attach; sfc_log_init(sa, "fini nic"); efx_nic_fini(enp); sfc_flow_init(sa); sa->state = SFC_ADAPTER_INITIALIZED; sfc_log_init(sa, "done"); return 0; fail_filter_attach: fail_set_rss_defaults: sfc_intr_detach(sa); fail_intr_attach: efx_nic_fini(sa->nic); fail_estimate_rsrc_limits: fail_nic_reset: sfc_log_init(sa, "failed %d", rc); return rc; } void sfc_detach(struct sfc_adapter *sa) { sfc_log_init(sa, "entry"); SFC_ASSERT(sfc_adapter_is_locked(sa)); sfc_flow_fini(sa); sfc_filter_detach(sa); sfc_intr_detach(sa); sa->state = SFC_ADAPTER_UNINITIALIZED; } int sfc_probe(struct sfc_adapter *sa) { struct rte_pci_device *pci_dev = SFC_DEV_TO_PCI(sa->eth_dev); efx_nic_t *enp; int rc; sfc_log_init(sa, "entry"); SFC_ASSERT(sfc_adapter_is_locked(sa)); sa->socket_id = rte_socket_id(); sfc_log_init(sa, "init mem bar"); rc = sfc_mem_bar_init(sa); if (rc != 0) goto fail_mem_bar_init; sfc_log_init(sa, "get family"); rc = efx_family(pci_dev->id.vendor_id, pci_dev->id.device_id, &sa->family); if (rc != 0) goto fail_family; sfc_log_init(sa, "family is %u", sa->family); sfc_log_init(sa, "create nic"); rte_spinlock_init(&sa->nic_lock); rc = efx_nic_create(sa->family, (efsys_identifier_t *)sa, &sa->mem_bar, &sa->nic_lock, &enp); if (rc != 0) goto fail_nic_create; sa->nic = enp; rc = sfc_mcdi_init(sa); if (rc != 0) goto fail_mcdi_init; sfc_log_init(sa, "probe nic"); rc = efx_nic_probe(enp); if (rc != 0) goto fail_nic_probe; sfc_log_init(sa, "done"); return 0; fail_nic_probe: sfc_mcdi_fini(sa); fail_mcdi_init: sfc_log_init(sa, "destroy nic"); sa->nic = NULL; efx_nic_destroy(enp); fail_nic_create: fail_family: sfc_mem_bar_fini(sa); fail_mem_bar_init: sfc_log_init(sa, "failed %d", rc); return rc; } void sfc_unprobe(struct sfc_adapter *sa) { efx_nic_t *enp = sa->nic; sfc_log_init(sa, "entry"); SFC_ASSERT(sfc_adapter_is_locked(sa)); sfc_log_init(sa, "unprobe nic"); efx_nic_unprobe(enp); sfc_mcdi_fini(sa); sfc_log_init(sa, "destroy nic"); sa->nic = NULL; efx_nic_destroy(enp); sfc_mem_bar_fini(sa); sfc_flow_fini(sa); sa->state = SFC_ADAPTER_UNINITIALIZED; }