/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "rte_timer.h" /** * Per-lcore info for timers. */ struct priv_timer { struct rte_timer pending_head; /**< dummy timer instance to head up list */ rte_spinlock_t list_lock; /**< lock to protect list access */ /** per-core variable that true if a timer was updated on this * core since last reset of the variable */ int updated; /** track the current depth of the skiplist */ unsigned curr_skiplist_depth; unsigned prev_lcore; /**< used for lcore round robin */ /** running timer on this lcore now */ struct rte_timer *running_tim; #ifdef RTE_LIBRTE_TIMER_DEBUG /** per-lcore statistics */ struct rte_timer_debug_stats stats; #endif } __rte_cache_aligned; #define FL_ALLOCATED (1 << 0) struct rte_timer_data { struct priv_timer priv_timer[RTE_MAX_LCORE]; uint8_t internal_flags; }; #define RTE_MAX_DATA_ELS 64 static const struct rte_memzone *rte_timer_data_mz; static int *volatile rte_timer_mz_refcnt; static struct rte_timer_data *rte_timer_data_arr; static const uint32_t default_data_id; static uint32_t rte_timer_subsystem_initialized; /* when debug is enabled, store some statistics */ #ifdef RTE_LIBRTE_TIMER_DEBUG #define __TIMER_STAT_ADD(priv_timer, name, n) do { \ unsigned __lcore_id = rte_lcore_id(); \ if (__lcore_id < RTE_MAX_LCORE) \ priv_timer[__lcore_id].stats.name += (n); \ } while(0) #else #define __TIMER_STAT_ADD(priv_timer, name, n) do {} while (0) #endif static inline int timer_data_valid(uint32_t id) { return rte_timer_data_arr && (rte_timer_data_arr[id].internal_flags & FL_ALLOCATED); } /* validate ID and retrieve timer data pointer, or return error value */ #define TIMER_DATA_VALID_GET_OR_ERR_RET(id, timer_data, retval) do { \ if (id >= RTE_MAX_DATA_ELS || !timer_data_valid(id)) \ return retval; \ timer_data = &rte_timer_data_arr[id]; \ } while (0) int rte_timer_data_alloc(uint32_t *id_ptr) { int i; struct rte_timer_data *data; if (!rte_timer_subsystem_initialized) return -ENOMEM; for (i = 0; i < RTE_MAX_DATA_ELS; i++) { data = &rte_timer_data_arr[i]; if (!(data->internal_flags & FL_ALLOCATED)) { data->internal_flags |= FL_ALLOCATED; if (id_ptr) *id_ptr = i; return 0; } } return -ENOSPC; } int rte_timer_data_dealloc(uint32_t id) { struct rte_timer_data *timer_data; TIMER_DATA_VALID_GET_OR_ERR_RET(id, timer_data, -EINVAL); timer_data->internal_flags &= ~(FL_ALLOCATED); return 0; } /* Init the timer library. Allocate an array of timer data structs in shared * memory, and allocate the zeroth entry for use with original timer * APIs. Since the intersection of the sets of lcore ids in primary and * secondary processes should be empty, the zeroth entry can be shared by * multiple processes. */ int rte_timer_subsystem_init(void) { const struct rte_memzone *mz; struct rte_timer_data *data; int i, lcore_id; static const char *mz_name = "rte_timer_mz"; const size_t data_arr_size = RTE_MAX_DATA_ELS * sizeof(*rte_timer_data_arr); const size_t mem_size = data_arr_size + sizeof(*rte_timer_mz_refcnt); bool do_full_init = true; rte_mcfg_timer_lock(); if (rte_timer_subsystem_initialized) { rte_mcfg_timer_unlock(); return -EALREADY; } mz = rte_memzone_lookup(mz_name); if (mz == NULL) { mz = rte_memzone_reserve_aligned(mz_name, mem_size, SOCKET_ID_ANY, 0, RTE_CACHE_LINE_SIZE); if (mz == NULL) { rte_mcfg_timer_unlock(); return -ENOMEM; } do_full_init = true; } else do_full_init = false; rte_timer_data_mz = mz; rte_timer_data_arr = mz->addr; rte_timer_mz_refcnt = (void *)((char *)mz->addr + data_arr_size); if (do_full_init) { for (i = 0; i < RTE_MAX_DATA_ELS; i++) { data = &rte_timer_data_arr[i]; for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { rte_spinlock_init( &data->priv_timer[lcore_id].list_lock); data->priv_timer[lcore_id].prev_lcore = lcore_id; } } } rte_timer_data_arr[default_data_id].internal_flags |= FL_ALLOCATED; (*rte_timer_mz_refcnt)++; rte_timer_subsystem_initialized = 1; rte_mcfg_timer_unlock(); return 0; } void rte_timer_subsystem_finalize(void) { rte_mcfg_timer_lock(); if (!rte_timer_subsystem_initialized) { rte_mcfg_timer_unlock(); return; } if (--(*rte_timer_mz_refcnt) == 0) rte_memzone_free(rte_timer_data_mz); rte_timer_subsystem_initialized = 0; rte_mcfg_timer_unlock(); } /* Initialize the timer handle tim for use */ void rte_timer_init(struct rte_timer *tim) { union rte_timer_status status; status.state = RTE_TIMER_STOP; status.owner = RTE_TIMER_NO_OWNER; __atomic_store_n(&tim->status.u32, status.u32, __ATOMIC_RELAXED); } /* * if timer is pending or stopped (or running on the same core than * us), mark timer as configuring, and on success return the previous * status of the timer */ static int timer_set_config_state(struct rte_timer *tim, union rte_timer_status *ret_prev_status, struct priv_timer *priv_timer) { union rte_timer_status prev_status, status; int success = 0; unsigned lcore_id; lcore_id = rte_lcore_id(); /* wait that the timer is in correct status before update, * and mark it as being configured */ prev_status.u32 = __atomic_load_n(&tim->status.u32, __ATOMIC_RELAXED); while (success == 0) { /* timer is running on another core * or ready to run on local core, exit */ if (prev_status.state == RTE_TIMER_RUNNING && (prev_status.owner != (uint16_t)lcore_id || tim != priv_timer[lcore_id].running_tim)) return -1; /* timer is being configured on another core */ if (prev_status.state == RTE_TIMER_CONFIG) return -1; /* here, we know that timer is stopped or pending, * mark it atomically as being configured */ status.state = RTE_TIMER_CONFIG; status.owner = (int16_t)lcore_id; /* CONFIG states are acting as locked states. If the * timer is in CONFIG state, the state cannot be changed * by other threads. So, we should use ACQUIRE here. */ success = __atomic_compare_exchange_n(&tim->status.u32, &prev_status.u32, status.u32, 0, __ATOMIC_ACQUIRE, __ATOMIC_RELAXED); } ret_prev_status->u32 = prev_status.u32; return 0; } /* * if timer is pending, mark timer as running */ static int timer_set_running_state(struct rte_timer *tim) { union rte_timer_status prev_status, status; unsigned lcore_id = rte_lcore_id(); int success = 0; /* wait that the timer is in correct status before update, * and mark it as running */ prev_status.u32 = __atomic_load_n(&tim->status.u32, __ATOMIC_RELAXED); while (success == 0) { /* timer is not pending anymore */ if (prev_status.state != RTE_TIMER_PENDING) return -1; /* we know that the timer will be pending at this point * mark it atomically as being running */ status.state = RTE_TIMER_RUNNING; status.owner = (int16_t)lcore_id; /* RUNNING states are acting as locked states. If the * timer is in RUNNING state, the state cannot be changed * by other threads. So, we should use ACQUIRE here. */ success = __atomic_compare_exchange_n(&tim->status.u32, &prev_status.u32, status.u32, 0, __ATOMIC_ACQUIRE, __ATOMIC_RELAXED); } return 0; } /* * Return a skiplist level for a new entry. * This probabilistically gives a level with p=1/4 that an entry at level n * will also appear at level n+1. */ static uint32_t timer_get_skiplist_level(unsigned curr_depth) { #ifdef RTE_LIBRTE_TIMER_DEBUG static uint32_t i, count = 0; static uint32_t levels[MAX_SKIPLIST_DEPTH] = {0}; #endif /* probability value is 1/4, i.e. all at level 0, 1 in 4 is at level 1, * 1 in 16 at level 2, 1 in 64 at level 3, etc. Calculated using lowest * bit position of a (pseudo)random number. */ uint32_t rand = rte_rand() & (UINT32_MAX - 1); uint32_t level = rand == 0 ? MAX_SKIPLIST_DEPTH : (rte_bsf32(rand)-1) / 2; /* limit the levels used to one above our current level, so we don't, * for instance, have a level 0 and a level 7 without anything between */ if (level > curr_depth) level = curr_depth; if (level >= MAX_SKIPLIST_DEPTH) level = MAX_SKIPLIST_DEPTH-1; #ifdef RTE_LIBRTE_TIMER_DEBUG count ++; levels[level]++; if (count % 10000 == 0) for (i = 0; i < MAX_SKIPLIST_DEPTH; i++) printf("Level %u: %u\n", (unsigned)i, (unsigned)levels[i]); #endif return level; } /* * For a given time value, get the entries at each level which * are <= that time value. */ static void timer_get_prev_entries(uint64_t time_val, unsigned tim_lcore, struct rte_timer **prev, struct priv_timer *priv_timer) { unsigned lvl = priv_timer[tim_lcore].curr_skiplist_depth; prev[lvl] = &priv_timer[tim_lcore].pending_head; while(lvl != 0) { lvl--; prev[lvl] = prev[lvl+1]; while (prev[lvl]->sl_next[lvl] && prev[lvl]->sl_next[lvl]->expire <= time_val) prev[lvl] = prev[lvl]->sl_next[lvl]; } } /* * Given a timer node in the skiplist, find the previous entries for it at * all skiplist levels. */ static void timer_get_prev_entries_for_node(struct rte_timer *tim, unsigned tim_lcore, struct rte_timer **prev, struct priv_timer *priv_timer) { int i; /* to get a specific entry in the list, look for just lower than the time * values, and then increment on each level individually if necessary */ timer_get_prev_entries(tim->expire - 1, tim_lcore, prev, priv_timer); for (i = priv_timer[tim_lcore].curr_skiplist_depth - 1; i >= 0; i--) { while (prev[i]->sl_next[i] != NULL && prev[i]->sl_next[i] != tim && prev[i]->sl_next[i]->expire <= tim->expire) prev[i] = prev[i]->sl_next[i]; } } /* call with lock held as necessary * add in list * timer must be in config state * timer must not be in a list */ static void timer_add(struct rte_timer *tim, unsigned int tim_lcore, struct priv_timer *priv_timer) { unsigned lvl; struct rte_timer *prev[MAX_SKIPLIST_DEPTH+1]; /* find where exactly this element goes in the list of elements * for each depth. */ timer_get_prev_entries(tim->expire, tim_lcore, prev, priv_timer); /* now assign it a new level and add at that level */ const unsigned tim_level = timer_get_skiplist_level( priv_timer[tim_lcore].curr_skiplist_depth); if (tim_level == priv_timer[tim_lcore].curr_skiplist_depth) priv_timer[tim_lcore].curr_skiplist_depth++; lvl = tim_level; while (lvl > 0) { tim->sl_next[lvl] = prev[lvl]->sl_next[lvl]; prev[lvl]->sl_next[lvl] = tim; lvl--; } tim->sl_next[0] = prev[0]->sl_next[0]; prev[0]->sl_next[0] = tim; /* save the lowest list entry into the expire field of the dummy hdr * NOTE: this is not atomic on 32-bit*/ priv_timer[tim_lcore].pending_head.expire = priv_timer[tim_lcore].\ pending_head.sl_next[0]->expire; } /* * del from list, lock if needed * timer must be in config state * timer must be in a list */ static void timer_del(struct rte_timer *tim, union rte_timer_status prev_status, int local_is_locked, struct priv_timer *priv_timer) { unsigned lcore_id = rte_lcore_id(); unsigned prev_owner = prev_status.owner; int i; struct rte_timer *prev[MAX_SKIPLIST_DEPTH+1]; /* if timer needs is pending another core, we need to lock the * list; if it is on local core, we need to lock if we are not * called from rte_timer_manage() */ if (prev_owner != lcore_id || !local_is_locked) rte_spinlock_lock(&priv_timer[prev_owner].list_lock); /* save the lowest list entry into the expire field of the dummy hdr. * NOTE: this is not atomic on 32-bit */ if (tim == priv_timer[prev_owner].pending_head.sl_next[0]) priv_timer[prev_owner].pending_head.expire = ((tim->sl_next[0] == NULL) ? 0 : tim->sl_next[0]->expire); /* adjust pointers from previous entries to point past this */ timer_get_prev_entries_for_node(tim, prev_owner, prev, priv_timer); for (i = priv_timer[prev_owner].curr_skiplist_depth - 1; i >= 0; i--) { if (prev[i]->sl_next[i] == tim) prev[i]->sl_next[i] = tim->sl_next[i]; } /* in case we deleted last entry at a level, adjust down max level */ for (i = priv_timer[prev_owner].curr_skiplist_depth - 1; i >= 0; i--) if (priv_timer[prev_owner].pending_head.sl_next[i] == NULL) priv_timer[prev_owner].curr_skiplist_depth --; else break; if (prev_owner != lcore_id || !local_is_locked) rte_spinlock_unlock(&priv_timer[prev_owner].list_lock); } /* Reset and start the timer associated with the timer handle (private func) */ static int __rte_timer_reset(struct rte_timer *tim, uint64_t expire, uint64_t period, unsigned tim_lcore, rte_timer_cb_t fct, void *arg, int local_is_locked, struct rte_timer_data *timer_data) { union rte_timer_status prev_status, status; int ret; unsigned lcore_id = rte_lcore_id(); struct priv_timer *priv_timer = timer_data->priv_timer; /* round robin for tim_lcore */ if (tim_lcore == (unsigned)LCORE_ID_ANY) { if (lcore_id < RTE_MAX_LCORE) { /* EAL thread with valid lcore_id */ tim_lcore = rte_get_next_lcore( priv_timer[lcore_id].prev_lcore, 0, 1); priv_timer[lcore_id].prev_lcore = tim_lcore; } else /* non-EAL thread do not run rte_timer_manage(), * so schedule the timer on the first enabled lcore. */ tim_lcore = rte_get_next_lcore(LCORE_ID_ANY, 0, 1); } /* wait that the timer is in correct status before update, * and mark it as being configured */ ret = timer_set_config_state(tim, &prev_status, priv_timer); if (ret < 0) return -1; __TIMER_STAT_ADD(priv_timer, reset, 1); if (prev_status.state == RTE_TIMER_RUNNING && lcore_id < RTE_MAX_LCORE) { priv_timer[lcore_id].updated = 1; } /* remove it from list */ if (prev_status.state == RTE_TIMER_PENDING) { timer_del(tim, prev_status, local_is_locked, priv_timer); __TIMER_STAT_ADD(priv_timer, pending, -1); } tim->period = period; tim->expire = expire; tim->f = fct; tim->arg = arg; /* if timer needs to be scheduled on another core, we need to * lock the destination list; if it is on local core, we need to lock if * we are not called from rte_timer_manage() */ if (tim_lcore != lcore_id || !local_is_locked) rte_spinlock_lock(&priv_timer[tim_lcore].list_lock); __TIMER_STAT_ADD(priv_timer, pending, 1); timer_add(tim, tim_lcore, priv_timer); /* update state: as we are in CONFIG state, only us can modify * the state so we don't need to use cmpset() here */ status.state = RTE_TIMER_PENDING; status.owner = (int16_t)tim_lcore; /* The "RELEASE" ordering guarantees the memory operations above * the status update are observed before the update by all threads */ __atomic_store_n(&tim->status.u32, status.u32, __ATOMIC_RELEASE); if (tim_lcore != lcore_id || !local_is_locked) rte_spinlock_unlock(&priv_timer[tim_lcore].list_lock); return 0; } /* Reset and start the timer associated with the timer handle tim */ int rte_timer_reset(struct rte_timer *tim, uint64_t ticks, enum rte_timer_type type, unsigned int tim_lcore, rte_timer_cb_t fct, void *arg) { return rte_timer_alt_reset(default_data_id, tim, ticks, type, tim_lcore, fct, arg); } int rte_timer_alt_reset(uint32_t timer_data_id, struct rte_timer *tim, uint64_t ticks, enum rte_timer_type type, unsigned int tim_lcore, rte_timer_cb_t fct, void *arg) { uint64_t cur_time = rte_get_timer_cycles(); uint64_t period; struct rte_timer_data *timer_data; TIMER_DATA_VALID_GET_OR_ERR_RET(timer_data_id, timer_data, -EINVAL); if (type == PERIODICAL) period = ticks; else period = 0; return __rte_timer_reset(tim, cur_time + ticks, period, tim_lcore, fct, arg, 0, timer_data); } /* loop until rte_timer_reset() succeed */ void rte_timer_reset_sync(struct rte_timer *tim, uint64_t ticks, enum rte_timer_type type, unsigned tim_lcore, rte_timer_cb_t fct, void *arg) { while (rte_timer_reset(tim, ticks, type, tim_lcore, fct, arg) != 0) rte_pause(); } static int __rte_timer_stop(struct rte_timer *tim, struct rte_timer_data *timer_data) { union rte_timer_status prev_status, status; unsigned lcore_id = rte_lcore_id(); int ret; struct priv_timer *priv_timer = timer_data->priv_timer; /* wait that the timer is in correct status before update, * and mark it as being configured */ ret = timer_set_config_state(tim, &prev_status, priv_timer); if (ret < 0) return -1; __TIMER_STAT_ADD(priv_timer, stop, 1); if (prev_status.state == RTE_TIMER_RUNNING && lcore_id < RTE_MAX_LCORE) { priv_timer[lcore_id].updated = 1; } /* remove it from list */ if (prev_status.state == RTE_TIMER_PENDING) { timer_del(tim, prev_status, 0, priv_timer); __TIMER_STAT_ADD(priv_timer, pending, -1); } /* mark timer as stopped */ status.state = RTE_TIMER_STOP; status.owner = RTE_TIMER_NO_OWNER; /* The "RELEASE" ordering guarantees the memory operations above * the status update are observed before the update by all threads */ __atomic_store_n(&tim->status.u32, status.u32, __ATOMIC_RELEASE); return 0; } /* Stop the timer associated with the timer handle tim */ int rte_timer_stop(struct rte_timer *tim) { return rte_timer_alt_stop(default_data_id, tim); } int rte_timer_alt_stop(uint32_t timer_data_id, struct rte_timer *tim) { struct rte_timer_data *timer_data; TIMER_DATA_VALID_GET_OR_ERR_RET(timer_data_id, timer_data, -EINVAL); return __rte_timer_stop(tim, timer_data); } /* loop until rte_timer_stop() succeed */ void rte_timer_stop_sync(struct rte_timer *tim) { while (rte_timer_stop(tim) != 0) rte_pause(); } /* Test the PENDING status of the timer handle tim */ int rte_timer_pending(struct rte_timer *tim) { return __atomic_load_n(&tim->status.state, __ATOMIC_RELAXED) == RTE_TIMER_PENDING; } /* must be called periodically, run all timer that expired */ static void __rte_timer_manage(struct rte_timer_data *timer_data) { union rte_timer_status status; struct rte_timer *tim, *next_tim; struct rte_timer *run_first_tim, **pprev; unsigned lcore_id = rte_lcore_id(); struct rte_timer *prev[MAX_SKIPLIST_DEPTH + 1]; uint64_t cur_time; int i, ret; struct priv_timer *priv_timer = timer_data->priv_timer; /* timer manager only runs on EAL thread with valid lcore_id */ assert(lcore_id < RTE_MAX_LCORE); __TIMER_STAT_ADD(priv_timer, manage, 1); /* optimize for the case where per-cpu list is empty */ if (priv_timer[lcore_id].pending_head.sl_next[0] == NULL) return; cur_time = rte_get_timer_cycles(); #ifdef RTE_ARCH_64 /* on 64-bit the value cached in the pending_head.expired will be * updated atomically, so we can consult that for a quick check here * outside the lock */ if (likely(priv_timer[lcore_id].pending_head.expire > cur_time)) return; #endif /* browse ordered list, add expired timers in 'expired' list */ rte_spinlock_lock(&priv_timer[lcore_id].list_lock); /* if nothing to do just unlock and return */ if (priv_timer[lcore_id].pending_head.sl_next[0] == NULL || priv_timer[lcore_id].pending_head.sl_next[0]->expire > cur_time) { rte_spinlock_unlock(&priv_timer[lcore_id].list_lock); return; } /* save start of list of expired timers */ tim = priv_timer[lcore_id].pending_head.sl_next[0]; /* break the existing list at current time point */ timer_get_prev_entries(cur_time, lcore_id, prev, priv_timer); for (i = priv_timer[lcore_id].curr_skiplist_depth -1; i >= 0; i--) { if (prev[i] == &priv_timer[lcore_id].pending_head) continue; priv_timer[lcore_id].pending_head.sl_next[i] = prev[i]->sl_next[i]; if (prev[i]->sl_next[i] == NULL) priv_timer[lcore_id].curr_skiplist_depth--; prev[i] ->sl_next[i] = NULL; } /* transition run-list from PENDING to RUNNING */ run_first_tim = tim; pprev = &run_first_tim; for ( ; tim != NULL; tim = next_tim) { next_tim = tim->sl_next[0]; ret = timer_set_running_state(tim); if (likely(ret == 0)) { pprev = &tim->sl_next[0]; } else { /* another core is trying to re-config this one, * remove it from local expired list */ *pprev = next_tim; } } /* update the next to expire timer value */ priv_timer[lcore_id].pending_head.expire = (priv_timer[lcore_id].pending_head.sl_next[0] == NULL) ? 0 : priv_timer[lcore_id].pending_head.sl_next[0]->expire; rte_spinlock_unlock(&priv_timer[lcore_id].list_lock); /* now scan expired list and call callbacks */ for (tim = run_first_tim; tim != NULL; tim = next_tim) { next_tim = tim->sl_next[0]; priv_timer[lcore_id].updated = 0; priv_timer[lcore_id].running_tim = tim; /* execute callback function with list unlocked */ tim->f(tim, tim->arg); __TIMER_STAT_ADD(priv_timer, pending, -1); /* the timer was stopped or reloaded by the callback * function, we have nothing to do here */ if (priv_timer[lcore_id].updated == 1) continue; if (tim->period == 0) { /* remove from done list and mark timer as stopped */ status.state = RTE_TIMER_STOP; status.owner = RTE_TIMER_NO_OWNER; /* The "RELEASE" ordering guarantees the memory * operations above the status update are observed * before the update by all threads */ __atomic_store_n(&tim->status.u32, status.u32, __ATOMIC_RELEASE); } else { /* keep it in list and mark timer as pending */ rte_spinlock_lock(&priv_timer[lcore_id].list_lock); status.state = RTE_TIMER_PENDING; __TIMER_STAT_ADD(priv_timer, pending, 1); status.owner = (int16_t)lcore_id; /* The "RELEASE" ordering guarantees the memory * operations above the status update are observed * before the update by all threads */ __atomic_store_n(&tim->status.u32, status.u32, __ATOMIC_RELEASE); __rte_timer_reset(tim, tim->expire + tim->period, tim->period, lcore_id, tim->f, tim->arg, 1, timer_data); rte_spinlock_unlock(&priv_timer[lcore_id].list_lock); } } priv_timer[lcore_id].running_tim = NULL; } int rte_timer_manage(void) { struct rte_timer_data *timer_data; TIMER_DATA_VALID_GET_OR_ERR_RET(default_data_id, timer_data, -EINVAL); __rte_timer_manage(timer_data); return 0; } int rte_timer_alt_manage(uint32_t timer_data_id, unsigned int *poll_lcores, int nb_poll_lcores, rte_timer_alt_manage_cb_t f) { unsigned int default_poll_lcores[] = {rte_lcore_id()}; union rte_timer_status status; struct rte_timer *tim, *next_tim, **pprev; struct rte_timer *run_first_tims[RTE_MAX_LCORE]; unsigned int this_lcore = rte_lcore_id(); struct rte_timer *prev[MAX_SKIPLIST_DEPTH + 1]; uint64_t cur_time; int i, j, ret; int nb_runlists = 0; struct rte_timer_data *data; struct priv_timer *privp; uint32_t poll_lcore; TIMER_DATA_VALID_GET_OR_ERR_RET(timer_data_id, data, -EINVAL); /* timer manager only runs on EAL thread with valid lcore_id */ assert(this_lcore < RTE_MAX_LCORE); __TIMER_STAT_ADD(data->priv_timer, manage, 1); if (poll_lcores == NULL) { poll_lcores = default_poll_lcores; nb_poll_lcores = RTE_DIM(default_poll_lcores); } for (i = 0; i < nb_poll_lcores; i++) { poll_lcore = poll_lcores[i]; privp = &data->priv_timer[poll_lcore]; /* optimize for the case where per-cpu list is empty */ if (privp->pending_head.sl_next[0] == NULL) continue; cur_time = rte_get_timer_cycles(); #ifdef RTE_ARCH_64 /* on 64-bit the value cached in the pending_head.expired will * be updated atomically, so we can consult that for a quick * check here outside the lock */ if (likely(privp->pending_head.expire > cur_time)) continue; #endif /* browse ordered list, add expired timers in 'expired' list */ rte_spinlock_lock(&privp->list_lock); /* if nothing to do just unlock and return */ if (privp->pending_head.sl_next[0] == NULL || privp->pending_head.sl_next[0]->expire > cur_time) { rte_spinlock_unlock(&privp->list_lock); continue; } /* save start of list of expired timers */ tim = privp->pending_head.sl_next[0]; /* break the existing list at current time point */ timer_get_prev_entries(cur_time, poll_lcore, prev, data->priv_timer); for (j = privp->curr_skiplist_depth - 1; j >= 0; j--) { if (prev[j] == &privp->pending_head) continue; privp->pending_head.sl_next[j] = prev[j]->sl_next[j]; if (prev[j]->sl_next[j] == NULL) privp->curr_skiplist_depth--; prev[j]->sl_next[j] = NULL; } /* transition run-list from PENDING to RUNNING */ run_first_tims[nb_runlists] = tim; pprev = &run_first_tims[nb_runlists]; nb_runlists++; for ( ; tim != NULL; tim = next_tim) { next_tim = tim->sl_next[0]; ret = timer_set_running_state(tim); if (likely(ret == 0)) { pprev = &tim->sl_next[0]; } else { /* another core is trying to re-config this one, * remove it from local expired list */ *pprev = next_tim; } } /* update the next to expire timer value */ privp->pending_head.expire = (privp->pending_head.sl_next[0] == NULL) ? 0 : privp->pending_head.sl_next[0]->expire; rte_spinlock_unlock(&privp->list_lock); } /* Now process the run lists */ while (1) { bool done = true; uint64_t min_expire = UINT64_MAX; int min_idx = 0; /* Find the next oldest timer to process */ for (i = 0; i < nb_runlists; i++) { tim = run_first_tims[i]; if (tim != NULL && tim->expire < min_expire) { min_expire = tim->expire; min_idx = i; done = false; } } if (done) break; tim = run_first_tims[min_idx]; /* Move down the runlist from which we picked a timer to * execute */ run_first_tims[min_idx] = run_first_tims[min_idx]->sl_next[0]; data->priv_timer[this_lcore].updated = 0; data->priv_timer[this_lcore].running_tim = tim; /* Call the provided callback function */ f(tim); __TIMER_STAT_ADD(data->priv_timer, pending, -1); /* the timer was stopped or reloaded by the callback * function, we have nothing to do here */ if (data->priv_timer[this_lcore].updated == 1) continue; if (tim->period == 0) { /* remove from done list and mark timer as stopped */ status.state = RTE_TIMER_STOP; status.owner = RTE_TIMER_NO_OWNER; /* The "RELEASE" ordering guarantees the memory * operations above the status update are observed * before the update by all threads */ __atomic_store_n(&tim->status.u32, status.u32, __ATOMIC_RELEASE); } else { /* keep it in list and mark timer as pending */ rte_spinlock_lock( &data->priv_timer[this_lcore].list_lock); status.state = RTE_TIMER_PENDING; __TIMER_STAT_ADD(data->priv_timer, pending, 1); status.owner = (int16_t)this_lcore; /* The "RELEASE" ordering guarantees the memory * operations above the status update are observed * before the update by all threads */ __atomic_store_n(&tim->status.u32, status.u32, __ATOMIC_RELEASE); __rte_timer_reset(tim, tim->expire + tim->period, tim->period, this_lcore, tim->f, tim->arg, 1, data); rte_spinlock_unlock( &data->priv_timer[this_lcore].list_lock); } data->priv_timer[this_lcore].running_tim = NULL; } return 0; } /* Walk pending lists, stopping timers and calling user-specified function */ int rte_timer_stop_all(uint32_t timer_data_id, unsigned int *walk_lcores, int nb_walk_lcores, rte_timer_stop_all_cb_t f, void *f_arg) { int i; struct priv_timer *priv_timer; uint32_t walk_lcore; struct rte_timer *tim, *next_tim; struct rte_timer_data *timer_data; TIMER_DATA_VALID_GET_OR_ERR_RET(timer_data_id, timer_data, -EINVAL); for (i = 0; i < nb_walk_lcores; i++) { walk_lcore = walk_lcores[i]; priv_timer = &timer_data->priv_timer[walk_lcore]; for (tim = priv_timer->pending_head.sl_next[0]; tim != NULL; tim = next_tim) { next_tim = tim->sl_next[0]; __rte_timer_stop(tim, timer_data); if (f) f(tim, f_arg); } } return 0; } int64_t rte_timer_next_ticks(void) { unsigned int lcore_id = rte_lcore_id(); struct rte_timer_data *timer_data; struct priv_timer *priv_timer; const struct rte_timer *tm; uint64_t cur_time; int64_t left = -ENOENT; TIMER_DATA_VALID_GET_OR_ERR_RET(default_data_id, timer_data, -EINVAL); priv_timer = timer_data->priv_timer; cur_time = rte_get_timer_cycles(); rte_spinlock_lock(&priv_timer[lcore_id].list_lock); tm = priv_timer[lcore_id].pending_head.sl_next[0]; if (tm) { left = tm->expire - cur_time; if (left < 0) left = 0; } rte_spinlock_unlock(&priv_timer[lcore_id].list_lock); return left; } /* dump statistics about timers */ static void __rte_timer_dump_stats(struct rte_timer_data *timer_data __rte_unused, FILE *f) { #ifdef RTE_LIBRTE_TIMER_DEBUG struct rte_timer_debug_stats sum; unsigned lcore_id; struct priv_timer *priv_timer = timer_data->priv_timer; memset(&sum, 0, sizeof(sum)); for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { sum.reset += priv_timer[lcore_id].stats.reset; sum.stop += priv_timer[lcore_id].stats.stop; sum.manage += priv_timer[lcore_id].stats.manage; sum.pending += priv_timer[lcore_id].stats.pending; } fprintf(f, "Timer statistics:\n"); fprintf(f, " reset = %"PRIu64"\n", sum.reset); fprintf(f, " stop = %"PRIu64"\n", sum.stop); fprintf(f, " manage = %"PRIu64"\n", sum.manage); fprintf(f, " pending = %"PRIu64"\n", sum.pending); #else fprintf(f, "No timer statistics, RTE_LIBRTE_TIMER_DEBUG is disabled\n"); #endif } int rte_timer_dump_stats(FILE *f) { return rte_timer_alt_dump_stats(default_data_id, f); } int rte_timer_alt_dump_stats(uint32_t timer_data_id __rte_unused, FILE *f) { struct rte_timer_data *timer_data; TIMER_DATA_VALID_GET_OR_ERR_RET(timer_data_id, timer_data, -EINVAL); __rte_timer_dump_stats(timer_data, f); return 0; }