/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2018 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include "test.h" #if !defined(RTE_LIB_BPF) static int test_bpf(void) { printf("BPF not supported, skipping test\n"); return TEST_SKIPPED; } #else #include #include #include /* * Basic functional tests for librte_bpf. * The main procedure - load eBPF program, execute it and * compare results with expected values. */ struct dummy_offset { uint64_t u64; uint32_t u32; uint16_t u16; uint8_t u8; }; struct dummy_vect8 { struct dummy_offset in[8]; struct dummy_offset out[8]; }; struct dummy_net { struct rte_ether_hdr eth_hdr; struct rte_vlan_hdr vlan_hdr; struct rte_ipv4_hdr ip_hdr; }; #define DUMMY_MBUF_NUM 2 /* first mbuf in the packet, should always be at offset 0 */ struct dummy_mbuf { struct rte_mbuf mb[DUMMY_MBUF_NUM]; uint8_t buf[DUMMY_MBUF_NUM][RTE_MBUF_DEFAULT_BUF_SIZE]; }; #define TEST_FILL_1 0xDEADBEEF #define TEST_MUL_1 21 #define TEST_MUL_2 -100 #define TEST_SHIFT_1 15 #define TEST_SHIFT_2 33 #define TEST_SHIFT32_MASK (CHAR_BIT * sizeof(uint32_t) - 1) #define TEST_SHIFT64_MASK (CHAR_BIT * sizeof(uint64_t) - 1) #define TEST_JCC_1 0 #define TEST_JCC_2 -123 #define TEST_JCC_3 5678 #define TEST_JCC_4 TEST_FILL_1 #define TEST_IMM_1 UINT64_MAX #define TEST_IMM_2 ((uint64_t)INT64_MIN) #define TEST_IMM_3 ((uint64_t)INT64_MAX + INT32_MAX) #define TEST_IMM_4 ((uint64_t)UINT32_MAX) #define TEST_IMM_5 ((uint64_t)UINT32_MAX + 1) #define TEST_MEMFROB 0x2a2a2a2a #define STRING_GEEK 0x6B656567 #define STRING_WEEK 0x6B656577 #define TEST_NETMASK 0xffffff00 #define TEST_SUBNET 0xaca80200 uint8_t src_mac[] = { 0x00, 0xFF, 0xAA, 0xFF, 0xAA, 0xFF }; uint8_t dst_mac[] = { 0x00, 0xAA, 0xFF, 0xAA, 0xFF, 0xAA }; uint32_t ip_src_addr = (172U << 24) | (168U << 16) | (2 << 8) | 1; uint32_t ip_dst_addr = (172U << 24) | (168U << 16) | (2 << 8) | 2; struct bpf_test { const char *name; size_t arg_sz; struct rte_bpf_prm prm; void (*prepare)(void *); int (*check_result)(uint64_t, const void *); uint32_t allow_fail; }; /* * Compare return value and result data with expected ones. * Report a failure if they don't match. */ static int cmp_res(const char *func, uint64_t exp_rc, uint64_t ret_rc, const void *exp_res, const void *ret_res, size_t res_sz) { int32_t ret; ret = 0; if (exp_rc != ret_rc) { printf("%s@%d: invalid return value, expected: 0x%" PRIx64 ",result: 0x%" PRIx64 "\n", func, __LINE__, exp_rc, ret_rc); ret |= -1; } if (memcmp(exp_res, ret_res, res_sz) != 0) { printf("%s: invalid value\n", func); rte_memdump(stdout, "expected", exp_res, res_sz); rte_memdump(stdout, "result", ret_res, res_sz); ret |= -1; } return ret; } /* store immediate test-cases */ static const struct ebpf_insn test_store1_prog[] = { { .code = (BPF_ST | BPF_MEM | BPF_B), .dst_reg = EBPF_REG_1, .off = offsetof(struct dummy_offset, u8), .imm = TEST_FILL_1, }, { .code = (BPF_ST | BPF_MEM | BPF_H), .dst_reg = EBPF_REG_1, .off = offsetof(struct dummy_offset, u16), .imm = TEST_FILL_1, }, { .code = (BPF_ST | BPF_MEM | BPF_W), .dst_reg = EBPF_REG_1, .off = offsetof(struct dummy_offset, u32), .imm = TEST_FILL_1, }, { .code = (BPF_ST | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_1, .off = offsetof(struct dummy_offset, u64), .imm = TEST_FILL_1, }, /* return 1 */ { .code = (BPF_ALU | EBPF_MOV | BPF_K), .dst_reg = EBPF_REG_0, .imm = 1, }, { .code = (BPF_JMP | EBPF_EXIT), }, }; static void test_store1_prepare(void *arg) { struct dummy_offset *df; df = arg; memset(df, 0, sizeof(*df)); } static int test_store1_check(uint64_t rc, const void *arg) { const struct dummy_offset *dft; struct dummy_offset dfe; dft = arg; memset(&dfe, 0, sizeof(dfe)); dfe.u64 = (int32_t)TEST_FILL_1; dfe.u32 = dfe.u64; dfe.u16 = dfe.u64; dfe.u8 = dfe.u64; return cmp_res(__func__, 1, rc, &dfe, dft, sizeof(dfe)); } /* store register test-cases */ static const struct ebpf_insn test_store2_prog[] = { { .code = (EBPF_ALU64 | EBPF_MOV | BPF_K), .dst_reg = EBPF_REG_2, .imm = TEST_FILL_1, }, { .code = (BPF_STX | BPF_MEM | BPF_B), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_2, .off = offsetof(struct dummy_offset, u8), }, { .code = (BPF_STX | BPF_MEM | BPF_H), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_2, .off = offsetof(struct dummy_offset, u16), }, { .code = (BPF_STX | BPF_MEM | BPF_W), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_2, .off = offsetof(struct dummy_offset, u32), }, { .code = (BPF_STX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_2, .off = offsetof(struct dummy_offset, u64), }, /* return 1 */ { .code = (BPF_ALU | EBPF_MOV | BPF_K), .dst_reg = EBPF_REG_0, .imm = 1, }, { .code = (BPF_JMP | EBPF_EXIT), }, }; /* load test-cases */ static const struct ebpf_insn test_load1_prog[] = { { .code = (BPF_LDX | BPF_MEM | BPF_B), .dst_reg = EBPF_REG_2, .src_reg = EBPF_REG_1, .off = offsetof(struct dummy_offset, u8), }, { .code = (BPF_LDX | BPF_MEM | BPF_H), .dst_reg = EBPF_REG_3, .src_reg = EBPF_REG_1, .off = offsetof(struct dummy_offset, u16), }, { .code = (BPF_LDX | BPF_MEM | BPF_W), .dst_reg = EBPF_REG_4, .src_reg = EBPF_REG_1, .off = offsetof(struct dummy_offset, u32), }, { .code = (BPF_LDX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_0, .src_reg = EBPF_REG_1, .off = offsetof(struct dummy_offset, u64), }, /* return sum */ { .code = (EBPF_ALU64 | BPF_ADD | BPF_X), .dst_reg = EBPF_REG_0, .src_reg = EBPF_REG_4, }, { .code = (EBPF_ALU64 | BPF_ADD | BPF_X), .dst_reg = EBPF_REG_0, .src_reg = EBPF_REG_3, }, { .code = (EBPF_ALU64 | BPF_ADD | BPF_X), .dst_reg = EBPF_REG_0, .src_reg = EBPF_REG_2, }, { .code = (BPF_JMP | EBPF_EXIT), }, }; static void test_load1_prepare(void *arg) { struct dummy_offset *df; df = arg; memset(df, 0, sizeof(*df)); df->u64 = (int32_t)TEST_FILL_1; df->u32 = df->u64; df->u16 = df->u64; df->u8 = df->u64; } static int test_load1_check(uint64_t rc, const void *arg) { uint64_t v; const struct dummy_offset *dft; dft = arg; v = dft->u64; v += dft->u32; v += dft->u16; v += dft->u8; return cmp_res(__func__, v, rc, dft, dft, sizeof(*dft)); } /* load immediate test-cases */ static const struct ebpf_insn test_ldimm1_prog[] = { { .code = (BPF_LD | BPF_IMM | EBPF_DW), .dst_reg = EBPF_REG_0, .imm = (uint32_t)TEST_IMM_1, }, { .imm = TEST_IMM_1 >> 32, }, { .code = (BPF_LD | BPF_IMM | EBPF_DW), .dst_reg = EBPF_REG_3, .imm = (uint32_t)TEST_IMM_2, }, { .imm = TEST_IMM_2 >> 32, }, { .code = (BPF_LD | BPF_IMM | EBPF_DW), .dst_reg = EBPF_REG_5, .imm = (uint32_t)TEST_IMM_3, }, { .imm = TEST_IMM_3 >> 32, }, { .code = (BPF_LD | BPF_IMM | EBPF_DW), .dst_reg = EBPF_REG_7, .imm = (uint32_t)TEST_IMM_4, }, { .imm = TEST_IMM_4 >> 32, }, { .code = (BPF_LD | BPF_IMM | EBPF_DW), .dst_reg = EBPF_REG_9, .imm = (uint32_t)TEST_IMM_5, }, { .imm = TEST_IMM_5 >> 32, }, /* return sum */ { .code = (EBPF_ALU64 | BPF_ADD | BPF_X), .dst_reg = EBPF_REG_0, .src_reg = EBPF_REG_3, }, { .code = (EBPF_ALU64 | BPF_ADD | BPF_X), .dst_reg = EBPF_REG_0, .src_reg = EBPF_REG_5, }, { .code = (EBPF_ALU64 | BPF_ADD | BPF_X), .dst_reg = EBPF_REG_0, .src_reg = EBPF_REG_7, }, { .code = (EBPF_ALU64 | BPF_ADD | BPF_X), .dst_reg = EBPF_REG_0, .src_reg = EBPF_REG_9, }, { .code = (BPF_JMP | EBPF_EXIT), }, }; static int test_ldimm1_check(uint64_t rc, const void *arg) { uint64_t v1, v2; v1 = TEST_IMM_1; v2 = TEST_IMM_2; v1 += v2; v2 = TEST_IMM_3; v1 += v2; v2 = TEST_IMM_4; v1 += v2; v2 = TEST_IMM_5; v1 += v2; return cmp_res(__func__, v1, rc, arg, arg, 0); } /* alu mul test-cases */ static const struct ebpf_insn test_mul1_prog[] = { { .code = (BPF_LDX | BPF_MEM | BPF_W), .dst_reg = EBPF_REG_2, .src_reg = EBPF_REG_1, .off = offsetof(struct dummy_vect8, in[0].u32), }, { .code = (BPF_LDX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_3, .src_reg = EBPF_REG_1, .off = offsetof(struct dummy_vect8, in[1].u64), }, { .code = (BPF_LDX | BPF_MEM | BPF_W), .dst_reg = EBPF_REG_4, .src_reg = EBPF_REG_1, .off = offsetof(struct dummy_vect8, in[2].u32), }, { .code = (BPF_ALU | BPF_MUL | BPF_K), .dst_reg = EBPF_REG_2, .imm = TEST_MUL_1, }, { .code = (EBPF_ALU64 | BPF_MUL | BPF_K), .dst_reg = EBPF_REG_3, .imm = TEST_MUL_2, }, { .code = (BPF_ALU | BPF_MUL | BPF_X), .dst_reg = EBPF_REG_4, .src_reg = EBPF_REG_2, }, { .code = (EBPF_ALU64 | BPF_MUL | BPF_X), .dst_reg = EBPF_REG_4, .src_reg = EBPF_REG_3, }, { .code = (BPF_STX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_2, .off = offsetof(struct dummy_vect8, out[0].u64), }, { .code = (BPF_STX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_3, .off = offsetof(struct dummy_vect8, out[1].u64), }, { .code = (BPF_STX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_4, .off = offsetof(struct dummy_vect8, out[2].u64), }, /* return 1 */ { .code = (BPF_ALU | EBPF_MOV | BPF_K), .dst_reg = EBPF_REG_0, .imm = 1, }, { .code = (BPF_JMP | EBPF_EXIT), }, }; static void test_mul1_prepare(void *arg) { struct dummy_vect8 *dv; uint64_t v; dv = arg; v = rte_rand(); memset(dv, 0, sizeof(*dv)); dv->in[0].u32 = v; dv->in[1].u64 = v << 12 | v >> 6; dv->in[2].u32 = -v; } static int test_mul1_check(uint64_t rc, const void *arg) { uint64_t r2, r3, r4; const struct dummy_vect8 *dvt; struct dummy_vect8 dve; dvt = arg; memset(&dve, 0, sizeof(dve)); r2 = dvt->in[0].u32; r3 = dvt->in[1].u64; r4 = dvt->in[2].u32; r2 = (uint32_t)r2 * TEST_MUL_1; r3 *= TEST_MUL_2; r4 = (uint32_t)(r4 * r2); r4 *= r3; dve.out[0].u64 = r2; dve.out[1].u64 = r3; dve.out[2].u64 = r4; return cmp_res(__func__, 1, rc, dve.out, dvt->out, sizeof(dve.out)); } /* alu shift test-cases */ static const struct ebpf_insn test_shift1_prog[] = { { .code = (BPF_LDX | BPF_MEM | BPF_W), .dst_reg = EBPF_REG_2, .src_reg = EBPF_REG_1, .off = offsetof(struct dummy_vect8, in[0].u32), }, { .code = (BPF_LDX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_3, .src_reg = EBPF_REG_1, .off = offsetof(struct dummy_vect8, in[1].u64), }, { .code = (BPF_LDX | BPF_MEM | BPF_W), .dst_reg = EBPF_REG_4, .src_reg = EBPF_REG_1, .off = offsetof(struct dummy_vect8, in[2].u32), }, { .code = (BPF_ALU | BPF_LSH | BPF_K), .dst_reg = EBPF_REG_2, .imm = TEST_SHIFT_1, }, { .code = (EBPF_ALU64 | EBPF_ARSH | BPF_K), .dst_reg = EBPF_REG_3, .imm = TEST_SHIFT_2, }, { .code = (BPF_STX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_2, .off = offsetof(struct dummy_vect8, out[0].u64), }, { .code = (BPF_STX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_3, .off = offsetof(struct dummy_vect8, out[1].u64), }, { .code = (BPF_ALU | BPF_AND | BPF_K), .dst_reg = EBPF_REG_4, .imm = TEST_SHIFT64_MASK, }, { .code = (EBPF_ALU64 | BPF_LSH | BPF_X), .dst_reg = EBPF_REG_3, .src_reg = EBPF_REG_4, }, { .code = (BPF_ALU | BPF_AND | BPF_K), .dst_reg = EBPF_REG_4, .imm = TEST_SHIFT32_MASK, }, { .code = (BPF_ALU | BPF_RSH | BPF_X), .dst_reg = EBPF_REG_2, .src_reg = EBPF_REG_4, }, { .code = (BPF_STX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_2, .off = offsetof(struct dummy_vect8, out[2].u64), }, { .code = (BPF_STX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_3, .off = offsetof(struct dummy_vect8, out[3].u64), }, { .code = (BPF_LDX | BPF_MEM | BPF_W), .dst_reg = EBPF_REG_2, .src_reg = EBPF_REG_1, .off = offsetof(struct dummy_vect8, in[0].u32), }, { .code = (BPF_LDX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_3, .src_reg = EBPF_REG_1, .off = offsetof(struct dummy_vect8, in[1].u64), }, { .code = (BPF_LDX | BPF_MEM | BPF_W), .dst_reg = EBPF_REG_4, .src_reg = EBPF_REG_1, .off = offsetof(struct dummy_vect8, in[2].u32), }, { .code = (BPF_ALU | BPF_AND | BPF_K), .dst_reg = EBPF_REG_2, .imm = TEST_SHIFT64_MASK, }, { .code = (EBPF_ALU64 | EBPF_ARSH | BPF_X), .dst_reg = EBPF_REG_3, .src_reg = EBPF_REG_2, }, { .code = (BPF_ALU | BPF_AND | BPF_K), .dst_reg = EBPF_REG_2, .imm = TEST_SHIFT32_MASK, }, { .code = (BPF_ALU | BPF_LSH | BPF_X), .dst_reg = EBPF_REG_4, .src_reg = EBPF_REG_2, }, { .code = (BPF_STX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_4, .off = offsetof(struct dummy_vect8, out[4].u64), }, { .code = (BPF_STX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_3, .off = offsetof(struct dummy_vect8, out[5].u64), }, /* return 1 */ { .code = (BPF_ALU | EBPF_MOV | BPF_K), .dst_reg = EBPF_REG_0, .imm = 1, }, { .code = (BPF_JMP | EBPF_EXIT), }, }; static void test_shift1_prepare(void *arg) { struct dummy_vect8 *dv; uint64_t v; dv = arg; v = rte_rand(); memset(dv, 0, sizeof(*dv)); dv->in[0].u32 = v; dv->in[1].u64 = v << 12 | v >> 6; dv->in[2].u32 = (-v ^ 5); } static int test_shift1_check(uint64_t rc, const void *arg) { uint64_t r2, r3, r4; const struct dummy_vect8 *dvt; struct dummy_vect8 dve; dvt = arg; memset(&dve, 0, sizeof(dve)); r2 = dvt->in[0].u32; r3 = dvt->in[1].u64; r4 = dvt->in[2].u32; r2 = (uint32_t)r2 << TEST_SHIFT_1; r3 = (int64_t)r3 >> TEST_SHIFT_2; dve.out[0].u64 = r2; dve.out[1].u64 = r3; r4 &= TEST_SHIFT64_MASK; r3 <<= r4; r4 &= TEST_SHIFT32_MASK; r2 = (uint32_t)r2 >> r4; dve.out[2].u64 = r2; dve.out[3].u64 = r3; r2 = dvt->in[0].u32; r3 = dvt->in[1].u64; r4 = dvt->in[2].u32; r2 &= TEST_SHIFT64_MASK; r3 = (int64_t)r3 >> r2; r2 &= TEST_SHIFT32_MASK; r4 = (uint32_t)r4 << r2; dve.out[4].u64 = r4; dve.out[5].u64 = r3; return cmp_res(__func__, 1, rc, dve.out, dvt->out, sizeof(dve.out)); } /* jmp test-cases */ static const struct ebpf_insn test_jump1_prog[] = { [0] = { .code = (BPF_ALU | EBPF_MOV | BPF_K), .dst_reg = EBPF_REG_0, .imm = 0, }, [1] = { .code = (BPF_LDX | BPF_MEM | BPF_W), .dst_reg = EBPF_REG_2, .src_reg = EBPF_REG_1, .off = offsetof(struct dummy_vect8, in[0].u32), }, [2] = { .code = (BPF_LDX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_3, .src_reg = EBPF_REG_1, .off = offsetof(struct dummy_vect8, in[0].u64), }, [3] = { .code = (BPF_LDX | BPF_MEM | BPF_W), .dst_reg = EBPF_REG_4, .src_reg = EBPF_REG_1, .off = offsetof(struct dummy_vect8, in[1].u32), }, [4] = { .code = (BPF_LDX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_5, .src_reg = EBPF_REG_1, .off = offsetof(struct dummy_vect8, in[1].u64), }, [5] = { .code = (BPF_JMP | BPF_JEQ | BPF_K), .dst_reg = EBPF_REG_2, .imm = TEST_JCC_1, .off = 8, }, [6] = { .code = (BPF_JMP | EBPF_JSLE | BPF_K), .dst_reg = EBPF_REG_3, .imm = TEST_JCC_2, .off = 9, }, [7] = { .code = (BPF_JMP | BPF_JGT | BPF_K), .dst_reg = EBPF_REG_4, .imm = TEST_JCC_3, .off = 10, }, [8] = { .code = (BPF_JMP | BPF_JSET | BPF_K), .dst_reg = EBPF_REG_5, .imm = TEST_JCC_4, .off = 11, }, [9] = { .code = (BPF_JMP | EBPF_JNE | BPF_X), .dst_reg = EBPF_REG_2, .src_reg = EBPF_REG_3, .off = 12, }, [10] = { .code = (BPF_JMP | EBPF_JSGT | BPF_X), .dst_reg = EBPF_REG_2, .src_reg = EBPF_REG_4, .off = 13, }, [11] = { .code = (BPF_JMP | EBPF_JLE | BPF_X), .dst_reg = EBPF_REG_2, .src_reg = EBPF_REG_5, .off = 14, }, [12] = { .code = (BPF_JMP | BPF_JSET | BPF_X), .dst_reg = EBPF_REG_3, .src_reg = EBPF_REG_5, .off = 15, }, [13] = { .code = (BPF_JMP | EBPF_EXIT), }, [14] = { .code = (EBPF_ALU64 | BPF_OR | BPF_K), .dst_reg = EBPF_REG_0, .imm = 0x1, }, [15] = { .code = (BPF_JMP | BPF_JA), .off = -10, }, [16] = { .code = (EBPF_ALU64 | BPF_OR | BPF_K), .dst_reg = EBPF_REG_0, .imm = 0x2, }, [17] = { .code = (BPF_JMP | BPF_JA), .off = -11, }, [18] = { .code = (EBPF_ALU64 | BPF_OR | BPF_K), .dst_reg = EBPF_REG_0, .imm = 0x4, }, [19] = { .code = (BPF_JMP | BPF_JA), .off = -12, }, [20] = { .code = (EBPF_ALU64 | BPF_OR | BPF_K), .dst_reg = EBPF_REG_0, .imm = 0x8, }, [21] = { .code = (BPF_JMP | BPF_JA), .off = -13, }, [22] = { .code = (EBPF_ALU64 | BPF_OR | BPF_K), .dst_reg = EBPF_REG_0, .imm = 0x10, }, [23] = { .code = (BPF_JMP | BPF_JA), .off = -14, }, [24] = { .code = (EBPF_ALU64 | BPF_OR | BPF_K), .dst_reg = EBPF_REG_0, .imm = 0x20, }, [25] = { .code = (BPF_JMP | BPF_JA), .off = -15, }, [26] = { .code = (EBPF_ALU64 | BPF_OR | BPF_K), .dst_reg = EBPF_REG_0, .imm = 0x40, }, [27] = { .code = (BPF_JMP | BPF_JA), .off = -16, }, [28] = { .code = (EBPF_ALU64 | BPF_OR | BPF_K), .dst_reg = EBPF_REG_0, .imm = 0x80, }, [29] = { .code = (BPF_JMP | BPF_JA), .off = -17, }, }; static void test_jump1_prepare(void *arg) { struct dummy_vect8 *dv; uint64_t v1, v2; dv = arg; v1 = rte_rand(); v2 = rte_rand(); memset(dv, 0, sizeof(*dv)); dv->in[0].u64 = v1; dv->in[1].u64 = v2; dv->in[0].u32 = (v1 << 12) + (v2 >> 6); dv->in[1].u32 = (v2 << 12) - (v1 >> 6); } static int test_jump1_check(uint64_t rc, const void *arg) { uint64_t r2, r3, r4, r5, rv; const struct dummy_vect8 *dvt; dvt = arg; rv = 0; r2 = dvt->in[0].u32; r3 = dvt->in[0].u64; r4 = dvt->in[1].u32; r5 = dvt->in[1].u64; if (r2 == TEST_JCC_1) rv |= 0x1; if ((int64_t)r3 <= TEST_JCC_2) rv |= 0x2; if (r4 > TEST_JCC_3) rv |= 0x4; if (r5 & TEST_JCC_4) rv |= 0x8; if (r2 != r3) rv |= 0x10; if ((int64_t)r2 > (int64_t)r4) rv |= 0x20; if (r2 <= r5) rv |= 0x40; if (r3 & r5) rv |= 0x80; return cmp_res(__func__, rv, rc, &rv, &rc, sizeof(rv)); } /* Jump test case - check ip4_dest in particular subnet */ static const struct ebpf_insn test_jump2_prog[] = { [0] = { .code = (EBPF_ALU64 | EBPF_MOV | BPF_K), .dst_reg = EBPF_REG_2, .imm = 0xe, }, [1] = { .code = (BPF_LDX | BPF_MEM | BPF_H), .dst_reg = EBPF_REG_3, .src_reg = EBPF_REG_1, .off = 12, }, [2] = { .code = (BPF_JMP | EBPF_JNE | BPF_K), .dst_reg = EBPF_REG_3, .off = 2, .imm = 0x81, }, [3] = { .code = (EBPF_ALU64 | EBPF_MOV | BPF_K), .dst_reg = EBPF_REG_2, .imm = 0x12, }, [4] = { .code = (BPF_LDX | BPF_MEM | BPF_H), .dst_reg = EBPF_REG_3, .src_reg = EBPF_REG_1, .off = 16, }, [5] = { .code = (EBPF_ALU64 | BPF_AND | BPF_K), .dst_reg = EBPF_REG_3, .imm = 0xffff, }, [6] = { .code = (BPF_JMP | EBPF_JNE | BPF_K), .dst_reg = EBPF_REG_3, .off = 9, .imm = 0x8, }, [7] = { .code = (EBPF_ALU64 | BPF_ADD | BPF_X), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_2, }, [8] = { .code = (EBPF_ALU64 | EBPF_MOV | BPF_K), .dst_reg = EBPF_REG_0, .imm = 0, }, [9] = { .code = (BPF_LDX | BPF_MEM | BPF_W), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_1, .off = 16, }, [10] = { .code = (BPF_ALU | EBPF_MOV | BPF_K), .dst_reg = EBPF_REG_3, .imm = TEST_NETMASK, }, [11] = { .code = (BPF_ALU | EBPF_END | EBPF_TO_BE), .dst_reg = EBPF_REG_3, .imm = sizeof(uint32_t) * CHAR_BIT, }, [12] = { .code = (BPF_ALU | BPF_AND | BPF_X), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_3, }, [13] = { .code = (BPF_ALU | EBPF_MOV | BPF_K), .dst_reg = EBPF_REG_3, .imm = TEST_SUBNET, }, [14] = { .code = (BPF_ALU | EBPF_END | EBPF_TO_BE), .dst_reg = EBPF_REG_3, .imm = sizeof(uint32_t) * CHAR_BIT, }, [15] = { .code = (BPF_JMP | BPF_JEQ | BPF_X), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_3, .off = 1, }, [16] = { .code = (EBPF_ALU64 | EBPF_MOV | BPF_K), .dst_reg = EBPF_REG_0, .imm = -1, }, [17] = { .code = (BPF_JMP | EBPF_EXIT), }, }; /* Preparing a vlan packet */ static void test_jump2_prepare(void *arg) { struct dummy_net *dn; dn = arg; memset(dn, 0, sizeof(*dn)); /* * Initialize ether header. */ rte_ether_addr_copy((struct rte_ether_addr *)dst_mac, &dn->eth_hdr.dst_addr); rte_ether_addr_copy((struct rte_ether_addr *)src_mac, &dn->eth_hdr.src_addr); dn->eth_hdr.ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN); /* * Initialize vlan header. */ dn->vlan_hdr.eth_proto = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4); dn->vlan_hdr.vlan_tci = 32; /* * Initialize IP header. */ dn->ip_hdr.version_ihl = 0x45; /*IP_VERSION | IP_HDRLEN*/ dn->ip_hdr.time_to_live = 64; /* IP_DEFTTL */ dn->ip_hdr.next_proto_id = IPPROTO_TCP; dn->ip_hdr.packet_id = rte_cpu_to_be_16(0x463c); dn->ip_hdr.total_length = rte_cpu_to_be_16(60); dn->ip_hdr.src_addr = rte_cpu_to_be_32(ip_src_addr); dn->ip_hdr.dst_addr = rte_cpu_to_be_32(ip_dst_addr); } static int test_jump2_check(uint64_t rc, const void *arg) { const struct rte_ether_hdr *eth_hdr = arg; const struct rte_ipv4_hdr *ipv4_hdr; const void *next = eth_hdr; uint16_t eth_type; uint64_t v = -1; if (eth_hdr->ether_type == htons(0x8100)) { const struct rte_vlan_hdr *vlan_hdr = (const void *)(eth_hdr + 1); eth_type = vlan_hdr->eth_proto; next = vlan_hdr + 1; } else { eth_type = eth_hdr->ether_type; next = eth_hdr + 1; } if (eth_type == htons(0x0800)) { ipv4_hdr = next; if ((ipv4_hdr->dst_addr & rte_cpu_to_be_32(TEST_NETMASK)) == rte_cpu_to_be_32(TEST_SUBNET)) { v = 0; } } return cmp_res(__func__, v, rc, arg, arg, sizeof(arg)); } /* alu (add, sub, and, or, xor, neg) test-cases */ static const struct ebpf_insn test_alu1_prog[] = { { .code = (BPF_LDX | BPF_MEM | BPF_W), .dst_reg = EBPF_REG_2, .src_reg = EBPF_REG_1, .off = offsetof(struct dummy_vect8, in[0].u32), }, { .code = (BPF_LDX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_3, .src_reg = EBPF_REG_1, .off = offsetof(struct dummy_vect8, in[0].u64), }, { .code = (BPF_LDX | BPF_MEM | BPF_W), .dst_reg = EBPF_REG_4, .src_reg = EBPF_REG_1, .off = offsetof(struct dummy_vect8, in[1].u32), }, { .code = (BPF_LDX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_5, .src_reg = EBPF_REG_1, .off = offsetof(struct dummy_vect8, in[1].u64), }, { .code = (BPF_ALU | BPF_AND | BPF_K), .dst_reg = EBPF_REG_2, .imm = TEST_FILL_1, }, { .code = (EBPF_ALU64 | BPF_OR | BPF_K), .dst_reg = EBPF_REG_3, .imm = TEST_FILL_1, }, { .code = (BPF_ALU | BPF_XOR | BPF_K), .dst_reg = EBPF_REG_4, .imm = TEST_FILL_1, }, { .code = (EBPF_ALU64 | BPF_ADD | BPF_K), .dst_reg = EBPF_REG_5, .imm = TEST_FILL_1, }, { .code = (BPF_STX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_2, .off = offsetof(struct dummy_vect8, out[0].u64), }, { .code = (BPF_STX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_3, .off = offsetof(struct dummy_vect8, out[1].u64), }, { .code = (BPF_STX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_4, .off = offsetof(struct dummy_vect8, out[2].u64), }, { .code = (BPF_STX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_5, .off = offsetof(struct dummy_vect8, out[3].u64), }, { .code = (BPF_ALU | BPF_OR | BPF_X), .dst_reg = EBPF_REG_2, .src_reg = EBPF_REG_3, }, { .code = (EBPF_ALU64 | BPF_XOR | BPF_X), .dst_reg = EBPF_REG_3, .src_reg = EBPF_REG_4, }, { .code = (BPF_ALU | BPF_SUB | BPF_X), .dst_reg = EBPF_REG_4, .src_reg = EBPF_REG_5, }, { .code = (EBPF_ALU64 | BPF_AND | BPF_X), .dst_reg = EBPF_REG_5, .src_reg = EBPF_REG_2, }, { .code = (BPF_STX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_2, .off = offsetof(struct dummy_vect8, out[4].u64), }, { .code = (BPF_STX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_3, .off = offsetof(struct dummy_vect8, out[5].u64), }, { .code = (BPF_STX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_4, .off = offsetof(struct dummy_vect8, out[6].u64), }, { .code = (BPF_STX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_5, .off = offsetof(struct dummy_vect8, out[7].u64), }, /* return (-r2 + (-r3)) */ { .code = (BPF_ALU | BPF_NEG), .dst_reg = EBPF_REG_2, }, { .code = (EBPF_ALU64 | BPF_NEG), .dst_reg = EBPF_REG_3, }, { .code = (EBPF_ALU64 | BPF_ADD | BPF_X), .dst_reg = EBPF_REG_2, .src_reg = EBPF_REG_3, }, { .code = (EBPF_ALU64 | EBPF_MOV | BPF_X), .dst_reg = EBPF_REG_0, .src_reg = EBPF_REG_2, }, { .code = (BPF_JMP | EBPF_EXIT), }, }; static int test_alu1_check(uint64_t rc, const void *arg) { uint64_t r2, r3, r4, r5, rv; const struct dummy_vect8 *dvt; struct dummy_vect8 dve; dvt = arg; memset(&dve, 0, sizeof(dve)); r2 = dvt->in[0].u32; r3 = dvt->in[0].u64; r4 = dvt->in[1].u32; r5 = dvt->in[1].u64; r2 = (uint32_t)r2 & TEST_FILL_1; r3 |= (int32_t) TEST_FILL_1; r4 = (uint32_t)r4 ^ TEST_FILL_1; r5 += (int32_t)TEST_FILL_1; dve.out[0].u64 = r2; dve.out[1].u64 = r3; dve.out[2].u64 = r4; dve.out[3].u64 = r5; r2 = (uint32_t)r2 | (uint32_t)r3; r3 ^= r4; r4 = (uint32_t)r4 - (uint32_t)r5; r5 &= r2; dve.out[4].u64 = r2; dve.out[5].u64 = r3; dve.out[6].u64 = r4; dve.out[7].u64 = r5; r2 = -(int32_t)r2; rv = (uint32_t)r2; r3 = -r3; rv += r3; return cmp_res(__func__, rv, rc, dve.out, dvt->out, sizeof(dve.out)); } /* endianness conversions (BE->LE/LE->BE) test-cases */ static const struct ebpf_insn test_bele1_prog[] = { { .code = (BPF_LDX | BPF_MEM | BPF_H), .dst_reg = EBPF_REG_2, .src_reg = EBPF_REG_1, .off = offsetof(struct dummy_vect8, in[0].u16), }, { .code = (BPF_LDX | BPF_MEM | BPF_W), .dst_reg = EBPF_REG_3, .src_reg = EBPF_REG_1, .off = offsetof(struct dummy_vect8, in[0].u32), }, { .code = (BPF_LDX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_4, .src_reg = EBPF_REG_1, .off = offsetof(struct dummy_vect8, in[0].u64), }, { .code = (BPF_ALU | EBPF_END | EBPF_TO_BE), .dst_reg = EBPF_REG_2, .imm = sizeof(uint16_t) * CHAR_BIT, }, { .code = (BPF_ALU | EBPF_END | EBPF_TO_BE), .dst_reg = EBPF_REG_3, .imm = sizeof(uint32_t) * CHAR_BIT, }, { .code = (BPF_ALU | EBPF_END | EBPF_TO_BE), .dst_reg = EBPF_REG_4, .imm = sizeof(uint64_t) * CHAR_BIT, }, { .code = (BPF_STX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_2, .off = offsetof(struct dummy_vect8, out[0].u64), }, { .code = (BPF_STX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_3, .off = offsetof(struct dummy_vect8, out[1].u64), }, { .code = (BPF_STX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_4, .off = offsetof(struct dummy_vect8, out[2].u64), }, { .code = (BPF_LDX | BPF_MEM | BPF_H), .dst_reg = EBPF_REG_2, .src_reg = EBPF_REG_1, .off = offsetof(struct dummy_vect8, in[0].u16), }, { .code = (BPF_LDX | BPF_MEM | BPF_W), .dst_reg = EBPF_REG_3, .src_reg = EBPF_REG_1, .off = offsetof(struct dummy_vect8, in[0].u32), }, { .code = (BPF_LDX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_4, .src_reg = EBPF_REG_1, .off = offsetof(struct dummy_vect8, in[0].u64), }, { .code = (BPF_ALU | EBPF_END | EBPF_TO_LE), .dst_reg = EBPF_REG_2, .imm = sizeof(uint16_t) * CHAR_BIT, }, { .code = (BPF_ALU | EBPF_END | EBPF_TO_LE), .dst_reg = EBPF_REG_3, .imm = sizeof(uint32_t) * CHAR_BIT, }, { .code = (BPF_ALU | EBPF_END | EBPF_TO_LE), .dst_reg = EBPF_REG_4, .imm = sizeof(uint64_t) * CHAR_BIT, }, { .code = (BPF_STX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_2, .off = offsetof(struct dummy_vect8, out[3].u64), }, { .code = (BPF_STX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_3, .off = offsetof(struct dummy_vect8, out[4].u64), }, { .code = (BPF_STX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_4, .off = offsetof(struct dummy_vect8, out[5].u64), }, /* return 1 */ { .code = (BPF_ALU | EBPF_MOV | BPF_K), .dst_reg = EBPF_REG_0, .imm = 1, }, { .code = (BPF_JMP | EBPF_EXIT), }, }; static void test_bele1_prepare(void *arg) { struct dummy_vect8 *dv; dv = arg; memset(dv, 0, sizeof(*dv)); dv->in[0].u64 = rte_rand(); dv->in[0].u32 = dv->in[0].u64; dv->in[0].u16 = dv->in[0].u64; } static int test_bele1_check(uint64_t rc, const void *arg) { uint64_t r2, r3, r4; const struct dummy_vect8 *dvt; struct dummy_vect8 dve; dvt = arg; memset(&dve, 0, sizeof(dve)); r2 = dvt->in[0].u16; r3 = dvt->in[0].u32; r4 = dvt->in[0].u64; r2 = rte_cpu_to_be_16(r2); r3 = rte_cpu_to_be_32(r3); r4 = rte_cpu_to_be_64(r4); dve.out[0].u64 = r2; dve.out[1].u64 = r3; dve.out[2].u64 = r4; r2 = dvt->in[0].u16; r3 = dvt->in[0].u32; r4 = dvt->in[0].u64; r2 = rte_cpu_to_le_16(r2); r3 = rte_cpu_to_le_32(r3); r4 = rte_cpu_to_le_64(r4); dve.out[3].u64 = r2; dve.out[4].u64 = r3; dve.out[5].u64 = r4; return cmp_res(__func__, 1, rc, dve.out, dvt->out, sizeof(dve.out)); } /* atomic add test-cases */ static const struct ebpf_insn test_xadd1_prog[] = { { .code = (EBPF_ALU64 | EBPF_MOV | BPF_K), .dst_reg = EBPF_REG_2, .imm = 1, }, { .code = (BPF_STX | EBPF_XADD | BPF_W), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_2, .off = offsetof(struct dummy_offset, u32), }, { .code = (BPF_STX | EBPF_XADD | EBPF_DW), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_2, .off = offsetof(struct dummy_offset, u64), }, { .code = (EBPF_ALU64 | EBPF_MOV | BPF_K), .dst_reg = EBPF_REG_3, .imm = -1, }, { .code = (BPF_STX | EBPF_XADD | BPF_W), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_3, .off = offsetof(struct dummy_offset, u32), }, { .code = (BPF_STX | EBPF_XADD | EBPF_DW), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_3, .off = offsetof(struct dummy_offset, u64), }, { .code = (EBPF_ALU64 | EBPF_MOV | BPF_K), .dst_reg = EBPF_REG_4, .imm = TEST_FILL_1, }, { .code = (BPF_STX | EBPF_XADD | BPF_W), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_4, .off = offsetof(struct dummy_offset, u32), }, { .code = (BPF_STX | EBPF_XADD | EBPF_DW), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_4, .off = offsetof(struct dummy_offset, u64), }, { .code = (EBPF_ALU64 | EBPF_MOV | BPF_K), .dst_reg = EBPF_REG_5, .imm = TEST_MUL_1, }, { .code = (BPF_STX | EBPF_XADD | BPF_W), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_5, .off = offsetof(struct dummy_offset, u32), }, { .code = (BPF_STX | EBPF_XADD | EBPF_DW), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_5, .off = offsetof(struct dummy_offset, u64), }, { .code = (EBPF_ALU64 | EBPF_MOV | BPF_K), .dst_reg = EBPF_REG_6, .imm = TEST_MUL_2, }, { .code = (BPF_STX | EBPF_XADD | BPF_W), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_6, .off = offsetof(struct dummy_offset, u32), }, { .code = (BPF_STX | EBPF_XADD | EBPF_DW), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_6, .off = offsetof(struct dummy_offset, u64), }, { .code = (EBPF_ALU64 | EBPF_MOV | BPF_K), .dst_reg = EBPF_REG_7, .imm = TEST_JCC_2, }, { .code = (BPF_STX | EBPF_XADD | BPF_W), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_7, .off = offsetof(struct dummy_offset, u32), }, { .code = (BPF_STX | EBPF_XADD | EBPF_DW), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_7, .off = offsetof(struct dummy_offset, u64), }, { .code = (EBPF_ALU64 | EBPF_MOV | BPF_K), .dst_reg = EBPF_REG_8, .imm = TEST_JCC_3, }, { .code = (BPF_STX | EBPF_XADD | BPF_W), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_8, .off = offsetof(struct dummy_offset, u32), }, { .code = (BPF_STX | EBPF_XADD | EBPF_DW), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_8, .off = offsetof(struct dummy_offset, u64), }, /* return 1 */ { .code = (BPF_ALU | EBPF_MOV | BPF_K), .dst_reg = EBPF_REG_0, .imm = 1, }, { .code = (BPF_JMP | EBPF_EXIT), }, }; static int test_xadd1_check(uint64_t rc, const void *arg) { uint64_t rv; const struct dummy_offset *dft; struct dummy_offset dfe; dft = arg; memset(&dfe, 0, sizeof(dfe)); rv = 1; __atomic_fetch_add(&dfe.u32, rv, __ATOMIC_RELAXED); __atomic_fetch_add(&dfe.u64, rv, __ATOMIC_RELAXED); rv = -1; __atomic_fetch_add(&dfe.u32, rv, __ATOMIC_RELAXED); __atomic_fetch_add(&dfe.u64, rv, __ATOMIC_RELAXED); rv = (int32_t)TEST_FILL_1; __atomic_fetch_add(&dfe.u32, rv, __ATOMIC_RELAXED); __atomic_fetch_add(&dfe.u64, rv, __ATOMIC_RELAXED); rv = TEST_MUL_1; __atomic_fetch_add(&dfe.u32, rv, __ATOMIC_RELAXED); __atomic_fetch_add(&dfe.u64, rv, __ATOMIC_RELAXED); rv = TEST_MUL_2; __atomic_fetch_add(&dfe.u32, rv, __ATOMIC_RELAXED); __atomic_fetch_add(&dfe.u64, rv, __ATOMIC_RELAXED); rv = TEST_JCC_2; __atomic_fetch_add(&dfe.u32, rv, __ATOMIC_RELAXED); __atomic_fetch_add(&dfe.u64, rv, __ATOMIC_RELAXED); rv = TEST_JCC_3; __atomic_fetch_add(&dfe.u32, rv, __ATOMIC_RELAXED); __atomic_fetch_add(&dfe.u64, rv, __ATOMIC_RELAXED); return cmp_res(__func__, 1, rc, &dfe, dft, sizeof(dfe)); } /* alu div test-cases */ static const struct ebpf_insn test_div1_prog[] = { { .code = (BPF_LDX | BPF_MEM | BPF_W), .dst_reg = EBPF_REG_2, .src_reg = EBPF_REG_1, .off = offsetof(struct dummy_vect8, in[0].u32), }, { .code = (BPF_LDX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_3, .src_reg = EBPF_REG_1, .off = offsetof(struct dummy_vect8, in[1].u64), }, { .code = (BPF_LDX | BPF_MEM | BPF_W), .dst_reg = EBPF_REG_4, .src_reg = EBPF_REG_1, .off = offsetof(struct dummy_vect8, in[2].u32), }, { .code = (BPF_ALU | BPF_DIV | BPF_K), .dst_reg = EBPF_REG_2, .imm = TEST_MUL_1, }, { .code = (EBPF_ALU64 | BPF_MOD | BPF_K), .dst_reg = EBPF_REG_3, .imm = TEST_MUL_2, }, { .code = (EBPF_ALU64 | BPF_OR | BPF_K), .dst_reg = EBPF_REG_2, .imm = 1, }, { .code = (EBPF_ALU64 | BPF_OR | BPF_K), .dst_reg = EBPF_REG_3, .imm = 1, }, { .code = (BPF_ALU | BPF_MOD | BPF_X), .dst_reg = EBPF_REG_4, .src_reg = EBPF_REG_2, }, { .code = (EBPF_ALU64 | BPF_DIV | BPF_X), .dst_reg = EBPF_REG_4, .src_reg = EBPF_REG_3, }, { .code = (BPF_STX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_2, .off = offsetof(struct dummy_vect8, out[0].u64), }, { .code = (BPF_STX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_3, .off = offsetof(struct dummy_vect8, out[1].u64), }, { .code = (BPF_STX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_4, .off = offsetof(struct dummy_vect8, out[2].u64), }, /* check that we can handle division by zero gracefully. */ { .code = (BPF_LDX | BPF_MEM | BPF_W), .dst_reg = EBPF_REG_2, .src_reg = EBPF_REG_1, .off = offsetof(struct dummy_vect8, in[3].u32), }, { .code = (BPF_ALU | BPF_DIV | BPF_X), .dst_reg = EBPF_REG_4, .src_reg = EBPF_REG_2, }, /* return 1 */ { .code = (BPF_ALU | EBPF_MOV | BPF_K), .dst_reg = EBPF_REG_0, .imm = 1, }, { .code = (BPF_JMP | EBPF_EXIT), }, }; static int test_div1_check(uint64_t rc, const void *arg) { uint64_t r2, r3, r4; const struct dummy_vect8 *dvt; struct dummy_vect8 dve; dvt = arg; memset(&dve, 0, sizeof(dve)); r2 = dvt->in[0].u32; r3 = dvt->in[1].u64; r4 = dvt->in[2].u32; r2 = (uint32_t)r2 / TEST_MUL_1; r3 %= TEST_MUL_2; r2 |= 1; r3 |= 1; r4 = (uint32_t)(r4 % r2); r4 /= r3; dve.out[0].u64 = r2; dve.out[1].u64 = r3; dve.out[2].u64 = r4; /* * in the test prog we attempted to divide by zero. * so return value should return 0. */ return cmp_res(__func__, 0, rc, dve.out, dvt->out, sizeof(dve.out)); } /* call test-cases */ static const struct ebpf_insn test_call1_prog[] = { { .code = (BPF_LDX | BPF_MEM | BPF_W), .dst_reg = EBPF_REG_2, .src_reg = EBPF_REG_1, .off = offsetof(struct dummy_offset, u32), }, { .code = (BPF_LDX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_3, .src_reg = EBPF_REG_1, .off = offsetof(struct dummy_offset, u64), }, { .code = (BPF_STX | BPF_MEM | BPF_W), .dst_reg = EBPF_REG_10, .src_reg = EBPF_REG_2, .off = -4, }, { .code = (BPF_STX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_10, .src_reg = EBPF_REG_3, .off = -16, }, { .code = (EBPF_ALU64 | EBPF_MOV | BPF_X), .dst_reg = EBPF_REG_2, .src_reg = EBPF_REG_10, }, { .code = (EBPF_ALU64 | BPF_SUB | BPF_K), .dst_reg = EBPF_REG_2, .imm = 4, }, { .code = (EBPF_ALU64 | EBPF_MOV | BPF_X), .dst_reg = EBPF_REG_3, .src_reg = EBPF_REG_10, }, { .code = (EBPF_ALU64 | BPF_SUB | BPF_K), .dst_reg = EBPF_REG_3, .imm = 16, }, { .code = (BPF_JMP | EBPF_CALL), .imm = 0, }, { .code = (BPF_LDX | BPF_MEM | BPF_W), .dst_reg = EBPF_REG_2, .src_reg = EBPF_REG_10, .off = -4, }, { .code = (BPF_LDX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_0, .src_reg = EBPF_REG_10, .off = -16 }, { .code = (EBPF_ALU64 | BPF_ADD | BPF_X), .dst_reg = EBPF_REG_0, .src_reg = EBPF_REG_2, }, { .code = (BPF_JMP | EBPF_EXIT), }, }; static void dummy_func1(const void *p, uint32_t *v32, uint64_t *v64) { const struct dummy_offset *dv; dv = p; v32[0] += dv->u16; v64[0] += dv->u8; } static int test_call1_check(uint64_t rc, const void *arg) { uint32_t v32; uint64_t v64; const struct dummy_offset *dv; dv = arg; v32 = dv->u32; v64 = dv->u64; dummy_func1(arg, &v32, &v64); v64 += v32; return cmp_res(__func__, v64, rc, dv, dv, sizeof(*dv)); } static const struct rte_bpf_xsym test_call1_xsym[] = { { .name = RTE_STR(dummy_func1), .type = RTE_BPF_XTYPE_FUNC, .func = { .val = (void *)dummy_func1, .nb_args = 3, .args = { [0] = { .type = RTE_BPF_ARG_PTR, .size = sizeof(struct dummy_offset), }, [1] = { .type = RTE_BPF_ARG_PTR, .size = sizeof(uint32_t), }, [2] = { .type = RTE_BPF_ARG_PTR, .size = sizeof(uint64_t), }, }, }, }, }; static const struct ebpf_insn test_call2_prog[] = { { .code = (EBPF_ALU64 | EBPF_MOV | BPF_X), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_10, }, { .code = (EBPF_ALU64 | BPF_ADD | BPF_K), .dst_reg = EBPF_REG_1, .imm = -(int32_t)sizeof(struct dummy_offset), }, { .code = (EBPF_ALU64 | EBPF_MOV | BPF_X), .dst_reg = EBPF_REG_2, .src_reg = EBPF_REG_10, }, { .code = (EBPF_ALU64 | BPF_ADD | BPF_K), .dst_reg = EBPF_REG_2, .imm = -2 * (int32_t)sizeof(struct dummy_offset), }, { .code = (BPF_JMP | EBPF_CALL), .imm = 0, }, { .code = (BPF_LDX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_10, .off = -(int32_t)(sizeof(struct dummy_offset) - offsetof(struct dummy_offset, u64)), }, { .code = (BPF_LDX | BPF_MEM | BPF_W), .dst_reg = EBPF_REG_0, .src_reg = EBPF_REG_10, .off = -(int32_t)(sizeof(struct dummy_offset) - offsetof(struct dummy_offset, u32)), }, { .code = (EBPF_ALU64 | BPF_ADD | BPF_X), .dst_reg = EBPF_REG_0, .src_reg = EBPF_REG_1, }, { .code = (BPF_LDX | BPF_MEM | BPF_H), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_10, .off = -(int32_t)(2 * sizeof(struct dummy_offset) - offsetof(struct dummy_offset, u16)), }, { .code = (EBPF_ALU64 | BPF_ADD | BPF_X), .dst_reg = EBPF_REG_0, .src_reg = EBPF_REG_1, }, { .code = (BPF_LDX | BPF_MEM | BPF_B), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_10, .off = -(int32_t)(2 * sizeof(struct dummy_offset) - offsetof(struct dummy_offset, u8)), }, { .code = (EBPF_ALU64 | BPF_ADD | BPF_X), .dst_reg = EBPF_REG_0, .src_reg = EBPF_REG_1, }, { .code = (BPF_JMP | EBPF_EXIT), }, }; static void dummy_func2(struct dummy_offset *a, struct dummy_offset *b) { uint64_t v; v = 0; a->u64 = v++; a->u32 = v++; a->u16 = v++; a->u8 = v++; b->u64 = v++; b->u32 = v++; b->u16 = v++; b->u8 = v++; } static int test_call2_check(uint64_t rc, const void *arg) { uint64_t v; struct dummy_offset a, b; RTE_SET_USED(arg); dummy_func2(&a, &b); v = a.u64 + a.u32 + b.u16 + b.u8; return cmp_res(__func__, v, rc, arg, arg, 0); } static const struct rte_bpf_xsym test_call2_xsym[] = { { .name = RTE_STR(dummy_func2), .type = RTE_BPF_XTYPE_FUNC, .func = { .val = (void *)dummy_func2, .nb_args = 2, .args = { [0] = { .type = RTE_BPF_ARG_PTR, .size = sizeof(struct dummy_offset), }, [1] = { .type = RTE_BPF_ARG_PTR, .size = sizeof(struct dummy_offset), }, }, }, }, }; static const struct ebpf_insn test_call3_prog[] = { { .code = (BPF_JMP | EBPF_CALL), .imm = 0, }, { .code = (BPF_LDX | BPF_MEM | BPF_B), .dst_reg = EBPF_REG_2, .src_reg = EBPF_REG_0, .off = offsetof(struct dummy_offset, u8), }, { .code = (BPF_LDX | BPF_MEM | BPF_H), .dst_reg = EBPF_REG_3, .src_reg = EBPF_REG_0, .off = offsetof(struct dummy_offset, u16), }, { .code = (BPF_LDX | BPF_MEM | BPF_W), .dst_reg = EBPF_REG_4, .src_reg = EBPF_REG_0, .off = offsetof(struct dummy_offset, u32), }, { .code = (BPF_LDX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_0, .src_reg = EBPF_REG_0, .off = offsetof(struct dummy_offset, u64), }, /* return sum */ { .code = (EBPF_ALU64 | BPF_ADD | BPF_X), .dst_reg = EBPF_REG_0, .src_reg = EBPF_REG_4, }, { .code = (EBPF_ALU64 | BPF_ADD | BPF_X), .dst_reg = EBPF_REG_0, .src_reg = EBPF_REG_3, }, { .code = (EBPF_ALU64 | BPF_ADD | BPF_X), .dst_reg = EBPF_REG_0, .src_reg = EBPF_REG_2, }, { .code = (BPF_JMP | EBPF_EXIT), }, }; static const struct dummy_offset * dummy_func3(const struct dummy_vect8 *p) { return &p->in[RTE_DIM(p->in) - 1]; } static void test_call3_prepare(void *arg) { struct dummy_vect8 *pv; struct dummy_offset *df; pv = arg; df = (struct dummy_offset *)(uintptr_t)dummy_func3(pv); memset(pv, 0, sizeof(*pv)); df->u64 = (int32_t)TEST_FILL_1; df->u32 = df->u64; df->u16 = df->u64; df->u8 = df->u64; } static int test_call3_check(uint64_t rc, const void *arg) { uint64_t v; const struct dummy_vect8 *pv; const struct dummy_offset *dft; pv = arg; dft = dummy_func3(pv); v = dft->u64; v += dft->u32; v += dft->u16; v += dft->u8; return cmp_res(__func__, v, rc, pv, pv, sizeof(*pv)); } static const struct rte_bpf_xsym test_call3_xsym[] = { { .name = RTE_STR(dummy_func3), .type = RTE_BPF_XTYPE_FUNC, .func = { .val = (void *)dummy_func3, .nb_args = 1, .args = { [0] = { .type = RTE_BPF_ARG_PTR, .size = sizeof(struct dummy_vect8), }, }, .ret = { .type = RTE_BPF_ARG_PTR, .size = sizeof(struct dummy_offset), }, }, }, }; /* Test for stack corruption in multiple function calls */ static const struct ebpf_insn test_call4_prog[] = { { .code = (BPF_ST | BPF_MEM | BPF_B), .dst_reg = EBPF_REG_10, .off = -4, .imm = 1, }, { .code = (BPF_ST | BPF_MEM | BPF_B), .dst_reg = EBPF_REG_10, .off = -3, .imm = 2, }, { .code = (BPF_ST | BPF_MEM | BPF_B), .dst_reg = EBPF_REG_10, .off = -2, .imm = 3, }, { .code = (BPF_ST | BPF_MEM | BPF_B), .dst_reg = EBPF_REG_10, .off = -1, .imm = 4, }, { .code = (EBPF_ALU64 | EBPF_MOV | BPF_X), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_10, }, { .code = (EBPF_ALU64 | EBPF_MOV | BPF_K), .dst_reg = EBPF_REG_2, .imm = 4, }, { .code = (EBPF_ALU64 | BPF_SUB | BPF_X), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_2, }, { .code = (BPF_JMP | EBPF_CALL), .imm = 0, }, { .code = (BPF_LDX | BPF_MEM | BPF_B), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_10, .off = -4, }, { .code = (BPF_LDX | BPF_MEM | BPF_B), .dst_reg = EBPF_REG_2, .src_reg = EBPF_REG_10, .off = -3, }, { .code = (BPF_LDX | BPF_MEM | BPF_B), .dst_reg = EBPF_REG_3, .src_reg = EBPF_REG_10, .off = -2, }, { .code = (BPF_LDX | BPF_MEM | BPF_B), .dst_reg = EBPF_REG_4, .src_reg = EBPF_REG_10, .off = -1, }, { .code = (BPF_JMP | EBPF_CALL), .imm = 1, }, { .code = (EBPF_ALU64 | BPF_XOR | BPF_K), .dst_reg = EBPF_REG_0, .imm = TEST_MEMFROB, }, { .code = (BPF_JMP | EBPF_EXIT), }, }; /* Gathering the bytes together */ static uint32_t dummy_func4_1(uint8_t a, uint8_t b, uint8_t c, uint8_t d) { return (a << 24) | (b << 16) | (c << 8) | (d << 0); } /* Implementation of memfrob */ static uint32_t dummy_func4_0(uint32_t *s, uint8_t n) { char *p = (char *) s; while (n-- > 0) *p++ ^= 42; return *s; } static int test_call4_check(uint64_t rc, const void *arg) { uint8_t a[4] = {1, 2, 3, 4}; uint32_t s, v = 0; RTE_SET_USED(arg); s = dummy_func4_0((uint32_t *)a, 4); s = dummy_func4_1(a[0], a[1], a[2], a[3]); v = s ^ TEST_MEMFROB; return cmp_res(__func__, v, rc, &v, &rc, sizeof(v)); } static const struct rte_bpf_xsym test_call4_xsym[] = { [0] = { .name = RTE_STR(dummy_func4_0), .type = RTE_BPF_XTYPE_FUNC, .func = { .val = (void *)dummy_func4_0, .nb_args = 2, .args = { [0] = { .type = RTE_BPF_ARG_PTR, .size = 4 * sizeof(uint8_t), }, [1] = { .type = RTE_BPF_ARG_RAW, .size = sizeof(uint8_t), }, }, .ret = { .type = RTE_BPF_ARG_RAW, .size = sizeof(uint32_t), }, }, }, [1] = { .name = RTE_STR(dummy_func4_1), .type = RTE_BPF_XTYPE_FUNC, .func = { .val = (void *)dummy_func4_1, .nb_args = 4, .args = { [0] = { .type = RTE_BPF_ARG_RAW, .size = sizeof(uint8_t), }, [1] = { .type = RTE_BPF_ARG_RAW, .size = sizeof(uint8_t), }, [2] = { .type = RTE_BPF_ARG_RAW, .size = sizeof(uint8_t), }, [3] = { .type = RTE_BPF_ARG_RAW, .size = sizeof(uint8_t), }, }, .ret = { .type = RTE_BPF_ARG_RAW, .size = sizeof(uint32_t), }, }, }, }; /* string compare test case */ static const struct ebpf_insn test_call5_prog[] = { [0] = { .code = (EBPF_ALU64 | EBPF_MOV | BPF_K), .dst_reg = EBPF_REG_1, .imm = STRING_GEEK, }, [1] = { .code = (BPF_STX | BPF_MEM | BPF_W), .dst_reg = EBPF_REG_10, .src_reg = EBPF_REG_1, .off = -8, }, [2] = { .code = (EBPF_ALU64 | EBPF_MOV | BPF_K), .dst_reg = EBPF_REG_6, .imm = 0, }, [3] = { .code = (BPF_STX | BPF_MEM | BPF_B), .dst_reg = EBPF_REG_10, .src_reg = EBPF_REG_6, .off = -4, }, [4] = { .code = (BPF_STX | BPF_MEM | BPF_W), .dst_reg = EBPF_REG_10, .src_reg = EBPF_REG_6, .off = -12, }, [5] = { .code = (EBPF_ALU64 | EBPF_MOV | BPF_K), .dst_reg = EBPF_REG_1, .imm = STRING_WEEK, }, [6] = { .code = (BPF_STX | BPF_MEM | BPF_W), .dst_reg = EBPF_REG_10, .src_reg = EBPF_REG_1, .off = -16, }, [7] = { .code = (EBPF_ALU64 | EBPF_MOV | BPF_X), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_10, }, [8] = { .code = (EBPF_ALU64 | BPF_ADD | BPF_K), .dst_reg = EBPF_REG_1, .imm = -8, }, [9] = { .code = (EBPF_ALU64 | EBPF_MOV | BPF_X), .dst_reg = EBPF_REG_2, .src_reg = EBPF_REG_1, }, [10] = { .code = (BPF_JMP | EBPF_CALL), .imm = 0, }, [11] = { .code = (EBPF_ALU64 | EBPF_MOV | BPF_X), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_0, }, [12] = { .code = (BPF_ALU | EBPF_MOV | BPF_K), .dst_reg = EBPF_REG_0, .imm = -1, }, [13] = { .code = (EBPF_ALU64 | BPF_LSH | BPF_K), .dst_reg = EBPF_REG_1, .imm = 0x20, }, [14] = { .code = (EBPF_ALU64 | BPF_RSH | BPF_K), .dst_reg = EBPF_REG_1, .imm = 0x20, }, [15] = { .code = (BPF_JMP | EBPF_JNE | BPF_K), .dst_reg = EBPF_REG_1, .off = 11, .imm = 0, }, [16] = { .code = (EBPF_ALU64 | EBPF_MOV | BPF_X), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_10, }, [17] = { .code = (EBPF_ALU64 | BPF_ADD | BPF_K), .dst_reg = EBPF_REG_1, .imm = -8, }, [18] = { .code = (EBPF_ALU64 | EBPF_MOV | BPF_X), .dst_reg = EBPF_REG_2, .src_reg = EBPF_REG_10, }, [19] = { .code = (EBPF_ALU64 | BPF_ADD | BPF_K), .dst_reg = EBPF_REG_2, .imm = -16, }, [20] = { .code = (BPF_JMP | EBPF_CALL), .imm = 0, }, [21] = { .code = (EBPF_ALU64 | EBPF_MOV | BPF_X), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_0, }, [22] = { .code = (EBPF_ALU64 | BPF_LSH | BPF_K), .dst_reg = EBPF_REG_1, .imm = 0x20, }, [23] = { .code = (EBPF_ALU64 | BPF_RSH | BPF_K), .dst_reg = EBPF_REG_1, .imm = 0x20, }, [24] = { .code = (EBPF_ALU64 | EBPF_MOV | BPF_X), .dst_reg = EBPF_REG_0, .src_reg = EBPF_REG_1, }, [25] = { .code = (BPF_JMP | BPF_JEQ | BPF_X), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_6, .off = 1, }, [26] = { .code = (EBPF_ALU64 | EBPF_MOV | BPF_K), .dst_reg = EBPF_REG_0, .imm = 0, }, [27] = { .code = (BPF_JMP | EBPF_EXIT), }, }; /* String comparison implementation, return 0 if equal else difference */ static uint32_t dummy_func5(const char *s1, const char *s2) { while (*s1 && (*s1 == *s2)) { s1++; s2++; } return *(const unsigned char *)s1 - *(const unsigned char *)s2; } static int test_call5_check(uint64_t rc, const void *arg) { char a[] = "geek"; char b[] = "week"; uint32_t v; RTE_SET_USED(arg); v = dummy_func5(a, a); if (v != 0) { v = -1; goto fail; } v = dummy_func5(a, b); if (v == 0) goto fail; v = 0; fail: return cmp_res(__func__, v, rc, &v, &rc, sizeof(v)); } static const struct rte_bpf_xsym test_call5_xsym[] = { [0] = { .name = RTE_STR(dummy_func5), .type = RTE_BPF_XTYPE_FUNC, .func = { .val = (void *)dummy_func5, .nb_args = 2, .args = { [0] = { .type = RTE_BPF_ARG_PTR, .size = sizeof(char), }, [1] = { .type = RTE_BPF_ARG_PTR, .size = sizeof(char), }, }, .ret = { .type = RTE_BPF_ARG_RAW, .size = sizeof(uint32_t), }, }, }, }; /* load mbuf (BPF_ABS/BPF_IND) test-cases */ static const struct ebpf_insn test_ld_mbuf1_prog[] = { /* BPF_ABS/BPF_IND implicitly expect mbuf ptr in R6 */ { .code = (EBPF_ALU64 | EBPF_MOV | BPF_X), .dst_reg = EBPF_REG_6, .src_reg = EBPF_REG_1, }, /* load IPv4 version and IHL */ { .code = (BPF_LD | BPF_ABS | BPF_B), .imm = offsetof(struct rte_ipv4_hdr, version_ihl), }, /* check IP version */ { .code = (EBPF_ALU64 | EBPF_MOV | BPF_X), .dst_reg = EBPF_REG_2, .src_reg = EBPF_REG_0, }, { .code = (BPF_ALU | BPF_AND | BPF_K), .dst_reg = EBPF_REG_2, .imm = 0xf0, }, { .code = (BPF_JMP | BPF_JEQ | BPF_K), .dst_reg = EBPF_REG_2, .imm = IPVERSION << 4, .off = 2, }, /* invalid IP version, return 0 */ { .code = (EBPF_ALU64 | BPF_XOR | BPF_X), .dst_reg = EBPF_REG_0, .src_reg = EBPF_REG_0, }, { .code = (BPF_JMP | EBPF_EXIT), }, /* load 3-rd byte of IP data */ { .code = (BPF_ALU | BPF_AND | BPF_K), .dst_reg = EBPF_REG_0, .imm = RTE_IPV4_HDR_IHL_MASK, }, { .code = (BPF_ALU | BPF_LSH | BPF_K), .dst_reg = EBPF_REG_0, .imm = 2, }, { .code = (BPF_LD | BPF_IND | BPF_B), .src_reg = EBPF_REG_0, .imm = 3, }, { .code = (EBPF_ALU64 | EBPF_MOV | BPF_X), .dst_reg = EBPF_REG_7, .src_reg = EBPF_REG_0, }, /* load IPv4 src addr */ { .code = (BPF_LD | BPF_ABS | BPF_W), .imm = offsetof(struct rte_ipv4_hdr, src_addr), }, { .code = (EBPF_ALU64 | BPF_ADD | BPF_X), .dst_reg = EBPF_REG_7, .src_reg = EBPF_REG_0, }, /* load IPv4 total length */ { .code = (BPF_LD | BPF_ABS | BPF_H), .imm = offsetof(struct rte_ipv4_hdr, total_length), }, { .code = (EBPF_ALU64 | EBPF_MOV | BPF_X), .dst_reg = EBPF_REG_8, .src_reg = EBPF_REG_0, }, /* load last 4 bytes of IP data */ { .code = (BPF_LD | BPF_IND | BPF_W), .src_reg = EBPF_REG_8, .imm = -(int32_t)sizeof(uint32_t), }, { .code = (EBPF_ALU64 | BPF_ADD | BPF_X), .dst_reg = EBPF_REG_7, .src_reg = EBPF_REG_0, }, /* load 2 bytes from the middle of IP data */ { .code = (EBPF_ALU64 | BPF_RSH | BPF_K), .dst_reg = EBPF_REG_8, .imm = 1, }, { .code = (BPF_LD | BPF_IND | BPF_H), .src_reg = EBPF_REG_8, }, { .code = (EBPF_ALU64 | BPF_ADD | BPF_X), .dst_reg = EBPF_REG_0, .src_reg = EBPF_REG_7, }, { .code = (BPF_JMP | EBPF_EXIT), }, }; static void dummy_mbuf_prep(struct rte_mbuf *mb, uint8_t buf[], uint32_t buf_len, uint32_t data_len) { uint32_t i; uint8_t *db; mb->buf_addr = buf; rte_mbuf_iova_set(mb, (uintptr_t)buf); mb->buf_len = buf_len; rte_mbuf_refcnt_set(mb, 1); /* set pool pointer to dummy value, test doesn't use it */ mb->pool = (void *)buf; rte_pktmbuf_reset(mb); db = (uint8_t *)rte_pktmbuf_append(mb, data_len); for (i = 0; i != data_len; i++) db[i] = i; } static void test_ld_mbuf1_prepare(void *arg) { struct dummy_mbuf *dm; struct rte_ipv4_hdr *ph; const uint32_t plen = 400; const struct rte_ipv4_hdr iph = { .version_ihl = RTE_IPV4_VHL_DEF, .total_length = rte_cpu_to_be_16(plen), .time_to_live = IPDEFTTL, .next_proto_id = IPPROTO_RAW, .src_addr = rte_cpu_to_be_32(RTE_IPV4_LOOPBACK), .dst_addr = rte_cpu_to_be_32(RTE_IPV4_BROADCAST), }; dm = arg; memset(dm, 0, sizeof(*dm)); dummy_mbuf_prep(&dm->mb[0], dm->buf[0], sizeof(dm->buf[0]), plen / 2 + 1); dummy_mbuf_prep(&dm->mb[1], dm->buf[1], sizeof(dm->buf[0]), plen / 2 - 1); rte_pktmbuf_chain(&dm->mb[0], &dm->mb[1]); ph = rte_pktmbuf_mtod(dm->mb, typeof(ph)); memcpy(ph, &iph, sizeof(iph)); } static uint64_t test_ld_mbuf1(const struct rte_mbuf *pkt) { uint64_t n, v; const uint8_t *p8; const uint16_t *p16; const uint32_t *p32; struct dummy_offset dof; /* load IPv4 version and IHL */ p8 = rte_pktmbuf_read(pkt, offsetof(struct rte_ipv4_hdr, version_ihl), sizeof(*p8), &dof); if (p8 == NULL) return 0; /* check IP version */ if ((p8[0] & 0xf0) != IPVERSION << 4) return 0; n = (p8[0] & RTE_IPV4_HDR_IHL_MASK) * RTE_IPV4_IHL_MULTIPLIER; /* load 3-rd byte of IP data */ p8 = rte_pktmbuf_read(pkt, n + 3, sizeof(*p8), &dof); if (p8 == NULL) return 0; v = p8[0]; /* load IPv4 src addr */ p32 = rte_pktmbuf_read(pkt, offsetof(struct rte_ipv4_hdr, src_addr), sizeof(*p32), &dof); if (p32 == NULL) return 0; v += rte_be_to_cpu_32(p32[0]); /* load IPv4 total length */ p16 = rte_pktmbuf_read(pkt, offsetof(struct rte_ipv4_hdr, total_length), sizeof(*p16), &dof); if (p16 == NULL) return 0; n = rte_be_to_cpu_16(p16[0]); /* load last 4 bytes of IP data */ p32 = rte_pktmbuf_read(pkt, n - sizeof(*p32), sizeof(*p32), &dof); if (p32 == NULL) return 0; v += rte_be_to_cpu_32(p32[0]); /* load 2 bytes from the middle of IP data */ p16 = rte_pktmbuf_read(pkt, n / 2, sizeof(*p16), &dof); if (p16 == NULL) return 0; v += rte_be_to_cpu_16(p16[0]); return v; } static int test_ld_mbuf1_check(uint64_t rc, const void *arg) { const struct dummy_mbuf *dm; uint64_t v; dm = arg; v = test_ld_mbuf1(dm->mb); return cmp_res(__func__, v, rc, arg, arg, 0); } /* * same as ld_mbuf1, but then truncate the mbuf by 1B, * so load of last 4B fail. */ static void test_ld_mbuf2_prepare(void *arg) { struct dummy_mbuf *dm; test_ld_mbuf1_prepare(arg); dm = arg; rte_pktmbuf_trim(dm->mb, 1); } static int test_ld_mbuf2_check(uint64_t rc, const void *arg) { return cmp_res(__func__, 0, rc, arg, arg, 0); } /* same as test_ld_mbuf1, but now store intermediate results on the stack */ static const struct ebpf_insn test_ld_mbuf3_prog[] = { /* BPF_ABS/BPF_IND implicitly expect mbuf ptr in R6 */ { .code = (EBPF_ALU64 | EBPF_MOV | BPF_X), .dst_reg = EBPF_REG_6, .src_reg = EBPF_REG_1, }, /* load IPv4 version and IHL */ { .code = (BPF_LD | BPF_ABS | BPF_B), .imm = offsetof(struct rte_ipv4_hdr, version_ihl), }, /* check IP version */ { .code = (EBPF_ALU64 | EBPF_MOV | BPF_X), .dst_reg = EBPF_REG_2, .src_reg = EBPF_REG_0, }, { .code = (BPF_ALU | BPF_AND | BPF_K), .dst_reg = EBPF_REG_2, .imm = 0xf0, }, { .code = (BPF_JMP | BPF_JEQ | BPF_K), .dst_reg = EBPF_REG_2, .imm = IPVERSION << 4, .off = 2, }, /* invalid IP version, return 0 */ { .code = (EBPF_ALU64 | BPF_XOR | BPF_X), .dst_reg = EBPF_REG_0, .src_reg = EBPF_REG_0, }, { .code = (BPF_JMP | EBPF_EXIT), }, /* load 3-rd byte of IP data */ { .code = (BPF_ALU | BPF_AND | BPF_K), .dst_reg = EBPF_REG_0, .imm = RTE_IPV4_HDR_IHL_MASK, }, { .code = (BPF_ALU | BPF_LSH | BPF_K), .dst_reg = EBPF_REG_0, .imm = 2, }, { .code = (BPF_LD | BPF_IND | BPF_B), .src_reg = EBPF_REG_0, .imm = 3, }, { .code = (BPF_STX | BPF_MEM | BPF_B), .dst_reg = EBPF_REG_10, .src_reg = EBPF_REG_0, .off = (int16_t)(offsetof(struct dummy_offset, u8) - sizeof(struct dummy_offset)), }, /* load IPv4 src addr */ { .code = (BPF_LD | BPF_ABS | BPF_W), .imm = offsetof(struct rte_ipv4_hdr, src_addr), }, { .code = (BPF_STX | BPF_MEM | BPF_W), .dst_reg = EBPF_REG_10, .src_reg = EBPF_REG_0, .off = (int16_t)(offsetof(struct dummy_offset, u32) - sizeof(struct dummy_offset)), }, /* load IPv4 total length */ { .code = (BPF_LD | BPF_ABS | BPF_H), .imm = offsetof(struct rte_ipv4_hdr, total_length), }, { .code = (EBPF_ALU64 | EBPF_MOV | BPF_X), .dst_reg = EBPF_REG_8, .src_reg = EBPF_REG_0, }, /* load last 4 bytes of IP data */ { .code = (BPF_LD | BPF_IND | BPF_W), .src_reg = EBPF_REG_8, .imm = -(int32_t)sizeof(uint32_t), }, { .code = (BPF_STX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_10, .src_reg = EBPF_REG_0, .off = (int16_t)(offsetof(struct dummy_offset, u64) - sizeof(struct dummy_offset)), }, /* load 2 bytes from the middle of IP data */ { .code = (EBPF_ALU64 | BPF_RSH | BPF_K), .dst_reg = EBPF_REG_8, .imm = 1, }, { .code = (BPF_LD | BPF_IND | BPF_H), .src_reg = EBPF_REG_8, }, { .code = (BPF_LDX | BPF_MEM | EBPF_DW), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_10, .off = (int16_t)(offsetof(struct dummy_offset, u64) - sizeof(struct dummy_offset)), }, { .code = (EBPF_ALU64 | BPF_ADD | BPF_X), .dst_reg = EBPF_REG_0, .src_reg = EBPF_REG_1, }, { .code = (BPF_LDX | BPF_MEM | BPF_W), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_10, .off = (int16_t)(offsetof(struct dummy_offset, u32) - sizeof(struct dummy_offset)), }, { .code = (EBPF_ALU64 | BPF_ADD | BPF_X), .dst_reg = EBPF_REG_0, .src_reg = EBPF_REG_1, }, { .code = (BPF_LDX | BPF_MEM | BPF_B), .dst_reg = EBPF_REG_1, .src_reg = EBPF_REG_10, .off = (int16_t)(offsetof(struct dummy_offset, u8) - sizeof(struct dummy_offset)), }, { .code = (EBPF_ALU64 | BPF_ADD | BPF_X), .dst_reg = EBPF_REG_0, .src_reg = EBPF_REG_1, }, { .code = (BPF_JMP | EBPF_EXIT), }, }; /* all bpf test cases */ static const struct bpf_test tests[] = { { .name = "test_store1", .arg_sz = sizeof(struct dummy_offset), .prm = { .ins = test_store1_prog, .nb_ins = RTE_DIM(test_store1_prog), .prog_arg = { .type = RTE_BPF_ARG_PTR, .size = sizeof(struct dummy_offset), }, }, .prepare = test_store1_prepare, .check_result = test_store1_check, }, { .name = "test_store2", .arg_sz = sizeof(struct dummy_offset), .prm = { .ins = test_store2_prog, .nb_ins = RTE_DIM(test_store2_prog), .prog_arg = { .type = RTE_BPF_ARG_PTR, .size = sizeof(struct dummy_offset), }, }, .prepare = test_store1_prepare, .check_result = test_store1_check, }, { .name = "test_load1", .arg_sz = sizeof(struct dummy_offset), .prm = { .ins = test_load1_prog, .nb_ins = RTE_DIM(test_load1_prog), .prog_arg = { .type = RTE_BPF_ARG_PTR, .size = sizeof(struct dummy_offset), }, }, .prepare = test_load1_prepare, .check_result = test_load1_check, }, { .name = "test_ldimm1", .arg_sz = sizeof(struct dummy_offset), .prm = { .ins = test_ldimm1_prog, .nb_ins = RTE_DIM(test_ldimm1_prog), .prog_arg = { .type = RTE_BPF_ARG_PTR, .size = sizeof(struct dummy_offset), }, }, .prepare = test_store1_prepare, .check_result = test_ldimm1_check, }, { .name = "test_mul1", .arg_sz = sizeof(struct dummy_vect8), .prm = { .ins = test_mul1_prog, .nb_ins = RTE_DIM(test_mul1_prog), .prog_arg = { .type = RTE_BPF_ARG_PTR, .size = sizeof(struct dummy_vect8), }, }, .prepare = test_mul1_prepare, .check_result = test_mul1_check, }, { .name = "test_shift1", .arg_sz = sizeof(struct dummy_vect8), .prm = { .ins = test_shift1_prog, .nb_ins = RTE_DIM(test_shift1_prog), .prog_arg = { .type = RTE_BPF_ARG_PTR, .size = sizeof(struct dummy_vect8), }, }, .prepare = test_shift1_prepare, .check_result = test_shift1_check, }, { .name = "test_jump1", .arg_sz = sizeof(struct dummy_vect8), .prm = { .ins = test_jump1_prog, .nb_ins = RTE_DIM(test_jump1_prog), .prog_arg = { .type = RTE_BPF_ARG_PTR, .size = sizeof(struct dummy_vect8), }, }, .prepare = test_jump1_prepare, .check_result = test_jump1_check, }, { .name = "test_jump2", .arg_sz = sizeof(struct dummy_net), .prm = { .ins = test_jump2_prog, .nb_ins = RTE_DIM(test_jump2_prog), .prog_arg = { .type = RTE_BPF_ARG_PTR, .size = sizeof(struct dummy_net), }, }, .prepare = test_jump2_prepare, .check_result = test_jump2_check, }, { .name = "test_alu1", .arg_sz = sizeof(struct dummy_vect8), .prm = { .ins = test_alu1_prog, .nb_ins = RTE_DIM(test_alu1_prog), .prog_arg = { .type = RTE_BPF_ARG_PTR, .size = sizeof(struct dummy_vect8), }, }, .prepare = test_jump1_prepare, .check_result = test_alu1_check, }, { .name = "test_bele1", .arg_sz = sizeof(struct dummy_vect8), .prm = { .ins = test_bele1_prog, .nb_ins = RTE_DIM(test_bele1_prog), .prog_arg = { .type = RTE_BPF_ARG_PTR, .size = sizeof(struct dummy_vect8), }, }, .prepare = test_bele1_prepare, .check_result = test_bele1_check, }, { .name = "test_xadd1", .arg_sz = sizeof(struct dummy_offset), .prm = { .ins = test_xadd1_prog, .nb_ins = RTE_DIM(test_xadd1_prog), .prog_arg = { .type = RTE_BPF_ARG_PTR, .size = sizeof(struct dummy_offset), }, }, .prepare = test_store1_prepare, .check_result = test_xadd1_check, }, { .name = "test_div1", .arg_sz = sizeof(struct dummy_vect8), .prm = { .ins = test_div1_prog, .nb_ins = RTE_DIM(test_div1_prog), .prog_arg = { .type = RTE_BPF_ARG_PTR, .size = sizeof(struct dummy_vect8), }, }, .prepare = test_mul1_prepare, .check_result = test_div1_check, }, { .name = "test_call1", .arg_sz = sizeof(struct dummy_offset), .prm = { .ins = test_call1_prog, .nb_ins = RTE_DIM(test_call1_prog), .prog_arg = { .type = RTE_BPF_ARG_PTR, .size = sizeof(struct dummy_offset), }, .xsym = test_call1_xsym, .nb_xsym = RTE_DIM(test_call1_xsym), }, .prepare = test_load1_prepare, .check_result = test_call1_check, /* for now don't support function calls on 32 bit platform */ .allow_fail = (sizeof(uint64_t) != sizeof(uintptr_t)), }, { .name = "test_call2", .arg_sz = sizeof(struct dummy_offset), .prm = { .ins = test_call2_prog, .nb_ins = RTE_DIM(test_call2_prog), .prog_arg = { .type = RTE_BPF_ARG_PTR, .size = sizeof(struct dummy_offset), }, .xsym = test_call2_xsym, .nb_xsym = RTE_DIM(test_call2_xsym), }, .prepare = test_store1_prepare, .check_result = test_call2_check, /* for now don't support function calls on 32 bit platform */ .allow_fail = (sizeof(uint64_t) != sizeof(uintptr_t)), }, { .name = "test_call3", .arg_sz = sizeof(struct dummy_vect8), .prm = { .ins = test_call3_prog, .nb_ins = RTE_DIM(test_call3_prog), .prog_arg = { .type = RTE_BPF_ARG_PTR, .size = sizeof(struct dummy_vect8), }, .xsym = test_call3_xsym, .nb_xsym = RTE_DIM(test_call3_xsym), }, .prepare = test_call3_prepare, .check_result = test_call3_check, /* for now don't support function calls on 32 bit platform */ .allow_fail = (sizeof(uint64_t) != sizeof(uintptr_t)), }, { .name = "test_call4", .arg_sz = sizeof(struct dummy_offset), .prm = { .ins = test_call4_prog, .nb_ins = RTE_DIM(test_call4_prog), .prog_arg = { .type = RTE_BPF_ARG_PTR, .size = 2 * sizeof(struct dummy_offset), }, .xsym = test_call4_xsym, .nb_xsym = RTE_DIM(test_call4_xsym), }, .prepare = test_store1_prepare, .check_result = test_call4_check, /* for now don't support function calls on 32 bit platform */ .allow_fail = (sizeof(uint64_t) != sizeof(uintptr_t)), }, { .name = "test_call5", .arg_sz = sizeof(struct dummy_offset), .prm = { .ins = test_call5_prog, .nb_ins = RTE_DIM(test_call5_prog), .prog_arg = { .type = RTE_BPF_ARG_PTR, .size = sizeof(struct dummy_offset), }, .xsym = test_call5_xsym, .nb_xsym = RTE_DIM(test_call5_xsym), }, .prepare = test_store1_prepare, .check_result = test_call5_check, /* for now don't support function calls on 32 bit platform */ .allow_fail = (sizeof(uint64_t) != sizeof(uintptr_t)), }, { .name = "test_ld_mbuf1", .arg_sz = sizeof(struct dummy_mbuf), .prm = { .ins = test_ld_mbuf1_prog, .nb_ins = RTE_DIM(test_ld_mbuf1_prog), .prog_arg = { .type = RTE_BPF_ARG_PTR_MBUF, .buf_size = sizeof(struct dummy_mbuf), }, }, .prepare = test_ld_mbuf1_prepare, .check_result = test_ld_mbuf1_check, /* mbuf as input argument is not supported on 32 bit platform */ .allow_fail = (sizeof(uint64_t) != sizeof(uintptr_t)), }, { .name = "test_ld_mbuf2", .arg_sz = sizeof(struct dummy_mbuf), .prm = { .ins = test_ld_mbuf1_prog, .nb_ins = RTE_DIM(test_ld_mbuf1_prog), .prog_arg = { .type = RTE_BPF_ARG_PTR_MBUF, .buf_size = sizeof(struct dummy_mbuf), }, }, .prepare = test_ld_mbuf2_prepare, .check_result = test_ld_mbuf2_check, /* mbuf as input argument is not supported on 32 bit platform */ .allow_fail = (sizeof(uint64_t) != sizeof(uintptr_t)), }, { .name = "test_ld_mbuf3", .arg_sz = sizeof(struct dummy_mbuf), .prm = { .ins = test_ld_mbuf3_prog, .nb_ins = RTE_DIM(test_ld_mbuf3_prog), .prog_arg = { .type = RTE_BPF_ARG_PTR_MBUF, .buf_size = sizeof(struct dummy_mbuf), }, }, .prepare = test_ld_mbuf1_prepare, .check_result = test_ld_mbuf1_check, /* mbuf as input argument is not supported on 32 bit platform */ .allow_fail = (sizeof(uint64_t) != sizeof(uintptr_t)), }, }; static int run_test(const struct bpf_test *tst) { int32_t ret, rv; int64_t rc; struct rte_bpf *bpf; struct rte_bpf_jit jit; uint8_t tbuf[tst->arg_sz]; printf("%s(%s) start\n", __func__, tst->name); bpf = rte_bpf_load(&tst->prm); if (bpf == NULL) { printf("%s@%d: failed to load bpf code, error=%d(%s);\n", __func__, __LINE__, rte_errno, strerror(rte_errno)); return -1; } tst->prepare(tbuf); rc = rte_bpf_exec(bpf, tbuf); ret = tst->check_result(rc, tbuf); if (ret != 0) { printf("%s@%d: check_result(%s) failed, error: %d(%s);\n", __func__, __LINE__, tst->name, ret, strerror(ret)); } /* repeat the same test with jit, when possible */ rte_bpf_get_jit(bpf, &jit); if (jit.func != NULL) { tst->prepare(tbuf); rc = jit.func(tbuf); rv = tst->check_result(rc, tbuf); ret |= rv; if (rv != 0) { printf("%s@%d: check_result(%s) failed, " "error: %d(%s);\n", __func__, __LINE__, tst->name, rv, strerror(rv)); } } rte_bpf_destroy(bpf); return ret; } static int test_bpf(void) { int32_t rc, rv; uint32_t i; rc = 0; for (i = 0; i != RTE_DIM(tests); i++) { rv = run_test(tests + i); if (tests[i].allow_fail == 0) rc |= rv; } return rc; } #endif /* !RTE_LIB_BPF */ REGISTER_TEST_COMMAND(bpf_autotest, test_bpf); #ifndef RTE_HAS_LIBPCAP static int test_bpf_convert(void) { printf("BPF convert RTE_HAS_LIBPCAP is undefined, skipping test\n"); return TEST_SKIPPED; } #else #include static void test_bpf_dump(struct bpf_program *cbf, const struct rte_bpf_prm *prm) { printf("cBPF program (%u insns)\n", cbf->bf_len); bpf_dump(cbf, 1); if (prm != NULL) { printf("\neBPF program (%u insns)\n", prm->nb_ins); rte_bpf_dump(stdout, prm->ins, prm->nb_ins); } } static int test_bpf_match(pcap_t *pcap, const char *str, struct rte_mbuf *mb) { struct bpf_program fcode; struct rte_bpf_prm *prm = NULL; struct rte_bpf *bpf = NULL; int ret = -1; uint64_t rc; if (pcap_compile(pcap, &fcode, str, 1, PCAP_NETMASK_UNKNOWN)) { printf("%s@%d: pcap_compile(\"%s\") failed: %s;\n", __func__, __LINE__, str, pcap_geterr(pcap)); return -1; } prm = rte_bpf_convert(&fcode); if (prm == NULL) { printf("%s@%d: bpf_convert('%s') failed,, error=%d(%s);\n", __func__, __LINE__, str, rte_errno, strerror(rte_errno)); goto error; } bpf = rte_bpf_load(prm); if (bpf == NULL) { printf("%s@%d: failed to load bpf code, error=%d(%s);\n", __func__, __LINE__, rte_errno, strerror(rte_errno)); goto error; } rc = rte_bpf_exec(bpf, mb); /* The return code from bpf capture filter is non-zero if matched */ ret = (rc == 0); error: if (bpf) rte_bpf_destroy(bpf); rte_free(prm); pcap_freecode(&fcode); return ret; } /* Basic sanity test can we match a IP packet */ static int test_bpf_filter_sanity(pcap_t *pcap) { const uint32_t plen = 100; struct rte_mbuf mb, *m; uint8_t tbuf[RTE_MBUF_DEFAULT_BUF_SIZE]; struct { struct rte_ether_hdr eth_hdr; struct rte_ipv4_hdr ip_hdr; } *hdr; dummy_mbuf_prep(&mb, tbuf, sizeof(tbuf), plen); m = &mb; hdr = rte_pktmbuf_mtod(m, typeof(hdr)); hdr->eth_hdr = (struct rte_ether_hdr) { .dst_addr.addr_bytes = "\xff\xff\xff\xff\xff\xff", .ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4), }; hdr->ip_hdr = (struct rte_ipv4_hdr) { .version_ihl = RTE_IPV4_VHL_DEF, .total_length = rte_cpu_to_be_16(plen), .time_to_live = IPDEFTTL, .next_proto_id = IPPROTO_RAW, .src_addr = rte_cpu_to_be_32(RTE_IPV4_LOOPBACK), .dst_addr = rte_cpu_to_be_32(RTE_IPV4_BROADCAST), }; if (test_bpf_match(pcap, "ip", m) != 0) { printf("%s@%d: filter \"ip\" doesn't match test data\n", __func__, __LINE__); return -1; } if (test_bpf_match(pcap, "not ip", m) == 0) { printf("%s@%d: filter \"not ip\" does match test data\n", __func__, __LINE__); return -1; } return 0; } /* * Some sample pcap filter strings from * https://wiki.wireshark.org/CaptureFilters */ static const char * const sample_filters[] = { "host 172.18.5.4", "net 192.168.0.0/24", "src net 192.168.0.0/24", "src net 192.168.0.0 mask 255.255.255.0", "dst net 192.168.0.0/24", "dst net 192.168.0.0 mask 255.255.255.0", "port 53", "host 192.0.2.1 and not (port 80 or port 25)", "host 2001:4b98:db0::8 and not port 80 and not port 25", "port not 53 and not arp", "(tcp[0:2] > 1500 and tcp[0:2] < 1550) or (tcp[2:2] > 1500 and tcp[2:2] < 1550)", "ether proto 0x888e", "ether[0] & 1 = 0 and ip[16] >= 224", "icmp[icmptype] != icmp-echo and icmp[icmptype] != icmp-echoreply", "tcp[tcpflags] & (tcp-syn|tcp-fin) != 0 and not src and dst net 127.0.0.1", "not ether dst 01:80:c2:00:00:0e", "not broadcast and not multicast", "dst host ff02::1", "port 80 and tcp[((tcp[12:1] & 0xf0) >> 2):4] = 0x47455420", /* Worms */ "dst port 135 and tcp port 135 and ip[2:2]==48", "icmp[icmptype]==icmp-echo and ip[2:2]==92 and icmp[8:4]==0xAAAAAAAA", "dst port 135 or dst port 445 or dst port 1433" " and tcp[tcpflags] & (tcp-syn) != 0" " and tcp[tcpflags] & (tcp-ack) = 0 and src net 192.168.0.0/24", "tcp src port 443 and (tcp[((tcp[12] & 0xF0) >> 4 ) * 4] = 0x18)" " and (tcp[((tcp[12] & 0xF0) >> 4 ) * 4 + 1] = 0x03)" " and (tcp[((tcp[12] & 0xF0) >> 4 ) * 4 + 2] < 0x04)" " and ((ip[2:2] - 4 * (ip[0] & 0x0F) - 4 * ((tcp[12] & 0xF0) >> 4) > 69))", /* Other */ "len = 128", }; static int test_bpf_filter(pcap_t *pcap, const char *s) { struct bpf_program fcode; struct rte_bpf_prm *prm = NULL; struct rte_bpf *bpf = NULL; if (pcap_compile(pcap, &fcode, s, 1, PCAP_NETMASK_UNKNOWN)) { printf("%s@%d: pcap_compile('%s') failed: %s;\n", __func__, __LINE__, s, pcap_geterr(pcap)); return -1; } prm = rte_bpf_convert(&fcode); if (prm == NULL) { printf("%s@%d: bpf_convert('%s') failed,, error=%d(%s);\n", __func__, __LINE__, s, rte_errno, strerror(rte_errno)); goto error; } bpf = rte_bpf_load(prm); if (bpf == NULL) { printf("%s@%d: failed to load bpf code, error=%d(%s);\n", __func__, __LINE__, rte_errno, strerror(rte_errno)); goto error; } error: if (bpf) rte_bpf_destroy(bpf); else { printf("%s \"%s\"\n", __func__, s); test_bpf_dump(&fcode, prm); } rte_free(prm); pcap_freecode(&fcode); return (bpf == NULL) ? -1 : 0; } static int test_bpf_convert(void) { unsigned int i; pcap_t *pcap; int rc; pcap = pcap_open_dead(DLT_EN10MB, 262144); if (!pcap) { printf("pcap_open_dead failed\n"); return -1; } rc = test_bpf_filter_sanity(pcap); for (i = 0; i < RTE_DIM(sample_filters); i++) rc |= test_bpf_filter(pcap, sample_filters[i]); pcap_close(pcap); return rc; } #endif /* RTE_HAS_LIBPCAP */ REGISTER_TEST_COMMAND(bpf_convert_autotest, test_bpf_convert);