/* SPDX-License-Identifier: BSD-3-Clause * Copyright 2017 6WIND S.A. * Copyright 2017 Mellanox Technologies, Ltd */ #ifndef RTE_PMD_MLX5_RXTX_VEC_SSE_H_ #define RTE_PMD_MLX5_RXTX_VEC_SSE_H_ #include #include #include #include #include #include #include #include #include "mlx5_defs.h" #include "mlx5.h" #include "mlx5_utils.h" #include "mlx5_rxtx.h" #include "mlx5_rxtx_vec.h" #include "mlx5_autoconf.h" #ifndef __INTEL_COMPILER #pragma GCC diagnostic ignored "-Wcast-qual" #endif /** * Store free buffers to RX SW ring. * * @param rxq * Pointer to RX queue structure. * @param pkts * Pointer to array of packets to be stored. * @param pkts_n * Number of packets to be stored. */ static inline void rxq_copy_mbuf_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t n) { const uint16_t q_mask = (1 << rxq->elts_n) - 1; struct rte_mbuf **elts = &(*rxq->elts)[rxq->rq_pi & q_mask]; unsigned int pos; uint16_t p = n & -2; for (pos = 0; pos < p; pos += 2) { __m128i mbp; mbp = _mm_loadu_si128((__m128i *)&elts[pos]); _mm_storeu_si128((__m128i *)&pkts[pos], mbp); } if (n & 1) pkts[pos] = elts[pos]; } /** * Decompress a compressed completion and fill in mbufs in RX SW ring with data * extracted from the title completion descriptor. * * @param rxq * Pointer to RX queue structure. * @param cq * Pointer to completion array having a compressed completion at first. * @param elts * Pointer to SW ring to be filled. The first mbuf has to be pre-built from * the title completion descriptor to be copied to the rest of mbufs. * * @return * Number of mini-CQEs successfully decompressed. */ static inline uint16_t rxq_cq_decompress_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq, struct rte_mbuf **elts) { volatile struct mlx5_mini_cqe8 *mcq = (void *)(cq + 1); struct rte_mbuf *t_pkt = elts[0]; /* Title packet is pre-built. */ unsigned int pos; unsigned int i; unsigned int inv = 0; /* Mask to shuffle from extracted mini CQE to mbuf. */ const __m128i shuf_mask1 = _mm_set_epi8(0, 1, 2, 3, /* rss, bswap32 */ -1, -1, /* skip vlan_tci */ 6, 7, /* data_len, bswap16 */ -1, -1, 6, 7, /* pkt_len, bswap16 */ -1, -1, -1, -1 /* skip packet_type */); const __m128i shuf_mask2 = _mm_set_epi8(8, 9, 10, 11, /* rss, bswap32 */ -1, -1, /* skip vlan_tci */ 14, 15, /* data_len, bswap16 */ -1, -1, 14, 15, /* pkt_len, bswap16 */ -1, -1, -1, -1 /* skip packet_type */); /* Restore the compressed count. Must be 16 bits. */ const uint16_t mcqe_n = t_pkt->data_len + (rxq->crc_present * RTE_ETHER_CRC_LEN); const __m128i rearm = _mm_loadu_si128((__m128i *)&t_pkt->rearm_data); const __m128i rxdf = _mm_loadu_si128((__m128i *)&t_pkt->rx_descriptor_fields1); const __m128i crc_adj = _mm_set_epi16(0, 0, 0, rxq->crc_present * RTE_ETHER_CRC_LEN, 0, rxq->crc_present * RTE_ETHER_CRC_LEN, 0, 0); const uint32_t flow_tag = t_pkt->hash.fdir.hi; #ifdef MLX5_PMD_SOFT_COUNTERS const __m128i zero = _mm_setzero_si128(); const __m128i ones = _mm_cmpeq_epi32(zero, zero); uint32_t rcvd_byte = 0; /* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */ const __m128i len_shuf_mask = _mm_set_epi8(-1, -1, -1, -1, -1, -1, -1, -1, 14, 15, 6, 7, 10, 11, 2, 3); #endif /* * A. load mCQEs into a 128bit register. * B. store rearm data to mbuf. * C. combine data from mCQEs with rx_descriptor_fields1. * D. store rx_descriptor_fields1. * E. store flow tag (rte_flow mark). */ for (pos = 0; pos < mcqe_n; ) { __m128i mcqe1, mcqe2; __m128i rxdf1, rxdf2; #ifdef MLX5_PMD_SOFT_COUNTERS __m128i byte_cnt, invalid_mask; #endif for (i = 0; i < MLX5_VPMD_DESCS_PER_LOOP; ++i) if (likely(pos + i < mcqe_n)) rte_prefetch0((void *)(cq + pos + i)); /* A.1 load mCQEs into a 128bit register. */ mcqe1 = _mm_loadu_si128((__m128i *)&mcq[pos % 8]); mcqe2 = _mm_loadu_si128((__m128i *)&mcq[pos % 8 + 2]); /* B.1 store rearm data to mbuf. */ _mm_storeu_si128((__m128i *)&elts[pos]->rearm_data, rearm); _mm_storeu_si128((__m128i *)&elts[pos + 1]->rearm_data, rearm); /* C.1 combine data from mCQEs with rx_descriptor_fields1. */ rxdf1 = _mm_shuffle_epi8(mcqe1, shuf_mask1); rxdf2 = _mm_shuffle_epi8(mcqe1, shuf_mask2); rxdf1 = _mm_sub_epi16(rxdf1, crc_adj); rxdf2 = _mm_sub_epi16(rxdf2, crc_adj); rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23); rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23); /* D.1 store rx_descriptor_fields1. */ _mm_storeu_si128((__m128i *) &elts[pos]->rx_descriptor_fields1, rxdf1); _mm_storeu_si128((__m128i *) &elts[pos + 1]->rx_descriptor_fields1, rxdf2); /* B.1 store rearm data to mbuf. */ _mm_storeu_si128((__m128i *)&elts[pos + 2]->rearm_data, rearm); _mm_storeu_si128((__m128i *)&elts[pos + 3]->rearm_data, rearm); /* C.1 combine data from mCQEs with rx_descriptor_fields1. */ rxdf1 = _mm_shuffle_epi8(mcqe2, shuf_mask1); rxdf2 = _mm_shuffle_epi8(mcqe2, shuf_mask2); rxdf1 = _mm_sub_epi16(rxdf1, crc_adj); rxdf2 = _mm_sub_epi16(rxdf2, crc_adj); rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23); rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23); /* D.1 store rx_descriptor_fields1. */ _mm_storeu_si128((__m128i *) &elts[pos + 2]->rx_descriptor_fields1, rxdf1); _mm_storeu_si128((__m128i *) &elts[pos + 3]->rx_descriptor_fields1, rxdf2); #ifdef MLX5_PMD_SOFT_COUNTERS invalid_mask = _mm_set_epi64x(0, (mcqe_n - pos) * sizeof(uint16_t) * 8); invalid_mask = _mm_sll_epi64(ones, invalid_mask); mcqe1 = _mm_srli_si128(mcqe1, 4); byte_cnt = _mm_blend_epi16(mcqe1, mcqe2, 0xcc); byte_cnt = _mm_shuffle_epi8(byte_cnt, len_shuf_mask); byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt); byte_cnt = _mm_hadd_epi16(byte_cnt, zero); rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero)); #endif if (rxq->mark) { /* E.1 store flow tag (rte_flow mark). */ elts[pos]->hash.fdir.hi = flow_tag; elts[pos + 1]->hash.fdir.hi = flow_tag; elts[pos + 2]->hash.fdir.hi = flow_tag; elts[pos + 3]->hash.fdir.hi = flow_tag; } if (rte_flow_dynf_metadata_avail()) { const uint32_t meta = *RTE_FLOW_DYNF_METADATA(t_pkt); /* Check if title packet has valid metadata. */ if (meta) { MLX5_ASSERT(t_pkt->ol_flags & PKT_RX_DYNF_METADATA); *RTE_FLOW_DYNF_METADATA(elts[pos]) = meta; *RTE_FLOW_DYNF_METADATA(elts[pos + 1]) = meta; *RTE_FLOW_DYNF_METADATA(elts[pos + 2]) = meta; *RTE_FLOW_DYNF_METADATA(elts[pos + 3]) = meta; } } pos += MLX5_VPMD_DESCS_PER_LOOP; /* Move to next CQE and invalidate consumed CQEs. */ if (!(pos & 0x7) && pos < mcqe_n) { mcq = (void *)(cq + pos); for (i = 0; i < 8; ++i) cq[inv++].op_own = MLX5_CQE_INVALIDATE; } } /* Invalidate the rest of CQEs. */ for (; inv < mcqe_n; ++inv) cq[inv].op_own = MLX5_CQE_INVALIDATE; #ifdef MLX5_PMD_SOFT_COUNTERS rxq->stats.ipackets += mcqe_n; rxq->stats.ibytes += rcvd_byte; #endif rxq->cq_ci += mcqe_n; return mcqe_n; } /** * Calculate packet type and offload flag for mbuf and store it. * * @param rxq * Pointer to RX queue structure. * @param cqes[4] * Array of four 16bytes completions extracted from the original completion * descriptor. * @param op_err * Opcode vector having responder error status. Each field is 4B. * @param pkts * Pointer to array of packets to be filled. */ static inline void rxq_cq_to_ptype_oflags_v(struct mlx5_rxq_data *rxq, __m128i cqes[4], __m128i op_err, struct rte_mbuf **pkts) { __m128i pinfo0, pinfo1; __m128i pinfo, ptype; __m128i ol_flags = _mm_set1_epi32(rxq->rss_hash * PKT_RX_RSS_HASH | rxq->hw_timestamp * PKT_RX_TIMESTAMP); __m128i cv_flags; const __m128i zero = _mm_setzero_si128(); const __m128i ptype_mask = _mm_set_epi32(0xfd06, 0xfd06, 0xfd06, 0xfd06); const __m128i ptype_ol_mask = _mm_set_epi32(0x106, 0x106, 0x106, 0x106); const __m128i pinfo_mask = _mm_set_epi32(0x3, 0x3, 0x3, 0x3); const __m128i cv_flag_sel = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, (uint8_t)((PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1), 0, (uint8_t)(PKT_RX_L4_CKSUM_GOOD >> 1), 0, (uint8_t)(PKT_RX_IP_CKSUM_GOOD >> 1), (uint8_t)(PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED), 0); const __m128i cv_mask = _mm_set_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED); const __m128i mbuf_init = _mm_load_si128((__m128i *)&rxq->mbuf_initializer); __m128i rearm0, rearm1, rearm2, rearm3; uint8_t pt_idx0, pt_idx1, pt_idx2, pt_idx3; /* Extract pkt_info field. */ pinfo0 = _mm_unpacklo_epi32(cqes[0], cqes[1]); pinfo1 = _mm_unpacklo_epi32(cqes[2], cqes[3]); pinfo = _mm_unpacklo_epi64(pinfo0, pinfo1); /* Extract hdr_type_etc field. */ pinfo0 = _mm_unpackhi_epi32(cqes[0], cqes[1]); pinfo1 = _mm_unpackhi_epi32(cqes[2], cqes[3]); ptype = _mm_unpacklo_epi64(pinfo0, pinfo1); if (rxq->mark) { const __m128i pinfo_ft_mask = _mm_set_epi32(0xffffff00, 0xffffff00, 0xffffff00, 0xffffff00); const __m128i fdir_flags = _mm_set1_epi32(PKT_RX_FDIR); __m128i fdir_id_flags = _mm_set1_epi32(PKT_RX_FDIR_ID); __m128i flow_tag, invalid_mask; flow_tag = _mm_and_si128(pinfo, pinfo_ft_mask); /* Check if flow tag is non-zero then set PKT_RX_FDIR. */ invalid_mask = _mm_cmpeq_epi32(flow_tag, zero); ol_flags = _mm_or_si128(ol_flags, _mm_andnot_si128(invalid_mask, fdir_flags)); /* Mask out invalid entries. */ fdir_id_flags = _mm_andnot_si128(invalid_mask, fdir_id_flags); /* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */ ol_flags = _mm_or_si128(ol_flags, _mm_andnot_si128( _mm_cmpeq_epi32(flow_tag, pinfo_ft_mask), fdir_id_flags)); } /* * Merge the two fields to generate the following: * bit[1] = l3_ok * bit[2] = l4_ok * bit[8] = cv * bit[11:10] = l3_hdr_type * bit[14:12] = l4_hdr_type * bit[15] = ip_frag * bit[16] = tunneled * bit[17] = outer_l3_type */ ptype = _mm_and_si128(ptype, ptype_mask); pinfo = _mm_and_si128(pinfo, pinfo_mask); pinfo = _mm_slli_epi32(pinfo, 16); /* Make pinfo has merged fields for ol_flags calculation. */ pinfo = _mm_or_si128(ptype, pinfo); ptype = _mm_srli_epi32(pinfo, 10); ptype = _mm_packs_epi32(ptype, zero); /* Errored packets will have RTE_PTYPE_ALL_MASK. */ op_err = _mm_srli_epi16(op_err, 8); ptype = _mm_or_si128(ptype, op_err); pt_idx0 = _mm_extract_epi8(ptype, 0); pt_idx1 = _mm_extract_epi8(ptype, 2); pt_idx2 = _mm_extract_epi8(ptype, 4); pt_idx3 = _mm_extract_epi8(ptype, 6); pkts[0]->packet_type = mlx5_ptype_table[pt_idx0] | !!(pt_idx0 & (1 << 6)) * rxq->tunnel; pkts[1]->packet_type = mlx5_ptype_table[pt_idx1] | !!(pt_idx1 & (1 << 6)) * rxq->tunnel; pkts[2]->packet_type = mlx5_ptype_table[pt_idx2] | !!(pt_idx2 & (1 << 6)) * rxq->tunnel; pkts[3]->packet_type = mlx5_ptype_table[pt_idx3] | !!(pt_idx3 & (1 << 6)) * rxq->tunnel; /* Fill flags for checksum and VLAN. */ pinfo = _mm_and_si128(pinfo, ptype_ol_mask); pinfo = _mm_shuffle_epi8(cv_flag_sel, pinfo); /* Locate checksum flags at byte[2:1] and merge with VLAN flags. */ cv_flags = _mm_slli_epi32(pinfo, 9); cv_flags = _mm_or_si128(pinfo, cv_flags); /* Move back flags to start from byte[0]. */ cv_flags = _mm_srli_epi32(cv_flags, 8); /* Mask out garbage bits. */ cv_flags = _mm_and_si128(cv_flags, cv_mask); /* Merge to ol_flags. */ ol_flags = _mm_or_si128(ol_flags, cv_flags); /* Merge mbuf_init and ol_flags. */ rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 8), 0x30); rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 4), 0x30); rearm2 = _mm_blend_epi16(mbuf_init, ol_flags, 0x30); rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(ol_flags, 4), 0x30); /* Write 8B rearm_data and 8B ol_flags. */ _mm_store_si128((__m128i *)&pkts[0]->rearm_data, rearm0); _mm_store_si128((__m128i *)&pkts[1]->rearm_data, rearm1); _mm_store_si128((__m128i *)&pkts[2]->rearm_data, rearm2); _mm_store_si128((__m128i *)&pkts[3]->rearm_data, rearm3); } /** * Receive burst of packets. An errored completion also consumes a mbuf, but the * packet_type is set to be RTE_PTYPE_ALL_MASK. Marked mbufs should be freed * before returning to application. * * @param rxq * Pointer to RX queue structure. * @param[out] pkts * Array to store received packets. * @param pkts_n * Maximum number of packets in array. * @param[out] err * Pointer to a flag. Set non-zero value if pkts array has at least one error * packet to handle. * * @return * Number of packets received including errors (<= pkts_n). */ static inline uint16_t rxq_burst_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t pkts_n, uint64_t *err) { const uint16_t q_n = 1 << rxq->cqe_n; const uint16_t q_mask = q_n - 1; volatile struct mlx5_cqe *cq; struct rte_mbuf **elts; unsigned int pos; uint64_t n; uint16_t repl_n; uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP; uint16_t nocmp_n = 0; uint16_t rcvd_pkt = 0; unsigned int cq_idx = rxq->cq_ci & q_mask; unsigned int elts_idx; unsigned int ownership = !!(rxq->cq_ci & (q_mask + 1)); const __m128i owner_check = _mm_set_epi64x(0x0100000001000000LL, 0x0100000001000000LL); const __m128i opcode_check = _mm_set_epi64x(0xf0000000f0000000LL, 0xf0000000f0000000LL); const __m128i format_check = _mm_set_epi64x(0x0c0000000c000000LL, 0x0c0000000c000000LL); const __m128i resp_err_check = _mm_set_epi64x(0xe0000000e0000000LL, 0xe0000000e0000000LL); #ifdef MLX5_PMD_SOFT_COUNTERS uint32_t rcvd_byte = 0; /* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */ const __m128i len_shuf_mask = _mm_set_epi8(-1, -1, -1, -1, -1, -1, -1, -1, 12, 13, 8, 9, 4, 5, 0, 1); #endif /* Mask to shuffle from extracted CQE to mbuf. */ const __m128i shuf_mask = _mm_set_epi8(-1, 3, 2, 1, /* fdir.hi */ 12, 13, 14, 15, /* rss, bswap32 */ 10, 11, /* vlan_tci, bswap16 */ 4, 5, /* data_len, bswap16 */ -1, -1, /* zero out 2nd half of pkt_len */ 4, 5 /* pkt_len, bswap16 */); /* Mask to blend from the last Qword to the first DQword. */ const __m128i blend_mask = _mm_set_epi8(-1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, -1); const __m128i zero = _mm_setzero_si128(); const __m128i ones = _mm_cmpeq_epi32(zero, zero); const __m128i crc_adj = _mm_set_epi16(0, 0, 0, 0, 0, rxq->crc_present * RTE_ETHER_CRC_LEN, 0, rxq->crc_present * RTE_ETHER_CRC_LEN); const __m128i flow_mark_adj = _mm_set_epi32(rxq->mark * (-1), 0, 0, 0); MLX5_ASSERT(rxq->sges_n == 0); MLX5_ASSERT(rxq->cqe_n == rxq->elts_n); cq = &(*rxq->cqes)[cq_idx]; rte_prefetch0(cq); rte_prefetch0(cq + 1); rte_prefetch0(cq + 2); rte_prefetch0(cq + 3); pkts_n = RTE_MIN(pkts_n, MLX5_VPMD_RX_MAX_BURST); repl_n = q_n - (rxq->rq_ci - rxq->rq_pi); if (repl_n >= rxq->rq_repl_thresh) mlx5_rx_replenish_bulk_mbuf(rxq, repl_n); /* See if there're unreturned mbufs from compressed CQE. */ rcvd_pkt = rxq->decompressed; if (rcvd_pkt > 0) { rcvd_pkt = RTE_MIN(rcvd_pkt, pkts_n); rxq_copy_mbuf_v(rxq, pkts, rcvd_pkt); rxq->rq_pi += rcvd_pkt; rxq->decompressed -= rcvd_pkt; pkts += rcvd_pkt; } elts_idx = rxq->rq_pi & q_mask; elts = &(*rxq->elts)[elts_idx]; /* Not to overflow pkts array. */ pkts_n = RTE_ALIGN_FLOOR(pkts_n - rcvd_pkt, MLX5_VPMD_DESCS_PER_LOOP); /* Not to cross queue end. */ pkts_n = RTE_MIN(pkts_n, q_n - elts_idx); pkts_n = RTE_MIN(pkts_n, q_n - cq_idx); if (!pkts_n) return rcvd_pkt; /* At this point, there shouldn't be any remained packets. */ MLX5_ASSERT(rxq->decompressed == 0); /* * A. load first Qword (8bytes) in one loop. * B. copy 4 mbuf pointers from elts ring to returing pkts. * C. load remained CQE data and extract necessary fields. * Final 16bytes cqes[] extracted from original 64bytes CQE has the * following structure: * struct { * uint8_t pkt_info; * uint8_t flow_tag[3]; * uint16_t byte_cnt; * uint8_t rsvd4; * uint8_t op_own; * uint16_t hdr_type_etc; * uint16_t vlan_info; * uint32_t rx_has_res; * } c; * D. fill in mbuf. * E. get valid CQEs. * F. find compressed CQE. */ for (pos = 0; pos < pkts_n; pos += MLX5_VPMD_DESCS_PER_LOOP) { __m128i cqes[MLX5_VPMD_DESCS_PER_LOOP]; __m128i cqe_tmp1, cqe_tmp2; __m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3; __m128i op_own, op_own_tmp1, op_own_tmp2; __m128i opcode, owner_mask, invalid_mask; __m128i comp_mask; __m128i mask; #ifdef MLX5_PMD_SOFT_COUNTERS __m128i byte_cnt; #endif __m128i mbp1, mbp2; __m128i p = _mm_set_epi16(0, 0, 0, 0, 3, 2, 1, 0); unsigned int p1, p2, p3; /* Prefetch next 4 CQEs. */ if (pkts_n - pos >= 2 * MLX5_VPMD_DESCS_PER_LOOP) { rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP]); rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 1]); rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 2]); rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 3]); } /* A.0 do not cross the end of CQ. */ mask = _mm_set_epi64x(0, (pkts_n - pos) * sizeof(uint16_t) * 8); mask = _mm_sll_epi64(ones, mask); p = _mm_andnot_si128(mask, p); /* A.1 load cqes. */ p3 = _mm_extract_epi16(p, 3); cqes[3] = _mm_loadl_epi64((__m128i *) &cq[pos + p3].sop_drop_qpn); rte_compiler_barrier(); p2 = _mm_extract_epi16(p, 2); cqes[2] = _mm_loadl_epi64((__m128i *) &cq[pos + p2].sop_drop_qpn); rte_compiler_barrier(); /* B.1 load mbuf pointers. */ mbp1 = _mm_loadu_si128((__m128i *)&elts[pos]); mbp2 = _mm_loadu_si128((__m128i *)&elts[pos + 2]); /* A.1 load a block having op_own. */ p1 = _mm_extract_epi16(p, 1); cqes[1] = _mm_loadl_epi64((__m128i *) &cq[pos + p1].sop_drop_qpn); rte_compiler_barrier(); cqes[0] = _mm_loadl_epi64((__m128i *) &cq[pos].sop_drop_qpn); /* B.2 copy mbuf pointers. */ _mm_storeu_si128((__m128i *)&pkts[pos], mbp1); _mm_storeu_si128((__m128i *)&pkts[pos + 2], mbp2); rte_cio_rmb(); /* C.1 load remained CQE data and extract necessary fields. */ cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p3]); cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos + p2]); cqes[3] = _mm_blendv_epi8(cqes[3], cqe_tmp2, blend_mask); cqes[2] = _mm_blendv_epi8(cqes[2], cqe_tmp1, blend_mask); cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p3].csum); cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos + p2].csum); cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x30); cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x30); cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p3].rsvd4[2]); cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos + p2].rsvd4[2]); cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x04); cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x04); /* C.2 generate final structure for mbuf with swapping bytes. */ pkt_mb3 = _mm_shuffle_epi8(cqes[3], shuf_mask); pkt_mb2 = _mm_shuffle_epi8(cqes[2], shuf_mask); /* C.3 adjust CRC length. */ pkt_mb3 = _mm_sub_epi16(pkt_mb3, crc_adj); pkt_mb2 = _mm_sub_epi16(pkt_mb2, crc_adj); /* C.4 adjust flow mark. */ pkt_mb3 = _mm_add_epi32(pkt_mb3, flow_mark_adj); pkt_mb2 = _mm_add_epi32(pkt_mb2, flow_mark_adj); /* D.1 fill in mbuf - rx_descriptor_fields1. */ _mm_storeu_si128((void *)&pkts[pos + 3]->pkt_len, pkt_mb3); _mm_storeu_si128((void *)&pkts[pos + 2]->pkt_len, pkt_mb2); /* E.1 extract op_own field. */ op_own_tmp2 = _mm_unpacklo_epi32(cqes[2], cqes[3]); /* C.1 load remained CQE data and extract necessary fields. */ cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p1]); cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos]); cqes[1] = _mm_blendv_epi8(cqes[1], cqe_tmp2, blend_mask); cqes[0] = _mm_blendv_epi8(cqes[0], cqe_tmp1, blend_mask); cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p1].csum); cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos].csum); cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x30); cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x30); cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p1].rsvd4[2]); cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos].rsvd4[2]); cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x04); cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x04); /* C.2 generate final structure for mbuf with swapping bytes. */ pkt_mb1 = _mm_shuffle_epi8(cqes[1], shuf_mask); pkt_mb0 = _mm_shuffle_epi8(cqes[0], shuf_mask); /* C.3 adjust CRC length. */ pkt_mb1 = _mm_sub_epi16(pkt_mb1, crc_adj); pkt_mb0 = _mm_sub_epi16(pkt_mb0, crc_adj); /* C.4 adjust flow mark. */ pkt_mb1 = _mm_add_epi32(pkt_mb1, flow_mark_adj); pkt_mb0 = _mm_add_epi32(pkt_mb0, flow_mark_adj); /* E.1 extract op_own byte. */ op_own_tmp1 = _mm_unpacklo_epi32(cqes[0], cqes[1]); op_own = _mm_unpackhi_epi64(op_own_tmp1, op_own_tmp2); /* D.1 fill in mbuf - rx_descriptor_fields1. */ _mm_storeu_si128((void *)&pkts[pos + 1]->pkt_len, pkt_mb1); _mm_storeu_si128((void *)&pkts[pos]->pkt_len, pkt_mb0); /* E.2 flip owner bit to mark CQEs from last round. */ owner_mask = _mm_and_si128(op_own, owner_check); if (ownership) owner_mask = _mm_xor_si128(owner_mask, owner_check); owner_mask = _mm_cmpeq_epi32(owner_mask, owner_check); owner_mask = _mm_packs_epi32(owner_mask, zero); /* E.3 get mask for invalidated CQEs. */ opcode = _mm_and_si128(op_own, opcode_check); invalid_mask = _mm_cmpeq_epi32(opcode_check, opcode); invalid_mask = _mm_packs_epi32(invalid_mask, zero); /* E.4 mask out beyond boundary. */ invalid_mask = _mm_or_si128(invalid_mask, mask); /* E.5 merge invalid_mask with invalid owner. */ invalid_mask = _mm_or_si128(invalid_mask, owner_mask); /* F.1 find compressed CQE format. */ comp_mask = _mm_and_si128(op_own, format_check); comp_mask = _mm_cmpeq_epi32(comp_mask, format_check); comp_mask = _mm_packs_epi32(comp_mask, zero); /* F.2 mask out invalid entries. */ comp_mask = _mm_andnot_si128(invalid_mask, comp_mask); comp_idx = _mm_cvtsi128_si64(comp_mask); /* F.3 get the first compressed CQE. */ comp_idx = comp_idx ? __builtin_ctzll(comp_idx) / (sizeof(uint16_t) * 8) : MLX5_VPMD_DESCS_PER_LOOP; /* E.6 mask out entries after the compressed CQE. */ mask = _mm_set_epi64x(0, comp_idx * sizeof(uint16_t) * 8); mask = _mm_sll_epi64(ones, mask); invalid_mask = _mm_or_si128(invalid_mask, mask); /* E.7 count non-compressed valid CQEs. */ n = _mm_cvtsi128_si64(invalid_mask); n = n ? __builtin_ctzll(n) / (sizeof(uint16_t) * 8) : MLX5_VPMD_DESCS_PER_LOOP; nocmp_n += n; /* D.2 get the final invalid mask. */ mask = _mm_set_epi64x(0, n * sizeof(uint16_t) * 8); mask = _mm_sll_epi64(ones, mask); invalid_mask = _mm_or_si128(invalid_mask, mask); /* D.3 check error in opcode. */ opcode = _mm_cmpeq_epi32(resp_err_check, opcode); opcode = _mm_packs_epi32(opcode, zero); opcode = _mm_andnot_si128(invalid_mask, opcode); /* D.4 mark if any error is set */ *err |= _mm_cvtsi128_si64(opcode); /* D.5 fill in mbuf - rearm_data and packet_type. */ rxq_cq_to_ptype_oflags_v(rxq, cqes, opcode, &pkts[pos]); if (rxq->hw_timestamp) { pkts[pos]->timestamp = rte_be_to_cpu_64(cq[pos].timestamp); pkts[pos + 1]->timestamp = rte_be_to_cpu_64(cq[pos + p1].timestamp); pkts[pos + 2]->timestamp = rte_be_to_cpu_64(cq[pos + p2].timestamp); pkts[pos + 3]->timestamp = rte_be_to_cpu_64(cq[pos + p3].timestamp); } if (rte_flow_dynf_metadata_avail()) { /* This code is subject for futher optimization. */ *RTE_FLOW_DYNF_METADATA(pkts[pos]) = cq[pos].flow_table_metadata; *RTE_FLOW_DYNF_METADATA(pkts[pos + 1]) = cq[pos + p1].flow_table_metadata; *RTE_FLOW_DYNF_METADATA(pkts[pos + 2]) = cq[pos + p2].flow_table_metadata; *RTE_FLOW_DYNF_METADATA(pkts[pos + 3]) = cq[pos + p3].flow_table_metadata; if (*RTE_FLOW_DYNF_METADATA(pkts[pos])) pkts[pos]->ol_flags |= PKT_RX_DYNF_METADATA; if (*RTE_FLOW_DYNF_METADATA(pkts[pos + 1])) pkts[pos + 1]->ol_flags |= PKT_RX_DYNF_METADATA; if (*RTE_FLOW_DYNF_METADATA(pkts[pos + 2])) pkts[pos + 2]->ol_flags |= PKT_RX_DYNF_METADATA; if (*RTE_FLOW_DYNF_METADATA(pkts[pos + 3])) pkts[pos + 3]->ol_flags |= PKT_RX_DYNF_METADATA; } #ifdef MLX5_PMD_SOFT_COUNTERS /* Add up received bytes count. */ byte_cnt = _mm_shuffle_epi8(op_own, len_shuf_mask); byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt); byte_cnt = _mm_hadd_epi16(byte_cnt, zero); rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero)); #endif /* * Break the loop unless more valid CQE is expected, or if * there's a compressed CQE. */ if (n != MLX5_VPMD_DESCS_PER_LOOP) break; } /* If no new CQE seen, return without updating cq_db. */ if (unlikely(!nocmp_n && comp_idx == MLX5_VPMD_DESCS_PER_LOOP)) return rcvd_pkt; /* Update the consumer indexes for non-compressed CQEs. */ MLX5_ASSERT(nocmp_n <= pkts_n); rxq->cq_ci += nocmp_n; rxq->rq_pi += nocmp_n; rcvd_pkt += nocmp_n; #ifdef MLX5_PMD_SOFT_COUNTERS rxq->stats.ipackets += nocmp_n; rxq->stats.ibytes += rcvd_byte; #endif /* Decompress the last CQE if compressed. */ if (comp_idx < MLX5_VPMD_DESCS_PER_LOOP && comp_idx == n) { MLX5_ASSERT(comp_idx == (nocmp_n % MLX5_VPMD_DESCS_PER_LOOP)); rxq->decompressed = rxq_cq_decompress_v(rxq, &cq[nocmp_n], &elts[nocmp_n]); /* Return more packets if needed. */ if (nocmp_n < pkts_n) { uint16_t n = rxq->decompressed; n = RTE_MIN(n, pkts_n - nocmp_n); rxq_copy_mbuf_v(rxq, &pkts[nocmp_n], n); rxq->rq_pi += n; rcvd_pkt += n; rxq->decompressed -= n; } } rte_compiler_barrier(); *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci); return rcvd_pkt; } #endif /* RTE_PMD_MLX5_RXTX_VEC_SSE_H_ */