/*- * BSD LICENSE * * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "rte_mempool.h" TAILQ_HEAD(rte_mempool_list, rte_tailq_entry); #define CACHE_FLUSHTHRESH_MULTIPLIER 1.5 /* * return the greatest common divisor between a and b (fast algorithm) * */ static unsigned get_gcd(unsigned a, unsigned b) { unsigned c; if (0 == a) return b; if (0 == b) return a; if (a < b) { c = a; a = b; b = c; } while (b != 0) { c = a % b; a = b; b = c; } return a; } /* * Depending on memory configuration, objects addresses are spread * between channels and ranks in RAM: the pool allocator will add * padding between objects. This function return the new size of the * object. */ static unsigned optimize_object_size(unsigned obj_size) { unsigned nrank, nchan; unsigned new_obj_size; /* get number of channels */ nchan = rte_memory_get_nchannel(); if (nchan == 0) nchan = 1; nrank = rte_memory_get_nrank(); if (nrank == 0) nrank = 1; /* process new object size */ new_obj_size = (obj_size + CACHE_LINE_MASK) / CACHE_LINE_SIZE; while (get_gcd(new_obj_size, nrank * nchan) != 1) new_obj_size++; return new_obj_size * CACHE_LINE_SIZE; } static void mempool_add_elem(struct rte_mempool *mp, void *obj, uint32_t obj_idx, rte_mempool_obj_ctor_t *obj_init, void *obj_init_arg) { struct rte_mempool **mpp; obj = (char *)obj + mp->header_size; /* set mempool ptr in header */ mpp = __mempool_from_obj(obj); *mpp = mp; #ifdef RTE_LIBRTE_MEMPOOL_DEBUG __mempool_write_header_cookie(obj, 1); __mempool_write_trailer_cookie(obj); #endif /* call the initializer */ if (obj_init) obj_init(mp, obj_init_arg, obj, obj_idx); /* enqueue in ring */ rte_ring_sp_enqueue(mp->ring, obj); } uint32_t rte_mempool_obj_iter(void *vaddr, uint32_t elt_num, size_t elt_sz, size_t align, const phys_addr_t paddr[], uint32_t pg_num, uint32_t pg_shift, rte_mempool_obj_iter_t obj_iter, void *obj_iter_arg) { uint32_t i, j, k; uint32_t pgn; uintptr_t end, start, va; uintptr_t pg_sz; pg_sz = (uintptr_t)1 << pg_shift; va = (uintptr_t)vaddr; i = 0; j = 0; while (i != elt_num && j != pg_num) { start = RTE_ALIGN_CEIL(va, align); end = start + elt_sz; pgn = (end >> pg_shift) - (start >> pg_shift); pgn += j; /* do we have enough space left for the next element. */ if (pgn >= pg_num) break; for (k = j; k != pgn && paddr[k] + pg_sz == paddr[k + 1]; k++) ; /* * if next pgn chunks of memory physically continuous, * use it to create next element. * otherwise, just skip that chunk unused. */ if (k == pgn) { if (obj_iter != NULL) obj_iter(obj_iter_arg, (void *)start, (void *)end, i); va = end; j = pgn; i++; } else { va = RTE_ALIGN_CEIL((va + 1), pg_sz); j++; } } return (i); } /* * Populate mempool with the objects. */ struct mempool_populate_arg { struct rte_mempool *mp; rte_mempool_obj_ctor_t *obj_init; void *obj_init_arg; }; static void mempool_obj_populate(void *arg, void *start, void *end, uint32_t idx) { struct mempool_populate_arg *pa = arg; mempool_add_elem(pa->mp, start, idx, pa->obj_init, pa->obj_init_arg); pa->mp->elt_va_end = (uintptr_t)end; } static void mempool_populate(struct rte_mempool *mp, size_t num, size_t align, rte_mempool_obj_ctor_t *obj_init, void *obj_init_arg) { uint32_t elt_sz; struct mempool_populate_arg arg; elt_sz = mp->elt_size + mp->header_size + mp->trailer_size; arg.mp = mp; arg.obj_init = obj_init; arg.obj_init_arg = obj_init_arg; mp->size = rte_mempool_obj_iter((void *)mp->elt_va_start, num, elt_sz, align, mp->elt_pa, mp->pg_num, mp->pg_shift, mempool_obj_populate, &arg); } uint32_t rte_mempool_calc_obj_size(uint32_t elt_size, uint32_t flags, struct rte_mempool_objsz *sz) { struct rte_mempool_objsz lsz; sz = (sz != NULL) ? sz : &lsz; /* * In header, we have at least the pointer to the pool, and * optionaly a 64 bits cookie. */ sz->header_size = 0; sz->header_size += sizeof(struct rte_mempool *); /* ptr to pool */ #ifdef RTE_LIBRTE_MEMPOOL_DEBUG sz->header_size += sizeof(uint64_t); /* cookie */ #endif if ((flags & MEMPOOL_F_NO_CACHE_ALIGN) == 0) sz->header_size = RTE_ALIGN_CEIL(sz->header_size, CACHE_LINE_SIZE); /* trailer contains the cookie in debug mode */ sz->trailer_size = 0; #ifdef RTE_LIBRTE_MEMPOOL_DEBUG sz->trailer_size += sizeof(uint64_t); /* cookie */ #endif /* element size is 8 bytes-aligned at least */ sz->elt_size = RTE_ALIGN_CEIL(elt_size, sizeof(uint64_t)); /* expand trailer to next cache line */ if ((flags & MEMPOOL_F_NO_CACHE_ALIGN) == 0) { sz->total_size = sz->header_size + sz->elt_size + sz->trailer_size; sz->trailer_size += ((CACHE_LINE_SIZE - (sz->total_size & CACHE_LINE_MASK)) & CACHE_LINE_MASK); } /* * increase trailer to add padding between objects in order to * spread them across memory channels/ranks */ if ((flags & MEMPOOL_F_NO_SPREAD) == 0) { unsigned new_size; new_size = optimize_object_size(sz->header_size + sz->elt_size + sz->trailer_size); sz->trailer_size = new_size - sz->header_size - sz->elt_size; } if (! rte_eal_has_hugepages()) { /* * compute trailer size so that pool elements fit exactly in * a standard page */ int page_size = getpagesize(); int new_size = page_size - sz->header_size - sz->elt_size; if (new_size < 0 || (unsigned int)new_size < sz->trailer_size) { printf("When hugepages are disabled, pool objects " "can't exceed PAGE_SIZE: %d + %d + %d > %d\n", sz->header_size, sz->elt_size, sz->trailer_size, page_size); return 0; } sz->trailer_size = new_size; } /* this is the size of an object, including header and trailer */ sz->total_size = sz->header_size + sz->elt_size + sz->trailer_size; return (sz->total_size); } /* * Calculate maximum amount of memory required to store given number of objects. */ size_t rte_mempool_xmem_size(uint32_t elt_num, size_t elt_sz, uint32_t pg_shift) { size_t n, pg_num, pg_sz, sz; pg_sz = (size_t)1 << pg_shift; if ((n = pg_sz / elt_sz) > 0) { pg_num = (elt_num + n - 1) / n; sz = pg_num << pg_shift; } else { sz = RTE_ALIGN_CEIL(elt_sz, pg_sz) * elt_num; } return (sz); } /* * Calculate how much memory would be actually required with the * given memory footprint to store required number of elements. */ static void mempool_lelem_iter(void *arg, __rte_unused void *start, void *end, __rte_unused uint32_t idx) { *(uintptr_t *)arg = (uintptr_t)end; } ssize_t rte_mempool_xmem_usage(void *vaddr, uint32_t elt_num, size_t elt_sz, const phys_addr_t paddr[], uint32_t pg_num, uint32_t pg_shift) { uint32_t n; uintptr_t va, uv; size_t pg_sz, usz; pg_sz = (size_t)1 << pg_shift; va = (uintptr_t)vaddr; uv = va; if ((n = rte_mempool_obj_iter(vaddr, elt_num, elt_sz, 1, paddr, pg_num, pg_shift, mempool_lelem_iter, &uv)) != elt_num) { return (-n); } uv = RTE_ALIGN_CEIL(uv, pg_sz); usz = uv - va; return (usz); } /* create the mempool */ struct rte_mempool * rte_mempool_create(const char *name, unsigned n, unsigned elt_size, unsigned cache_size, unsigned private_data_size, rte_mempool_ctor_t *mp_init, void *mp_init_arg, rte_mempool_obj_ctor_t *obj_init, void *obj_init_arg, int socket_id, unsigned flags) { #ifdef RTE_LIBRTE_XEN_DOM0 return (rte_dom0_mempool_create(name, n, elt_size, cache_size, private_data_size, mp_init, mp_init_arg, obj_init, obj_init_arg, socket_id, flags)); #else return (rte_mempool_xmem_create(name, n, elt_size, cache_size, private_data_size, mp_init, mp_init_arg, obj_init, obj_init_arg, socket_id, flags, NULL, NULL, MEMPOOL_PG_NUM_DEFAULT, MEMPOOL_PG_SHIFT_MAX)); #endif } /* * Create the mempool over already allocated chunk of memory. * That external memory buffer can consists of physically disjoint pages. * Setting vaddr to NULL, makes mempool to fallback to original behaviour * and allocate space for mempool and it's elements as one big chunk of * physically continuos memory. * */ struct rte_mempool * rte_mempool_xmem_create(const char *name, unsigned n, unsigned elt_size, unsigned cache_size, unsigned private_data_size, rte_mempool_ctor_t *mp_init, void *mp_init_arg, rte_mempool_obj_ctor_t *obj_init, void *obj_init_arg, int socket_id, unsigned flags, void *vaddr, const phys_addr_t paddr[], uint32_t pg_num, uint32_t pg_shift) { char mz_name[RTE_MEMZONE_NAMESIZE]; char rg_name[RTE_RING_NAMESIZE]; struct rte_mempool *mp = NULL; struct rte_tailq_entry *te; struct rte_ring *r; const struct rte_memzone *mz; size_t mempool_size; int mz_flags = RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY; int rg_flags = 0; void *obj; struct rte_mempool_objsz objsz; void *startaddr; int page_size = getpagesize(); /* compilation-time checks */ RTE_BUILD_BUG_ON((sizeof(struct rte_mempool) & CACHE_LINE_MASK) != 0); #if RTE_MEMPOOL_CACHE_MAX_SIZE > 0 RTE_BUILD_BUG_ON((sizeof(struct rte_mempool_cache) & CACHE_LINE_MASK) != 0); RTE_BUILD_BUG_ON((offsetof(struct rte_mempool, local_cache) & CACHE_LINE_MASK) != 0); #endif #ifdef RTE_LIBRTE_MEMPOOL_DEBUG RTE_BUILD_BUG_ON((sizeof(struct rte_mempool_debug_stats) & CACHE_LINE_MASK) != 0); RTE_BUILD_BUG_ON((offsetof(struct rte_mempool, stats) & CACHE_LINE_MASK) != 0); #endif /* check that we have an initialised tail queue */ if (RTE_TAILQ_LOOKUP_BY_IDX(RTE_TAILQ_MEMPOOL, rte_mempool_list) == NULL) { rte_errno = E_RTE_NO_TAILQ; return NULL; } /* asked cache too big */ if (cache_size > RTE_MEMPOOL_CACHE_MAX_SIZE) { rte_errno = EINVAL; return NULL; } /* check that we have both VA and PA */ if (vaddr != NULL && paddr == NULL) { rte_errno = EINVAL; return NULL; } /* Check that pg_num and pg_shift parameters are valid. */ if (pg_num < RTE_DIM(mp->elt_pa) || pg_shift > MEMPOOL_PG_SHIFT_MAX) { rte_errno = EINVAL; return NULL; } /* "no cache align" imply "no spread" */ if (flags & MEMPOOL_F_NO_CACHE_ALIGN) flags |= MEMPOOL_F_NO_SPREAD; /* ring flags */ if (flags & MEMPOOL_F_SP_PUT) rg_flags |= RING_F_SP_ENQ; if (flags & MEMPOOL_F_SC_GET) rg_flags |= RING_F_SC_DEQ; /* calculate mempool object sizes. */ if (!rte_mempool_calc_obj_size(elt_size, flags, &objsz)) { rte_errno = EINVAL; return NULL; } rte_rwlock_write_lock(RTE_EAL_MEMPOOL_RWLOCK); /* allocate the ring that will be used to store objects */ /* Ring functions will return appropriate errors if we are * running as a secondary process etc., so no checks made * in this function for that condition */ snprintf(rg_name, sizeof(rg_name), RTE_MEMPOOL_MZ_FORMAT, name); r = rte_ring_create(rg_name, rte_align32pow2(n+1), socket_id, rg_flags); if (r == NULL) goto exit; /* * reserve a memory zone for this mempool: private data is * cache-aligned */ private_data_size = (private_data_size + CACHE_LINE_MASK) & (~CACHE_LINE_MASK); if (! rte_eal_has_hugepages()) { /* * expand private data size to a whole page, so that the * first pool element will start on a new standard page */ int head = sizeof(struct rte_mempool); int new_size = (private_data_size + head) % page_size; if (new_size) { private_data_size += page_size - new_size; } } /* try to allocate tailq entry */ te = rte_zmalloc("MEMPOOL_TAILQ_ENTRY", sizeof(*te), 0); if (te == NULL) { RTE_LOG(ERR, MEMPOOL, "Cannot allocate tailq entry!\n"); goto exit; } /* * If user provided an external memory buffer, then use it to * store mempool objects. Otherwise reserve memzone big enough to * hold mempool header and metadata plus mempool objects. */ mempool_size = MEMPOOL_HEADER_SIZE(mp, pg_num) + private_data_size; if (vaddr == NULL) mempool_size += (size_t)objsz.total_size * n; if (! rte_eal_has_hugepages()) { /* * we want the memory pool to start on a page boundary, * because pool elements crossing page boundaries would * result in discontiguous physical addresses */ mempool_size += page_size; } snprintf(mz_name, sizeof(mz_name), RTE_MEMPOOL_MZ_FORMAT, name); mz = rte_memzone_reserve(mz_name, mempool_size, socket_id, mz_flags); /* * no more memory: in this case we loose previously reserved * space for the as we cannot free it */ if (mz == NULL) { rte_free(te); goto exit; } if (rte_eal_has_hugepages()) { startaddr = (void*)mz->addr; } else { /* align memory pool start address on a page boundary */ unsigned long addr = (unsigned long)mz->addr; if (addr & (page_size - 1)) { addr += page_size; addr &= ~(page_size - 1); } startaddr = (void*)addr; } /* init the mempool structure */ mp = startaddr; memset(mp, 0, sizeof(*mp)); snprintf(mp->name, sizeof(mp->name), "%s", name); mp->phys_addr = mz->phys_addr; mp->ring = r; mp->size = n; mp->flags = flags; mp->elt_size = objsz.elt_size; mp->header_size = objsz.header_size; mp->trailer_size = objsz.trailer_size; mp->cache_size = cache_size; mp->cache_flushthresh = (uint32_t) (cache_size * CACHE_FLUSHTHRESH_MULTIPLIER); mp->private_data_size = private_data_size; /* calculate address of the first element for continuous mempool. */ obj = (char *)mp + MEMPOOL_HEADER_SIZE(mp, pg_num) + private_data_size; /* populate address translation fields. */ mp->pg_num = pg_num; mp->pg_shift = pg_shift; mp->pg_mask = RTE_LEN2MASK(mp->pg_shift, typeof(mp->pg_mask)); /* mempool elements allocated together with mempool */ if (vaddr == NULL) { mp->elt_va_start = (uintptr_t)obj; mp->elt_pa[0] = mp->phys_addr + (mp->elt_va_start - (uintptr_t)mp); /* mempool elements in a separate chunk of memory. */ } else { mp->elt_va_start = (uintptr_t)vaddr; memcpy(mp->elt_pa, paddr, sizeof (mp->elt_pa[0]) * pg_num); } mp->elt_va_end = mp->elt_va_start; /* call the initializer */ if (mp_init) mp_init(mp, mp_init_arg); mempool_populate(mp, n, 1, obj_init, obj_init_arg); te->data = (void *) mp; RTE_EAL_TAILQ_INSERT_TAIL(RTE_TAILQ_MEMPOOL, rte_mempool_list, te); exit: rte_rwlock_write_unlock(RTE_EAL_MEMPOOL_RWLOCK); return mp; } /* Return the number of entries in the mempool */ unsigned rte_mempool_count(const struct rte_mempool *mp) { unsigned count; count = rte_ring_count(mp->ring); #if RTE_MEMPOOL_CACHE_MAX_SIZE > 0 { unsigned lcore_id; if (mp->cache_size == 0) return count; for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) count += mp->local_cache[lcore_id].len; } #endif /* * due to race condition (access to len is not locked), the * total can be greater than size... so fix the result */ if (count > mp->size) return mp->size; return count; } /* dump the cache status */ static unsigned rte_mempool_dump_cache(FILE *f, const struct rte_mempool *mp) { #if RTE_MEMPOOL_CACHE_MAX_SIZE > 0 unsigned lcore_id; unsigned count = 0; unsigned cache_count; fprintf(f, " cache infos:\n"); fprintf(f, " cache_size=%"PRIu32"\n", mp->cache_size); for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { cache_count = mp->local_cache[lcore_id].len; fprintf(f, " cache_count[%u]=%u\n", lcore_id, cache_count); count += cache_count; } fprintf(f, " total_cache_count=%u\n", count); return count; #else RTE_SET_USED(mp); fprintf(f, " cache disabled\n"); return 0; #endif } #ifdef RTE_LIBRTE_MEMPOOL_DEBUG /* check cookies before and after objects */ #ifndef __INTEL_COMPILER #pragma GCC diagnostic ignored "-Wcast-qual" #endif struct mempool_audit_arg { const struct rte_mempool *mp; uintptr_t obj_end; uint32_t obj_num; }; static void mempool_obj_audit(void *arg, void *start, void *end, uint32_t idx) { struct mempool_audit_arg *pa = arg; void *obj; obj = (char *)start + pa->mp->header_size; pa->obj_end = (uintptr_t)end; pa->obj_num = idx + 1; __mempool_check_cookies(pa->mp, &obj, 1, 2); } static void mempool_audit_cookies(const struct rte_mempool *mp) { uint32_t elt_sz, num; struct mempool_audit_arg arg; elt_sz = mp->elt_size + mp->header_size + mp->trailer_size; arg.mp = mp; arg.obj_end = mp->elt_va_start; arg.obj_num = 0; num = rte_mempool_obj_iter((void *)mp->elt_va_start, mp->size, elt_sz, 1, mp->elt_pa, mp->pg_num, mp->pg_shift, mempool_obj_audit, &arg); if (num != mp->size) { rte_panic("rte_mempool_obj_iter(mempool=%p, size=%u) " "iterated only over %u elements\n", mp, mp->size, num); } else if (arg.obj_end != mp->elt_va_end || arg.obj_num != mp->size) { rte_panic("rte_mempool_obj_iter(mempool=%p, size=%u) " "last callback va_end: %#tx (%#tx expeceted), " "num of objects: %u (%u expected)\n", mp, mp->size, arg.obj_end, mp->elt_va_end, arg.obj_num, mp->size); } } #ifndef __INTEL_COMPILER #pragma GCC diagnostic error "-Wcast-qual" #endif #else #define mempool_audit_cookies(mp) do {} while(0) #endif #if RTE_MEMPOOL_CACHE_MAX_SIZE > 0 /* check cookies before and after objects */ static void mempool_audit_cache(const struct rte_mempool *mp) { /* check cache size consistency */ unsigned lcore_id; for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { if (mp->local_cache[lcore_id].len > mp->cache_flushthresh) { RTE_LOG(CRIT, MEMPOOL, "badness on cache[%u]\n", lcore_id); rte_panic("MEMPOOL: invalid cache len\n"); } } } #else #define mempool_audit_cache(mp) do {} while(0) #endif /* check the consistency of mempool (size, cookies, ...) */ void rte_mempool_audit(const struct rte_mempool *mp) { mempool_audit_cache(mp); mempool_audit_cookies(mp); /* For case where mempool DEBUG is not set, and cache size is 0 */ RTE_SET_USED(mp); } /* dump the status of the mempool on the console */ void rte_mempool_dump(FILE *f, const struct rte_mempool *mp) { #ifdef RTE_LIBRTE_MEMPOOL_DEBUG struct rte_mempool_debug_stats sum; unsigned lcore_id; #endif unsigned common_count; unsigned cache_count; fprintf(f, "mempool <%s>@%p\n", mp->name, mp); fprintf(f, " flags=%x\n", mp->flags); fprintf(f, " ring=<%s>@%p\n", mp->ring->name, mp->ring); fprintf(f, " phys_addr=0x%" PRIx64 "\n", mp->phys_addr); fprintf(f, " size=%"PRIu32"\n", mp->size); fprintf(f, " header_size=%"PRIu32"\n", mp->header_size); fprintf(f, " elt_size=%"PRIu32"\n", mp->elt_size); fprintf(f, " trailer_size=%"PRIu32"\n", mp->trailer_size); fprintf(f, " total_obj_size=%"PRIu32"\n", mp->header_size + mp->elt_size + mp->trailer_size); fprintf(f, " private_data_size=%"PRIu32"\n", mp->private_data_size); fprintf(f, " pg_num=%"PRIu32"\n", mp->pg_num); fprintf(f, " pg_shift=%"PRIu32"\n", mp->pg_shift); fprintf(f, " pg_mask=%#tx\n", mp->pg_mask); fprintf(f, " elt_va_start=%#tx\n", mp->elt_va_start); fprintf(f, " elt_va_end=%#tx\n", mp->elt_va_end); fprintf(f, " elt_pa[0]=0x%" PRIx64 "\n", mp->elt_pa[0]); if (mp->size != 0) fprintf(f, " avg bytes/object=%#Lf\n", (long double)(mp->elt_va_end - mp->elt_va_start) / mp->size); cache_count = rte_mempool_dump_cache(f, mp); common_count = rte_ring_count(mp->ring); if ((cache_count + common_count) > mp->size) common_count = mp->size - cache_count; fprintf(f, " common_pool_count=%u\n", common_count); /* sum and dump statistics */ #ifdef RTE_LIBRTE_MEMPOOL_DEBUG memset(&sum, 0, sizeof(sum)); for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { sum.put_bulk += mp->stats[lcore_id].put_bulk; sum.put_objs += mp->stats[lcore_id].put_objs; sum.get_success_bulk += mp->stats[lcore_id].get_success_bulk; sum.get_success_objs += mp->stats[lcore_id].get_success_objs; sum.get_fail_bulk += mp->stats[lcore_id].get_fail_bulk; sum.get_fail_objs += mp->stats[lcore_id].get_fail_objs; } fprintf(f, " stats:\n"); fprintf(f, " put_bulk=%"PRIu64"\n", sum.put_bulk); fprintf(f, " put_objs=%"PRIu64"\n", sum.put_objs); fprintf(f, " get_success_bulk=%"PRIu64"\n", sum.get_success_bulk); fprintf(f, " get_success_objs=%"PRIu64"\n", sum.get_success_objs); fprintf(f, " get_fail_bulk=%"PRIu64"\n", sum.get_fail_bulk); fprintf(f, " get_fail_objs=%"PRIu64"\n", sum.get_fail_objs); #else fprintf(f, " no statistics available\n"); #endif rte_mempool_audit(mp); } /* dump the status of all mempools on the console */ void rte_mempool_list_dump(FILE *f) { const struct rte_mempool *mp = NULL; struct rte_tailq_entry *te; struct rte_mempool_list *mempool_list; if ((mempool_list = RTE_TAILQ_LOOKUP_BY_IDX(RTE_TAILQ_MEMPOOL, rte_mempool_list)) == NULL) { rte_errno = E_RTE_NO_TAILQ; return; } rte_rwlock_read_lock(RTE_EAL_MEMPOOL_RWLOCK); TAILQ_FOREACH(te, mempool_list, next) { mp = (struct rte_mempool *) te->data; rte_mempool_dump(f, mp); } rte_rwlock_read_unlock(RTE_EAL_MEMPOOL_RWLOCK); } /* search a mempool from its name */ struct rte_mempool * rte_mempool_lookup(const char *name) { struct rte_mempool *mp = NULL; struct rte_tailq_entry *te; struct rte_mempool_list *mempool_list; if ((mempool_list = RTE_TAILQ_LOOKUP_BY_IDX(RTE_TAILQ_MEMPOOL, rte_mempool_list)) == NULL) { rte_errno = E_RTE_NO_TAILQ; return NULL; } rte_rwlock_read_lock(RTE_EAL_MEMPOOL_RWLOCK); TAILQ_FOREACH(te, mempool_list, next) { mp = (struct rte_mempool *) te->data; if (strncmp(name, mp->name, RTE_MEMPOOL_NAMESIZE) == 0) break; } rte_rwlock_read_unlock(RTE_EAL_MEMPOOL_RWLOCK); if (te == NULL) { rte_errno = ENOENT; return NULL; } return mp; } void rte_mempool_walk(void (*func)(const struct rte_mempool *, void *), void *arg) { struct rte_tailq_entry *te = NULL; struct rte_mempool_list *mempool_list; if ((mempool_list = RTE_TAILQ_LOOKUP_BY_IDX(RTE_TAILQ_MEMPOOL, rte_mempool_list)) == NULL) { rte_errno = E_RTE_NO_TAILQ; return; } rte_rwlock_read_lock(RTE_EAL_MEMPOOL_RWLOCK); TAILQ_FOREACH(te, mempool_list, next) { (*func)((struct rte_mempool *) te->data, arg); } rte_rwlock_read_unlock(RTE_EAL_MEMPOOL_RWLOCK); }