/* SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0) * * Copyright 2008-2012 Freescale Semiconductor, Inc. * Copyright 2019 NXP * */ #ifndef __FSL_QMAN_H #define __FSL_QMAN_H #ifdef __cplusplus extern "C" { #endif #include #include /* FQ lookups (turn this on for 64bit user-space) */ #ifdef RTE_ARCH_64 #define CONFIG_FSL_QMAN_FQ_LOOKUP /* if FQ lookups are supported, this controls the number of initialised, * s/w-consumed FQs that can be supported at any one time. */ #define CONFIG_FSL_QMAN_FQ_LOOKUP_MAX (32 * 1024) #endif /* Last updated for v00.800 of the BG */ /* Hardware constants */ #define QM_CHANNEL_SWPORTAL0 0 #define QMAN_CHANNEL_POOL1 0x21 #define QMAN_CHANNEL_CAAM 0x80 #define QMAN_CHANNEL_PME 0xa0 #define QMAN_CHANNEL_POOL1_REV3 0x401 #define QMAN_CHANNEL_CAAM_REV3 0x840 #define QMAN_CHANNEL_PME_REV3 0x860 extern u16 qm_channel_pool1; extern u16 qm_channel_caam; extern u16 qm_channel_pme; enum qm_dc_portal { qm_dc_portal_fman0 = 0, qm_dc_portal_fman1 = 1, qm_dc_portal_caam = 2, qm_dc_portal_pme = 3 }; __rte_internal u16 dpaa_get_qm_channel_caam(void); __rte_internal u16 dpaa_get_qm_channel_pool(void); /* Portal processing (interrupt) sources */ #define QM_PIRQ_CCSCI 0x00200000 /* CEETM Congestion State Change */ #define QM_PIRQ_CSCI 0x00100000 /* Congestion State Change */ #define QM_PIRQ_EQCI 0x00080000 /* Enqueue Command Committed */ #define QM_PIRQ_EQRI 0x00040000 /* EQCR Ring (below threshold) */ #define QM_PIRQ_DQRI 0x00020000 /* DQRR Ring (non-empty) */ #define QM_PIRQ_MRI 0x00010000 /* MR Ring (non-empty) */ /* * This mask contains all the interrupt sources that need handling except DQRI, * ie. that if present should trigger slow-path processing. */ #define QM_PIRQ_SLOW (QM_PIRQ_CSCI | QM_PIRQ_EQCI | QM_PIRQ_EQRI | \ QM_PIRQ_MRI | QM_PIRQ_CCSCI) /* For qman_static_dequeue_*** APIs */ #define QM_SDQCR_CHANNELS_POOL_MASK 0x00007fff /* for n in [1,15] */ #define QM_SDQCR_CHANNELS_POOL(n) (0x00008000 >> (n)) /* for conversion from n of qm_channel */ static inline u32 QM_SDQCR_CHANNELS_POOL_CONV(u16 channel) { return QM_SDQCR_CHANNELS_POOL(channel + 1 - dpaa_get_qm_channel_pool()); } /* For qman_volatile_dequeue(); Choose one PRECEDENCE. EXACT is optional. Use * NUMFRAMES(n) (6-bit) or NUMFRAMES_TILLEMPTY to fill in the frame-count. Use * FQID(n) to fill in the frame queue ID. */ #define QM_VDQCR_PRECEDENCE_VDQCR 0x0 #define QM_VDQCR_PRECEDENCE_SDQCR 0x80000000 #define QM_VDQCR_EXACT 0x40000000 #define QM_VDQCR_NUMFRAMES_MASK 0x3f000000 #define QM_VDQCR_NUMFRAMES_SET(n) (((n) & 0x3f) << 24) #define QM_VDQCR_NUMFRAMES_GET(n) (((n) >> 24) & 0x3f) #define QM_VDQCR_NUMFRAMES_TILLEMPTY QM_VDQCR_NUMFRAMES_SET(0) /* --- QMan data structures (and associated constants) --- */ /* Represents s/w corenet portal mapped data structures */ struct qm_eqcr_entry; /* EQCR (EnQueue Command Ring) entries */ struct qm_dqrr_entry; /* DQRR (DeQueue Response Ring) entries */ struct qm_mr_entry; /* MR (Message Ring) entries */ struct qm_mc_command; /* MC (Management Command) command */ struct qm_mc_result; /* MC result */ #define QM_FD_FORMAT_SG 0x4 #define QM_FD_FORMAT_LONG 0x2 #define QM_FD_FORMAT_COMPOUND 0x1 enum qm_fd_format { /* * 'contig' implies a contiguous buffer, whereas 'sg' implies a * scatter-gather table. 'big' implies a 29-bit length with no offset * field, otherwise length is 20-bit and offset is 9-bit. 'compound' * implies a s/g-like table, where each entry itself represents a frame * (contiguous or scatter-gather) and the 29-bit "length" is * interpreted purely for congestion calculations, ie. a "congestion * weight". */ qm_fd_contig = 0, qm_fd_contig_big = QM_FD_FORMAT_LONG, qm_fd_sg = QM_FD_FORMAT_SG, qm_fd_sg_big = QM_FD_FORMAT_SG | QM_FD_FORMAT_LONG, qm_fd_compound = QM_FD_FORMAT_COMPOUND }; /* Capitalised versions are un-typed but can be used in static expressions */ #define QM_FD_CONTIG 0 #define QM_FD_CONTIG_BIG QM_FD_FORMAT_LONG #define QM_FD_SG QM_FD_FORMAT_SG #define QM_FD_SG_BIG (QM_FD_FORMAT_SG | QM_FD_FORMAT_LONG) #define QM_FD_COMPOUND QM_FD_FORMAT_COMPOUND /* "Frame Descriptor (FD)" */ struct qm_fd { union { struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u8 dd:2; /* dynamic debug */ u8 liodn_offset:6; u8 bpid:8; /* Buffer Pool ID */ u8 eliodn_offset:4; u8 __reserved:4; u8 addr_hi; /* high 8-bits of 40-bit address */ u32 addr_lo; /* low 32-bits of 40-bit address */ #else u8 liodn_offset:6; u8 dd:2; /* dynamic debug */ u8 bpid:8; /* Buffer Pool ID */ u8 __reserved:4; u8 eliodn_offset:4; u8 addr_hi; /* high 8-bits of 40-bit address */ u32 addr_lo; /* low 32-bits of 40-bit address */ #endif }; struct { u64 __notaddress:24; /* More efficient address accessor */ u64 addr:40; }; u64 opaque_addr; }; /* The 'format' field indicates the interpretation of the remaining 29 * bits of the 32-bit word. For packing reasons, it is duplicated in the * other union elements. Note, union'd structs are difficult to use with * static initialisation under gcc, in which case use the "opaque" form * with one of the macros. */ union { /* For easier/faster copying of this part of the fd (eg. from a * DQRR entry to an EQCR entry) copy 'opaque' */ u32 opaque; /* If 'format' is _contig or _sg, 20b length and 9b offset */ struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ enum qm_fd_format format:3; u16 offset:9; u32 length20:20; #else u32 length20:20; u16 offset:9; enum qm_fd_format format:3; #endif }; /* If 'format' is _contig_big or _sg_big, 29b length */ struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ enum qm_fd_format _format1:3; u32 length29:29; #else u32 length29:29; enum qm_fd_format _format1:3; #endif }; /* If 'format' is _compound, 29b "congestion weight" */ struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ enum qm_fd_format _format2:3; u32 cong_weight:29; #else u32 cong_weight:29; enum qm_fd_format _format2:3; #endif }; }; union { u32 cmd; u32 status; }; } __rte_aligned(8); #define QM_FD_DD_NULL 0x00 #define QM_FD_PID_MASK 0x3f static inline u64 qm_fd_addr_get64(const struct qm_fd *fd) { return fd->addr; } static inline dma_addr_t qm_fd_addr(const struct qm_fd *fd) { return (dma_addr_t)fd->addr; } /* Macro, so we compile better if 'v' isn't always 64-bit */ #define qm_fd_addr_set64(fd, v) \ do { \ struct qm_fd *__fd931 = (fd); \ __fd931->addr = v; \ } while (0) /* Scatter/Gather table entry */ struct qm_sg_entry { union { struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u8 __reserved1[3]; u8 addr_hi; /* high 8-bits of 40-bit address */ u32 addr_lo; /* low 32-bits of 40-bit address */ #else u32 addr_lo; /* low 32-bits of 40-bit address */ u8 addr_hi; /* high 8-bits of 40-bit address */ u8 __reserved1[3]; #endif }; struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u64 __notaddress:24; u64 addr:40; #else u64 addr:40; u64 __notaddress:24; #endif }; u64 opaque; }; union { struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u32 extension:1; /* Extension bit */ u32 final:1; /* Final bit */ u32 length:30; #else u32 length:30; u32 final:1; /* Final bit */ u32 extension:1; /* Extension bit */ #endif }; u32 val; }; u8 __reserved2; u8 bpid; union { struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u16 __reserved3:3; u16 offset:13; #else u16 offset:13; u16 __reserved3:3; #endif }; u16 val_off; }; } __packed; static inline u64 qm_sg_entry_get64(const struct qm_sg_entry *sg) { return sg->addr; } static inline dma_addr_t qm_sg_addr(const struct qm_sg_entry *sg) { return (dma_addr_t)sg->addr; } /* Macro, so we compile better if 'v' isn't always 64-bit */ #define qm_sg_entry_set64(sg, v) \ do { \ struct qm_sg_entry *__sg931 = (sg); \ __sg931->addr = v; \ } while (0) /* See 1.5.8.1: "Enqueue Command" */ struct __rte_aligned(8) qm_eqcr_entry { u8 __dont_write_directly__verb; u8 dca; u16 seqnum; u32 orp; /* 24-bit */ u32 fqid; /* 24-bit */ u32 tag; struct qm_fd fd; /* this has alignment 8 */ u8 __reserved3[32]; } __packed; /* "Frame Dequeue Response" */ struct __rte_aligned(8) qm_dqrr_entry { u8 verb; u8 stat; u16 seqnum; /* 15-bit */ u8 tok; u8 __reserved2[3]; u32 fqid; /* 24-bit */ u32 contextB; struct qm_fd fd; /* this has alignment 8 */ u8 __reserved4[32]; }; #define QM_DQRR_VERB_VBIT 0x80 #define QM_DQRR_VERB_MASK 0x7f /* where the verb contains; */ #define QM_DQRR_VERB_FRAME_DEQUEUE 0x60 /* "this format" */ #define QM_DQRR_STAT_FQ_EMPTY 0x80 /* FQ empty */ #define QM_DQRR_STAT_FQ_HELDACTIVE 0x40 /* FQ held active */ #define QM_DQRR_STAT_FQ_FORCEELIGIBLE 0x20 /* FQ was force-eligible'd */ #define QM_DQRR_STAT_FD_VALID 0x10 /* has a non-NULL FD */ #define QM_DQRR_STAT_UNSCHEDULED 0x02 /* Unscheduled dequeue */ #define QM_DQRR_STAT_DQCR_EXPIRED 0x01 /* VDQCR or PDQCR expired*/ /* "ERN Message Response" */ /* "FQ State Change Notification" */ struct qm_mr_entry { union { struct { u8 verb; u8 dca; u16 seqnum; u8 rc; /* Rejection Code */ u32 orp:24; u32 fqid; /* 24-bit */ u32 tag; struct qm_fd fd; /* this has alignment 8 */ } __packed __rte_aligned(8) ern; struct { u8 verb; #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u8 colour:2; /* See QM_MR_DCERN_COLOUR_* */ u8 __reserved1:4; enum qm_dc_portal portal:2; #else enum qm_dc_portal portal:3; u8 __reserved1:3; u8 colour:2; /* See QM_MR_DCERN_COLOUR_* */ #endif u16 __reserved2; u8 rc; /* Rejection Code */ u32 __reserved3:24; u32 fqid; /* 24-bit */ u32 tag; struct qm_fd fd; /* this has alignment 8 */ } __packed __rte_aligned(8) dcern; struct { u8 verb; u8 fqs; /* Frame Queue Status */ u8 __reserved1[6]; u32 fqid; /* 24-bit */ u32 contextB; u8 __reserved2[16]; } __packed __rte_aligned(8) fq; /* FQRN/FQRNI/FQRL/FQPN */ }; u8 __reserved2[32]; } __packed __rte_aligned(8); #define QM_MR_VERB_VBIT 0x80 /* * ERNs originating from direct-connect portals ("dcern") use 0x20 as a verb * which would be invalid as a s/w enqueue verb. A s/w ERN can be distinguished * from the other MR types by noting if the 0x20 bit is unset. */ #define QM_MR_VERB_TYPE_MASK 0x27 #define QM_MR_VERB_DC_ERN 0x20 #define QM_MR_VERB_FQRN 0x21 #define QM_MR_VERB_FQRNI 0x22 #define QM_MR_VERB_FQRL 0x23 #define QM_MR_VERB_FQPN 0x24 #define QM_MR_RC_MASK 0xf0 /* contains one of; */ #define QM_MR_RC_CGR_TAILDROP 0x00 #define QM_MR_RC_WRED 0x10 #define QM_MR_RC_ERROR 0x20 #define QM_MR_RC_ORPWINDOW_EARLY 0x30 #define QM_MR_RC_ORPWINDOW_LATE 0x40 #define QM_MR_RC_FQ_TAILDROP 0x50 #define QM_MR_RC_ORPWINDOW_RETIRED 0x60 #define QM_MR_RC_ORP_ZERO 0x70 #define QM_MR_FQS_ORLPRESENT 0x02 /* ORL fragments to come */ #define QM_MR_FQS_NOTEMPTY 0x01 /* FQ has enqueued frames */ #define QM_MR_DCERN_COLOUR_GREEN 0x00 #define QM_MR_DCERN_COLOUR_YELLOW 0x01 #define QM_MR_DCERN_COLOUR_RED 0x02 #define QM_MR_DCERN_COLOUR_OVERRIDE 0x03 /* * An identical structure of FQD fields is present in the "Init FQ" command and * the "Query FQ" result, it's suctioned out into the "struct qm_fqd" type. * Within that, the 'stashing' and 'taildrop' pieces are also factored out, the * latter has two inlines to assist with converting to/from the mant+exp * representation. */ struct qm_fqd_stashing { /* See QM_STASHING_EXCL_<...> */ #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u8 exclusive; u8 __reserved1:2; /* Numbers of cachelines */ u8 annotation_cl:2; u8 data_cl:2; u8 context_cl:2; #else u8 context_cl:2; u8 data_cl:2; u8 annotation_cl:2; u8 __reserved1:2; u8 exclusive; #endif } __packed; struct qm_fqd_taildrop { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u16 __reserved1:3; u16 mant:8; u16 exp:5; #else u16 exp:5; u16 mant:8; u16 __reserved1:3; #endif } __packed; struct qm_fqd_oac { /* "Overhead Accounting Control", see QM_OAC_<...> */ #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u8 oac:2; /* "Overhead Accounting Control" */ u8 __reserved1:6; #else u8 __reserved1:6; u8 oac:2; /* "Overhead Accounting Control" */ #endif /* Two's-complement value (-128 to +127) */ signed char oal; /* "Overhead Accounting Length" */ } __packed; struct qm_fqd { union { u8 orpc; struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u8 __reserved1:2; u8 orprws:3; u8 oa:1; u8 olws:2; #else u8 olws:2; u8 oa:1; u8 orprws:3; u8 __reserved1:2; #endif } __packed; }; u8 cgid; u16 fq_ctrl; /* See QM_FQCTRL_<...> */ union { u16 dest_wq; struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u16 channel:13; /* qm_channel */ u16 wq:3; #else u16 wq:3; u16 channel:13; /* qm_channel */ #endif } __packed dest; }; #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u16 __reserved2:1; u16 ics_cred:15; #else u16 __reserved2:1; u16 ics_cred:15; #endif /* * For "Initialize Frame Queue" commands, the write-enable mask * determines whether 'td' or 'oac_init' is observed. For query * commands, this field is always 'td', and 'oac_query' (below) reflects * the Overhead ACcounting values. */ union { uint16_t opaque_td; struct qm_fqd_taildrop td; struct qm_fqd_oac oac_init; }; u32 context_b; union { /* Treat it as 64-bit opaque */ u64 opaque; struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u32 hi; u32 lo; #else u32 lo; u32 hi; #endif }; /* Treat it as s/w portal stashing config */ /* see "FQD Context_A field used for [...]" */ struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ struct qm_fqd_stashing stashing; /* * 48-bit address of FQ context to * stash, must be cacheline-aligned */ u16 context_hi; u32 context_lo; #else u32 context_lo; u16 context_hi; struct qm_fqd_stashing stashing; #endif } __packed; } context_a; struct qm_fqd_oac oac_query; } __packed; /* 64-bit converters for context_hi/lo */ static inline u64 qm_fqd_stashing_get64(const struct qm_fqd *fqd) { return ((u64)fqd->context_a.context_hi << 32) | (u64)fqd->context_a.context_lo; } static inline dma_addr_t qm_fqd_stashing_addr(const struct qm_fqd *fqd) { return (dma_addr_t)qm_fqd_stashing_get64(fqd); } static inline u64 qm_fqd_context_a_get64(const struct qm_fqd *fqd) { return ((u64)fqd->context_a.hi << 32) | (u64)fqd->context_a.lo; } static inline void qm_fqd_stashing_set64(struct qm_fqd *fqd, u64 addr) { fqd->context_a.context_hi = upper_32_bits(addr); fqd->context_a.context_lo = lower_32_bits(addr); } static inline void qm_fqd_context_a_set64(struct qm_fqd *fqd, u64 addr) { fqd->context_a.hi = upper_32_bits(addr); fqd->context_a.lo = lower_32_bits(addr); } /* convert a threshold value into mant+exp representation */ static inline int qm_fqd_taildrop_set(struct qm_fqd_taildrop *td, u32 val, int roundup) { u32 e = 0; int oddbit = 0; if (val > 0xe0000000) return -ERANGE; while (val > 0xff) { oddbit = val & 1; val >>= 1; e++; if (roundup && oddbit) val++; } td->exp = e; td->mant = val; return 0; } /* and the other direction */ static inline u32 qm_fqd_taildrop_get(const struct qm_fqd_taildrop *td) { return (u32)td->mant << td->exp; } /* See "Frame Queue Descriptor (FQD)" */ /* Frame Queue Descriptor (FQD) field 'fq_ctrl' uses these constants */ #define QM_FQCTRL_MASK 0x07ff /* 'fq_ctrl' flags; */ #define QM_FQCTRL_CGE 0x0400 /* Congestion Group Enable */ #define QM_FQCTRL_TDE 0x0200 /* Tail-Drop Enable */ #define QM_FQCTRL_ORP 0x0100 /* ORP Enable */ #define QM_FQCTRL_CTXASTASHING 0x0080 /* Context-A stashing */ #define QM_FQCTRL_CPCSTASH 0x0040 /* CPC Stash Enable */ #define QM_FQCTRL_FORCESFDR 0x0008 /* High-priority SFDRs */ #define QM_FQCTRL_AVOIDBLOCK 0x0004 /* Don't block active */ #define QM_FQCTRL_HOLDACTIVE 0x0002 /* Hold active in portal */ #define QM_FQCTRL_PREFERINCACHE 0x0001 /* Aggressively cache FQD */ #define QM_FQCTRL_LOCKINCACHE QM_FQCTRL_PREFERINCACHE /* older naming */ /* See "FQD Context_A field used for [...] */ /* Frame Queue Descriptor (FQD) field 'CONTEXT_A' uses these constants */ #define QM_STASHING_EXCL_ANNOTATION 0x04 #define QM_STASHING_EXCL_DATA 0x02 #define QM_STASHING_EXCL_CTX 0x01 /* See "Intra Class Scheduling" */ /* FQD field 'OAC' (Overhead ACcounting) uses these constants */ #define QM_OAC_ICS 0x2 /* Accounting for Intra-Class Scheduling */ #define QM_OAC_CG 0x1 /* Accounting for Congestion Groups */ /* * This struct represents the 32-bit "WR_PARM_[GYR]" parameters in CGR fields * and associated commands/responses. The WRED parameters are calculated from * these fields as follows; * MaxTH = MA * (2 ^ Mn) * Slope = SA / (2 ^ Sn) * MaxP = 4 * (Pn + 1) */ struct qm_cgr_wr_parm { union { u32 word; struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u32 MA:8; u32 Mn:5; u32 SA:7; /* must be between 64-127 */ u32 Sn:6; u32 Pn:6; #else u32 Pn:6; u32 Sn:6; u32 SA:7; /* must be between 64-127 */ u32 Mn:5; u32 MA:8; #endif } __packed; }; } __packed; /* * This struct represents the 13-bit "CS_THRES" CGR field. In the corresponding * management commands, this is padded to a 16-bit structure field, so that's * how we represent it here. The congestion state threshold is calculated from * these fields as follows; * CS threshold = TA * (2 ^ Tn) */ struct qm_cgr_cs_thres { union { u16 hword; struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u16 __reserved:3; u16 TA:8; u16 Tn:5; #else u16 Tn:5; u16 TA:8; u16 __reserved:3; #endif } __packed; }; } __packed; /* * This identical structure of CGR fields is present in the "Init/Modify CGR" * commands and the "Query CGR" result. It's suctioned out here into its own * struct. */ struct __qm_mc_cgr { struct qm_cgr_wr_parm wr_parm_g; struct qm_cgr_wr_parm wr_parm_y; struct qm_cgr_wr_parm wr_parm_r; u8 wr_en_g; /* boolean, use QM_CGR_EN */ u8 wr_en_y; /* boolean, use QM_CGR_EN */ u8 wr_en_r; /* boolean, use QM_CGR_EN */ u8 cscn_en; /* boolean, use QM_CGR_EN */ union { struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u16 cscn_targ_upd_ctrl; /* use QM_CSCN_TARG_UDP_ */ u16 cscn_targ_dcp_low; /* CSCN_TARG_DCP low-16bits */ #else u16 cscn_targ_dcp_low; /* CSCN_TARG_DCP low-16bits */ u16 cscn_targ_upd_ctrl; /* use QM_CSCN_TARG_UDP_ */ #endif }; u32 cscn_targ; /* use QM_CGR_TARG_* */ }; u8 cstd_en; /* boolean, use QM_CGR_EN */ u8 cs; /* boolean, only used in query response */ union { struct qm_cgr_cs_thres cs_thres; /* use qm_cgr_cs_thres_set64() */ u16 __cs_thres; }; u8 mode; /* QMAN_CGR_MODE_FRAME not supported in rev1.0 */ } __packed; #define QM_CGR_EN 0x01 /* For wr_en_*, cscn_en, cstd_en */ #define QM_CGR_TARG_UDP_CTRL_WRITE_BIT 0x8000 /* value written to portal bit*/ #define QM_CGR_TARG_UDP_CTRL_DCP 0x4000 /* 0: SWP, 1: DCP */ #define QM_CGR_TARG_PORTAL(n) (0x80000000 >> (n)) /* s/w portal, 0-9 */ #define QM_CGR_TARG_FMAN0 0x00200000 /* direct-connect portal: fman0 */ #define QM_CGR_TARG_FMAN1 0x00100000 /* : fman1 */ /* Convert CGR thresholds to/from "cs_thres" format */ static inline u64 qm_cgr_cs_thres_get64(const struct qm_cgr_cs_thres *th) { return (u64)th->TA << th->Tn; } static inline int qm_cgr_cs_thres_set64(struct qm_cgr_cs_thres *th, u64 val, int roundup) { u32 e = 0; int oddbit = 0; while (val > 0xff) { oddbit = val & 1; val >>= 1; e++; if (roundup && oddbit) val++; } th->Tn = e; th->TA = val; return 0; } /* See 1.5.8.5.1: "Initialize FQ" */ /* See 1.5.8.5.2: "Query FQ" */ /* See 1.5.8.5.3: "Query FQ Non-Programmable Fields" */ /* See 1.5.8.5.4: "Alter FQ State Commands " */ /* See 1.5.8.6.1: "Initialize/Modify CGR" */ /* See 1.5.8.6.2: "CGR Test Write" */ /* See 1.5.8.6.3: "Query CGR" */ /* See 1.5.8.6.4: "Query Congestion Group State" */ struct qm_mcc_initfq { u8 __reserved1; u16 we_mask; /* Write Enable Mask */ u32 fqid; /* 24-bit */ u16 count; /* Initialises 'count+1' FQDs */ struct qm_fqd fqd; /* the FQD fields go here */ u8 __reserved3[30]; } __packed; struct qm_mcc_queryfq { u8 __reserved1[3]; u32 fqid; /* 24-bit */ u8 __reserved2[56]; } __packed; struct qm_mcc_queryfq_np { u8 __reserved1[3]; u32 fqid; /* 24-bit */ u8 __reserved2[56]; } __packed; struct qm_mcc_alterfq { u8 __reserved1[3]; u32 fqid; /* 24-bit */ u8 __reserved2; u8 count; /* number of consecutive FQID */ u8 __reserved3[10]; u32 context_b; /* frame queue context b */ u8 __reserved4[40]; } __packed; struct qm_mcc_initcgr { u8 __reserved1; u16 we_mask; /* Write Enable Mask */ struct __qm_mc_cgr cgr; /* CGR fields */ u8 __reserved2[2]; u8 cgid; u8 __reserved4[32]; } __packed; struct qm_mcc_cgrtestwrite { u8 __reserved1[2]; u8 i_bcnt_hi:8;/* high 8-bits of 40-bit "Instant" */ u32 i_bcnt_lo; /* low 32-bits of 40-bit */ u8 __reserved2[23]; u8 cgid; u8 __reserved3[32]; } __packed; struct qm_mcc_querycgr { u8 __reserved1[30]; u8 cgid; u8 __reserved2[32]; } __packed; struct qm_mcc_querycongestion { u8 __reserved[63]; } __packed; struct qm_mcc_querywq { u8 __reserved; /* select channel if verb != QUERYWQ_DEDICATED */ union { u16 channel_wq; /* ignores wq (3 lsbits) */ struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u16 id:13; /* qm_channel */ u16 __reserved1:3; #else u16 __reserved1:3; u16 id:13; /* qm_channel */ #endif } __packed channel; }; u8 __reserved2[60]; } __packed; struct qm_mc_command { u8 __dont_write_directly__verb; union { struct qm_mcc_initfq initfq; struct qm_mcc_queryfq queryfq; struct qm_mcc_queryfq_np queryfq_np; struct qm_mcc_alterfq alterfq; struct qm_mcc_initcgr initcgr; struct qm_mcc_cgrtestwrite cgrtestwrite; struct qm_mcc_querycgr querycgr; struct qm_mcc_querycongestion querycongestion; struct qm_mcc_querywq querywq; }; } __packed; /* INITFQ-specific flags */ #define QM_INITFQ_WE_MASK 0x01ff /* 'Write Enable' flags; */ #define QM_INITFQ_WE_OAC 0x0100 #define QM_INITFQ_WE_ORPC 0x0080 #define QM_INITFQ_WE_CGID 0x0040 #define QM_INITFQ_WE_FQCTRL 0x0020 #define QM_INITFQ_WE_DESTWQ 0x0010 #define QM_INITFQ_WE_ICSCRED 0x0008 #define QM_INITFQ_WE_TDTHRESH 0x0004 #define QM_INITFQ_WE_CONTEXTB 0x0002 #define QM_INITFQ_WE_CONTEXTA 0x0001 /* INITCGR/MODIFYCGR-specific flags */ #define QM_CGR_WE_MASK 0x07ff /* 'Write Enable Mask'; */ #define QM_CGR_WE_WR_PARM_G 0x0400 #define QM_CGR_WE_WR_PARM_Y 0x0200 #define QM_CGR_WE_WR_PARM_R 0x0100 #define QM_CGR_WE_WR_EN_G 0x0080 #define QM_CGR_WE_WR_EN_Y 0x0040 #define QM_CGR_WE_WR_EN_R 0x0020 #define QM_CGR_WE_CSCN_EN 0x0010 #define QM_CGR_WE_CSCN_TARG 0x0008 #define QM_CGR_WE_CSTD_EN 0x0004 #define QM_CGR_WE_CS_THRES 0x0002 #define QM_CGR_WE_MODE 0x0001 struct qm_mcr_initfq { u8 __reserved1[62]; } __packed; struct qm_mcr_queryfq { u8 __reserved1[8]; struct qm_fqd fqd; /* the FQD fields are here */ u8 __reserved2[30]; } __packed; struct qm_mcr_queryfq_np { u8 __reserved1; u8 state; /* QM_MCR_NP_STATE_*** */ #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u8 __reserved2; u32 fqd_link:24; u16 __reserved3:2; u16 odp_seq:14; u16 __reserved4:2; u16 orp_nesn:14; u16 __reserved5:1; u16 orp_ea_hseq:15; u16 __reserved6:1; u16 orp_ea_tseq:15; u8 __reserved7; u32 orp_ea_hptr:24; u8 __reserved8; u32 orp_ea_tptr:24; u8 __reserved9; u32 pfdr_hptr:24; u8 __reserved10; u32 pfdr_tptr:24; u8 __reserved11[5]; u8 __reserved12:7; u8 is:1; u16 ics_surp; u32 byte_cnt; u8 __reserved13; u32 frm_cnt:24; u32 __reserved14; u16 ra1_sfdr; /* QM_MCR_NP_RA1_*** */ u16 ra2_sfdr; /* QM_MCR_NP_RA2_*** */ u16 __reserved15; u16 od1_sfdr; /* QM_MCR_NP_OD1_*** */ u16 od2_sfdr; /* QM_MCR_NP_OD2_*** */ u16 od3_sfdr; /* QM_MCR_NP_OD3_*** */ #else u8 __reserved2; u32 fqd_link:24; u16 odp_seq:14; u16 __reserved3:2; u16 orp_nesn:14; u16 __reserved4:2; u16 orp_ea_hseq:15; u16 __reserved5:1; u16 orp_ea_tseq:15; u16 __reserved6:1; u8 __reserved7; u32 orp_ea_hptr:24; u8 __reserved8; u32 orp_ea_tptr:24; u8 __reserved9; u32 pfdr_hptr:24; u8 __reserved10; u32 pfdr_tptr:24; u8 __reserved11[5]; u8 is:1; u8 __reserved12:7; u16 ics_surp; u32 byte_cnt; u8 __reserved13; u32 frm_cnt:24; u32 __reserved14; u16 ra1_sfdr; /* QM_MCR_NP_RA1_*** */ u16 ra2_sfdr; /* QM_MCR_NP_RA2_*** */ u16 __reserved15; u16 od1_sfdr; /* QM_MCR_NP_OD1_*** */ u16 od2_sfdr; /* QM_MCR_NP_OD2_*** */ u16 od3_sfdr; /* QM_MCR_NP_OD3_*** */ #endif } __packed; struct qm_mcr_alterfq { u8 fqs; /* Frame Queue Status */ u8 __reserved1[61]; } __packed; struct qm_mcr_initcgr { u8 __reserved1[62]; } __packed; struct qm_mcr_cgrtestwrite { u16 __reserved1; struct __qm_mc_cgr cgr; /* CGR fields */ u8 __reserved2[3]; u32 __reserved3:24; u32 i_bcnt_hi:8;/* high 8-bits of 40-bit "Instant" */ u32 i_bcnt_lo; /* low 32-bits of 40-bit */ u32 __reserved4:24; u32 a_bcnt_hi:8;/* high 8-bits of 40-bit "Average" */ u32 a_bcnt_lo; /* low 32-bits of 40-bit */ u16 lgt; /* Last Group Tick */ u16 wr_prob_g; u16 wr_prob_y; u16 wr_prob_r; u8 __reserved5[8]; } __packed; struct qm_mcr_querycgr { u16 __reserved1; struct __qm_mc_cgr cgr; /* CGR fields */ u8 __reserved2[3]; union { struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u32 __reserved3:24; u32 i_bcnt_hi:8;/* high 8-bits of 40-bit "Instant" */ u32 i_bcnt_lo; /* low 32-bits of 40-bit */ #else u32 i_bcnt_lo; /* low 32-bits of 40-bit */ u32 i_bcnt_hi:8;/* high 8-bits of 40-bit "Instant" */ u32 __reserved3:24; #endif }; u64 i_bcnt; }; union { struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u32 __reserved4:24; u32 a_bcnt_hi:8;/* high 8-bits of 40-bit "Average" */ u32 a_bcnt_lo; /* low 32-bits of 40-bit */ #else u32 a_bcnt_lo; /* low 32-bits of 40-bit */ u32 a_bcnt_hi:8;/* high 8-bits of 40-bit "Average" */ u32 __reserved4:24; #endif }; u64 a_bcnt; }; union { u32 cscn_targ_swp[4]; u8 __reserved5[16]; }; } __packed; struct __qm_mcr_querycongestion { u32 state[8]; }; struct qm_mcr_querycongestion { u8 __reserved[30]; /* Access this struct using QM_MCR_QUERYCONGESTION() */ struct __qm_mcr_querycongestion state; } __packed; struct qm_mcr_querywq { union { u16 channel_wq; /* ignores wq (3 lsbits) */ struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u16 id:13; /* qm_channel */ u16 __reserved:3; #else u16 __reserved:3; u16 id:13; /* qm_channel */ #endif } __packed channel; }; u8 __reserved[28]; u32 wq_len[8]; } __packed; struct qm_mc_result { u8 verb; u8 result; union { struct qm_mcr_initfq initfq; struct qm_mcr_queryfq queryfq; struct qm_mcr_queryfq_np queryfq_np; struct qm_mcr_alterfq alterfq; struct qm_mcr_initcgr initcgr; struct qm_mcr_cgrtestwrite cgrtestwrite; struct qm_mcr_querycgr querycgr; struct qm_mcr_querycongestion querycongestion; struct qm_mcr_querywq querywq; }; } __packed; #define QM_MCR_VERB_RRID 0x80 #define QM_MCR_VERB_MASK QM_MCC_VERB_MASK #define QM_MCR_VERB_INITFQ_PARKED QM_MCC_VERB_INITFQ_PARKED #define QM_MCR_VERB_INITFQ_SCHED QM_MCC_VERB_INITFQ_SCHED #define QM_MCR_VERB_QUERYFQ QM_MCC_VERB_QUERYFQ #define QM_MCR_VERB_QUERYFQ_NP QM_MCC_VERB_QUERYFQ_NP #define QM_MCR_VERB_QUERYWQ QM_MCC_VERB_QUERYWQ #define QM_MCR_VERB_QUERYWQ_DEDICATED QM_MCC_VERB_QUERYWQ_DEDICATED #define QM_MCR_VERB_ALTER_SCHED QM_MCC_VERB_ALTER_SCHED #define QM_MCR_VERB_ALTER_FE QM_MCC_VERB_ALTER_FE #define QM_MCR_VERB_ALTER_RETIRE QM_MCC_VERB_ALTER_RETIRE #define QM_MCR_VERB_ALTER_OOS QM_MCC_VERB_ALTER_OOS #define QM_MCR_RESULT_NULL 0x00 #define QM_MCR_RESULT_OK 0xf0 #define QM_MCR_RESULT_ERR_FQID 0xf1 #define QM_MCR_RESULT_ERR_FQSTATE 0xf2 #define QM_MCR_RESULT_ERR_NOTEMPTY 0xf3 /* OOS fails if FQ is !empty */ #define QM_MCR_RESULT_ERR_BADCHANNEL 0xf4 #define QM_MCR_RESULT_PENDING 0xf8 #define QM_MCR_RESULT_ERR_BADCOMMAND 0xff #define QM_MCR_NP_STATE_FE 0x10 #define QM_MCR_NP_STATE_R 0x08 #define QM_MCR_NP_STATE_MASK 0x07 /* Reads FQD::STATE; */ #define QM_MCR_NP_STATE_OOS 0x00 #define QM_MCR_NP_STATE_RETIRED 0x01 #define QM_MCR_NP_STATE_TEN_SCHED 0x02 #define QM_MCR_NP_STATE_TRU_SCHED 0x03 #define QM_MCR_NP_STATE_PARKED 0x04 #define QM_MCR_NP_STATE_ACTIVE 0x05 #define QM_MCR_NP_PTR_MASK 0x07ff /* for RA[12] & OD[123] */ #define QM_MCR_NP_RA1_NRA(v) (((v) >> 14) & 0x3) /* FQD::NRA */ #define QM_MCR_NP_RA2_IT(v) (((v) >> 14) & 0x1) /* FQD::IT */ #define QM_MCR_NP_OD1_NOD(v) (((v) >> 14) & 0x3) /* FQD::NOD */ #define QM_MCR_NP_OD3_NPC(v) (((v) >> 14) & 0x3) /* FQD::NPC */ #define QM_MCR_FQS_ORLPRESENT 0x02 /* ORL fragments to come */ #define QM_MCR_FQS_NOTEMPTY 0x01 /* FQ has enqueued frames */ /* This extracts the state for congestion group 'n' from a query response. * Eg. * u8 cgr = [...]; * struct qm_mc_result *res = [...]; * printf("congestion group %d congestion state: %d\n", cgr, * QM_MCR_QUERYCONGESTION(&res->querycongestion.state, cgr)); */ #define __CGR_WORD(num) (num >> 5) #define __CGR_SHIFT(num) (num & 0x1f) #define __CGR_NUM (sizeof(struct __qm_mcr_querycongestion) << 3) static inline int QM_MCR_QUERYCONGESTION(struct __qm_mcr_querycongestion *p, u8 cgr) { return p->state[__CGR_WORD(cgr)] & (0x80000000 >> __CGR_SHIFT(cgr)); } /* Portal and Frame Queues */ /* Represents a managed portal */ struct qman_portal; /* * This object type represents QMan frame queue descriptors (FQD), it is * cacheline-aligned, and initialised by qman_create_fq(). The structure is * defined further down. */ struct qman_fq; /* * This object type represents a QMan congestion group, it is defined further * down. */ struct qman_cgr; /* * This enum, and the callback type that returns it, are used when handling * dequeued frames via DQRR. Note that for "null" callbacks registered with the * portal object (for handling dequeues that do not demux because context_b is * NULL), the return value *MUST* be qman_cb_dqrr_consume. */ enum qman_cb_dqrr_result { /* DQRR entry can be consumed */ qman_cb_dqrr_consume, /* Like _consume, but requests parking - FQ must be held-active */ qman_cb_dqrr_park, /* Does not consume, for DCA mode only. This allows out-of-order * consumes by explicit calls to qman_dca() and/or the use of implicit * DCA via EQCR entries. */ qman_cb_dqrr_defer, /* * Stop processing without consuming this ring entry. Exits the current * qman_p_poll_dqrr() or interrupt-handling, as appropriate. If within * an interrupt handler, the callback would typically call * qman_irqsource_remove(QM_PIRQ_DQRI) before returning this value, * otherwise the interrupt will reassert immediately. */ qman_cb_dqrr_stop, /* Like qman_cb_dqrr_stop, but consumes the current entry. */ qman_cb_dqrr_consume_stop }; typedef enum qman_cb_dqrr_result (*qman_cb_dqrr)(struct qman_portal *qm, struct qman_fq *fq, const struct qm_dqrr_entry *dqrr); typedef enum qman_cb_dqrr_result (*qman_dpdk_cb_dqrr)(void *event, struct qman_portal *qm, struct qman_fq *fq, const struct qm_dqrr_entry *dqrr, void **bd); /* This callback type is used when handling buffers in dpdk pull mode */ typedef void (*qman_dpdk_pull_cb_dqrr)(struct qman_fq **fq, struct qm_dqrr_entry **dqrr, void **bufs, int num_bufs); typedef void (*qman_dpdk_cb_prepare)(struct qm_dqrr_entry *dq, void **bufs); /* * This callback type is used when handling ERNs, FQRNs and FQRLs via MR. They * are always consumed after the callback returns. */ typedef void (*qman_cb_mr)(struct qman_portal *qm, struct qman_fq *fq, const struct qm_mr_entry *msg); /* This callback type is used when handling DCP ERNs */ typedef void (*qman_cb_dc_ern)(struct qman_portal *qm, const struct qm_mr_entry *msg); /* This callback function will be used to free mbufs of ERN */ typedef uint16_t (*qman_cb_free_mbuf)(const struct qm_fd *fd); /* * s/w-visible states. Ie. tentatively scheduled + truly scheduled + active + * held-active + held-suspended are just "sched". Things like "retired" will not * be assumed until it is complete (ie. QMAN_FQ_STATE_CHANGING is set until * then, to indicate it's completing and to gate attempts to retry the retire * command). Note, park commands do not set QMAN_FQ_STATE_CHANGING because it's * technically impossible in the case of enqueue DCAs (which refer to DQRR ring * index rather than the FQ that ring entry corresponds to), so repeated park * commands are allowed (if you're silly enough to try) but won't change FQ * state, and the resulting park notifications move FQs from "sched" to * "parked". */ enum qman_fq_state { qman_fq_state_oos, qman_fq_state_parked, qman_fq_state_sched, qman_fq_state_retired }; /* * Frame queue objects (struct qman_fq) are stored within memory passed to * qman_create_fq(), as this allows stashing of caller-provided demux callback * pointers at no extra cost to stashing of (driver-internal) FQ state. If the * caller wishes to add per-FQ state and have it benefit from dequeue-stashing, * they should; * * (a) extend the qman_fq structure with their state; eg. * * // myfq is allocated and driver_fq callbacks filled in; * struct my_fq { * struct qman_fq base; * int an_extra_field; * [ ... add other fields to be associated with each FQ ...] * } *myfq = some_my_fq_allocator(); * struct qman_fq *fq = qman_create_fq(fqid, flags, &myfq->base); * * // in a dequeue callback, access extra fields from 'fq' via a cast; * struct my_fq *myfq = (struct my_fq *)fq; * do_something_with(myfq->an_extra_field); * [...] * * (b) when and if configuring the FQ for context stashing, specify how ever * many cachelines are required to stash 'struct my_fq', to accelerate not * only the QMan driver but the callback as well. */ struct qman_fq_cb { union { /* for dequeued frames */ qman_dpdk_cb_dqrr dqrr_dpdk_cb; qman_dpdk_pull_cb_dqrr dqrr_dpdk_pull_cb; qman_cb_dqrr dqrr; }; qman_dpdk_cb_prepare dqrr_prepare; qman_cb_mr ern; /* for s/w ERNs */ qman_cb_mr fqs; /* frame-queue state changes*/ }; struct qman_fq { /* Caller of qman_create_fq() provides these demux callbacks */ struct qman_fq_cb cb; u32 fqid_le; u32 fqid; int q_fd; u16 ch_id; int8_t vsp_id; u8 cgr_groupid; u8 is_static:4; u8 qp_initialized:4; /* DPDK Interface */ void *dpaa_intf; struct rte_event ev; /* affined portal in case of static queue */ struct qman_portal *qp; struct dpaa_bp_info *bp_array; volatile unsigned long flags; enum qman_fq_state state; spinlock_t fqlock; struct rb_node node; #ifdef CONFIG_FSL_QMAN_FQ_LOOKUP void **qman_fq_lookup_table; u32 key; #endif u16 nb_desc; u16 resv; u64 offloads; }; /* * This callback type is used when handling congestion group entry/exit. * 'congested' is non-zero on congestion-entry, and zero on congestion-exit. */ typedef void (*qman_cb_cgr)(struct qman_portal *qm, struct qman_cgr *cgr, int congested); struct qman_cgr { /* Set these prior to qman_create_cgr() */ u32 cgrid; /* 0..255, but u32 to allow specials like -1, 256, etc.*/ qman_cb_cgr cb; /* These are private to the driver */ u16 chan; /* portal channel this object is created on */ struct list_head node; }; /* Flags to qman_create_fq() */ #define QMAN_FQ_FLAG_NO_ENQUEUE 0x00000001 /* can't enqueue */ #define QMAN_FQ_FLAG_NO_MODIFY 0x00000002 /* can only enqueue */ #define QMAN_FQ_FLAG_TO_DCPORTAL 0x00000004 /* consumed by CAAM/PME/Fman */ #define QMAN_FQ_FLAG_LOCKED 0x00000008 /* multi-core locking */ #define QMAN_FQ_FLAG_AS_IS 0x00000010 /* query h/w state */ #define QMAN_FQ_FLAG_DYNAMIC_FQID 0x00000020 /* (de)allocate fqid */ /* Flags to qman_destroy_fq() */ #define QMAN_FQ_DESTROY_PARKED 0x00000001 /* FQ can be parked or OOS */ /* Flags from qman_fq_state() */ #define QMAN_FQ_STATE_CHANGING 0x80000000 /* 'state' is changing */ #define QMAN_FQ_STATE_NE 0x40000000 /* retired FQ isn't empty */ #define QMAN_FQ_STATE_ORL 0x20000000 /* retired FQ has ORL */ #define QMAN_FQ_STATE_BLOCKOOS 0xe0000000 /* if any are set, no OOS */ #define QMAN_FQ_STATE_CGR_EN 0x10000000 /* CGR enabled */ #define QMAN_FQ_STATE_VDQCR 0x08000000 /* being volatile dequeued */ /* Flags to qman_init_fq() */ #define QMAN_INITFQ_FLAG_SCHED 0x00000001 /* schedule rather than park */ #define QMAN_INITFQ_FLAG_LOCAL 0x00000004 /* set dest portal */ /* Flags to qman_enqueue(). NB, the strange numbering is to align with hardware, * bit-wise. (NB: the PME API is sensitive to these precise numberings too, so * any change here should be audited in PME.) */ #define QMAN_ENQUEUE_FLAG_WATCH_CGR 0x00080000 /* watch congestion state */ #define QMAN_ENQUEUE_FLAG_DCA 0x00008000 /* perform enqueue-DCA */ #define QMAN_ENQUEUE_FLAG_DCA_PARK 0x00004000 /* If DCA, requests park */ #define QMAN_ENQUEUE_FLAG_DCA_PTR(p) /* If DCA, p is DQRR entry */ \ (((u32)(p) << 2) & 0x00000f00) #define QMAN_ENQUEUE_FLAG_C_GREEN 0x00000000 /* choose one C_*** flag */ #define QMAN_ENQUEUE_FLAG_C_YELLOW 0x00000008 #define QMAN_ENQUEUE_FLAG_C_RED 0x00000010 #define QMAN_ENQUEUE_FLAG_C_OVERRIDE 0x00000018 /* For the ORP-specific qman_enqueue_orp() variant; * - this flag indicates "Not Last In Sequence", ie. all but the final fragment * of a frame. */ #define QMAN_ENQUEUE_FLAG_NLIS 0x01000000 /* - this flag performs no enqueue but fills in an ORP sequence number that * would otherwise block it (eg. if a frame has been dropped). */ #define QMAN_ENQUEUE_FLAG_HOLE 0x02000000 /* - this flag performs no enqueue but advances NESN to the given sequence * number. */ #define QMAN_ENQUEUE_FLAG_NESN 0x04000000 /* Flags to qman_modify_cgr() */ #define QMAN_CGR_FLAG_USE_INIT 0x00000001 #define QMAN_CGR_MODE_FRAME 0x00000001 #ifdef CONFIG_FSL_QMAN_FQ_LOOKUP __rte_internal void qman_set_fq_lookup_table(void **table); #endif /** * qman_get_portal_index - get portal configuration index */ int qman_get_portal_index(void); __rte_internal u32 qman_portal_dequeue(struct rte_event ev[], unsigned int poll_limit, void **bufs); /** * qman_irqsource_add - add processing sources to be interrupt-driven * @bits: bitmask of QM_PIRQ_**I processing sources * * Adds processing sources that should be interrupt-driven (rather than * processed via qman_poll_***() functions). Returns zero for success, or * -EINVAL if the current CPU is sharing a portal hosted on another CPU. */ __rte_internal int qman_irqsource_add(u32 bits); /** * qman_fq_portal_irqsource_add - samilar to qman_irqsource_add, but it * takes portal (fq specific) as input rather than using the thread affined * portal. */ __rte_internal int qman_fq_portal_irqsource_add(struct qman_portal *p, u32 bits); /** * qman_irqsource_remove - remove processing sources from being interrupt-driven * @bits: bitmask of QM_PIRQ_**I processing sources * * Removes processing sources from being interrupt-driven, so that they will * instead be processed via qman_poll_***() functions. Returns zero for success, * or -EINVAL if the current CPU is sharing a portal hosted on another CPU. */ __rte_internal int qman_irqsource_remove(u32 bits); /** * qman_fq_portal_irqsource_remove - similar to qman_irqsource_remove, but it * takes portal (fq specific) as input rather than using the thread affined * portal. */ __rte_internal int qman_fq_portal_irqsource_remove(struct qman_portal *p, u32 bits); /** * qman_affine_channel - return the channel ID of an portal * @cpu: the cpu whose affine portal is the subject of the query * * If @cpu is -1, the affine portal for the current CPU will be used. It is a * bug to call this function for any value of @cpu (other than -1) that is not a * member of the cpu mask. */ u16 qman_affine_channel(int cpu); __rte_internal unsigned int qman_portal_poll_rx(unsigned int poll_limit, void **bufs, struct qman_portal *q); /** * qman_set_vdq - Issue a volatile dequeue command * @fq: Frame Queue on which the volatile dequeue command is issued * @num: Number of Frames requested for volatile dequeue * @vdqcr_flags: QM_VDQCR_EXACT flag to for VDQCR command * * This function will issue a volatile dequeue command to the QMAN. */ __rte_internal int qman_set_vdq(struct qman_fq *fq, u16 num, uint32_t vdqcr_flags); /** * qman_dequeue - Get the DQRR entry after volatile dequeue command * @fq: Frame Queue on which the volatile dequeue command is issued * * This function will return the DQRR entry after a volatile dequeue command * is issued. It will keep returning NULL until there is no packet available on * the DQRR. */ __rte_internal struct qm_dqrr_entry *qman_dequeue(struct qman_fq *fq); /** * qman_dqrr_consume - Consume the DQRR entriy after volatile dequeue * @fq: Frame Queue on which the volatile dequeue command is issued * @dq: DQRR entry to consume. This is the one which is provided by the * 'qbman_dequeue' command. * * This will consume the DQRR enrey and make it available for next volatile * dequeue. */ __rte_internal void qman_dqrr_consume(struct qman_fq *fq, struct qm_dqrr_entry *dq); /** * qman_poll_dqrr - process DQRR (fast-path) entries * @limit: the maximum number of DQRR entries to process * * Use of this function requires that DQRR processing not be interrupt-driven. * Ie. the value returned by qman_irqsource_get() should not include * QM_PIRQ_DQRI. If the current CPU is sharing a portal hosted on another CPU, * this function will return -EINVAL, otherwise the return value is >=0 and * represents the number of DQRR entries processed. */ __rte_internal int qman_poll_dqrr(unsigned int limit); /** * qman_poll * * Dispatcher logic on a cpu can use this to trigger any maintenance of the * affine portal. There are two classes of portal processing in question; * fast-path (which involves demuxing dequeue ring (DQRR) entries and tracking * enqueue ring (EQCR) consumption), and slow-path (which involves EQCR * thresholds, congestion state changes, etc). This function does whatever * processing is not triggered by interrupts. * * Note, if DQRR and some slow-path processing are poll-driven (rather than * interrupt-driven) then this function uses a heuristic to determine how often * to run slow-path processing - as slow-path processing introduces at least a * minimum latency each time it is run, whereas fast-path (DQRR) processing is * close to zero-cost if there is no work to be done. */ void qman_poll(void); /** * qman_stop_dequeues - Stop h/w dequeuing to the s/w portal * * Disables DQRR processing of the portal. This is reference-counted, so * qman_start_dequeues() must be called as many times as qman_stop_dequeues() to * truly re-enable dequeuing. */ void qman_stop_dequeues(void); /** * qman_start_dequeues - (Re)start h/w dequeuing to the s/w portal * * Enables DQRR processing of the portal. This is reference-counted, so * qman_start_dequeues() must be called as many times as qman_stop_dequeues() to * truly re-enable dequeuing. */ void qman_start_dequeues(void); /** * qman_static_dequeue_add - Add pool channels to the portal SDQCR * @pools: bit-mask of pool channels, using QM_SDQCR_CHANNELS_POOL(n) * * Adds a set of pool channels to the portal's static dequeue command register * (SDQCR). The requested pools are limited to those the portal has dequeue * access to. */ __rte_internal void qman_static_dequeue_add(u32 pools, struct qman_portal *qm); /** * qman_static_dequeue_del - Remove pool channels from the portal SDQCR * @pools: bit-mask of pool channels, using QM_SDQCR_CHANNELS_POOL(n) * * Removes a set of pool channels from the portal's static dequeue command * register (SDQCR). The requested pools are limited to those the portal has * dequeue access to. */ void qman_static_dequeue_del(u32 pools, struct qman_portal *qp); /** * qman_static_dequeue_get - return the portal's current SDQCR * * Returns the portal's current static dequeue command register (SDQCR). The * entire register is returned, so if only the currently-enabled pool channels * are desired, mask the return value with QM_SDQCR_CHANNELS_POOL_MASK. */ u32 qman_static_dequeue_get(struct qman_portal *qp); /** * qman_dca - Perform a Discrete Consumption Acknowledgment * @dq: the DQRR entry to be consumed * @park_request: indicates whether the held-active @fq should be parked * * Only allowed in DCA-mode portals, for DQRR entries whose handler callback had * previously returned 'qman_cb_dqrr_defer'. NB, as with the other APIs, this * does not take a 'portal' argument but implies the core affine portal from the * cpu that is currently executing the function. For reasons of locking, this * function must be called from the same CPU as that which processed the DQRR * entry in the first place. */ void qman_dca(const struct qm_dqrr_entry *dq, int park_request); /** * qman_dca_index - Perform a Discrete Consumption Acknowledgment * @index: the DQRR index to be consumed * @park_request: indicates whether the held-active @fq should be parked * * Only allowed in DCA-mode portals, for DQRR entries whose handler callback had * previously returned 'qman_cb_dqrr_defer'. NB, as with the other APIs, this * does not take a 'portal' argument but implies the core affine portal from the * cpu that is currently executing the function. For reasons of locking, this * function must be called from the same CPU as that which processed the DQRR * entry in the first place. */ __rte_internal void qman_dca_index(u8 index, int park_request); /** * qman_eqcr_is_empty - Determine if portal's EQCR is empty * * For use in situations where a cpu-affine caller needs to determine when all * enqueues for the local portal have been processed by Qman but can't use the * QMAN_ENQUEUE_FLAG_WAIT_SYNC flag to do this from the final qman_enqueue(). * The function forces tracking of EQCR consumption (which normally doesn't * happen until enqueue processing needs to find space to put new enqueue * commands), and returns zero if the ring still has unprocessed entries, * non-zero if it is empty. */ int qman_eqcr_is_empty(void); /** * qman_set_dc_ern - Set the handler for DCP enqueue rejection notifications * @handler: callback for processing DCP ERNs * @affine: whether this handler is specific to the locally affine portal * * If a hardware block's interface to Qman (ie. its direct-connect portal, or * DCP) is configured not to receive enqueue rejections, then any enqueues * through that DCP that are rejected will be sent to a given software portal. * If @affine is non-zero, then this handler will only be used for DCP ERNs * received on the portal affine to the current CPU. If multiple CPUs share a * portal and they all call this function, they will be setting the handler for * the same portal! If @affine is zero, then this handler will be global to all * portals handled by this instance of the driver. Only those portals that do * not have their own affine handler will use the global handler. */ void qman_set_dc_ern(qman_cb_dc_ern handler, int affine); /* FQ management */ /* ------------- */ /** * qman_create_fq - Allocates a FQ * @fqid: the index of the FQD to encapsulate, must be "Out of Service" * @flags: bit-mask of QMAN_FQ_FLAG_*** options * @fq: memory for storing the 'fq', with callbacks filled in * * Creates a frame queue object for the given @fqid, unless the * QMAN_FQ_FLAG_DYNAMIC_FQID flag is set in @flags, in which case a FQID is * dynamically allocated (or the function fails if none are available). Once * created, the caller should not touch the memory at 'fq' except as extended to * adjacent memory for user-defined fields (see the definition of "struct * qman_fq" for more info). NO_MODIFY is only intended for enqueuing to * pre-existing frame-queues that aren't to be otherwise interfered with, it * prevents all other modifications to the frame queue. The TO_DCPORTAL flag * causes the driver to honour any contextB modifications requested in the * qm_init_fq() API, as this indicates the frame queue will be consumed by a * direct-connect portal (PME, CAAM, or Fman). When frame queues are consumed by * software portals, the contextB field is controlled by the driver and can't be * modified by the caller. If the AS_IS flag is specified, management commands * will be used on portal @p to query state for frame queue @fqid and construct * a frame queue object based on that, rather than assuming/requiring that it be * Out of Service. */ __rte_internal int qman_create_fq(u32 fqid, u32 flags, struct qman_fq *fq); /** * qman_destroy_fq - Deallocates a FQ * @fq: the frame queue object to release * @flags: bit-mask of QMAN_FQ_FREE_*** options * * The memory for this frame queue object ('fq' provided in qman_create_fq()) is * not deallocated but the caller regains ownership, to do with as desired. The * FQ must be in the 'out-of-service' state unless the QMAN_FQ_FREE_PARKED flag * is specified, in which case it may also be in the 'parked' state. */ void qman_destroy_fq(struct qman_fq *fq, u32 flags); /** * qman_fq_fqid - Queries the frame queue ID of a FQ object * @fq: the frame queue object to query */ __rte_internal u32 qman_fq_fqid(struct qman_fq *fq); /** * qman_fq_state - Queries the state of a FQ object * @fq: the frame queue object to query * @state: pointer to state enum to return the FQ scheduling state * @flags: pointer to state flags to receive QMAN_FQ_STATE_*** bitmask * * Queries the state of the FQ object, without performing any h/w commands. * This captures the state, as seen by the driver, at the time the function * executes. */ __rte_internal void qman_fq_state(struct qman_fq *fq, enum qman_fq_state *state, u32 *flags); /** * qman_init_fq - Initialises FQ fields, leaves the FQ "parked" or "scheduled" * @fq: the frame queue object to modify, must be 'parked' or new. * @flags: bit-mask of QMAN_INITFQ_FLAG_*** options * @opts: the FQ-modification settings, as defined in the low-level API * * The @opts parameter comes from the low-level portal API. Select * QMAN_INITFQ_FLAG_SCHED in @flags to cause the frame queue to be scheduled * rather than parked. NB, @opts can be NULL. * * Note that some fields and options within @opts may be ignored or overwritten * by the driver; * 1. the 'count' and 'fqid' fields are always ignored (this operation only * affects one frame queue: @fq). * 2. the QM_INITFQ_WE_CONTEXTB option of the 'we_mask' field and the associated * 'fqd' structure's 'context_b' field are sometimes overwritten; * - if @fq was not created with QMAN_FQ_FLAG_TO_DCPORTAL, then context_b is * initialised to a value used by the driver for demux. * - if context_b is initialised for demux, so is context_a in case stashing * is requested (see item 4). * (So caller control of context_b is only possible for TO_DCPORTAL frame queue * objects.) * 3. if @flags contains QMAN_INITFQ_FLAG_LOCAL, the 'fqd' structure's * 'dest::channel' field will be overwritten to match the portal used to issue * the command. If the WE_DESTWQ write-enable bit had already been set by the * caller, the channel workqueue will be left as-is, otherwise the write-enable * bit is set and the workqueue is set to a default of 4. If the "LOCAL" flag * isn't set, the destination channel/workqueue fields and the write-enable bit * are left as-is. * 4. if the driver overwrites context_a/b for demux, then if * QM_INITFQ_WE_CONTEXTA is set, the driver will only overwrite * context_a.address fields and will leave the stashing fields provided by the * user alone, otherwise it will zero out the context_a.stashing fields. */ __rte_internal int qman_init_fq(struct qman_fq *fq, u32 flags, struct qm_mcc_initfq *opts); /** * qman_schedule_fq - Schedules a FQ * @fq: the frame queue object to schedule, must be 'parked' * * Schedules the frame queue, which must be Parked, which takes it to * Tentatively-Scheduled or Truly-Scheduled depending on its fill-level. */ int qman_schedule_fq(struct qman_fq *fq); /** * qman_retire_fq - Retires a FQ * @fq: the frame queue object to retire * @flags: FQ flags (as per qman_fq_state) if retirement completes immediately * * Retires the frame queue. This returns zero if it succeeds immediately, +1 if * the retirement was started asynchronously, otherwise it returns negative for * failure. When this function returns zero, @flags is set to indicate whether * the retired FQ is empty and/or whether it has any ORL fragments (to show up * as ERNs). Otherwise the corresponding flags will be known when a subsequent * FQRN message shows up on the portal's message ring. * * NB, if the retirement is asynchronous (the FQ was in the Truly Scheduled or * Active state), the completion will be via the message ring as a FQRN - but * the corresponding callback may occur before this function returns!! Ie. the * caller should be prepared to accept the callback as the function is called, * not only once it has returned. */ __rte_internal int qman_retire_fq(struct qman_fq *fq, u32 *flags); /** * qman_oos_fq - Puts a FQ "out of service" * @fq: the frame queue object to be put out-of-service, must be 'retired' * * The frame queue must be retired and empty, and if any order restoration list * was released as ERNs at the time of retirement, they must all be consumed. */ __rte_internal int qman_oos_fq(struct qman_fq *fq); /** * qman_fq_flow_control - Set the XON/XOFF state of a FQ * @fq: the frame queue object to be set to XON/XOFF state, must not be 'oos', * or 'retired' or 'parked' state * @xon: boolean to set fq in XON or XOFF state * * The frame should be in Tentatively Scheduled state or Truly Schedule sate, * otherwise the IFSI interrupt will be asserted. */ int qman_fq_flow_control(struct qman_fq *fq, int xon); /** * qman_query_fq - Queries FQD fields (via h/w query command) * @fq: the frame queue object to be queried * @fqd: storage for the queried FQD fields */ int qman_query_fq(struct qman_fq *fq, struct qm_fqd *fqd); /** * qman_query_fq_has_pkts - Queries non-programmable FQD fields and returns '1' * if packets are in the frame queue. If there are no packets on frame * queue '0' is returned. * @fq: the frame queue object to be queried */ int qman_query_fq_has_pkts(struct qman_fq *fq); /** * qman_query_fq_np - Queries non-programmable FQD fields * @fq: the frame queue object to be queried * @np: storage for the queried FQD fields */ __rte_internal int qman_query_fq_np(struct qman_fq *fq, struct qm_mcr_queryfq_np *np); /** * qman_query_fq_frmcnt - Queries fq frame count * @fq: the frame queue object to be queried * @frm_cnt: number of frames in the queue */ __rte_internal int qman_query_fq_frm_cnt(struct qman_fq *fq, u32 *frm_cnt); /** * qman_query_wq - Queries work queue lengths * @query_dedicated: If non-zero, query length of WQs in the channel dedicated * to this software portal. Otherwise, query length of WQs in a * channel specified in wq. * @wq: storage for the queried WQs lengths. Also specified the channel to * to query if query_dedicated is zero. */ int qman_query_wq(u8 query_dedicated, struct qm_mcr_querywq *wq); /** * qman_volatile_dequeue - Issue a volatile dequeue command * @fq: the frame queue object to dequeue from * @flags: a bit-mask of QMAN_VOLATILE_FLAG_*** options * @vdqcr: bit mask of QM_VDQCR_*** options, as per qm_dqrr_vdqcr_set() * * Attempts to lock access to the portal's VDQCR volatile dequeue functionality. * The function will block and sleep if QMAN_VOLATILE_FLAG_WAIT is specified and * the VDQCR is already in use, otherwise returns non-zero for failure. If * QMAN_VOLATILE_FLAG_FINISH is specified, the function will only return once * the VDQCR command has finished executing (ie. once the callback for the last * DQRR entry resulting from the VDQCR command has been called). If not using * the FINISH flag, completion can be determined either by detecting the * presence of the QM_DQRR_STAT_UNSCHEDULED and QM_DQRR_STAT_DQCR_EXPIRED bits * in the "stat" field of the "struct qm_dqrr_entry" passed to the FQ's dequeue * callback, or by waiting for the QMAN_FQ_STATE_VDQCR bit to disappear from the * "flags" retrieved from qman_fq_state(). */ __rte_internal int qman_volatile_dequeue(struct qman_fq *fq, u32 flags, u32 vdqcr); /** * qman_enqueue - Enqueue a frame to a frame queue * @fq: the frame queue object to enqueue to * @fd: a descriptor of the frame to be enqueued * @flags: bit-mask of QMAN_ENQUEUE_FLAG_*** options * * Fills an entry in the EQCR of portal @qm to enqueue the frame described by * @fd. The descriptor details are copied from @fd to the EQCR entry, the 'pid' * field is ignored. The return value is non-zero on error, such as ring full * (and FLAG_WAIT not specified), congestion avoidance (FLAG_WATCH_CGR * specified), etc. If the ring is full and FLAG_WAIT is specified, this * function will block. If FLAG_INTERRUPT is set, the EQCI bit of the portal * interrupt will assert when Qman consumes the EQCR entry (subject to "status * disable", "enable", and "inhibit" registers). If FLAG_DCA is set, Qman will * perform an implied "discrete consumption acknowledgment" on the dequeue * ring's (DQRR) entry, at the ring index specified by the FLAG_DCA_IDX(x) * macro. (As an alternative to issuing explicit DCA actions on DQRR entries, * this implicit DCA can delay the release of a "held active" frame queue * corresponding to a DQRR entry until Qman consumes the EQCR entry - providing * order-preservation semantics in packet-forwarding scenarios.) If FLAG_DCA is * set, then FLAG_DCA_PARK can also be set to imply that the DQRR consumption * acknowledgment should "park request" the "held active" frame queue. Ie. * when the portal eventually releases that frame queue, it will be left in the * Parked state rather than Tentatively Scheduled or Truly Scheduled. If the * portal is watching congestion groups, the QMAN_ENQUEUE_FLAG_WATCH_CGR flag * is requested, and the FQ is a member of a congestion group, then this * function returns -EAGAIN if the congestion group is currently congested. * Note, this does not eliminate ERNs, as the async interface means we can be * sending enqueue commands to an un-congested FQ that becomes congested before * the enqueue commands are processed, but it does minimise needless thrashing * of an already busy hardware resource by throttling many of the to-be-dropped * enqueues "at the source". */ __rte_internal int qman_enqueue(struct qman_fq *fq, const struct qm_fd *fd, u32 flags); __rte_internal int qman_enqueue_multi(struct qman_fq *fq, const struct qm_fd *fd, u32 *flags, int frames_to_send); /** * qman_ern_poll_free - Polling on MR and calling a callback function to free * mbufs when SW ERNs received. */ __rte_internal void qman_ern_poll_free(void); /** * qman_ern_register_cb - Register a callback function to free buffers. */ __rte_internal void qman_ern_register_cb(qman_cb_free_mbuf cb); /** * qman_enqueue_multi_fq - Enqueue multiple frames to their respective frame * queues. * @fq[]: Array of frame queue objects to enqueue to * @fd: pointer to first descriptor of frame to be enqueued * @frames_to_send: number of frames to be sent. * * This API is similar to qman_enqueue_multi(), but it takes fd which needs * to be processed by different frame queues. */ __rte_internal int qman_enqueue_multi_fq(struct qman_fq *fq[], const struct qm_fd *fd, u32 *flags, int frames_to_send); typedef int (*qman_cb_precommit) (void *arg); /** * qman_enqueue_orp - Enqueue a frame to a frame queue using an ORP * @fq: the frame queue object to enqueue to * @fd: a descriptor of the frame to be enqueued * @flags: bit-mask of QMAN_ENQUEUE_FLAG_*** options * @orp: the frame queue object used as an order restoration point. * @orp_seqnum: the sequence number of this frame in the order restoration path * * Similar to qman_enqueue(), but with the addition of an Order Restoration * Point (@orp) and corresponding sequence number (@orp_seqnum) for this * enqueue operation to employ order restoration. Each frame queue object acts * as an Order Definition Point (ODP) by providing each frame dequeued from it * with an incrementing sequence number, this value is generally ignored unless * that sequence of dequeued frames will need order restoration later. Each * frame queue object also encapsulates an Order Restoration Point (ORP), which * is a re-assembly context for re-ordering frames relative to their sequence * numbers as they are enqueued. The ORP does not have to be within the frame * queue that receives the enqueued frame, in fact it is usually the frame * queue from which the frames were originally dequeued. For the purposes of * order restoration, multiple frames (or "fragments") can be enqueued for a * single sequence number by setting the QMAN_ENQUEUE_FLAG_NLIS flag for all * enqueues except the final fragment of a given sequence number. Ordering * between sequence numbers is guaranteed, even if fragments of different * sequence numbers are interlaced with one another. Fragments of the same * sequence number will retain the order in which they are enqueued. If no * enqueue is to performed, QMAN_ENQUEUE_FLAG_HOLE indicates that the given * sequence number is to be "skipped" by the ORP logic (eg. if a frame has been * dropped from a sequence), or QMAN_ENQUEUE_FLAG_NESN indicates that the given * sequence number should become the ORP's "Next Expected Sequence Number". * * Side note: a frame queue object can be used purely as an ORP, without * carrying any frames at all. Care should be taken not to deallocate a frame * queue object that is being actively used as an ORP, as a future allocation * of the frame queue object may start using the internal ORP before the * previous use has finished. */ int qman_enqueue_orp(struct qman_fq *fq, const struct qm_fd *fd, u32 flags, struct qman_fq *orp, u16 orp_seqnum); /** * qman_alloc_fqid_range - Allocate a contiguous range of FQIDs * @result: is set by the API to the base FQID of the allocated range * @count: the number of FQIDs required * @align: required alignment of the allocated range * @partial: non-zero if the API can return fewer than @count FQIDs * * Returns the number of frame queues allocated, or a negative error code. If * @partial is non zero, the allocation request may return a smaller range of * FQs than requested (though alignment will be as requested). If @partial is * zero, the return value will either be 'count' or negative. */ __rte_internal int qman_alloc_fqid_range(u32 *result, u32 count, u32 align, int partial); static inline int qman_alloc_fqid(u32 *result) { int ret = qman_alloc_fqid_range(result, 1, 0, 0); return (ret > 0) ? 0 : ret; } /** * qman_release_fqid_range - Release the specified range of frame queue IDs * @fqid: the base FQID of the range to deallocate * @count: the number of FQIDs in the range * * This function can also be used to seed the allocator with ranges of FQIDs * that it can subsequently allocate from. */ void qman_release_fqid_range(u32 fqid, unsigned int count); static inline void qman_release_fqid(u32 fqid) { qman_release_fqid_range(fqid, 1); } void qman_seed_fqid_range(u32 fqid, unsigned int count); int qman_shutdown_fq(u32 fqid); /** * qman_reserve_fqid_range - Reserve the specified range of frame queue IDs * @fqid: the base FQID of the range to deallocate * @count: the number of FQIDs in the range */ __rte_internal int qman_reserve_fqid_range(u32 fqid, unsigned int count); static inline int qman_reserve_fqid(u32 fqid) { return qman_reserve_fqid_range(fqid, 1); } /* Pool-channel management */ /** * qman_alloc_pool_range - Allocate a contiguous range of pool-channel IDs * @result: is set by the API to the base pool-channel ID of the allocated range * @count: the number of pool-channel IDs required * @align: required alignment of the allocated range * @partial: non-zero if the API can return fewer than @count * * Returns the number of pool-channel IDs allocated, or a negative error code. * If @partial is non zero, the allocation request may return a smaller range of * than requested (though alignment will be as requested). If @partial is zero, * the return value will either be 'count' or negative. */ __rte_internal int qman_alloc_pool_range(u32 *result, u32 count, u32 align, int partial); static inline int qman_alloc_pool(u32 *result) { int ret = qman_alloc_pool_range(result, 1, 0, 0); return (ret > 0) ? 0 : ret; } /** * qman_release_pool_range - Release the specified range of pool-channel IDs * @id: the base pool-channel ID of the range to deallocate * @count: the number of pool-channel IDs in the range */ void qman_release_pool_range(u32 id, unsigned int count); static inline void qman_release_pool(u32 id) { qman_release_pool_range(id, 1); } /** * qman_reserve_pool_range - Reserve the specified range of pool-channel IDs * @id: the base pool-channel ID of the range to reserve * @count: the number of pool-channel IDs in the range */ int qman_reserve_pool_range(u32 id, unsigned int count); static inline int qman_reserve_pool(u32 id) { return qman_reserve_pool_range(id, 1); } void qman_seed_pool_range(u32 id, unsigned int count); /* CGR management */ /* -------------- */ /** * qman_create_cgr - Register a congestion group object * @cgr: the 'cgr' object, with fields filled in * @flags: QMAN_CGR_FLAG_* values * @opts: optional state of CGR settings * * Registers this object to receiving congestion entry/exit callbacks on the * portal affine to the cpu portal on which this API is executed. If opts is * NULL then only the callback (cgr->cb) function is registered. If @flags * contains QMAN_CGR_FLAG_USE_INIT, then an init hw command (which will reset * any unspecified parameters) will be used rather than a modify hw hardware * (which only modifies the specified parameters). */ __rte_internal int qman_create_cgr(struct qman_cgr *cgr, u32 flags, struct qm_mcc_initcgr *opts); /** * qman_create_cgr_to_dcp - Register a congestion group object to DCP portal * @cgr: the 'cgr' object, with fields filled in * @flags: QMAN_CGR_FLAG_* values * @dcp_portal: the DCP portal to which the cgr object is registered. * @opts: optional state of CGR settings * */ int qman_create_cgr_to_dcp(struct qman_cgr *cgr, u32 flags, u16 dcp_portal, struct qm_mcc_initcgr *opts); /** * qman_delete_cgr - Deregisters a congestion group object * @cgr: the 'cgr' object to deregister * * "Unplugs" this CGR object from the portal affine to the cpu on which this API * is executed. This must be excuted on the same affine portal on which it was * created. */ __rte_internal int qman_delete_cgr(struct qman_cgr *cgr); /** * qman_modify_cgr - Modify CGR fields * @cgr: the 'cgr' object to modify * @flags: QMAN_CGR_FLAG_* values * @opts: the CGR-modification settings * * The @opts parameter comes from the low-level portal API, and can be NULL. * Note that some fields and options within @opts may be ignored or overwritten * by the driver, in particular the 'cgrid' field is ignored (this operation * only affects the given CGR object). If @flags contains * QMAN_CGR_FLAG_USE_INIT, then an init hw command (which will reset any * unspecified parameters) will be used rather than a modify hw hardware (which * only modifies the specified parameters). */ __rte_internal int qman_modify_cgr(struct qman_cgr *cgr, u32 flags, struct qm_mcc_initcgr *opts); /** * qman_query_cgr - Queries CGR fields * @cgr: the 'cgr' object to query * @result: storage for the queried congestion group record */ int qman_query_cgr(struct qman_cgr *cgr, struct qm_mcr_querycgr *result); /** * qman_query_congestion - Queries the state of all congestion groups * @congestion: storage for the queried state of all congestion groups */ int qman_query_congestion(struct qm_mcr_querycongestion *congestion); /** * qman_alloc_cgrid_range - Allocate a contiguous range of CGR IDs * @result: is set by the API to the base CGR ID of the allocated range * @count: the number of CGR IDs required * @align: required alignment of the allocated range * @partial: non-zero if the API can return fewer than @count * * Returns the number of CGR IDs allocated, or a negative error code. * If @partial is non zero, the allocation request may return a smaller range of * than requested (though alignment will be as requested). If @partial is zero, * the return value will either be 'count' or negative. */ __rte_internal int qman_alloc_cgrid_range(u32 *result, u32 count, u32 align, int partial); static inline int qman_alloc_cgrid(u32 *result) { int ret = qman_alloc_cgrid_range(result, 1, 0, 0); return (ret > 0) ? 0 : ret; } /** * qman_release_cgrid_range - Release the specified range of CGR IDs * @id: the base CGR ID of the range to deallocate * @count: the number of CGR IDs in the range */ __rte_internal void qman_release_cgrid_range(u32 id, unsigned int count); static inline void qman_release_cgrid(u32 id) { qman_release_cgrid_range(id, 1); } /** * qman_reserve_cgrid_range - Reserve the specified range of CGR ID * @id: the base CGR ID of the range to reserve * @count: the number of CGR IDs in the range */ int qman_reserve_cgrid_range(u32 id, unsigned int count); static inline int qman_reserve_cgrid(u32 id) { return qman_reserve_cgrid_range(id, 1); } void qman_seed_cgrid_range(u32 id, unsigned int count); /* Helpers */ /* ------- */ /** * qman_poll_fq_for_init - Check if an FQ has been initialised from OOS * @fqid: the FQID that will be initialised by other s/w * * In many situations, a FQID is provided for communication between s/w * entities, and whilst the consumer is responsible for initialising and * scheduling the FQ, the producer(s) generally create a wrapper FQ object using * and only call qman_enqueue() (no FQ initialisation, scheduling, etc). Ie; * qman_create_fq(..., QMAN_FQ_FLAG_NO_MODIFY, ...); * However, data can not be enqueued to the FQ until it is initialised out of * the OOS state - this function polls for that condition. It is particularly * useful for users of IPC functions - each endpoint's Rx FQ is the other * endpoint's Tx FQ, so each side can initialise and schedule their Rx FQ object * and then use this API on the (NO_MODIFY) Tx FQ object in order to * synchronise. The function returns zero for success, +1 if the FQ is still in * the OOS state, or negative if there was an error. */ static inline int qman_poll_fq_for_init(struct qman_fq *fq) { struct qm_mcr_queryfq_np np; int err; err = qman_query_fq_np(fq, &np); if (err) return err; if ((np.state & QM_MCR_NP_STATE_MASK) == QM_MCR_NP_STATE_OOS) return 1; return 0; } #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ #define cpu_to_hw_sg(x) #define hw_sg_to_cpu(x) #else #define cpu_to_hw_sg(x) __cpu_to_hw_sg(x) #define hw_sg_to_cpu(x) __hw_sg_to_cpu(x) static inline void __cpu_to_hw_sg(struct qm_sg_entry *sgentry) { sgentry->opaque = cpu_to_be64(sgentry->opaque); sgentry->val = cpu_to_be32(sgentry->val); sgentry->val_off = cpu_to_be16(sgentry->val_off); } static inline void __hw_sg_to_cpu(struct qm_sg_entry *sgentry) { sgentry->opaque = be64_to_cpu(sgentry->opaque); sgentry->val = be32_to_cpu(sgentry->val); sgentry->val_off = be16_to_cpu(sgentry->val_off); } #endif #ifdef __cplusplus } #endif #endif /* __FSL_QMAN_H */