/*- * BSD LICENSE * * Copyright (c) 2015-2016 Amazon.com, Inc. or its affiliates. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of copyright holder nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include "ena_ethdev.h" #include "ena_logs.h" #include "ena_platform.h" #include "ena_com.h" #include "ena_eth_com.h" #include #include #include #include #define DRV_MODULE_VER_MAJOR 1 #define DRV_MODULE_VER_MINOR 1 #define DRV_MODULE_VER_SUBMINOR 0 #define ENA_IO_TXQ_IDX(q) (2 * (q)) #define ENA_IO_RXQ_IDX(q) (2 * (q) + 1) /*reverse version of ENA_IO_RXQ_IDX*/ #define ENA_IO_RXQ_IDX_REV(q) ((q - 1) / 2) /* While processing submitted and completed descriptors (rx and tx path * respectively) in a loop it is desired to: * - perform batch submissions while populating sumbissmion queue * - avoid blocking transmission of other packets during cleanup phase * Hence the utilization ratio of 1/8 of a queue size. */ #define ENA_RING_DESCS_RATIO(ring_size) (ring_size / 8) #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l) #define TEST_BIT(val, bit_shift) (val & (1UL << bit_shift)) #define GET_L4_HDR_LEN(mbuf) \ ((rte_pktmbuf_mtod_offset(mbuf, struct tcp_hdr *, \ mbuf->l3_len + mbuf->l2_len)->data_off) >> 4) #define ENA_RX_RSS_TABLE_LOG_SIZE 7 #define ENA_RX_RSS_TABLE_SIZE (1 << ENA_RX_RSS_TABLE_LOG_SIZE) #define ENA_HASH_KEY_SIZE 40 #define ENA_ETH_SS_STATS 0xFF #define ETH_GSTRING_LEN 32 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) #define ENA_MAX_RING_DESC ENA_DEFAULT_RING_SIZE #define ENA_MIN_RING_DESC 128 enum ethtool_stringset { ETH_SS_TEST = 0, ETH_SS_STATS, }; struct ena_stats { char name[ETH_GSTRING_LEN]; int stat_offset; }; #define ENA_STAT_ENA_COM_ENTRY(stat) { \ .name = #stat, \ .stat_offset = offsetof(struct ena_com_stats_admin, stat) \ } #define ENA_STAT_ENTRY(stat, stat_type) { \ .name = #stat, \ .stat_offset = offsetof(struct ena_stats_##stat_type, stat) \ } #define ENA_STAT_RX_ENTRY(stat) \ ENA_STAT_ENTRY(stat, rx) #define ENA_STAT_TX_ENTRY(stat) \ ENA_STAT_ENTRY(stat, tx) #define ENA_STAT_GLOBAL_ENTRY(stat) \ ENA_STAT_ENTRY(stat, dev) /* * Each rte_memzone should have unique name. * To satisfy it, count number of allocation and add it to name. */ uint32_t ena_alloc_cnt; static const struct ena_stats ena_stats_global_strings[] = { ENA_STAT_GLOBAL_ENTRY(tx_timeout), ENA_STAT_GLOBAL_ENTRY(io_suspend), ENA_STAT_GLOBAL_ENTRY(io_resume), ENA_STAT_GLOBAL_ENTRY(wd_expired), ENA_STAT_GLOBAL_ENTRY(interface_up), ENA_STAT_GLOBAL_ENTRY(interface_down), ENA_STAT_GLOBAL_ENTRY(admin_q_pause), }; static const struct ena_stats ena_stats_tx_strings[] = { ENA_STAT_TX_ENTRY(cnt), ENA_STAT_TX_ENTRY(bytes), ENA_STAT_TX_ENTRY(queue_stop), ENA_STAT_TX_ENTRY(queue_wakeup), ENA_STAT_TX_ENTRY(dma_mapping_err), ENA_STAT_TX_ENTRY(linearize), ENA_STAT_TX_ENTRY(linearize_failed), ENA_STAT_TX_ENTRY(tx_poll), ENA_STAT_TX_ENTRY(doorbells), ENA_STAT_TX_ENTRY(prepare_ctx_err), ENA_STAT_TX_ENTRY(missing_tx_comp), ENA_STAT_TX_ENTRY(bad_req_id), }; static const struct ena_stats ena_stats_rx_strings[] = { ENA_STAT_RX_ENTRY(cnt), ENA_STAT_RX_ENTRY(bytes), ENA_STAT_RX_ENTRY(refil_partial), ENA_STAT_RX_ENTRY(bad_csum), ENA_STAT_RX_ENTRY(page_alloc_fail), ENA_STAT_RX_ENTRY(skb_alloc_fail), ENA_STAT_RX_ENTRY(dma_mapping_err), ENA_STAT_RX_ENTRY(bad_desc_num), ENA_STAT_RX_ENTRY(small_copy_len_pkt), }; static const struct ena_stats ena_stats_ena_com_strings[] = { ENA_STAT_ENA_COM_ENTRY(aborted_cmd), ENA_STAT_ENA_COM_ENTRY(submitted_cmd), ENA_STAT_ENA_COM_ENTRY(completed_cmd), ENA_STAT_ENA_COM_ENTRY(out_of_space), ENA_STAT_ENA_COM_ENTRY(no_completion), }; #define ENA_STATS_ARRAY_GLOBAL ARRAY_SIZE(ena_stats_global_strings) #define ENA_STATS_ARRAY_TX ARRAY_SIZE(ena_stats_tx_strings) #define ENA_STATS_ARRAY_RX ARRAY_SIZE(ena_stats_rx_strings) #define ENA_STATS_ARRAY_ENA_COM ARRAY_SIZE(ena_stats_ena_com_strings) #define QUEUE_OFFLOADS (DEV_TX_OFFLOAD_TCP_CKSUM |\ DEV_TX_OFFLOAD_UDP_CKSUM |\ DEV_TX_OFFLOAD_IPV4_CKSUM |\ DEV_TX_OFFLOAD_TCP_TSO) #define MBUF_OFFLOADS (PKT_TX_L4_MASK |\ PKT_TX_IP_CKSUM |\ PKT_TX_TCP_SEG) /** Vendor ID used by Amazon devices */ #define PCI_VENDOR_ID_AMAZON 0x1D0F /** Amazon devices */ #define PCI_DEVICE_ID_ENA_VF 0xEC20 #define PCI_DEVICE_ID_ENA_LLQ_VF 0xEC21 #define ENA_TX_OFFLOAD_MASK (\ PKT_TX_L4_MASK | \ PKT_TX_IP_CKSUM | \ PKT_TX_TCP_SEG) #define ENA_TX_OFFLOAD_NOTSUP_MASK \ (PKT_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK) int ena_logtype_init; int ena_logtype_driver; static const struct rte_pci_id pci_id_ena_map[] = { { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_LLQ_VF) }, { .device_id = 0 }, }; static struct ena_aenq_handlers aenq_handlers; static int ena_device_init(struct ena_com_dev *ena_dev, struct ena_com_dev_get_features_ctx *get_feat_ctx, bool *wd_state); static int ena_dev_configure(struct rte_eth_dev *dev); static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts); static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts); static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx, uint16_t nb_desc, unsigned int socket_id, const struct rte_eth_txconf *tx_conf); static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx, uint16_t nb_desc, unsigned int socket_id, const struct rte_eth_rxconf *rx_conf, struct rte_mempool *mp); static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts); static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count); static void ena_init_rings(struct ena_adapter *adapter); static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu); static int ena_start(struct rte_eth_dev *dev); static void ena_stop(struct rte_eth_dev *dev); static void ena_close(struct rte_eth_dev *dev); static int ena_dev_reset(struct rte_eth_dev *dev); static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats); static void ena_rx_queue_release_all(struct rte_eth_dev *dev); static void ena_tx_queue_release_all(struct rte_eth_dev *dev); static void ena_rx_queue_release(void *queue); static void ena_tx_queue_release(void *queue); static void ena_rx_queue_release_bufs(struct ena_ring *ring); static void ena_tx_queue_release_bufs(struct ena_ring *ring); static int ena_link_update(struct rte_eth_dev *dev, int wait_to_complete); static int ena_queue_restart(struct ena_ring *ring); static int ena_queue_restart_all(struct rte_eth_dev *dev, enum ena_ring_type ring_type); static void ena_stats_restart(struct rte_eth_dev *dev); static void ena_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info); static int ena_rss_reta_update(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size); static int ena_rss_reta_query(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size); static int ena_get_sset_count(struct rte_eth_dev *dev, int sset); static void ena_interrupt_handler_rte(void *cb_arg); static void ena_timer_wd_callback(struct rte_timer *timer, void *arg); static const struct eth_dev_ops ena_dev_ops = { .dev_configure = ena_dev_configure, .dev_infos_get = ena_infos_get, .rx_queue_setup = ena_rx_queue_setup, .tx_queue_setup = ena_tx_queue_setup, .dev_start = ena_start, .dev_stop = ena_stop, .link_update = ena_link_update, .stats_get = ena_stats_get, .mtu_set = ena_mtu_set, .rx_queue_release = ena_rx_queue_release, .tx_queue_release = ena_tx_queue_release, .dev_close = ena_close, .dev_reset = ena_dev_reset, .reta_update = ena_rss_reta_update, .reta_query = ena_rss_reta_query, }; #define NUMA_NO_NODE SOCKET_ID_ANY static inline int ena_cpu_to_node(int cpu) { struct rte_config *config = rte_eal_get_configuration(); struct rte_fbarray *arr = &config->mem_config->memzones; const struct rte_memzone *mz; if (unlikely(cpu >= RTE_MAX_MEMZONE)) return NUMA_NO_NODE; mz = rte_fbarray_get(arr, cpu); return mz->socket_id; } static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf, struct ena_com_rx_ctx *ena_rx_ctx) { uint64_t ol_flags = 0; uint32_t packet_type = 0; if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) packet_type |= RTE_PTYPE_L4_TCP; else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP) packet_type |= RTE_PTYPE_L4_UDP; if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) packet_type |= RTE_PTYPE_L3_IPV4; else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) packet_type |= RTE_PTYPE_L3_IPV6; if (unlikely(ena_rx_ctx->l4_csum_err)) ol_flags |= PKT_RX_L4_CKSUM_BAD; if (unlikely(ena_rx_ctx->l3_csum_err)) ol_flags |= PKT_RX_IP_CKSUM_BAD; mbuf->ol_flags = ol_flags; mbuf->packet_type = packet_type; } static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf, struct ena_com_tx_ctx *ena_tx_ctx, uint64_t queue_offloads) { struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta; if ((mbuf->ol_flags & MBUF_OFFLOADS) && (queue_offloads & QUEUE_OFFLOADS)) { /* check if TSO is required */ if ((mbuf->ol_flags & PKT_TX_TCP_SEG) && (queue_offloads & DEV_TX_OFFLOAD_TCP_TSO)) { ena_tx_ctx->tso_enable = true; ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf); } /* check if L3 checksum is needed */ if ((mbuf->ol_flags & PKT_TX_IP_CKSUM) && (queue_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)) ena_tx_ctx->l3_csum_enable = true; if (mbuf->ol_flags & PKT_TX_IPV6) { ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6; } else { ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4; /* set don't fragment (DF) flag */ if (mbuf->packet_type & (RTE_PTYPE_L4_NONFRAG | RTE_PTYPE_INNER_L4_NONFRAG)) ena_tx_ctx->df = true; } /* check if L4 checksum is needed */ if ((mbuf->ol_flags & PKT_TX_TCP_CKSUM) && (queue_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)) { ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP; ena_tx_ctx->l4_csum_enable = true; } else if ((mbuf->ol_flags & PKT_TX_UDP_CKSUM) && (queue_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)) { ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP; ena_tx_ctx->l4_csum_enable = true; } else { ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN; ena_tx_ctx->l4_csum_enable = false; } ena_meta->mss = mbuf->tso_segsz; ena_meta->l3_hdr_len = mbuf->l3_len; ena_meta->l3_hdr_offset = mbuf->l2_len; ena_tx_ctx->meta_valid = true; } else { ena_tx_ctx->meta_valid = false; } } static inline int validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id) { if (likely(req_id < rx_ring->ring_size)) return 0; RTE_LOG(ERR, PMD, "Invalid rx req_id: %hu\n", req_id); rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID; rx_ring->adapter->trigger_reset = true; return -EFAULT; } static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id) { struct ena_tx_buffer *tx_info = NULL; if (likely(req_id < tx_ring->ring_size)) { tx_info = &tx_ring->tx_buffer_info[req_id]; if (likely(tx_info->mbuf)) return 0; } if (tx_info) RTE_LOG(ERR, PMD, "tx_info doesn't have valid mbuf\n"); else RTE_LOG(ERR, PMD, "Invalid req_id: %hu\n", req_id); /* Trigger device reset */ tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID; tx_ring->adapter->trigger_reset = true; return -EFAULT; } static void ena_config_host_info(struct ena_com_dev *ena_dev) { struct ena_admin_host_info *host_info; int rc; /* Allocate only the host info */ rc = ena_com_allocate_host_info(ena_dev); if (rc) { RTE_LOG(ERR, PMD, "Cannot allocate host info\n"); return; } host_info = ena_dev->host_attr.host_info; host_info->os_type = ENA_ADMIN_OS_DPDK; host_info->kernel_ver = RTE_VERSION; snprintf((char *)host_info->kernel_ver_str, sizeof(host_info->kernel_ver_str), "%s", rte_version()); host_info->os_dist = RTE_VERSION; snprintf((char *)host_info->os_dist_str, sizeof(host_info->os_dist_str), "%s", rte_version()); host_info->driver_version = (DRV_MODULE_VER_MAJOR) | (DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) | (DRV_MODULE_VER_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT); rc = ena_com_set_host_attributes(ena_dev); if (rc) { if (rc == -ENA_COM_UNSUPPORTED) RTE_LOG(WARNING, PMD, "Cannot set host attributes\n"); else RTE_LOG(ERR, PMD, "Cannot set host attributes\n"); goto err; } return; err: ena_com_delete_host_info(ena_dev); } static int ena_get_sset_count(struct rte_eth_dev *dev, int sset) { if (sset != ETH_SS_STATS) return -EOPNOTSUPP; /* Workaround for clang: * touch internal structures to prevent * compiler error */ ENA_TOUCH(ena_stats_global_strings); ENA_TOUCH(ena_stats_tx_strings); ENA_TOUCH(ena_stats_rx_strings); ENA_TOUCH(ena_stats_ena_com_strings); return dev->data->nb_tx_queues * (ENA_STATS_ARRAY_TX + ENA_STATS_ARRAY_RX) + ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENA_COM; } static void ena_config_debug_area(struct ena_adapter *adapter) { u32 debug_area_size; int rc, ss_count; ss_count = ena_get_sset_count(adapter->rte_dev, ETH_SS_STATS); if (ss_count <= 0) { RTE_LOG(ERR, PMD, "SS count is negative\n"); return; } /* allocate 32 bytes for each string and 64bit for the value */ debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count; rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size); if (rc) { RTE_LOG(ERR, PMD, "Cannot allocate debug area\n"); return; } rc = ena_com_set_host_attributes(&adapter->ena_dev); if (rc) { if (rc == -ENA_COM_UNSUPPORTED) RTE_LOG(WARNING, PMD, "Cannot set host attributes\n"); else RTE_LOG(ERR, PMD, "Cannot set host attributes\n"); goto err; } return; err: ena_com_delete_debug_area(&adapter->ena_dev); } static void ena_close(struct rte_eth_dev *dev) { struct ena_adapter *adapter = (struct ena_adapter *)(dev->data->dev_private); ena_stop(dev); adapter->state = ENA_ADAPTER_STATE_CLOSED; ena_rx_queue_release_all(dev); ena_tx_queue_release_all(dev); } static int ena_dev_reset(struct rte_eth_dev *dev) { struct rte_mempool *mb_pool_rx[ENA_MAX_NUM_QUEUES]; struct rte_eth_dev *eth_dev; struct rte_pci_device *pci_dev; struct rte_intr_handle *intr_handle; struct ena_com_dev *ena_dev; struct ena_com_dev_get_features_ctx get_feat_ctx; struct ena_adapter *adapter; int nb_queues; int rc, i; bool wd_state; adapter = (struct ena_adapter *)(dev->data->dev_private); ena_dev = &adapter->ena_dev; eth_dev = adapter->rte_dev; pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); intr_handle = &pci_dev->intr_handle; nb_queues = eth_dev->data->nb_rx_queues; ena_com_set_admin_running_state(ena_dev, false); rc = ena_com_dev_reset(ena_dev, adapter->reset_reason); if (rc) RTE_LOG(ERR, PMD, "Device reset failed\n"); for (i = 0; i < nb_queues; i++) mb_pool_rx[i] = adapter->rx_ring[i].mb_pool; ena_rx_queue_release_all(eth_dev); ena_tx_queue_release_all(eth_dev); rte_intr_disable(intr_handle); ena_com_abort_admin_commands(ena_dev); ena_com_wait_for_abort_completion(ena_dev); ena_com_admin_destroy(ena_dev); ena_com_mmio_reg_read_request_destroy(ena_dev); rc = ena_device_init(ena_dev, &get_feat_ctx, &wd_state); if (rc) { PMD_INIT_LOG(CRIT, "Cannot initialize device\n"); return rc; } adapter->wd_state = wd_state; rte_intr_enable(intr_handle); ena_com_set_admin_polling_mode(ena_dev, false); ena_com_admin_aenq_enable(ena_dev); for (i = 0; i < nb_queues; ++i) ena_rx_queue_setup(eth_dev, i, adapter->rx_ring_size, 0, NULL, mb_pool_rx[i]); for (i = 0; i < nb_queues; ++i) ena_tx_queue_setup(eth_dev, i, adapter->tx_ring_size, 0, NULL); adapter->trigger_reset = false; return 0; } static int ena_rss_reta_update(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size) { struct ena_adapter *adapter = (struct ena_adapter *)(dev->data->dev_private); struct ena_com_dev *ena_dev = &adapter->ena_dev; int rc, i; u16 entry_value; int conf_idx; int idx; if ((reta_size == 0) || (reta_conf == NULL)) return -EINVAL; if (reta_size > ENA_RX_RSS_TABLE_SIZE) { RTE_LOG(WARNING, PMD, "indirection table %d is bigger than supported (%d)\n", reta_size, ENA_RX_RSS_TABLE_SIZE); return -EINVAL; } for (i = 0 ; i < reta_size ; i++) { /* each reta_conf is for 64 entries. * to support 128 we use 2 conf of 64 */ conf_idx = i / RTE_RETA_GROUP_SIZE; idx = i % RTE_RETA_GROUP_SIZE; if (TEST_BIT(reta_conf[conf_idx].mask, idx)) { entry_value = ENA_IO_RXQ_IDX(reta_conf[conf_idx].reta[idx]); rc = ena_com_indirect_table_fill_entry(ena_dev, i, entry_value); if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) { RTE_LOG(ERR, PMD, "Cannot fill indirect table\n"); return rc; } } } rc = ena_com_indirect_table_set(ena_dev); if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) { RTE_LOG(ERR, PMD, "Cannot flush the indirect table\n"); return rc; } RTE_LOG(DEBUG, PMD, "%s(): RSS configured %d entries for port %d\n", __func__, reta_size, adapter->rte_dev->data->port_id); return 0; } /* Query redirection table. */ static int ena_rss_reta_query(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size) { struct ena_adapter *adapter = (struct ena_adapter *)(dev->data->dev_private); struct ena_com_dev *ena_dev = &adapter->ena_dev; int rc; int i; u32 indirect_table[ENA_RX_RSS_TABLE_SIZE] = {0}; int reta_conf_idx; int reta_idx; if (reta_size == 0 || reta_conf == NULL || (reta_size > RTE_RETA_GROUP_SIZE && ((reta_conf + 1) == NULL))) return -EINVAL; rc = ena_com_indirect_table_get(ena_dev, indirect_table); if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) { RTE_LOG(ERR, PMD, "cannot get indirect table\n"); return -ENOTSUP; } for (i = 0 ; i < reta_size ; i++) { reta_conf_idx = i / RTE_RETA_GROUP_SIZE; reta_idx = i % RTE_RETA_GROUP_SIZE; if (TEST_BIT(reta_conf[reta_conf_idx].mask, reta_idx)) reta_conf[reta_conf_idx].reta[reta_idx] = ENA_IO_RXQ_IDX_REV(indirect_table[i]); } return 0; } static int ena_rss_init_default(struct ena_adapter *adapter) { struct ena_com_dev *ena_dev = &adapter->ena_dev; uint16_t nb_rx_queues = adapter->rte_dev->data->nb_rx_queues; int rc, i; u32 val; rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE); if (unlikely(rc)) { RTE_LOG(ERR, PMD, "Cannot init indirect table\n"); goto err_rss_init; } for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) { val = i % nb_rx_queues; rc = ena_com_indirect_table_fill_entry(ena_dev, i, ENA_IO_RXQ_IDX(val)); if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) { RTE_LOG(ERR, PMD, "Cannot fill indirect table\n"); goto err_fill_indir; } } rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL, ENA_HASH_KEY_SIZE, 0xFFFFFFFF); if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) { RTE_LOG(INFO, PMD, "Cannot fill hash function\n"); goto err_fill_indir; } rc = ena_com_set_default_hash_ctrl(ena_dev); if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) { RTE_LOG(INFO, PMD, "Cannot fill hash control\n"); goto err_fill_indir; } rc = ena_com_indirect_table_set(ena_dev); if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) { RTE_LOG(ERR, PMD, "Cannot flush the indirect table\n"); goto err_fill_indir; } RTE_LOG(DEBUG, PMD, "RSS configured for port %d\n", adapter->rte_dev->data->port_id); return 0; err_fill_indir: ena_com_rss_destroy(ena_dev); err_rss_init: return rc; } static void ena_rx_queue_release_all(struct rte_eth_dev *dev) { struct ena_ring **queues = (struct ena_ring **)dev->data->rx_queues; int nb_queues = dev->data->nb_rx_queues; int i; for (i = 0; i < nb_queues; i++) ena_rx_queue_release(queues[i]); } static void ena_tx_queue_release_all(struct rte_eth_dev *dev) { struct ena_ring **queues = (struct ena_ring **)dev->data->tx_queues; int nb_queues = dev->data->nb_tx_queues; int i; for (i = 0; i < nb_queues; i++) ena_tx_queue_release(queues[i]); } static void ena_rx_queue_release(void *queue) { struct ena_ring *ring = (struct ena_ring *)queue; struct ena_adapter *adapter = ring->adapter; int ena_qid; ena_assert_msg(ring->configured, "API violation - releasing not configured queue"); ena_assert_msg(ring->adapter->state != ENA_ADAPTER_STATE_RUNNING, "API violation"); /* Destroy HW queue */ ena_qid = ENA_IO_RXQ_IDX(ring->id); ena_com_destroy_io_queue(&adapter->ena_dev, ena_qid); /* Free all bufs */ ena_rx_queue_release_bufs(ring); /* Free ring resources */ if (ring->rx_buffer_info) rte_free(ring->rx_buffer_info); ring->rx_buffer_info = NULL; if (ring->empty_rx_reqs) rte_free(ring->empty_rx_reqs); ring->empty_rx_reqs = NULL; ring->configured = 0; RTE_LOG(NOTICE, PMD, "RX Queue %d:%d released\n", ring->port_id, ring->id); } static void ena_tx_queue_release(void *queue) { struct ena_ring *ring = (struct ena_ring *)queue; struct ena_adapter *adapter = ring->adapter; int ena_qid; ena_assert_msg(ring->configured, "API violation. Releasing not configured queue"); ena_assert_msg(ring->adapter->state != ENA_ADAPTER_STATE_RUNNING, "API violation"); /* Destroy HW queue */ ena_qid = ENA_IO_TXQ_IDX(ring->id); ena_com_destroy_io_queue(&adapter->ena_dev, ena_qid); /* Free all bufs */ ena_tx_queue_release_bufs(ring); /* Free ring resources */ if (ring->tx_buffer_info) rte_free(ring->tx_buffer_info); if (ring->empty_tx_reqs) rte_free(ring->empty_tx_reqs); ring->empty_tx_reqs = NULL; ring->tx_buffer_info = NULL; ring->configured = 0; RTE_LOG(NOTICE, PMD, "TX Queue %d:%d released\n", ring->port_id, ring->id); } static void ena_rx_queue_release_bufs(struct ena_ring *ring) { unsigned int ring_mask = ring->ring_size - 1; while (ring->next_to_clean != ring->next_to_use) { struct rte_mbuf *m = ring->rx_buffer_info[ring->next_to_clean & ring_mask]; if (m) rte_mbuf_raw_free(m); ring->next_to_clean++; } } static void ena_tx_queue_release_bufs(struct ena_ring *ring) { unsigned int i; for (i = 0; i < ring->ring_size; ++i) { struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i]; if (tx_buf->mbuf) rte_pktmbuf_free(tx_buf->mbuf); ring->next_to_clean++; } } static int ena_link_update(struct rte_eth_dev *dev, __rte_unused int wait_to_complete) { struct rte_eth_link *link = &dev->data->dev_link; struct ena_adapter *adapter; adapter = (struct ena_adapter *)(dev->data->dev_private); link->link_status = adapter->link_status ? ETH_LINK_UP : ETH_LINK_DOWN; link->link_speed = ETH_SPEED_NUM_NONE; link->link_duplex = ETH_LINK_FULL_DUPLEX; return 0; } static int ena_queue_restart_all(struct rte_eth_dev *dev, enum ena_ring_type ring_type) { struct ena_adapter *adapter = (struct ena_adapter *)(dev->data->dev_private); struct ena_ring *queues = NULL; int nb_queues; int i = 0; int rc = 0; if (ring_type == ENA_RING_TYPE_RX) { queues = adapter->rx_ring; nb_queues = dev->data->nb_rx_queues; } else { queues = adapter->tx_ring; nb_queues = dev->data->nb_tx_queues; } for (i = 0; i < nb_queues; i++) { if (queues[i].configured) { if (ring_type == ENA_RING_TYPE_RX) { ena_assert_msg( dev->data->rx_queues[i] == &queues[i], "Inconsistent state of rx queues\n"); } else { ena_assert_msg( dev->data->tx_queues[i] == &queues[i], "Inconsistent state of tx queues\n"); } rc = ena_queue_restart(&queues[i]); if (rc) { PMD_INIT_LOG(ERR, "failed to restart queue %d type(%d)", i, ring_type); return rc; } } } return 0; } static uint32_t ena_get_mtu_conf(struct ena_adapter *adapter) { uint32_t max_frame_len = adapter->max_mtu; if (adapter->rte_eth_dev_data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) max_frame_len = adapter->rte_eth_dev_data->dev_conf.rxmode.max_rx_pkt_len; return max_frame_len; } static int ena_check_valid_conf(struct ena_adapter *adapter) { uint32_t max_frame_len = ena_get_mtu_conf(adapter); if (max_frame_len > adapter->max_mtu || max_frame_len < ENA_MIN_MTU) { PMD_INIT_LOG(ERR, "Unsupported MTU of %d. " "max mtu: %d, min mtu: %d\n", max_frame_len, adapter->max_mtu, ENA_MIN_MTU); return ENA_COM_UNSUPPORTED; } return 0; } static int ena_calc_queue_size(struct ena_com_dev *ena_dev, u16 *max_tx_sgl_size, struct ena_com_dev_get_features_ctx *get_feat_ctx) { uint32_t queue_size = ENA_DEFAULT_RING_SIZE; queue_size = RTE_MIN(queue_size, get_feat_ctx->max_queues.max_cq_depth); queue_size = RTE_MIN(queue_size, get_feat_ctx->max_queues.max_sq_depth); if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) queue_size = RTE_MIN(queue_size, get_feat_ctx->max_queues.max_llq_depth); /* Round down to power of 2 */ if (!rte_is_power_of_2(queue_size)) queue_size = rte_align32pow2(queue_size >> 1); if (unlikely(queue_size == 0)) { PMD_INIT_LOG(ERR, "Invalid queue size"); return -EFAULT; } *max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS, get_feat_ctx->max_queues.max_packet_tx_descs); return queue_size; } static void ena_stats_restart(struct rte_eth_dev *dev) { struct ena_adapter *adapter = (struct ena_adapter *)(dev->data->dev_private); rte_atomic64_init(&adapter->drv_stats->ierrors); rte_atomic64_init(&adapter->drv_stats->oerrors); rte_atomic64_init(&adapter->drv_stats->rx_nombuf); } static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) { struct ena_admin_basic_stats ena_stats; struct ena_adapter *adapter = (struct ena_adapter *)(dev->data->dev_private); struct ena_com_dev *ena_dev = &adapter->ena_dev; int rc; if (rte_eal_process_type() != RTE_PROC_PRIMARY) return -ENOTSUP; memset(&ena_stats, 0, sizeof(ena_stats)); rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats); if (unlikely(rc)) { RTE_LOG(ERR, PMD, "Could not retrieve statistics from ENA"); return rc; } /* Set of basic statistics from ENA */ stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high, ena_stats.rx_pkts_low); stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high, ena_stats.tx_pkts_low); stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high, ena_stats.rx_bytes_low); stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high, ena_stats.tx_bytes_low); stats->imissed = __MERGE_64B_H_L(ena_stats.rx_drops_high, ena_stats.rx_drops_low); /* Driver related stats */ stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors); stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors); stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf); return 0; } static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu) { struct ena_adapter *adapter; struct ena_com_dev *ena_dev; int rc = 0; ena_assert_msg(dev->data != NULL, "Uninitialized device"); ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device"); adapter = (struct ena_adapter *)(dev->data->dev_private); ena_dev = &adapter->ena_dev; ena_assert_msg(ena_dev != NULL, "Uninitialized device"); if (mtu > ena_get_mtu_conf(adapter) || mtu < ENA_MIN_MTU) { RTE_LOG(ERR, PMD, "Invalid MTU setting. new_mtu: %d " "max mtu: %d min mtu: %d\n", mtu, ena_get_mtu_conf(adapter), ENA_MIN_MTU); return -EINVAL; } rc = ena_com_set_dev_mtu(ena_dev, mtu); if (rc) RTE_LOG(ERR, PMD, "Could not set MTU: %d\n", mtu); else RTE_LOG(NOTICE, PMD, "Set MTU: %d\n", mtu); return rc; } static int ena_start(struct rte_eth_dev *dev) { struct ena_adapter *adapter = (struct ena_adapter *)(dev->data->dev_private); uint64_t ticks; int rc = 0; rc = ena_check_valid_conf(adapter); if (rc) return rc; rc = ena_queue_restart_all(dev, ENA_RING_TYPE_RX); if (rc) return rc; rc = ena_queue_restart_all(dev, ENA_RING_TYPE_TX); if (rc) return rc; if (adapter->rte_dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG && adapter->rte_dev->data->nb_rx_queues > 0) { rc = ena_rss_init_default(adapter); if (rc) return rc; } ena_stats_restart(dev); adapter->timestamp_wd = rte_get_timer_cycles(); adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT; ticks = rte_get_timer_hz(); rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(), ena_timer_wd_callback, adapter); adapter->state = ENA_ADAPTER_STATE_RUNNING; return 0; } static void ena_stop(struct rte_eth_dev *dev) { struct ena_adapter *adapter = (struct ena_adapter *)(dev->data->dev_private); rte_timer_stop_sync(&adapter->timer_wd); adapter->state = ENA_ADAPTER_STATE_STOPPED; } static int ena_queue_restart(struct ena_ring *ring) { int rc, bufs_num; ena_assert_msg(ring->configured == 1, "Trying to restart unconfigured queue\n"); ring->next_to_clean = 0; ring->next_to_use = 0; if (ring->type == ENA_RING_TYPE_TX) return 0; bufs_num = ring->ring_size - 1; rc = ena_populate_rx_queue(ring, bufs_num); if (rc != bufs_num) { PMD_INIT_LOG(ERR, "Failed to populate rx ring !"); return ENA_COM_FAULT; } return 0; } static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx, uint16_t nb_desc, __rte_unused unsigned int socket_id, const struct rte_eth_txconf *tx_conf) { struct ena_com_create_io_ctx ctx = /* policy set to _HOST just to satisfy icc compiler */ { ENA_ADMIN_PLACEMENT_POLICY_HOST, ENA_COM_IO_QUEUE_DIRECTION_TX, 0, 0, 0, 0 }; struct ena_ring *txq = NULL; struct ena_adapter *adapter = (struct ena_adapter *)(dev->data->dev_private); unsigned int i; int ena_qid; int rc; struct ena_com_dev *ena_dev = &adapter->ena_dev; txq = &adapter->tx_ring[queue_idx]; if (txq->configured) { RTE_LOG(CRIT, PMD, "API violation. Queue %d is already configured\n", queue_idx); return ENA_COM_FAULT; } if (!rte_is_power_of_2(nb_desc)) { RTE_LOG(ERR, PMD, "Unsupported size of TX queue: %d is not a power of 2.", nb_desc); return -EINVAL; } if (nb_desc > adapter->tx_ring_size) { RTE_LOG(ERR, PMD, "Unsupported size of TX queue (max size: %d)\n", adapter->tx_ring_size); return -EINVAL; } ena_qid = ENA_IO_TXQ_IDX(queue_idx); ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX; ctx.qid = ena_qid; ctx.msix_vector = -1; /* admin interrupts not used */ ctx.mem_queue_type = ena_dev->tx_mem_queue_type; ctx.queue_size = adapter->tx_ring_size; ctx.numa_node = ena_cpu_to_node(queue_idx); rc = ena_com_create_io_queue(ena_dev, &ctx); if (rc) { RTE_LOG(ERR, PMD, "failed to create io TX queue #%d (qid:%d) rc: %d\n", queue_idx, ena_qid, rc); return rc; } txq->ena_com_io_cq = &ena_dev->io_cq_queues[ena_qid]; txq->ena_com_io_sq = &ena_dev->io_sq_queues[ena_qid]; rc = ena_com_get_io_handlers(ena_dev, ena_qid, &txq->ena_com_io_sq, &txq->ena_com_io_cq); if (rc) { RTE_LOG(ERR, PMD, "Failed to get TX queue handlers. TX queue num %d rc: %d\n", queue_idx, rc); goto err_destroy_io_queue; } ena_com_update_numa_node(txq->ena_com_io_cq, ctx.numa_node); txq->port_id = dev->data->port_id; txq->next_to_clean = 0; txq->next_to_use = 0; txq->ring_size = nb_desc; txq->tx_buffer_info = rte_zmalloc("txq->tx_buffer_info", sizeof(struct ena_tx_buffer) * txq->ring_size, RTE_CACHE_LINE_SIZE); if (!txq->tx_buffer_info) { RTE_LOG(ERR, PMD, "failed to alloc mem for tx buffer info\n"); rc = -ENOMEM; goto err_destroy_io_queue; } txq->empty_tx_reqs = rte_zmalloc("txq->empty_tx_reqs", sizeof(u16) * txq->ring_size, RTE_CACHE_LINE_SIZE); if (!txq->empty_tx_reqs) { RTE_LOG(ERR, PMD, "failed to alloc mem for tx reqs\n"); rc = -ENOMEM; goto err_free; } for (i = 0; i < txq->ring_size; i++) txq->empty_tx_reqs[i] = i; if (tx_conf != NULL) { txq->offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads; } /* Store pointer to this queue in upper layer */ txq->configured = 1; dev->data->tx_queues[queue_idx] = txq; return 0; err_free: rte_free(txq->tx_buffer_info); err_destroy_io_queue: ena_com_destroy_io_queue(ena_dev, ena_qid); return rc; } static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx, uint16_t nb_desc, __rte_unused unsigned int socket_id, __rte_unused const struct rte_eth_rxconf *rx_conf, struct rte_mempool *mp) { struct ena_com_create_io_ctx ctx = /* policy set to _HOST just to satisfy icc compiler */ { ENA_ADMIN_PLACEMENT_POLICY_HOST, ENA_COM_IO_QUEUE_DIRECTION_RX, 0, 0, 0, 0 }; struct ena_adapter *adapter = (struct ena_adapter *)(dev->data->dev_private); struct ena_ring *rxq = NULL; uint16_t ena_qid = 0; int i, rc = 0; struct ena_com_dev *ena_dev = &adapter->ena_dev; rxq = &adapter->rx_ring[queue_idx]; if (rxq->configured) { RTE_LOG(CRIT, PMD, "API violation. Queue %d is already configured\n", queue_idx); return ENA_COM_FAULT; } if (!rte_is_power_of_2(nb_desc)) { RTE_LOG(ERR, PMD, "Unsupported size of RX queue: %d is not a power of 2.", nb_desc); return -EINVAL; } if (nb_desc > adapter->rx_ring_size) { RTE_LOG(ERR, PMD, "Unsupported size of RX queue (max size: %d)\n", adapter->rx_ring_size); return -EINVAL; } ena_qid = ENA_IO_RXQ_IDX(queue_idx); ctx.qid = ena_qid; ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX; ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; ctx.msix_vector = -1; /* admin interrupts not used */ ctx.queue_size = adapter->rx_ring_size; ctx.numa_node = ena_cpu_to_node(queue_idx); rc = ena_com_create_io_queue(ena_dev, &ctx); if (rc) { RTE_LOG(ERR, PMD, "failed to create io RX queue #%d rc: %d\n", queue_idx, rc); return rc; } rxq->ena_com_io_cq = &ena_dev->io_cq_queues[ena_qid]; rxq->ena_com_io_sq = &ena_dev->io_sq_queues[ena_qid]; rc = ena_com_get_io_handlers(ena_dev, ena_qid, &rxq->ena_com_io_sq, &rxq->ena_com_io_cq); if (rc) { RTE_LOG(ERR, PMD, "Failed to get RX queue handlers. RX queue num %d rc: %d\n", queue_idx, rc); ena_com_destroy_io_queue(ena_dev, ena_qid); return rc; } rxq->port_id = dev->data->port_id; rxq->next_to_clean = 0; rxq->next_to_use = 0; rxq->ring_size = nb_desc; rxq->mb_pool = mp; rxq->rx_buffer_info = rte_zmalloc("rxq->buffer_info", sizeof(struct rte_mbuf *) * nb_desc, RTE_CACHE_LINE_SIZE); if (!rxq->rx_buffer_info) { RTE_LOG(ERR, PMD, "failed to alloc mem for rx buffer info\n"); ena_com_destroy_io_queue(ena_dev, ena_qid); return -ENOMEM; } rxq->empty_rx_reqs = rte_zmalloc("rxq->empty_rx_reqs", sizeof(uint16_t) * nb_desc, RTE_CACHE_LINE_SIZE); if (!rxq->empty_rx_reqs) { RTE_LOG(ERR, PMD, "failed to alloc mem for empty rx reqs\n"); rte_free(rxq->rx_buffer_info); rxq->rx_buffer_info = NULL; ena_com_destroy_io_queue(ena_dev, ena_qid); return -ENOMEM; } for (i = 0; i < nb_desc; i++) rxq->empty_tx_reqs[i] = i; /* Store pointer to this queue in upper layer */ rxq->configured = 1; dev->data->rx_queues[queue_idx] = rxq; return rc; } static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count) { unsigned int i; int rc; uint16_t ring_size = rxq->ring_size; uint16_t ring_mask = ring_size - 1; uint16_t next_to_use = rxq->next_to_use; uint16_t in_use, req_id; struct rte_mbuf **mbufs = &rxq->rx_buffer_info[0]; if (unlikely(!count)) return 0; in_use = rxq->next_to_use - rxq->next_to_clean; ena_assert_msg(((in_use + count) < ring_size), "bad ring state"); count = RTE_MIN(count, (uint16_t)(ring_size - (next_to_use & ring_mask))); /* get resources for incoming packets */ rc = rte_mempool_get_bulk(rxq->mb_pool, (void **)(&mbufs[next_to_use & ring_mask]), count); if (unlikely(rc < 0)) { rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf); PMD_RX_LOG(DEBUG, "there are no enough free buffers"); return 0; } for (i = 0; i < count; i++) { uint16_t next_to_use_masked = next_to_use & ring_mask; struct rte_mbuf *mbuf = mbufs[next_to_use_masked]; struct ena_com_buf ebuf; rte_prefetch0(mbufs[((next_to_use + 4) & ring_mask)]); req_id = rxq->empty_rx_reqs[next_to_use_masked]; rc = validate_rx_req_id(rxq, req_id); if (unlikely(rc < 0)) break; /* prepare physical address for DMA transaction */ ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM; ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM; /* pass resource to device */ rc = ena_com_add_single_rx_desc(rxq->ena_com_io_sq, &ebuf, req_id); if (unlikely(rc)) { rte_mempool_put_bulk(rxq->mb_pool, (void **)(&mbuf), count - i); RTE_LOG(WARNING, PMD, "failed adding rx desc\n"); break; } next_to_use++; } if (unlikely(i < count)) RTE_LOG(WARNING, PMD, "refilled rx qid %d with only %d " "buffers (from %d)\n", rxq->id, i, count); /* When we submitted free recources to device... */ if (likely(i > 0)) { /* ...let HW know that it can fill buffers with data * * Add memory barrier to make sure the desc were written before * issue a doorbell */ rte_wmb(); ena_com_write_sq_doorbell(rxq->ena_com_io_sq); rxq->next_to_use = next_to_use; } return i; } static int ena_device_init(struct ena_com_dev *ena_dev, struct ena_com_dev_get_features_ctx *get_feat_ctx, bool *wd_state) { uint32_t aenq_groups; int rc; bool readless_supported; /* Initialize mmio registers */ rc = ena_com_mmio_reg_read_request_init(ena_dev); if (rc) { RTE_LOG(ERR, PMD, "failed to init mmio read less\n"); return rc; } /* The PCIe configuration space revision id indicate if mmio reg * read is disabled. */ readless_supported = !(((struct rte_pci_device *)ena_dev->dmadev)->id.class_id & ENA_MMIO_DISABLE_REG_READ); ena_com_set_mmio_read_mode(ena_dev, readless_supported); /* reset device */ rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL); if (rc) { RTE_LOG(ERR, PMD, "cannot reset device\n"); goto err_mmio_read_less; } /* check FW version */ rc = ena_com_validate_version(ena_dev); if (rc) { RTE_LOG(ERR, PMD, "device version is too low\n"); goto err_mmio_read_less; } ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev); /* ENA device administration layer init */ rc = ena_com_admin_init(ena_dev, &aenq_handlers, true); if (rc) { RTE_LOG(ERR, PMD, "cannot initialize ena admin queue with device\n"); goto err_mmio_read_less; } /* To enable the msix interrupts the driver needs to know the number * of queues. So the driver uses polling mode to retrieve this * information. */ ena_com_set_admin_polling_mode(ena_dev, true); ena_config_host_info(ena_dev); /* Get Device Attributes and features */ rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx); if (rc) { RTE_LOG(ERR, PMD, "cannot get attribute for ena device rc= %d\n", rc); goto err_admin_init; } aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | BIT(ENA_ADMIN_NOTIFICATION) | BIT(ENA_ADMIN_KEEP_ALIVE) | BIT(ENA_ADMIN_FATAL_ERROR) | BIT(ENA_ADMIN_WARNING); aenq_groups &= get_feat_ctx->aenq.supported_groups; rc = ena_com_set_aenq_config(ena_dev, aenq_groups); if (rc) { RTE_LOG(ERR, PMD, "Cannot configure aenq groups rc: %d\n", rc); goto err_admin_init; } *wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)); return 0; err_admin_init: ena_com_admin_destroy(ena_dev); err_mmio_read_less: ena_com_mmio_reg_read_request_destroy(ena_dev); return rc; } static void ena_interrupt_handler_rte(void *cb_arg) { struct ena_adapter *adapter = (struct ena_adapter *)cb_arg; struct ena_com_dev *ena_dev = &adapter->ena_dev; ena_com_admin_q_comp_intr_handler(ena_dev); if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED)) ena_com_aenq_intr_handler(ena_dev, adapter); } static void check_for_missing_keep_alive(struct ena_adapter *adapter) { if (!adapter->wd_state) return; if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT) return; if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >= adapter->keep_alive_timeout)) { RTE_LOG(ERR, PMD, "Keep alive timeout\n"); adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO; adapter->trigger_reset = true; } } /* Check if admin queue is enabled */ static void check_for_admin_com_state(struct ena_adapter *adapter) { if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) { RTE_LOG(ERR, PMD, "ENA admin queue is not in running state!\n"); adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO; adapter->trigger_reset = true; } } static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer, void *arg) { struct ena_adapter *adapter = (struct ena_adapter *)arg; struct rte_eth_dev *dev = adapter->rte_dev; check_for_missing_keep_alive(adapter); check_for_admin_com_state(adapter); if (unlikely(adapter->trigger_reset)) { RTE_LOG(ERR, PMD, "Trigger reset is on\n"); _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET, NULL); } } static int ena_calc_io_queue_num(__rte_unused struct ena_com_dev *ena_dev, struct ena_com_dev_get_features_ctx *get_feat_ctx) { int io_sq_num, io_cq_num, io_queue_num; io_sq_num = get_feat_ctx->max_queues.max_sq_num; io_cq_num = get_feat_ctx->max_queues.max_cq_num; io_queue_num = RTE_MIN(io_sq_num, io_cq_num); if (unlikely(io_queue_num == 0)) { RTE_LOG(ERR, PMD, "Number of IO queues should not be 0\n"); return -EFAULT; } return io_queue_num; } static int eth_ena_dev_init(struct rte_eth_dev *eth_dev) { struct rte_pci_device *pci_dev; struct rte_intr_handle *intr_handle; struct ena_adapter *adapter = (struct ena_adapter *)(eth_dev->data->dev_private); struct ena_com_dev *ena_dev = &adapter->ena_dev; struct ena_com_dev_get_features_ctx get_feat_ctx; int queue_size, rc; u16 tx_sgl_size = 0; static int adapters_found; bool wd_state; memset(adapter, 0, sizeof(struct ena_adapter)); ena_dev = &adapter->ena_dev; eth_dev->dev_ops = &ena_dev_ops; eth_dev->rx_pkt_burst = ð_ena_recv_pkts; eth_dev->tx_pkt_burst = ð_ena_xmit_pkts; eth_dev->tx_pkt_prepare = ð_ena_prep_pkts; adapter->rte_eth_dev_data = eth_dev->data; adapter->rte_dev = eth_dev; if (rte_eal_process_type() != RTE_PROC_PRIMARY) return 0; pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); adapter->pdev = pci_dev; PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d", pci_dev->addr.domain, pci_dev->addr.bus, pci_dev->addr.devid, pci_dev->addr.function); intr_handle = &pci_dev->intr_handle; adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr; adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr; if (!adapter->regs) { PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)", ENA_REGS_BAR); return -ENXIO; } ena_dev->reg_bar = adapter->regs; ena_dev->dmadev = adapter->pdev; adapter->id_number = adapters_found; snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d", adapter->id_number); /* device specific initialization routine */ rc = ena_device_init(ena_dev, &get_feat_ctx, &wd_state); if (rc) { PMD_INIT_LOG(CRIT, "Failed to init ENA device"); goto err; } adapter->wd_state = wd_state; ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; adapter->num_queues = ena_calc_io_queue_num(ena_dev, &get_feat_ctx); queue_size = ena_calc_queue_size(ena_dev, &tx_sgl_size, &get_feat_ctx); if (queue_size <= 0 || adapter->num_queues <= 0) { rc = -EFAULT; goto err_device_destroy; } adapter->tx_ring_size = queue_size; adapter->rx_ring_size = queue_size; adapter->max_tx_sgl_size = tx_sgl_size; /* prepare ring structures */ ena_init_rings(adapter); ena_config_debug_area(adapter); /* Set max MTU for this device */ adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu; /* set device support for TSO */ adapter->tso4_supported = get_feat_ctx.offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK; /* Copy MAC address and point DPDK to it */ eth_dev->data->mac_addrs = (struct ether_addr *)adapter->mac_addr; ether_addr_copy((struct ether_addr *)get_feat_ctx.dev_attr.mac_addr, (struct ether_addr *)adapter->mac_addr); adapter->drv_stats = rte_zmalloc("adapter stats", sizeof(*adapter->drv_stats), RTE_CACHE_LINE_SIZE); if (!adapter->drv_stats) { RTE_LOG(ERR, PMD, "failed to alloc mem for adapter stats\n"); rc = -ENOMEM; goto err_delete_debug_area; } rte_intr_callback_register(intr_handle, ena_interrupt_handler_rte, adapter); rte_intr_enable(intr_handle); ena_com_set_admin_polling_mode(ena_dev, false); ena_com_admin_aenq_enable(ena_dev); if (adapters_found == 0) rte_timer_subsystem_init(); rte_timer_init(&adapter->timer_wd); adapters_found++; adapter->state = ENA_ADAPTER_STATE_INIT; return 0; err_delete_debug_area: ena_com_delete_debug_area(ena_dev); err_device_destroy: ena_com_delete_host_info(ena_dev); ena_com_admin_destroy(ena_dev); err: return rc; } static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev) { struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; struct ena_adapter *adapter = (struct ena_adapter *)(eth_dev->data->dev_private); if (rte_eal_process_type() != RTE_PROC_PRIMARY) return 0; if (adapter->state != ENA_ADAPTER_STATE_CLOSED) ena_close(eth_dev); eth_dev->dev_ops = NULL; eth_dev->rx_pkt_burst = NULL; eth_dev->tx_pkt_burst = NULL; eth_dev->tx_pkt_prepare = NULL; rte_free(adapter->drv_stats); adapter->drv_stats = NULL; rte_intr_disable(intr_handle); rte_intr_callback_unregister(intr_handle, ena_interrupt_handler_rte, adapter); adapter->state = ENA_ADAPTER_STATE_FREE; return 0; } static int ena_dev_configure(struct rte_eth_dev *dev) { struct ena_adapter *adapter = (struct ena_adapter *)(dev->data->dev_private); adapter->state = ENA_ADAPTER_STATE_CONFIG; adapter->tx_selected_offloads = dev->data->dev_conf.txmode.offloads; adapter->rx_selected_offloads = dev->data->dev_conf.rxmode.offloads; return 0; } static void ena_init_rings(struct ena_adapter *adapter) { int i; for (i = 0; i < adapter->num_queues; i++) { struct ena_ring *ring = &adapter->tx_ring[i]; ring->configured = 0; ring->type = ENA_RING_TYPE_TX; ring->adapter = adapter; ring->id = i; ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type; ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size; ring->sgl_size = adapter->max_tx_sgl_size; } for (i = 0; i < adapter->num_queues; i++) { struct ena_ring *ring = &adapter->rx_ring[i]; ring->configured = 0; ring->type = ENA_RING_TYPE_RX; ring->adapter = adapter; ring->id = i; } } static void ena_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) { struct ena_adapter *adapter; struct ena_com_dev *ena_dev; struct ena_com_dev_get_features_ctx feat; uint64_t rx_feat = 0, tx_feat = 0; int rc = 0; ena_assert_msg(dev->data != NULL, "Uninitialized device"); ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device"); adapter = (struct ena_adapter *)(dev->data->dev_private); ena_dev = &adapter->ena_dev; ena_assert_msg(ena_dev != NULL, "Uninitialized device"); dev_info->speed_capa = ETH_LINK_SPEED_1G | ETH_LINK_SPEED_2_5G | ETH_LINK_SPEED_5G | ETH_LINK_SPEED_10G | ETH_LINK_SPEED_25G | ETH_LINK_SPEED_40G | ETH_LINK_SPEED_50G | ETH_LINK_SPEED_100G; /* Get supported features from HW */ rc = ena_com_get_dev_attr_feat(ena_dev, &feat); if (unlikely(rc)) { RTE_LOG(ERR, PMD, "Cannot get attribute for ena device rc= %d\n", rc); return; } /* Set Tx & Rx features available for device */ if (feat.offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) tx_feat |= DEV_TX_OFFLOAD_TCP_TSO; if (feat.offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) tx_feat |= DEV_TX_OFFLOAD_IPV4_CKSUM | DEV_TX_OFFLOAD_UDP_CKSUM | DEV_TX_OFFLOAD_TCP_CKSUM; if (feat.offload.rx_supported & ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) rx_feat |= DEV_RX_OFFLOAD_IPV4_CKSUM | DEV_RX_OFFLOAD_UDP_CKSUM | DEV_RX_OFFLOAD_TCP_CKSUM; rx_feat |= DEV_RX_OFFLOAD_JUMBO_FRAME; /* Inform framework about available features */ dev_info->rx_offload_capa = rx_feat; dev_info->rx_queue_offload_capa = rx_feat; dev_info->tx_offload_capa = tx_feat; dev_info->tx_queue_offload_capa = tx_feat; dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN; dev_info->max_rx_pktlen = adapter->max_mtu; dev_info->max_mac_addrs = 1; dev_info->max_rx_queues = adapter->num_queues; dev_info->max_tx_queues = adapter->num_queues; dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE; adapter->tx_supported_offloads = tx_feat; adapter->rx_supported_offloads = rx_feat; dev_info->rx_desc_lim.nb_max = ENA_MAX_RING_DESC; dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC; dev_info->tx_desc_lim.nb_max = ENA_MAX_RING_DESC; dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC; dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS, feat.max_queues.max_packet_tx_descs); dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS, feat.max_queues.max_packet_tx_descs); } static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue); unsigned int ring_size = rx_ring->ring_size; unsigned int ring_mask = ring_size - 1; uint16_t next_to_clean = rx_ring->next_to_clean; uint16_t desc_in_use = 0; uint16_t req_id; unsigned int recv_idx = 0; struct rte_mbuf *mbuf = NULL; struct rte_mbuf *mbuf_head = NULL; struct rte_mbuf *mbuf_prev = NULL; struct rte_mbuf **rx_buff_info = rx_ring->rx_buffer_info; unsigned int completed; struct ena_com_rx_ctx ena_rx_ctx; int rc = 0; /* Check adapter state */ if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) { RTE_LOG(ALERT, PMD, "Trying to receive pkts while device is NOT running\n"); return 0; } desc_in_use = rx_ring->next_to_use - next_to_clean; if (unlikely(nb_pkts > desc_in_use)) nb_pkts = desc_in_use; for (completed = 0; completed < nb_pkts; completed++) { int segments = 0; ena_rx_ctx.max_bufs = rx_ring->ring_size; ena_rx_ctx.ena_bufs = rx_ring->ena_bufs; ena_rx_ctx.descs = 0; /* receive packet context */ rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq, rx_ring->ena_com_io_sq, &ena_rx_ctx); if (unlikely(rc)) { RTE_LOG(ERR, PMD, "ena_com_rx_pkt error %d\n", rc); rx_ring->adapter->trigger_reset = true; return 0; } if (unlikely(ena_rx_ctx.descs == 0)) break; while (segments < ena_rx_ctx.descs) { req_id = ena_rx_ctx.ena_bufs[segments].req_id; rc = validate_rx_req_id(rx_ring, req_id); if (unlikely(rc)) break; mbuf = rx_buff_info[req_id]; mbuf->data_len = ena_rx_ctx.ena_bufs[segments].len; mbuf->data_off = RTE_PKTMBUF_HEADROOM; mbuf->refcnt = 1; mbuf->next = NULL; if (unlikely(segments == 0)) { mbuf->nb_segs = ena_rx_ctx.descs; mbuf->port = rx_ring->port_id; mbuf->pkt_len = 0; mbuf_head = mbuf; } else { /* for multi-segment pkts create mbuf chain */ mbuf_prev->next = mbuf; } mbuf_head->pkt_len += mbuf->data_len; mbuf_prev = mbuf; rx_ring->empty_rx_reqs[next_to_clean & ring_mask] = req_id; segments++; next_to_clean++; } /* fill mbuf attributes if any */ ena_rx_mbuf_prepare(mbuf_head, &ena_rx_ctx); mbuf_head->hash.rss = (uint32_t)rx_ring->id; /* pass to DPDK application head mbuf */ rx_pkts[recv_idx] = mbuf_head; recv_idx++; } rx_ring->next_to_clean = next_to_clean; desc_in_use = desc_in_use - completed + 1; /* Burst refill to save doorbells, memory barriers, const interval */ if (ring_size - desc_in_use > ENA_RING_DESCS_RATIO(ring_size)) ena_populate_rx_queue(rx_ring, ring_size - desc_in_use); return recv_idx; } static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { int32_t ret; uint32_t i; struct rte_mbuf *m; struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue); struct ipv4_hdr *ip_hdr; uint64_t ol_flags; uint16_t frag_field; for (i = 0; i != nb_pkts; i++) { m = tx_pkts[i]; ol_flags = m->ol_flags; if (!(ol_flags & PKT_TX_IPV4)) continue; /* If there was not L2 header length specified, assume it is * length of the ethernet header. */ if (unlikely(m->l2_len == 0)) m->l2_len = sizeof(struct ether_hdr); ip_hdr = rte_pktmbuf_mtod_offset(m, struct ipv4_hdr *, m->l2_len); frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset); if ((frag_field & IPV4_HDR_DF_FLAG) != 0) { m->packet_type |= RTE_PTYPE_L4_NONFRAG; /* If IPv4 header has DF flag enabled and TSO support is * disabled, partial chcecksum should not be calculated. */ if (!tx_ring->adapter->tso4_supported) continue; } if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) != 0 || (ol_flags & PKT_TX_L4_MASK) == PKT_TX_SCTP_CKSUM) { rte_errno = -ENOTSUP; return i; } #ifdef RTE_LIBRTE_ETHDEV_DEBUG ret = rte_validate_tx_offload(m); if (ret != 0) { rte_errno = ret; return i; } #endif /* In case we are supposed to TSO and have DF not set (DF=0) * hardware must be provided with partial checksum, otherwise * it will take care of necessary calculations. */ ret = rte_net_intel_cksum_flags_prepare(m, ol_flags & ~PKT_TX_TCP_SEG); if (ret != 0) { rte_errno = ret; return i; } } return i; } static void ena_update_hints(struct ena_adapter *adapter, struct ena_admin_ena_hw_hints *hints) { if (hints->admin_completion_tx_timeout) adapter->ena_dev.admin_queue.completion_timeout = hints->admin_completion_tx_timeout * 1000; if (hints->mmio_read_timeout) /* convert to usec */ adapter->ena_dev.mmio_read.reg_read_to = hints->mmio_read_timeout * 1000; if (hints->driver_watchdog_timeout) { if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT) adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT; else // Convert msecs to ticks adapter->keep_alive_timeout = (hints->driver_watchdog_timeout * rte_get_timer_hz()) / 1000; } } static int ena_check_and_linearize_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf) { int num_segments, rc; num_segments = mbuf->nb_segs; if (likely(num_segments < tx_ring->sgl_size)) return 0; rc = rte_pktmbuf_linearize(mbuf); if (unlikely(rc)) RTE_LOG(WARNING, PMD, "Mbuf linearize failed\n"); return rc; } static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue); uint16_t next_to_use = tx_ring->next_to_use; uint16_t next_to_clean = tx_ring->next_to_clean; struct rte_mbuf *mbuf; unsigned int ring_size = tx_ring->ring_size; unsigned int ring_mask = ring_size - 1; struct ena_com_tx_ctx ena_tx_ctx; struct ena_tx_buffer *tx_info; struct ena_com_buf *ebuf; uint16_t rc, req_id, total_tx_descs = 0; uint16_t sent_idx = 0, empty_tx_reqs; int nb_hw_desc; /* Check adapter state */ if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) { RTE_LOG(ALERT, PMD, "Trying to xmit pkts while device is NOT running\n"); return 0; } empty_tx_reqs = ring_size - (next_to_use - next_to_clean); if (nb_pkts > empty_tx_reqs) nb_pkts = empty_tx_reqs; for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) { mbuf = tx_pkts[sent_idx]; rc = ena_check_and_linearize_mbuf(tx_ring, mbuf); if (unlikely(rc)) break; req_id = tx_ring->empty_tx_reqs[next_to_use & ring_mask]; tx_info = &tx_ring->tx_buffer_info[req_id]; tx_info->mbuf = mbuf; tx_info->num_of_bufs = 0; ebuf = tx_info->bufs; /* Prepare TX context */ memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx)); memset(&ena_tx_ctx.ena_meta, 0x0, sizeof(struct ena_com_tx_meta)); ena_tx_ctx.ena_bufs = ebuf; ena_tx_ctx.req_id = req_id; if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { /* prepare the push buffer with * virtual address of the data */ ena_tx_ctx.header_len = RTE_MIN(mbuf->data_len, tx_ring->tx_max_header_size); ena_tx_ctx.push_header = (void *)((char *)mbuf->buf_addr + mbuf->data_off); } /* there's no else as we take advantage of memset zeroing */ /* Set TX offloads flags, if applicable */ ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads); if (unlikely(mbuf->ol_flags & (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD))) rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors); rte_prefetch0(tx_pkts[(sent_idx + 4) & ring_mask]); /* Process first segment taking into * consideration pushed header */ if (mbuf->data_len > ena_tx_ctx.header_len) { ebuf->paddr = mbuf->buf_iova + mbuf->data_off + ena_tx_ctx.header_len; ebuf->len = mbuf->data_len - ena_tx_ctx.header_len; ebuf++; tx_info->num_of_bufs++; } while ((mbuf = mbuf->next) != NULL) { ebuf->paddr = mbuf->buf_iova + mbuf->data_off; ebuf->len = mbuf->data_len; ebuf++; tx_info->num_of_bufs++; } ena_tx_ctx.num_bufs = tx_info->num_of_bufs; /* Write data to device */ rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq, &ena_tx_ctx, &nb_hw_desc); if (unlikely(rc)) break; tx_info->tx_descs = nb_hw_desc; next_to_use++; } /* If there are ready packets to be xmitted... */ if (sent_idx > 0) { /* ...let HW do its best :-) */ rte_wmb(); ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq); tx_ring->next_to_use = next_to_use; } /* Clear complete packets */ while (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) >= 0) { rc = validate_tx_req_id(tx_ring, req_id); if (rc) break; /* Get Tx info & store how many descs were processed */ tx_info = &tx_ring->tx_buffer_info[req_id]; total_tx_descs += tx_info->tx_descs; /* Free whole mbuf chain */ mbuf = tx_info->mbuf; rte_pktmbuf_free(mbuf); tx_info->mbuf = NULL; /* Put back descriptor to the ring for reuse */ tx_ring->empty_tx_reqs[next_to_clean & ring_mask] = req_id; next_to_clean++; /* If too many descs to clean, leave it for another run */ if (unlikely(total_tx_descs > ENA_RING_DESCS_RATIO(ring_size))) break; } if (total_tx_descs > 0) { /* acknowledge completion of sent packets */ ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs); tx_ring->next_to_clean = next_to_clean; } return sent_idx; } /********************************************************************* * PMD configuration *********************************************************************/ static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, struct rte_pci_device *pci_dev) { return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct ena_adapter), eth_ena_dev_init); } static int eth_ena_pci_remove(struct rte_pci_device *pci_dev) { return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit); } static struct rte_pci_driver rte_ena_pmd = { .id_table = pci_id_ena_map, .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC | RTE_PCI_DRV_WC_ACTIVATE, .probe = eth_ena_pci_probe, .remove = eth_ena_pci_remove, }; RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd); RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map); RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci"); RTE_INIT(ena_init_log) { ena_logtype_init = rte_log_register("pmd.net.ena.init"); if (ena_logtype_init >= 0) rte_log_set_level(ena_logtype_init, RTE_LOG_NOTICE); ena_logtype_driver = rte_log_register("pmd.net.ena.driver"); if (ena_logtype_driver >= 0) rte_log_set_level(ena_logtype_driver, RTE_LOG_NOTICE); } /****************************************************************************** ******************************** AENQ Handlers ******************************* *****************************************************************************/ static void ena_update_on_link_change(void *adapter_data, struct ena_admin_aenq_entry *aenq_e) { struct rte_eth_dev *eth_dev; struct ena_adapter *adapter; struct ena_admin_aenq_link_change_desc *aenq_link_desc; uint32_t status; adapter = (struct ena_adapter *)adapter_data; aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e; eth_dev = adapter->rte_dev; status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc); adapter->link_status = status; ena_link_update(eth_dev, 0); _rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL); } static void ena_notification(void *data, struct ena_admin_aenq_entry *aenq_e) { struct ena_adapter *adapter = (struct ena_adapter *)data; struct ena_admin_ena_hw_hints *hints; if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION) RTE_LOG(WARNING, PMD, "Invalid group(%x) expected %x\n", aenq_e->aenq_common_desc.group, ENA_ADMIN_NOTIFICATION); switch (aenq_e->aenq_common_desc.syndrom) { case ENA_ADMIN_UPDATE_HINTS: hints = (struct ena_admin_ena_hw_hints *) (&aenq_e->inline_data_w4); ena_update_hints(adapter, hints); break; default: RTE_LOG(ERR, PMD, "Invalid aenq notification link state %d\n", aenq_e->aenq_common_desc.syndrom); } } static void ena_keep_alive(void *adapter_data, __rte_unused struct ena_admin_aenq_entry *aenq_e) { struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; adapter->timestamp_wd = rte_get_timer_cycles(); } /** * This handler will called for unknown event group or unimplemented handlers **/ static void unimplemented_aenq_handler(__rte_unused void *data, __rte_unused struct ena_admin_aenq_entry *aenq_e) { RTE_LOG(ERR, PMD, "Unknown event was received or event with " "unimplemented handler\n"); } static struct ena_aenq_handlers aenq_handlers = { .handlers = { [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change, [ENA_ADMIN_NOTIFICATION] = ena_notification, [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive }, .unimplemented_handler = unimplemented_aenq_handler };