numam-dpdk/drivers/common/sfc_efx/base/rhead_nic.c
Ivan Malov 61b3e9e79a common/sfc_efx/base: report maximum Rx data count
Such information is useful to client drivers which deal with
large Rx pool buffers (16-bit wide data count) and thus need
to avoid overflow when setting EF10's 14-bit wide data count.

Signed-off-by: Ivan Malov <ivan.malov@oktetlabs.ru>
Reviewed-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
2022-09-28 11:51:39 +02:00

640 lines
16 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright(c) 2019-2021 Xilinx, Inc.
* Copyright(c) 2018-2019 Solarflare Communications Inc.
*/
#include "efx.h"
#include "efx_impl.h"
#if EFSYS_OPT_RIVERHEAD
__checkReturn efx_rc_t
rhead_board_cfg(
__in efx_nic_t *enp)
{
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
uint32_t end_padding;
uint32_t bandwidth;
efx_rc_t rc;
if ((rc = efx_mcdi_nic_board_cfg(enp)) != 0)
goto fail1;
/*
* The tunnel encapsulation initialization happens unconditionally
* for now.
*/
encp->enc_tunnel_encapsulations_supported =
(1u << EFX_TUNNEL_PROTOCOL_VXLAN) |
(1u << EFX_TUNNEL_PROTOCOL_NVGRE);
/*
* Software limitation inherited from EF10. This limit is not
* increased since the hardware does not report this limit, it is
* handled internally resulting in a tunnel add error when there is no
* space for more UDP tunnels.
*/
encp->enc_tunnel_config_udp_entries_max = EFX_TUNNEL_MAXNENTRIES;
encp->enc_clk_mult = 1; /* not used for Riverhead */
EFX_STATIC_ASSERT(MC_CMD_INIT_RXQ_V4_IN_BUFFER_SIZE_BYTES_LEN == 4);
/* Agrees with MC_CMD_INIT_RXQ_V4_IN_BUFFER_SIZE_BYTES_LEN */
encp->enc_rx_dma_desc_size_max = UINT32_MAX;
/*
* FIXME There are TxSend and TxSeg descriptors on Riverhead.
* TxSeg is bigger than TxSend.
*/
encp->enc_tx_dma_desc_size_max = EFX_MASK32(ESF_GZ_TX_SEND_LEN);
/* No boundary crossing limits */
encp->enc_tx_dma_desc_boundary = 0;
/*
* Initialise design parameters to either a runtime value read from
* the design parameters area or the well known default value
* (see SF-119689-TC section 4.4 for details).
* FIXME: Read design parameters area values.
*/
encp->enc_tx_tso_max_header_ndescs =
ESE_EF100_DP_GZ_TSO_MAX_HDR_NUM_SEGS_DEFAULT;
encp->enc_tx_tso_max_header_length =
ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN_DEFAULT;
encp->enc_tx_tso_max_payload_ndescs =
ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS_DEFAULT;
encp->enc_tx_tso_max_payload_length =
ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN_DEFAULT;
encp->enc_tx_tso_max_nframes =
ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES_DEFAULT;
/*
* Riverhead does not put any restrictions on TCP header offset limit.
*/
encp->enc_tx_tso_tcp_header_offset_limit = UINT32_MAX;
/*
* Set resource limits for MC_CMD_ALLOC_VIS. Note that we cannot use
* MC_CMD_GET_RESOURCE_LIMITS here as that reports the available
* resources (allocated to this PCIe function), which is zero until
* after we have allocated VIs.
*/
encp->enc_evq_limit = 1024;
encp->enc_rxq_limit = EFX_RXQ_LIMIT_TARGET;
encp->enc_txq_limit = EFX_TXQ_LIMIT_TARGET;
encp->enc_buftbl_limit = UINT32_MAX;
/*
* Riverhead event queue creation completes
* immediately (no initial event).
*/
encp->enc_evq_init_done_ev_supported = B_FALSE;
/*
* Enable firmware workarounds for hardware errata.
* Expected responses are:
* - 0 (zero):
* Success: workaround enabled or disabled as requested.
* - MC_CMD_ERR_ENOSYS (reported as ENOTSUP):
* Firmware does not support the MC_CMD_WORKAROUND request.
* (assume that the workaround is not supported).
* - MC_CMD_ERR_ENOENT (reported as ENOENT):
* Firmware does not support the requested workaround.
* - MC_CMD_ERR_EPERM (reported as EACCES):
* Unprivileged function cannot enable/disable workarounds.
*
* See efx_mcdi_request_errcode() for MCDI error translations.
*/
/*
* Replay engine on Riverhead should suppress duplicate packets
* (e.g. because of exact multicast and all-multicast filters
* match) to the same RxQ.
*/
encp->enc_bug26807_workaround = B_FALSE;
/*
* Checksums for TSO sends should always be correct on Riverhead.
* FIXME: revisit when TSO support is implemented.
*/
encp->enc_bug61297_workaround = B_FALSE;
encp->enc_evq_max_nevs = RHEAD_EVQ_MAXNEVS;
encp->enc_evq_min_nevs = RHEAD_EVQ_MINNEVS;
encp->enc_rxq_max_ndescs = RHEAD_RXQ_MAXNDESCS;
encp->enc_rxq_min_ndescs = RHEAD_RXQ_MINNDESCS;
encp->enc_txq_max_ndescs = RHEAD_TXQ_MAXNDESCS;
encp->enc_txq_min_ndescs = RHEAD_TXQ_MINNDESCS;
/* Riverhead FW does not support event queue timers yet. */
encp->enc_evq_timer_quantum_ns = 0;
encp->enc_evq_timer_max_us = 0;
#if EFSYS_OPT_EV_EXTENDED_WIDTH
encp->enc_ev_ew_desc_size = RHEAD_EVQ_EW_DESC_SIZE;
#else
encp->enc_ev_ew_desc_size = 0;
#endif
encp->enc_ev_desc_size = RHEAD_EVQ_DESC_SIZE;
encp->enc_rx_desc_size = RHEAD_RXQ_DESC_SIZE;
encp->enc_tx_desc_size = RHEAD_TXQ_DESC_SIZE;
/* No required alignment for WPTR updates */
encp->enc_rx_push_align = 1;
/* Riverhead supports a single Rx prefix size. */
encp->enc_rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN;
/* Alignment for receive packet DMA buffers. */
encp->enc_rx_buf_align_start = 1;
/* Get the RX DMA end padding alignment configuration. */
if ((rc = efx_mcdi_get_rxdp_config(enp, &end_padding)) != 0) {
if (rc != EACCES)
goto fail2;
/* Assume largest tail padding size supported by hardware. */
end_padding = 128;
}
encp->enc_rx_buf_align_end = end_padding;
/* FIXME: It should be extracted from design parameters (Bug 86844) */
encp->enc_rx_scatter_max = 7;
/*
* Riverhead stores a single global copy of VPD, not per-PF as on
* Huntington.
*/
encp->enc_vpd_is_global = B_TRUE;
rc = ef10_nic_get_port_mode_bandwidth(enp, &bandwidth);
if (rc != 0)
goto fail3;
encp->enc_required_pcie_bandwidth_mbps = bandwidth;
encp->enc_max_pcie_link_gen = EFX_PCIE_LINK_SPEED_GEN3;
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
rhead_nic_probe(
__in efx_nic_t *enp)
{
const efx_nic_ops_t *enop = enp->en_enop;
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
efx_rc_t rc;
EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp));
/* Read and clear any assertion state */
if ((rc = efx_mcdi_read_assertion(enp)) != 0)
goto fail1;
/* Exit the assertion handler */
if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0)
if (rc != EACCES)
goto fail2;
if ((rc = efx_mcdi_drv_attach(enp, B_TRUE)) != 0)
goto fail3;
/* Get remaining controller-specific board config */
if ((rc = enop->eno_board_cfg(enp)) != 0)
goto fail4;
/*
* Set default driver config limits (based on board config).
*
* FIXME: For now allocate a fixed number of VIs which is likely to be
* sufficient and small enough to allow multiple functions on the same
* port.
*/
edcp->edc_min_vi_count = edcp->edc_max_vi_count =
MIN(128, MAX(encp->enc_rxq_limit, encp->enc_txq_limit));
/*
* The client driver must configure and enable PIO buffer support,
* but there is no PIO support on Riverhead anyway.
*/
edcp->edc_max_piobuf_count = 0;
edcp->edc_pio_alloc_size = 0;
#if EFSYS_OPT_MAC_STATS
/* Wipe the MAC statistics */
if ((rc = efx_mcdi_mac_stats_clear(enp)) != 0)
goto fail5;
#endif
#if EFSYS_OPT_LOOPBACK
if ((rc = efx_mcdi_get_loopback_modes(enp)) != 0)
goto fail6;
#endif
return (0);
#if EFSYS_OPT_LOOPBACK
fail6:
EFSYS_PROBE(fail6);
#endif
#if EFSYS_OPT_MAC_STATS
fail5:
EFSYS_PROBE(fail5);
#endif
fail4:
EFSYS_PROBE(fail4);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
rhead_nic_set_drv_limits(
__inout efx_nic_t *enp,
__in efx_drv_limits_t *edlp)
{
const efx_nic_cfg_t *encp = efx_nic_cfg_get(enp);
efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
uint32_t min_evq_count, max_evq_count;
uint32_t min_rxq_count, max_rxq_count;
uint32_t min_txq_count, max_txq_count;
efx_rc_t rc;
if (edlp == NULL) {
rc = EINVAL;
goto fail1;
}
/* Get minimum required and maximum usable VI limits */
min_evq_count = MIN(edlp->edl_min_evq_count, encp->enc_evq_limit);
min_rxq_count = MIN(edlp->edl_min_rxq_count, encp->enc_rxq_limit);
min_txq_count = MIN(edlp->edl_min_txq_count, encp->enc_txq_limit);
edcp->edc_min_vi_count =
MAX(min_evq_count, MAX(min_rxq_count, min_txq_count));
max_evq_count = MIN(edlp->edl_max_evq_count, encp->enc_evq_limit);
max_rxq_count = MIN(edlp->edl_max_rxq_count, encp->enc_rxq_limit);
max_txq_count = MIN(edlp->edl_max_txq_count, encp->enc_txq_limit);
edcp->edc_max_vi_count =
MAX(max_evq_count, MAX(max_rxq_count, max_txq_count));
/* There is no PIO support on Riverhead */
edcp->edc_max_piobuf_count = 0;
edcp->edc_pio_alloc_size = 0;
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
rhead_nic_reset(
__in efx_nic_t *enp)
{
efx_rc_t rc;
/* ef10_nic_reset() is called to recover from BADASSERT failures. */
if ((rc = efx_mcdi_read_assertion(enp)) != 0)
goto fail1;
if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0)
goto fail2;
if ((rc = efx_mcdi_entity_reset(enp)) != 0)
goto fail3;
/* Clear RX/TX DMA queue errors */
enp->en_reset_flags &= ~(EFX_RESET_RXQ_ERR | EFX_RESET_TXQ_ERR);
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
rhead_nic_init(
__in efx_nic_t *enp)
{
const efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
uint32_t min_vi_count, max_vi_count;
uint32_t vi_count, vi_base, vi_shift;
uint32_t vi_window_size;
efx_rc_t rc;
boolean_t alloc_vadaptor = B_TRUE;
EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp));
EFSYS_ASSERT3U(edcp->edc_max_piobuf_count, ==, 0);
/* Enable reporting of some events (e.g. link change) */
if ((rc = efx_mcdi_log_ctrl(enp)) != 0)
goto fail1;
min_vi_count = edcp->edc_min_vi_count;
max_vi_count = edcp->edc_max_vi_count;
/* Ensure that the previously attached driver's VIs are freed */
if ((rc = efx_mcdi_free_vis(enp)) != 0)
goto fail2;
/*
* Reserve VI resources (EVQ+RXQ+TXQ) for this PCIe function. If this
* fails then retrying the request for fewer VI resources may succeed.
*/
vi_count = 0;
if ((rc = efx_mcdi_alloc_vis(enp, min_vi_count, max_vi_count,
&vi_base, &vi_count, &vi_shift)) != 0)
goto fail3;
EFSYS_PROBE2(vi_alloc, uint32_t, vi_base, uint32_t, vi_count);
if (vi_count < min_vi_count) {
rc = ENOMEM;
goto fail4;
}
enp->en_arch.ef10.ena_vi_base = vi_base;
enp->en_arch.ef10.ena_vi_count = vi_count;
enp->en_arch.ef10.ena_vi_shift = vi_shift;
EFSYS_ASSERT3U(enp->en_nic_cfg.enc_vi_window_shift, !=,
EFX_VI_WINDOW_SHIFT_INVALID);
EFSYS_ASSERT3U(enp->en_nic_cfg.enc_vi_window_shift, <=,
EFX_VI_WINDOW_SHIFT_64K);
vi_window_size = 1U << enp->en_nic_cfg.enc_vi_window_shift;
/* Save UC memory mapping details */
enp->en_arch.ef10.ena_uc_mem_map_offset = 0;
enp->en_arch.ef10.ena_uc_mem_map_size =
vi_window_size * enp->en_arch.ef10.ena_vi_count;
/* No WC memory mapping since PIO is not supported */
enp->en_arch.ef10.ena_pio_write_vi_base = 0;
enp->en_arch.ef10.ena_wc_mem_map_offset = 0;
enp->en_arch.ef10.ena_wc_mem_map_size = 0;
enp->en_nic_cfg.enc_mcdi_max_payload_length = MCDI_CTL_SDU_LEN_MAX_V2;
/*
* For SR-IOV use case, vAdaptor is allocated for PF and associated VFs
* during NIC initialization when vSwitch is created and vPorts are
* allocated. Hence, skip vAdaptor allocation for EVB and update vPort
* ID in NIC structure with the one allocated for PF.
*/
enp->en_vport_id = EVB_PORT_ID_ASSIGNED;
#if EFSYS_OPT_EVB
if ((enp->en_vswitchp != NULL) && (enp->en_vswitchp->ev_evcp != NULL)) {
/* For EVB use vPort allocated on vSwitch */
enp->en_vport_id = enp->en_vswitchp->ev_evcp->evc_vport_id;
alloc_vadaptor = B_FALSE;
}
#endif
if (alloc_vadaptor != B_FALSE) {
/* Allocate a vAdaptor attached to our upstream vPort/pPort */
if ((rc = ef10_upstream_port_vadaptor_alloc(enp)) != 0)
goto fail5;
}
return (0);
fail5:
EFSYS_PROBE(fail5);
fail4:
EFSYS_PROBE(fail4);
(void) efx_mcdi_free_vis(enp);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
rhead_nic_get_vi_pool(
__in efx_nic_t *enp,
__out uint32_t *vi_countp)
{
/*
* Report VIs that the client driver can use.
* Do not include VIs used for PIO buffer writes.
*/
*vi_countp = enp->en_arch.ef10.ena_vi_count;
return (0);
}
__checkReturn efx_rc_t
rhead_nic_get_bar_region(
__in efx_nic_t *enp,
__in efx_nic_region_t region,
__out uint32_t *offsetp,
__out size_t *sizep)
{
efx_rc_t rc;
EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp));
/*
* TODO: Specify host memory mapping alignment and granularity
* in efx_drv_limits_t so that they can be taken into account
* when allocating extra VIs for PIO writes.
*/
switch (region) {
case EFX_REGION_VI:
/* UC mapped memory BAR region for VI registers */
*offsetp = enp->en_arch.ef10.ena_uc_mem_map_offset;
*sizep = enp->en_arch.ef10.ena_uc_mem_map_size;
break;
case EFX_REGION_PIO_WRITE_VI:
/* WC mapped memory BAR region for piobuf writes */
*offsetp = enp->en_arch.ef10.ena_wc_mem_map_offset;
*sizep = enp->en_arch.ef10.ena_wc_mem_map_size;
break;
default:
rc = EINVAL;
goto fail1;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn boolean_t
rhead_nic_hw_unavailable(
__in efx_nic_t *enp)
{
efx_dword_t dword;
if (enp->en_reset_flags & EFX_RESET_HW_UNAVAIL)
return (B_TRUE);
EFX_BAR_FCW_READD(enp, ER_GZ_MC_SFT_STATUS, &dword);
if (EFX_DWORD_FIELD(dword, EFX_DWORD_0) == 0xffffffff)
goto unavail;
return (B_FALSE);
unavail:
rhead_nic_set_hw_unavailable(enp);
return (B_TRUE);
}
void
rhead_nic_set_hw_unavailable(
__in efx_nic_t *enp)
{
EFSYS_PROBE(hw_unavail);
enp->en_reset_flags |= EFX_RESET_HW_UNAVAIL;
}
void
rhead_nic_fini(
__in efx_nic_t *enp)
{
boolean_t do_vadaptor_free = B_TRUE;
#if EFSYS_OPT_EVB
if (enp->en_vswitchp != NULL) {
/*
* For SR-IOV the vAdaptor is freed with the vSwitch,
* so do not free it here.
*/
do_vadaptor_free = B_FALSE;
}
#endif
if (do_vadaptor_free != B_FALSE) {
(void) efx_mcdi_vadaptor_free(enp, enp->en_vport_id);
enp->en_vport_id = EVB_PORT_ID_NULL;
}
(void) efx_mcdi_free_vis(enp);
enp->en_arch.ef10.ena_vi_count = 0;
}
void
rhead_nic_unprobe(
__in efx_nic_t *enp)
{
(void) efx_mcdi_drv_attach(enp, B_FALSE);
}
#if EFSYS_OPT_DIAG
__checkReturn efx_rc_t
rhead_nic_register_test(
__in efx_nic_t *enp)
{
efx_rc_t rc;
/* FIXME */
_NOTE(ARGUNUSED(enp))
_NOTE(CONSTANTCONDITION)
if (B_FALSE) {
rc = ENOTSUP;
goto fail1;
}
/* FIXME */
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
#endif /* EFSYS_OPT_DIAG */
__checkReturn efx_rc_t
rhead_nic_xilinx_cap_tbl_read_ef100_locator(
__in efsys_bar_t *esbp,
__in efsys_dma_addr_t offset,
__out efx_bar_region_t *ebrp)
{
efx_oword_t entry;
uint32_t rev;
uint32_t len;
efx_rc_t rc;
/*
* Xilinx Capabilities Table requires 32bit aligned reads.
* See SF-119689-TC section 4.2.2 "Discovery Steps".
*/
EFSYS_BAR_READD(esbp, offset +
(EFX_LOW_BIT(ESF_GZ_CFGBAR_ENTRY_FORMAT) / 8),
&entry.eo_dword[0], B_FALSE);
EFSYS_BAR_READD(esbp, offset +
(EFX_LOW_BIT(ESF_GZ_CFGBAR_ENTRY_SIZE) / 8),
&entry.eo_dword[1], B_FALSE);
rev = EFX_OWORD_FIELD32(entry, ESF_GZ_CFGBAR_ENTRY_REV);
len = EFX_OWORD_FIELD32(entry, ESF_GZ_CFGBAR_ENTRY_SIZE);
if (rev != ESE_GZ_CFGBAR_ENTRY_REV_EF100 ||
len < ESE_GZ_CFGBAR_ENTRY_SIZE_EF100) {
rc = EINVAL;
goto fail1;
}
EFSYS_BAR_READD(esbp, offset +
(EFX_LOW_BIT(ESF_GZ_CFGBAR_EF100_BAR) / 8),
&entry.eo_dword[2], B_FALSE);
ebrp->ebr_index = EFX_OWORD_FIELD32(entry, ESF_GZ_CFGBAR_EF100_BAR);
ebrp->ebr_offset = EFX_OWORD_FIELD32(entry,
ESF_GZ_CFGBAR_EF100_FUNC_CTL_WIN_OFF) <<
ESE_GZ_EF100_FUNC_CTL_WIN_OFF_SHIFT;
ebrp->ebr_type = EFX_BAR_TYPE_MEM;
ebrp->ebr_length = 0;
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
#endif /* EFSYS_OPT_RIVERHEAD */