numam-dpdk/drivers/dma/hisilicon/hisi_dmadev.c
David Marchand 1f37cb2bb4 bus/pci: make driver-only headers private
The pci bus interface is for drivers only.
Mark as internal and move the header in the driver headers list.

While at it, cleanup the code:
- fix indentation,
- remove unneeded reference to bus specific singleton object,
- remove unneeded list head structure type,
- reorder the definitions and macro manipulating the bus singleton object,
- remove inclusion of rte_bus.h and fix the code that relied on implicit
  inclusion,

Signed-off-by: David Marchand <david.marchand@redhat.com>
Acked-by: Bruce Richardson <bruce.richardson@intel.com>
Acked-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
Acked-by: Rosen Xu <rosen.xu@intel.com>
2022-09-23 16:14:34 +02:00

1010 lines
26 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2021 HiSilicon Limited
*/
#include <inttypes.h>
#include <string.h>
#include <bus_pci_driver.h>
#include <rte_cycles.h>
#include <rte_eal.h>
#include <rte_io.h>
#include <rte_log.h>
#include <rte_malloc.h>
#include <rte_memzone.h>
#include <rte_pci.h>
#include <rte_dmadev_pmd.h>
#include "hisi_dmadev.h"
RTE_LOG_REGISTER_DEFAULT(hisi_dma_logtype, INFO);
#define HISI_DMA_LOG(level, fmt, args...) \
rte_log(RTE_LOG_ ## level, hisi_dma_logtype, \
"%s(): " fmt "\n", __func__, ##args)
#define HISI_DMA_LOG_RAW(hw, level, fmt, args...) \
rte_log(RTE_LOG_ ## level, hisi_dma_logtype, \
"%s %s(): " fmt "\n", (hw)->data->dev_name, \
__func__, ##args)
#define HISI_DMA_DEBUG(hw, fmt, args...) \
HISI_DMA_LOG_RAW(hw, DEBUG, fmt, ## args)
#define HISI_DMA_INFO(hw, fmt, args...) \
HISI_DMA_LOG_RAW(hw, INFO, fmt, ## args)
#define HISI_DMA_WARN(hw, fmt, args...) \
HISI_DMA_LOG_RAW(hw, WARNING, fmt, ## args)
#define HISI_DMA_ERR(hw, fmt, args...) \
HISI_DMA_LOG_RAW(hw, ERR, fmt, ## args)
static uint32_t
hisi_dma_queue_base(struct hisi_dma_dev *hw)
{
if (hw->reg_layout == HISI_DMA_REG_LAYOUT_HIP08)
return HISI_DMA_HIP08_QUEUE_BASE;
else if (hw->reg_layout == HISI_DMA_REG_LAYOUT_HIP09)
return HISI_DMA_HIP09_QUEUE_BASE;
else
return 0;
}
static volatile void *
hisi_dma_queue_regaddr(struct hisi_dma_dev *hw, uint32_t qoff)
{
uint32_t off = hisi_dma_queue_base(hw) +
hw->queue_id * HISI_DMA_QUEUE_REGION_SIZE + qoff;
return (volatile void *)((char *)hw->io_base + off);
}
static void
hisi_dma_write_reg(void *base, uint32_t off, uint32_t val)
{
rte_write32(rte_cpu_to_le_32(val),
(volatile void *)((char *)base + off));
}
static void
hisi_dma_write_dev(struct hisi_dma_dev *hw, uint32_t off, uint32_t val)
{
hisi_dma_write_reg(hw->io_base, off, val);
}
static void
hisi_dma_write_queue(struct hisi_dma_dev *hw, uint32_t qoff, uint32_t val)
{
uint32_t off = hisi_dma_queue_base(hw) +
hw->queue_id * HISI_DMA_QUEUE_REGION_SIZE + qoff;
hisi_dma_write_dev(hw, off, val);
}
static uint32_t
hisi_dma_read_reg(void *base, uint32_t off)
{
uint32_t val = rte_read32((volatile void *)((char *)base + off));
return rte_le_to_cpu_32(val);
}
static uint32_t
hisi_dma_read_dev(struct hisi_dma_dev *hw, uint32_t off)
{
return hisi_dma_read_reg(hw->io_base, off);
}
static uint32_t
hisi_dma_read_queue(struct hisi_dma_dev *hw, uint32_t qoff)
{
uint32_t off = hisi_dma_queue_base(hw) +
hw->queue_id * HISI_DMA_QUEUE_REGION_SIZE + qoff;
return hisi_dma_read_dev(hw, off);
}
static void
hisi_dma_update_bit(struct hisi_dma_dev *hw, uint32_t off, uint32_t pos,
bool set)
{
uint32_t tmp = hisi_dma_read_dev(hw, off);
uint32_t mask = 1u << pos;
tmp = set ? tmp | mask : tmp & ~mask;
hisi_dma_write_dev(hw, off, tmp);
}
static void
hisi_dma_update_queue_bit(struct hisi_dma_dev *hw, uint32_t qoff, uint32_t pos,
bool set)
{
uint32_t tmp = hisi_dma_read_queue(hw, qoff);
uint32_t mask = 1u << pos;
tmp = set ? tmp | mask : tmp & ~mask;
hisi_dma_write_queue(hw, qoff, tmp);
}
static void
hisi_dma_update_queue_mbit(struct hisi_dma_dev *hw, uint32_t qoff,
uint32_t mask, bool set)
{
uint32_t tmp = hisi_dma_read_queue(hw, qoff);
tmp = set ? tmp | mask : tmp & ~mask;
hisi_dma_write_queue(hw, qoff, tmp);
}
#define hisi_dma_poll_hw_state(hw, val, cond, sleep_us, timeout_us) ({ \
uint32_t timeout = 0; \
while (timeout++ <= (timeout_us)) { \
(val) = hisi_dma_read_queue(hw, HISI_DMA_QUEUE_FSM_REG); \
if (cond) \
break; \
rte_delay_us(sleep_us); \
} \
(cond) ? 0 : -ETIME; \
})
static int
hisi_dma_reset_hw(struct hisi_dma_dev *hw)
{
#define POLL_SLEEP_US 100
#define POLL_TIMEOUT_US 10000
uint32_t tmp;
int ret;
hisi_dma_update_queue_bit(hw, HISI_DMA_QUEUE_CTRL0_REG,
HISI_DMA_QUEUE_CTRL0_PAUSE_B, true);
hisi_dma_update_queue_bit(hw, HISI_DMA_QUEUE_CTRL0_REG,
HISI_DMA_QUEUE_CTRL0_EN_B, false);
ret = hisi_dma_poll_hw_state(hw, tmp,
FIELD_GET(HISI_DMA_QUEUE_FSM_STS_M, tmp) != HISI_DMA_STATE_RUN,
POLL_SLEEP_US, POLL_TIMEOUT_US);
if (ret) {
HISI_DMA_ERR(hw, "disable dma timeout!");
return ret;
}
hisi_dma_update_queue_bit(hw, HISI_DMA_QUEUE_CTRL1_REG,
HISI_DMA_QUEUE_CTRL1_RESET_B, true);
hisi_dma_write_queue(hw, HISI_DMA_QUEUE_SQ_TAIL_REG, 0);
hisi_dma_write_queue(hw, HISI_DMA_QUEUE_CQ_HEAD_REG, 0);
hisi_dma_update_queue_bit(hw, HISI_DMA_QUEUE_CTRL0_REG,
HISI_DMA_QUEUE_CTRL0_PAUSE_B, false);
ret = hisi_dma_poll_hw_state(hw, tmp,
FIELD_GET(HISI_DMA_QUEUE_FSM_STS_M, tmp) == HISI_DMA_STATE_IDLE,
POLL_SLEEP_US, POLL_TIMEOUT_US);
if (ret) {
HISI_DMA_ERR(hw, "reset dma timeout!");
return ret;
}
return 0;
}
static void
hisi_dma_init_common(struct hisi_dma_dev *hw)
{
hisi_dma_write_queue(hw, HISI_DMA_QUEUE_SQ_BASE_L_REG,
lower_32_bits(hw->sqe_iova));
hisi_dma_write_queue(hw, HISI_DMA_QUEUE_SQ_BASE_H_REG,
upper_32_bits(hw->sqe_iova));
hisi_dma_write_queue(hw, HISI_DMA_QUEUE_CQ_BASE_L_REG,
lower_32_bits(hw->cqe_iova));
hisi_dma_write_queue(hw, HISI_DMA_QUEUE_CQ_BASE_H_REG,
upper_32_bits(hw->cqe_iova));
hisi_dma_write_queue(hw, HISI_DMA_QUEUE_SQ_DEPTH_REG,
hw->sq_depth_mask);
hisi_dma_write_queue(hw, HISI_DMA_QUEUE_CQ_DEPTH_REG, hw->cq_depth - 1);
hisi_dma_write_queue(hw, HISI_DMA_QUEUE_SQ_TAIL_REG, 0);
hisi_dma_write_queue(hw, HISI_DMA_QUEUE_CQ_HEAD_REG, 0);
hisi_dma_write_queue(hw, HISI_DMA_QUEUE_ERR_INT_NUM0_REG, 0);
hisi_dma_write_queue(hw, HISI_DMA_QUEUE_ERR_INT_NUM1_REG, 0);
hisi_dma_write_queue(hw, HISI_DMA_QUEUE_ERR_INT_NUM2_REG, 0);
}
static void
hisi_dma_init_hw(struct hisi_dma_dev *hw)
{
hisi_dma_init_common(hw);
if (hw->reg_layout == HISI_DMA_REG_LAYOUT_HIP08) {
hisi_dma_write_queue(hw, HISI_DMA_HIP08_QUEUE_ERR_INT_NUM3_REG,
0);
hisi_dma_write_queue(hw, HISI_DMA_HIP08_QUEUE_ERR_INT_NUM4_REG,
0);
hisi_dma_write_queue(hw, HISI_DMA_HIP08_QUEUE_ERR_INT_NUM5_REG,
0);
hisi_dma_write_queue(hw, HISI_DMA_HIP08_QUEUE_ERR_INT_NUM6_REG,
0);
hisi_dma_update_queue_bit(hw, HISI_DMA_QUEUE_CTRL0_REG,
HISI_DMA_HIP08_QUEUE_CTRL0_ERR_ABORT_B, false);
hisi_dma_update_queue_mbit(hw, HISI_DMA_QUEUE_INT_STATUS_REG,
HISI_DMA_HIP08_QUEUE_INT_MASK_M, true);
hisi_dma_update_queue_mbit(hw, HISI_DMA_QUEUE_INT_MASK_REG,
HISI_DMA_HIP08_QUEUE_INT_MASK_M, true);
} else if (hw->reg_layout == HISI_DMA_REG_LAYOUT_HIP09) {
hisi_dma_update_queue_mbit(hw, HISI_DMA_QUEUE_CTRL0_REG,
HISI_DMA_HIP09_QUEUE_CTRL0_ERR_ABORT_M, false);
hisi_dma_update_queue_mbit(hw, HISI_DMA_QUEUE_INT_STATUS_REG,
HISI_DMA_HIP09_QUEUE_INT_MASK_M, true);
hisi_dma_update_queue_mbit(hw, HISI_DMA_QUEUE_INT_MASK_REG,
HISI_DMA_HIP09_QUEUE_INT_MASK_M, true);
hisi_dma_update_queue_mbit(hw,
HISI_DMA_HIP09_QUEUE_ERR_INT_STATUS_REG,
HISI_DMA_HIP09_QUEUE_ERR_INT_MASK_M, true);
hisi_dma_update_queue_mbit(hw,
HISI_DMA_HIP09_QUEUE_ERR_INT_MASK_REG,
HISI_DMA_HIP09_QUEUE_ERR_INT_MASK_M, true);
hisi_dma_update_queue_bit(hw, HISI_DMA_QUEUE_CTRL1_REG,
HISI_DMA_HIP09_QUEUE_CTRL1_VA_ENABLE_B, true);
hisi_dma_update_bit(hw,
HISI_DMA_HIP09_QUEUE_CFG_REG(hw->queue_id),
HISI_DMA_HIP09_QUEUE_CFG_LINK_DOWN_MASK_B,
true);
}
}
static void
hisi_dma_init_gbl(void *pci_bar, uint8_t revision)
{
struct hisi_dma_dev hw;
memset(&hw, 0, sizeof(hw));
hw.io_base = pci_bar;
if (revision == HISI_DMA_REVISION_HIP08B)
hisi_dma_update_bit(&hw, HISI_DMA_HIP08_MODE_REG,
HISI_DMA_HIP08_MODE_SEL_B, true);
}
static uint8_t
hisi_dma_reg_layout(uint8_t revision)
{
if (revision == HISI_DMA_REVISION_HIP08B)
return HISI_DMA_REG_LAYOUT_HIP08;
else if (revision >= HISI_DMA_REVISION_HIP09A)
return HISI_DMA_REG_LAYOUT_HIP09;
else
return HISI_DMA_REG_LAYOUT_INVALID;
}
static void
hisi_dma_zero_iomem(struct hisi_dma_dev *hw)
{
memset(hw->iomz->addr, 0, hw->iomz_sz);
}
static int
hisi_dma_alloc_iomem(struct hisi_dma_dev *hw, uint16_t ring_size,
const char *dev_name)
{
uint32_t sq_size = sizeof(struct hisi_dma_sqe) * ring_size;
uint32_t cq_size = sizeof(struct hisi_dma_cqe) *
(ring_size + HISI_DMA_CQ_RESERVED);
uint32_t status_size = sizeof(uint16_t) * ring_size;
char mz_name[RTE_MEMZONE_NAMESIZE];
const struct rte_memzone *iomz;
uint32_t total_size;
sq_size = RTE_CACHE_LINE_ROUNDUP(sq_size);
cq_size = RTE_CACHE_LINE_ROUNDUP(cq_size);
status_size = RTE_CACHE_LINE_ROUNDUP(status_size);
total_size = sq_size + cq_size + status_size;
(void)snprintf(mz_name, sizeof(mz_name), "hisi_dma:%s", dev_name);
iomz = rte_memzone_reserve(mz_name, total_size, hw->data->numa_node,
RTE_MEMZONE_IOVA_CONTIG);
if (iomz == NULL) {
HISI_DMA_ERR(hw, "malloc %s iomem fail!", mz_name);
return -ENOMEM;
}
hw->iomz = iomz;
hw->iomz_sz = total_size;
hw->sqe = iomz->addr;
hw->cqe = (void *)((char *)iomz->addr + sq_size);
hw->status = (void *)((char *)iomz->addr + sq_size + cq_size);
hw->sqe_iova = iomz->iova;
hw->cqe_iova = iomz->iova + sq_size;
hw->sq_depth_mask = ring_size - 1;
hw->cq_depth = ring_size + HISI_DMA_CQ_RESERVED;
hisi_dma_zero_iomem(hw);
return 0;
}
static void
hisi_dma_free_iomem(struct hisi_dma_dev *hw)
{
if (hw->iomz != NULL)
rte_memzone_free(hw->iomz);
hw->iomz = NULL;
hw->sqe = NULL;
hw->cqe = NULL;
hw->status = NULL;
hw->sqe_iova = 0;
hw->cqe_iova = 0;
hw->sq_depth_mask = 0;
hw->cq_depth = 0;
}
static int
hisi_dma_info_get(const struct rte_dma_dev *dev,
struct rte_dma_info *dev_info,
uint32_t info_sz)
{
struct hisi_dma_dev *hw = dev->data->dev_private;
RTE_SET_USED(info_sz);
dev_info->dev_capa = RTE_DMA_CAPA_MEM_TO_MEM |
RTE_DMA_CAPA_OPS_COPY;
if (hw->reg_layout == HISI_DMA_REG_LAYOUT_HIP09)
dev_info->dev_capa |= RTE_DMA_CAPA_HANDLES_ERRORS;
dev_info->max_vchans = 1;
dev_info->max_desc = HISI_DMA_MAX_DESC_NUM;
dev_info->min_desc = HISI_DMA_MIN_DESC_NUM;
return 0;
}
static int
hisi_dma_configure(struct rte_dma_dev *dev,
const struct rte_dma_conf *conf,
uint32_t conf_sz)
{
RTE_SET_USED(dev);
RTE_SET_USED(conf);
RTE_SET_USED(conf_sz);
return 0;
}
static int
hisi_dma_vchan_setup(struct rte_dma_dev *dev, uint16_t vchan,
const struct rte_dma_vchan_conf *conf,
uint32_t conf_sz)
{
struct hisi_dma_dev *hw = dev->data->dev_private;
int ret;
RTE_SET_USED(vchan);
RTE_SET_USED(conf_sz);
if (!rte_is_power_of_2(conf->nb_desc)) {
HISI_DMA_ERR(hw, "Number of desc must be power of 2!");
return -EINVAL;
}
hisi_dma_free_iomem(hw);
ret = hisi_dma_alloc_iomem(hw, conf->nb_desc, dev->data->dev_name);
if (ret)
return ret;
return 0;
}
static int
hisi_dma_start(struct rte_dma_dev *dev)
{
struct hisi_dma_dev *hw = dev->data->dev_private;
if (hw->iomz == NULL) {
HISI_DMA_ERR(hw, "Vchan was not setup, start fail!\n");
return -EINVAL;
}
/* Reset the dmadev to a known state, include:
* 1) zero iomem, also include status fields.
* 2) init hardware register.
* 3) init index values to zero.
* 4) init running statistics.
*/
hisi_dma_zero_iomem(hw);
hisi_dma_init_hw(hw);
hw->ridx = 0;
hw->cridx = 0;
hw->sq_head = 0;
hw->sq_tail = 0;
hw->cq_sq_head = 0;
hw->cq_head = 0;
hw->cqs_completed = 0;
hw->cqe_vld = 1;
hw->submitted = 0;
hw->completed = 0;
hw->errors = 0;
hw->qfulls = 0;
hisi_dma_update_queue_bit(hw, HISI_DMA_QUEUE_CTRL0_REG,
HISI_DMA_QUEUE_CTRL0_EN_B, true);
return 0;
}
static int
hisi_dma_stop(struct rte_dma_dev *dev)
{
return hisi_dma_reset_hw(dev->data->dev_private);
}
static int
hisi_dma_close(struct rte_dma_dev *dev)
{
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
/* The dmadev already stopped */
hisi_dma_free_iomem(dev->data->dev_private);
}
return 0;
}
static int
hisi_dma_stats_get(const struct rte_dma_dev *dev, uint16_t vchan,
struct rte_dma_stats *stats,
uint32_t stats_sz)
{
struct hisi_dma_dev *hw = dev->data->dev_private;
RTE_SET_USED(vchan);
RTE_SET_USED(stats_sz);
stats->submitted = hw->submitted;
stats->completed = hw->completed;
stats->errors = hw->errors;
return 0;
}
static int
hisi_dma_stats_reset(struct rte_dma_dev *dev, uint16_t vchan)
{
struct hisi_dma_dev *hw = dev->data->dev_private;
RTE_SET_USED(vchan);
hw->submitted = 0;
hw->completed = 0;
hw->errors = 0;
hw->qfulls = 0;
return 0;
}
static int
hisi_dma_vchan_status(const struct rte_dma_dev *dev, uint16_t vchan,
enum rte_dma_vchan_status *status)
{
struct hisi_dma_dev *hw = dev->data->dev_private;
uint32_t val;
RTE_SET_USED(vchan);
val = hisi_dma_read_queue(hw, HISI_DMA_QUEUE_FSM_REG);
val = FIELD_GET(HISI_DMA_QUEUE_FSM_STS_M, val);
if (val == HISI_DMA_STATE_RUN)
*status = RTE_DMA_VCHAN_ACTIVE;
else if (val == HISI_DMA_STATE_CPL)
*status = RTE_DMA_VCHAN_IDLE;
else
*status = RTE_DMA_VCHAN_HALTED_ERROR;
return 0;
}
static void
hisi_dma_dump_range(struct hisi_dma_dev *hw, FILE *f, uint32_t start,
uint32_t end)
{
#define DUMP_REGNUM_PER_LINE 4
uint32_t cnt, i;
cnt = 0;
for (i = start; i <= end; i += sizeof(uint32_t)) {
if (cnt % DUMP_REGNUM_PER_LINE == 0)
(void)fprintf(f, " [%4x]:", i);
(void)fprintf(f, " 0x%08x", hisi_dma_read_dev(hw, i));
cnt++;
if (cnt % DUMP_REGNUM_PER_LINE == 0)
(void)fprintf(f, "\n");
}
if (cnt % DUMP_REGNUM_PER_LINE)
(void)fprintf(f, "\n");
}
static void
hisi_dma_dump_common(struct hisi_dma_dev *hw, FILE *f)
{
struct {
uint8_t reg_layout;
uint32_t start;
uint32_t end;
} reg_info[] = {
{ HISI_DMA_REG_LAYOUT_HIP08,
HISI_DMA_HIP08_DUMP_START_REG,
HISI_DMA_HIP08_DUMP_END_REG },
{ HISI_DMA_REG_LAYOUT_HIP09,
HISI_DMA_HIP09_DUMP_REGION_A_START_REG,
HISI_DMA_HIP09_DUMP_REGION_A_END_REG },
{ HISI_DMA_REG_LAYOUT_HIP09,
HISI_DMA_HIP09_DUMP_REGION_B_START_REG,
HISI_DMA_HIP09_DUMP_REGION_B_END_REG },
{ HISI_DMA_REG_LAYOUT_HIP09,
HISI_DMA_HIP09_DUMP_REGION_C_START_REG,
HISI_DMA_HIP09_DUMP_REGION_C_END_REG },
{ HISI_DMA_REG_LAYOUT_HIP09,
HISI_DMA_HIP09_DUMP_REGION_D_START_REG,
HISI_DMA_HIP09_DUMP_REGION_D_END_REG },
};
uint32_t i;
(void)fprintf(f, " common-register:\n");
for (i = 0; i < RTE_DIM(reg_info); i++) {
if (hw->reg_layout != reg_info[i].reg_layout)
continue;
hisi_dma_dump_range(hw, f, reg_info[i].start, reg_info[i].end);
}
}
static void
hisi_dma_dump_read_queue(struct hisi_dma_dev *hw, uint32_t qoff,
char *buffer, int max_sz)
{
memset(buffer, 0, max_sz);
/* Address-related registers are not printed for security reasons. */
if (qoff == HISI_DMA_QUEUE_SQ_BASE_L_REG ||
qoff == HISI_DMA_QUEUE_SQ_BASE_H_REG ||
qoff == HISI_DMA_QUEUE_CQ_BASE_L_REG ||
qoff == HISI_DMA_QUEUE_CQ_BASE_H_REG) {
(void)snprintf(buffer, max_sz, "**********");
return;
}
(void)snprintf(buffer, max_sz, "0x%08x", hisi_dma_read_queue(hw, qoff));
}
static void
hisi_dma_dump_queue(struct hisi_dma_dev *hw, FILE *f)
{
#define REG_FMT_LEN 32
char buf[REG_FMT_LEN] = { 0 };
uint32_t i;
(void)fprintf(f, " queue-register:\n");
for (i = 0; i < HISI_DMA_QUEUE_REGION_SIZE; ) {
hisi_dma_dump_read_queue(hw, i, buf, sizeof(buf));
(void)fprintf(f, " [%2x]: %s", i, buf);
i += sizeof(uint32_t);
hisi_dma_dump_read_queue(hw, i, buf, sizeof(buf));
(void)fprintf(f, " %s", buf);
i += sizeof(uint32_t);
hisi_dma_dump_read_queue(hw, i, buf, sizeof(buf));
(void)fprintf(f, " %s", buf);
i += sizeof(uint32_t);
hisi_dma_dump_read_queue(hw, i, buf, sizeof(buf));
(void)fprintf(f, " %s\n", buf);
i += sizeof(uint32_t);
}
}
static int
hisi_dma_dump(const struct rte_dma_dev *dev, FILE *f)
{
struct hisi_dma_dev *hw = dev->data->dev_private;
(void)fprintf(f,
" revision: 0x%x queue_id: %u ring_size: %u\n"
" ridx: %u cridx: %u\n"
" sq_head: %u sq_tail: %u cq_sq_head: %u\n"
" cq_head: %u cqs_completed: %u cqe_vld: %u\n"
" submitted: %" PRIu64 " completed: %" PRIu64 " errors: %"
PRIu64 " qfulls: %" PRIu64 "\n",
hw->revision, hw->queue_id,
hw->sq_depth_mask > 0 ? hw->sq_depth_mask + 1 : 0,
hw->ridx, hw->cridx,
hw->sq_head, hw->sq_tail, hw->cq_sq_head,
hw->cq_head, hw->cqs_completed, hw->cqe_vld,
hw->submitted, hw->completed, hw->errors, hw->qfulls);
hisi_dma_dump_queue(hw, f);
hisi_dma_dump_common(hw, f);
return 0;
}
static int
hisi_dma_copy(void *dev_private, uint16_t vchan,
rte_iova_t src, rte_iova_t dst,
uint32_t length, uint64_t flags)
{
struct hisi_dma_dev *hw = dev_private;
struct hisi_dma_sqe *sqe = &hw->sqe[hw->sq_tail];
RTE_SET_USED(vchan);
if (((hw->sq_tail + 1) & hw->sq_depth_mask) == hw->sq_head) {
hw->qfulls++;
return -ENOSPC;
}
sqe->dw0 = rte_cpu_to_le_32(SQE_OPCODE_M2M);
sqe->dw1 = 0;
sqe->dw2 = 0;
sqe->length = rte_cpu_to_le_32(length);
sqe->src_addr = rte_cpu_to_le_64(src);
sqe->dst_addr = rte_cpu_to_le_64(dst);
hw->sq_tail = (hw->sq_tail + 1) & hw->sq_depth_mask;
hw->submitted++;
if (flags & RTE_DMA_OP_FLAG_FENCE)
sqe->dw0 |= rte_cpu_to_le_32(SQE_FENCE_FLAG);
if (flags & RTE_DMA_OP_FLAG_SUBMIT)
rte_write32(rte_cpu_to_le_32(hw->sq_tail), hw->sq_tail_reg);
return hw->ridx++;
}
static int
hisi_dma_submit(void *dev_private, uint16_t vchan)
{
struct hisi_dma_dev *hw = dev_private;
RTE_SET_USED(vchan);
rte_write32(rte_cpu_to_le_32(hw->sq_tail), hw->sq_tail_reg);
return 0;
}
static inline void
hisi_dma_scan_cq(struct hisi_dma_dev *hw)
{
volatile struct hisi_dma_cqe *cqe;
uint16_t csq_head = hw->cq_sq_head;
uint16_t cq_head = hw->cq_head;
uint16_t count = 0;
uint64_t misc;
while (count < hw->cq_depth) {
cqe = &hw->cqe[cq_head];
misc = cqe->misc;
misc = rte_le_to_cpu_64(misc);
if (FIELD_GET(CQE_VALID_B, misc) != hw->cqe_vld)
break;
csq_head = FIELD_GET(CQE_SQ_HEAD_MASK, misc);
if (unlikely(csq_head > hw->sq_depth_mask)) {
/**
* Defensive programming to prevent overflow of the
* status array indexed by csq_head. Only error logs
* are used for prompting.
*/
HISI_DMA_ERR(hw, "invalid csq_head:%u!\n", csq_head);
count = 0;
break;
}
if (unlikely(misc & CQE_STATUS_MASK))
hw->status[csq_head] = FIELD_GET(CQE_STATUS_MASK,
misc);
count++;
cq_head++;
if (cq_head == hw->cq_depth) {
hw->cqe_vld = !hw->cqe_vld;
cq_head = 0;
}
}
if (count == 0)
return;
hw->cq_head = cq_head;
hw->cq_sq_head = (csq_head + 1) & hw->sq_depth_mask;
hw->cqs_completed += count;
if (hw->cqs_completed >= HISI_DMA_CQ_RESERVED) {
rte_write32(rte_cpu_to_le_32(cq_head), hw->cq_head_reg);
hw->cqs_completed = 0;
}
}
static inline uint16_t
hisi_dma_calc_cpls(struct hisi_dma_dev *hw, const uint16_t nb_cpls)
{
uint16_t cpl_num;
if (hw->cq_sq_head >= hw->sq_head)
cpl_num = hw->cq_sq_head - hw->sq_head;
else
cpl_num = hw->sq_depth_mask + 1 - hw->sq_head + hw->cq_sq_head;
if (cpl_num > nb_cpls)
cpl_num = nb_cpls;
return cpl_num;
}
static uint16_t
hisi_dma_completed(void *dev_private,
uint16_t vchan, const uint16_t nb_cpls,
uint16_t *last_idx, bool *has_error)
{
struct hisi_dma_dev *hw = dev_private;
uint16_t sq_head = hw->sq_head;
uint16_t cpl_num, i;
RTE_SET_USED(vchan);
hisi_dma_scan_cq(hw);
cpl_num = hisi_dma_calc_cpls(hw, nb_cpls);
for (i = 0; i < cpl_num; i++) {
if (hw->status[sq_head]) {
*has_error = true;
break;
}
sq_head = (sq_head + 1) & hw->sq_depth_mask;
}
*last_idx = hw->cridx + i - 1;
if (i > 0) {
hw->cridx += i;
hw->sq_head = sq_head;
hw->completed += i;
}
return i;
}
static enum rte_dma_status_code
hisi_dma_convert_status(uint16_t status)
{
switch (status) {
case HISI_DMA_STATUS_SUCCESS:
return RTE_DMA_STATUS_SUCCESSFUL;
case HISI_DMA_STATUS_INVALID_OPCODE:
return RTE_DMA_STATUS_INVALID_OPCODE;
case HISI_DMA_STATUS_INVALID_LENGTH:
return RTE_DMA_STATUS_INVALID_LENGTH;
case HISI_DMA_STATUS_USER_ABORT:
return RTE_DMA_STATUS_USER_ABORT;
case HISI_DMA_STATUS_REMOTE_READ_ERROR:
case HISI_DMA_STATUS_AXI_READ_ERROR:
return RTE_DMA_STATUS_BUS_READ_ERROR;
case HISI_DMA_STATUS_AXI_WRITE_ERROR:
return RTE_DMA_STATUS_BUS_WRITE_ERROR;
case HISI_DMA_STATUS_DATA_POISON:
case HISI_DMA_STATUS_REMOTE_DATA_POISION:
return RTE_DMA_STATUS_DATA_POISION;
case HISI_DMA_STATUS_SQE_READ_ERROR:
case HISI_DMA_STATUS_SQE_READ_POISION:
return RTE_DMA_STATUS_DESCRIPTOR_READ_ERROR;
case HISI_DMA_STATUS_LINK_DOWN_ERROR:
return RTE_DMA_STATUS_DEV_LINK_ERROR;
default:
return RTE_DMA_STATUS_ERROR_UNKNOWN;
}
}
static uint16_t
hisi_dma_completed_status(void *dev_private,
uint16_t vchan, const uint16_t nb_cpls,
uint16_t *last_idx, enum rte_dma_status_code *status)
{
struct hisi_dma_dev *hw = dev_private;
uint16_t sq_head = hw->sq_head;
uint16_t cpl_num, i;
RTE_SET_USED(vchan);
hisi_dma_scan_cq(hw);
cpl_num = hisi_dma_calc_cpls(hw, nb_cpls);
for (i = 0; i < cpl_num; i++) {
status[i] = hisi_dma_convert_status(hw->status[sq_head]);
hw->errors += !!status[i];
hw->status[sq_head] = HISI_DMA_STATUS_SUCCESS;
sq_head = (sq_head + 1) & hw->sq_depth_mask;
}
*last_idx = hw->cridx + cpl_num - 1;
if (likely(cpl_num > 0)) {
hw->cridx += cpl_num;
hw->sq_head = sq_head;
hw->completed += cpl_num;
}
return cpl_num;
}
static uint16_t
hisi_dma_burst_capacity(const void *dev_private, uint16_t vchan)
{
const struct hisi_dma_dev *hw = dev_private;
uint16_t sq_head = hw->sq_head;
uint16_t sq_tail = hw->sq_tail;
RTE_SET_USED(vchan);
return (sq_tail >= sq_head) ? hw->sq_depth_mask - sq_tail + sq_head :
sq_head - 1 - sq_tail;
}
static void
hisi_dma_gen_dev_name(const struct rte_pci_device *pci_dev,
uint8_t queue_id, char *dev_name, size_t size)
{
char name[RTE_DEV_NAME_MAX_LEN] = { 0 };
memset(dev_name, 0, size);
rte_pci_device_name(&pci_dev->addr, name, sizeof(name));
(void)snprintf(dev_name, size, "%s-ch%u", name, queue_id);
}
/**
* Hardware queue state machine:
*
* ----------- dmadev_create ------------------
* | Unknown | ---------------> | IDLE |
* ----------- ------------------
* ^ |
* | |dev_start
* dev_stop| |
* | v
* ------------------
* | CPL |
* ------------------
* ^ |
* hardware | |
* completed all| |dev_submit
* descriptors | |
* | |
* ------------------
* | RUN |
* ------------------
*
*/
static const struct rte_dma_dev_ops hisi_dmadev_ops = {
.dev_info_get = hisi_dma_info_get,
.dev_configure = hisi_dma_configure,
.dev_start = hisi_dma_start,
.dev_stop = hisi_dma_stop,
.dev_close = hisi_dma_close,
.vchan_setup = hisi_dma_vchan_setup,
.stats_get = hisi_dma_stats_get,
.stats_reset = hisi_dma_stats_reset,
.vchan_status = hisi_dma_vchan_status,
.dev_dump = hisi_dma_dump,
};
static int
hisi_dma_create(struct rte_pci_device *pci_dev, uint8_t queue_id,
uint8_t revision)
{
#define REG_PCI_BAR_INDEX 2
char name[RTE_DEV_NAME_MAX_LEN];
struct rte_dma_dev *dev;
struct hisi_dma_dev *hw;
int ret;
hisi_dma_gen_dev_name(pci_dev, queue_id, name, sizeof(name));
dev = rte_dma_pmd_allocate(name, pci_dev->device.numa_node,
sizeof(*hw));
if (dev == NULL) {
HISI_DMA_LOG(ERR, "%s allocate dmadev fail!", name);
return -EINVAL;
}
dev->device = &pci_dev->device;
dev->dev_ops = &hisi_dmadev_ops;
dev->fp_obj->dev_private = dev->data->dev_private;
dev->fp_obj->copy = hisi_dma_copy;
dev->fp_obj->submit = hisi_dma_submit;
dev->fp_obj->completed = hisi_dma_completed;
dev->fp_obj->completed_status = hisi_dma_completed_status;
dev->fp_obj->burst_capacity = hisi_dma_burst_capacity;
hw = dev->data->dev_private;
hw->data = dev->data;
hw->revision = revision;
hw->reg_layout = hisi_dma_reg_layout(revision);
hw->io_base = pci_dev->mem_resource[REG_PCI_BAR_INDEX].addr;
hw->queue_id = queue_id;
hw->sq_tail_reg = hisi_dma_queue_regaddr(hw,
HISI_DMA_QUEUE_SQ_TAIL_REG);
hw->cq_head_reg = hisi_dma_queue_regaddr(hw,
HISI_DMA_QUEUE_CQ_HEAD_REG);
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
ret = hisi_dma_reset_hw(hw);
if (ret) {
HISI_DMA_LOG(ERR, "%s init device fail!", name);
(void)rte_dma_pmd_release(name);
return -EIO;
}
}
dev->state = RTE_DMA_DEV_READY;
HISI_DMA_LOG(DEBUG, "%s create dmadev success!", name);
return 0;
}
static int
hisi_dma_check_revision(struct rte_pci_device *pci_dev, const char *name,
uint8_t *out_revision)
{
uint8_t revision;
int ret;
ret = rte_pci_read_config(pci_dev, &revision, 1,
HISI_DMA_PCI_REVISION_ID_REG);
if (ret != 1) {
HISI_DMA_LOG(ERR, "%s read PCI revision failed!", name);
return -EINVAL;
}
if (hisi_dma_reg_layout(revision) == HISI_DMA_REG_LAYOUT_INVALID) {
HISI_DMA_LOG(ERR, "%s revision: 0x%x not supported!",
name, revision);
return -EINVAL;
}
*out_revision = revision;
return 0;
}
static int
hisi_dma_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
char name[RTE_DEV_NAME_MAX_LEN] = { 0 };
uint8_t revision;
uint8_t i;
int ret;
rte_pci_device_name(&pci_dev->addr, name, sizeof(name));
if (pci_dev->mem_resource[2].addr == NULL) {
HISI_DMA_LOG(ERR, "%s BAR2 is NULL!\n", name);
return -ENODEV;
}
ret = hisi_dma_check_revision(pci_dev, name, &revision);
if (ret)
return ret;
HISI_DMA_LOG(DEBUG, "%s read PCI revision: 0x%x", name, revision);
if (rte_eal_process_type() == RTE_PROC_PRIMARY)
hisi_dma_init_gbl(pci_dev->mem_resource[2].addr, revision);
for (i = 0; i < HISI_DMA_MAX_HW_QUEUES; i++) {
ret = hisi_dma_create(pci_dev, i, revision);
if (ret) {
HISI_DMA_LOG(ERR, "%s create dmadev %u failed!",
name, i);
break;
}
}
return ret;
}
static int
hisi_dma_remove(struct rte_pci_device *pci_dev)
{
char name[RTE_DEV_NAME_MAX_LEN];
uint8_t i;
int ret;
for (i = 0; i < HISI_DMA_MAX_HW_QUEUES; i++) {
hisi_dma_gen_dev_name(pci_dev, i, name, sizeof(name));
ret = rte_dma_pmd_release(name);
if (ret)
return ret;
}
return 0;
}
static const struct rte_pci_id pci_id_hisi_dma_map[] = {
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HISI_DMA_DEVICE_ID) },
{ .vendor_id = 0, }, /* sentinel */
};
static struct rte_pci_driver hisi_dma_pmd_drv = {
.id_table = pci_id_hisi_dma_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING,
.probe = hisi_dma_probe,
.remove = hisi_dma_remove,
};
RTE_PMD_REGISTER_PCI(dma_hisilicon, hisi_dma_pmd_drv);
RTE_PMD_REGISTER_PCI_TABLE(dma_hisilicon, pci_id_hisi_dma_map);
RTE_PMD_REGISTER_KMOD_DEP(dma_hisilicon, "vfio-pci");