numam-dpdk/drivers/event/cnxk/cn9k_worker.h
Nithin Dabilpuram ea84910903 net/cnxk: remove unnecessary DPTR update
Removed unnecessary datapointer(DPTR) update and remove ESN update
from microcode command word 0 based on the latest microcode.

Signed-off-by: Nithin Dabilpuram <ndabilpuram@marvell.com>
Signed-off-by: Vidya Sagar Velumuri <vvelumuri@marvell.com>
2022-10-18 12:59:55 +02:00

913 lines
34 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2021 Marvell.
*/
#ifndef __CN9K_WORKER_H__
#define __CN9K_WORKER_H__
#include <rte_eventdev.h>
#include <rte_vect.h>
#include "cnxk_ethdev.h"
#include "cnxk_eventdev.h"
#include "cnxk_worker.h"
#include "cn9k_cryptodev_ops.h"
#include "cn9k_ethdev.h"
#include "cn9k_rx.h"
#include "cn9k_tx.h"
/* SSO Operations */
static __rte_always_inline uint8_t
cn9k_sso_hws_new_event(struct cn9k_sso_hws *ws, const struct rte_event *ev)
{
const uint32_t tag = (uint32_t)ev->event;
const uint8_t new_tt = ev->sched_type;
const uint64_t event_ptr = ev->u64;
const uint16_t grp = ev->queue_id;
rte_atomic_thread_fence(__ATOMIC_ACQ_REL);
if (ws->xaq_lmt <= *ws->fc_mem)
return 0;
cnxk_sso_hws_add_work(event_ptr, tag, new_tt,
ws->grp_base + (grp << 12));
return 1;
}
static __rte_always_inline void
cn9k_sso_hws_fwd_swtag(uint64_t base, const struct rte_event *ev)
{
const uint32_t tag = (uint32_t)ev->event;
const uint8_t new_tt = ev->sched_type;
const uint8_t cur_tt =
CNXK_TT_FROM_TAG(plt_read64(base + SSOW_LF_GWS_TAG));
/* CNXK model
* cur_tt/new_tt SSO_TT_ORDERED SSO_TT_ATOMIC SSO_TT_UNTAGGED
*
* SSO_TT_ORDERED norm norm untag
* SSO_TT_ATOMIC norm norm untag
* SSO_TT_UNTAGGED norm norm NOOP
*/
if (new_tt == SSO_TT_UNTAGGED) {
if (cur_tt != SSO_TT_UNTAGGED)
cnxk_sso_hws_swtag_untag(base +
SSOW_LF_GWS_OP_SWTAG_UNTAG);
} else {
cnxk_sso_hws_swtag_norm(tag, new_tt,
base + SSOW_LF_GWS_OP_SWTAG_NORM);
}
}
static __rte_always_inline void
cn9k_sso_hws_new_event_wait(struct cn9k_sso_hws *ws, const struct rte_event *ev)
{
const uint32_t tag = (uint32_t)ev->event;
const uint8_t new_tt = ev->sched_type;
const uint64_t event_ptr = ev->u64;
const uint16_t grp = ev->queue_id;
while (ws->xaq_lmt <= __atomic_load_n(ws->fc_mem, __ATOMIC_RELAXED))
;
cnxk_sso_hws_add_work(event_ptr, tag, new_tt,
ws->grp_base + (grp << 12));
}
static __rte_always_inline void
cn9k_sso_hws_forward_event(struct cn9k_sso_hws *ws, const struct rte_event *ev)
{
const uint8_t grp = ev->queue_id;
/* Group hasn't changed, Use SWTAG to forward the event */
if (CNXK_GRP_FROM_TAG(plt_read64(ws->base + SSOW_LF_GWS_TAG)) == grp) {
cn9k_sso_hws_fwd_swtag(ws->base, ev);
ws->swtag_req = 1;
} else {
/*
* Group has been changed for group based work pipelining,
* Use add_work operation to transfer the event to
* new group/core
*/
rte_atomic_thread_fence(__ATOMIC_RELEASE);
roc_sso_hws_head_wait(ws->base);
cn9k_sso_hws_new_event_wait(ws, ev);
}
}
/* Dual ws ops. */
static __rte_always_inline uint8_t
cn9k_sso_hws_dual_new_event(struct cn9k_sso_hws_dual *dws,
const struct rte_event *ev)
{
const uint32_t tag = (uint32_t)ev->event;
const uint8_t new_tt = ev->sched_type;
const uint64_t event_ptr = ev->u64;
const uint16_t grp = ev->queue_id;
rte_atomic_thread_fence(__ATOMIC_ACQ_REL);
if (dws->xaq_lmt <= *dws->fc_mem)
return 0;
cnxk_sso_hws_add_work(event_ptr, tag, new_tt,
dws->grp_base + (grp << 12));
return 1;
}
static __rte_always_inline void
cn9k_sso_hws_dual_new_event_wait(struct cn9k_sso_hws_dual *dws,
const struct rte_event *ev)
{
const uint32_t tag = (uint32_t)ev->event;
const uint8_t new_tt = ev->sched_type;
const uint64_t event_ptr = ev->u64;
const uint16_t grp = ev->queue_id;
while (dws->xaq_lmt <= __atomic_load_n(dws->fc_mem, __ATOMIC_RELAXED))
;
cnxk_sso_hws_add_work(event_ptr, tag, new_tt,
dws->grp_base + (grp << 12));
}
static __rte_always_inline void
cn9k_sso_hws_dual_forward_event(struct cn9k_sso_hws_dual *dws, uint64_t base,
const struct rte_event *ev)
{
const uint8_t grp = ev->queue_id;
/* Group hasn't changed, Use SWTAG to forward the event */
if (CNXK_GRP_FROM_TAG(plt_read64(base + SSOW_LF_GWS_TAG)) == grp) {
cn9k_sso_hws_fwd_swtag(base, ev);
dws->swtag_req = 1;
} else {
/*
* Group has been changed for group based work pipelining,
* Use add_work operation to transfer the event to
* new group/core
*/
rte_atomic_thread_fence(__ATOMIC_RELEASE);
roc_sso_hws_head_wait(base);
cn9k_sso_hws_dual_new_event_wait(dws, ev);
}
}
static __rte_always_inline void
cn9k_sso_tx_tag_flush(uint64_t base)
{
if (unlikely(CNXK_TT_FROM_TAG(plt_read64(base + SSOW_LF_GWS_TAG)) ==
SSO_TT_EMPTY))
return;
plt_write64(0, base + SSOW_LF_GWS_OP_SWTAG_FLUSH);
}
static __rte_always_inline void
cn9k_wqe_to_mbuf(uint64_t wqe, const uint64_t mbuf, uint8_t port_id,
const uint32_t tag, const uint32_t flags,
const void *const lookup_mem)
{
const uint64_t mbuf_init = 0x100010000ULL | RTE_PKTMBUF_HEADROOM |
(flags & NIX_RX_OFFLOAD_TSTAMP_F ? 8 : 0);
cn9k_nix_cqe_to_mbuf((struct nix_cqe_hdr_s *)wqe, tag,
(struct rte_mbuf *)mbuf, lookup_mem,
mbuf_init | ((uint64_t)port_id) << 48, flags);
}
static void
cn9k_sso_process_tstamp(uint64_t u64, uint64_t mbuf,
struct cnxk_timesync_info *tstamp)
{
uint64_t tstamp_ptr;
uint8_t laptr;
laptr = (uint8_t) *
(uint64_t *)(u64 + (CNXK_SSO_WQE_LAYR_PTR * sizeof(uint64_t)));
if (laptr == sizeof(uint64_t)) {
/* Extracting tstamp, if PTP enabled*/
tstamp_ptr = *(uint64_t *)(((struct nix_wqe_hdr_s *)u64) +
CNXK_SSO_WQE_SG_PTR);
cn9k_nix_mbuf_to_tstamp((struct rte_mbuf *)mbuf, tstamp, true,
(uint64_t *)tstamp_ptr);
}
}
static __rte_always_inline void
cn9k_sso_hws_post_process(uint64_t *u64, uint64_t mbuf, const uint32_t flags,
const void *const lookup_mem,
struct cnxk_timesync_info **tstamp)
{
u64[0] = (u64[0] & (0x3ull << 32)) << 6 |
(u64[0] & (0x3FFull << 36)) << 4 | (u64[0] & 0xffffffff);
if ((flags & CPT_RX_WQE_F) &&
(CNXK_EVENT_TYPE_FROM_TAG(u64[0]) == RTE_EVENT_TYPE_CRYPTODEV)) {
u64[1] = cn9k_cpt_crypto_adapter_dequeue(u64[1]);
} else if (CNXK_EVENT_TYPE_FROM_TAG(u64[0]) == RTE_EVENT_TYPE_ETHDEV) {
uint8_t port = CNXK_SUB_EVENT_FROM_TAG(u64[0]);
u64[0] = CNXK_CLR_SUB_EVENT(u64[0]);
cn9k_wqe_to_mbuf(u64[1], mbuf, port, u64[0] & 0xFFFFF, flags,
lookup_mem);
if (flags & NIX_RX_OFFLOAD_TSTAMP_F)
cn9k_sso_process_tstamp(u64[1], mbuf, tstamp[port]);
u64[1] = mbuf;
}
}
static __rte_always_inline uint16_t
cn9k_sso_hws_dual_get_work(uint64_t base, uint64_t pair_base,
struct rte_event *ev, const uint32_t flags,
struct cn9k_sso_hws_dual *dws)
{
union {
__uint128_t get_work;
uint64_t u64[2];
} gw;
uint64_t mbuf;
if (flags & NIX_RX_OFFLOAD_PTYPE_F)
rte_prefetch_non_temporal(dws->lookup_mem);
#ifdef RTE_ARCH_ARM64
asm volatile(PLT_CPU_FEATURE_PREAMBLE
"rty%=: \n"
" ldr %[tag], [%[tag_loc]] \n"
" ldr %[wqp], [%[wqp_loc]] \n"
" tbnz %[tag], 63, rty%= \n"
"done%=: str %[gw], [%[pong]] \n"
" dmb ld \n"
" sub %[mbuf], %[wqp], #0x80 \n"
" prfm pldl1keep, [%[mbuf]] \n"
: [tag] "=&r"(gw.u64[0]), [wqp] "=&r"(gw.u64[1]),
[mbuf] "=&r"(mbuf)
: [tag_loc] "r"(base + SSOW_LF_GWS_TAG),
[wqp_loc] "r"(base + SSOW_LF_GWS_WQP), [gw] "r"(dws->gw_wdata),
[pong] "r"(pair_base + SSOW_LF_GWS_OP_GET_WORK0));
#else
gw.u64[0] = plt_read64(base + SSOW_LF_GWS_TAG);
while ((BIT_ULL(63)) & gw.u64[0])
gw.u64[0] = plt_read64(base + SSOW_LF_GWS_TAG);
gw.u64[1] = plt_read64(base + SSOW_LF_GWS_WQP);
plt_write64(dws->gw_wdata, pair_base + SSOW_LF_GWS_OP_GET_WORK0);
mbuf = (uint64_t)((char *)gw.u64[1] - sizeof(struct rte_mbuf));
#endif
if (gw.u64[1])
cn9k_sso_hws_post_process(gw.u64, mbuf, flags, dws->lookup_mem,
dws->tstamp);
ev->event = gw.u64[0];
ev->u64 = gw.u64[1];
return !!gw.u64[1];
}
static __rte_always_inline uint16_t
cn9k_sso_hws_get_work(struct cn9k_sso_hws *ws, struct rte_event *ev,
const uint32_t flags, const void *const lookup_mem)
{
union {
__uint128_t get_work;
uint64_t u64[2];
} gw;
uint64_t mbuf;
plt_write64(ws->gw_wdata, ws->base + SSOW_LF_GWS_OP_GET_WORK0);
if (flags & NIX_RX_OFFLOAD_PTYPE_F)
rte_prefetch_non_temporal(lookup_mem);
#ifdef RTE_ARCH_ARM64
asm volatile(PLT_CPU_FEATURE_PREAMBLE
" ldr %[tag], [%[tag_loc]] \n"
" ldr %[wqp], [%[wqp_loc]] \n"
" tbz %[tag], 63, done%= \n"
" sevl \n"
"rty%=: wfe \n"
" ldr %[tag], [%[tag_loc]] \n"
" ldr %[wqp], [%[wqp_loc]] \n"
" tbnz %[tag], 63, rty%= \n"
"done%=: dmb ld \n"
" sub %[mbuf], %[wqp], #0x80 \n"
" prfm pldl1keep, [%[mbuf]] \n"
: [tag] "=&r"(gw.u64[0]), [wqp] "=&r"(gw.u64[1]),
[mbuf] "=&r"(mbuf)
: [tag_loc] "r"(ws->base + SSOW_LF_GWS_TAG),
[wqp_loc] "r"(ws->base + SSOW_LF_GWS_WQP));
#else
gw.u64[0] = plt_read64(ws->base + SSOW_LF_GWS_TAG);
while ((BIT_ULL(63)) & gw.u64[0])
gw.u64[0] = plt_read64(ws->base + SSOW_LF_GWS_TAG);
gw.u64[1] = plt_read64(ws->base + SSOW_LF_GWS_WQP);
mbuf = (uint64_t)((char *)gw.u64[1] - sizeof(struct rte_mbuf));
#endif
if (gw.u64[1])
cn9k_sso_hws_post_process(gw.u64, mbuf, flags, lookup_mem,
ws->tstamp);
ev->event = gw.u64[0];
ev->u64 = gw.u64[1];
return !!gw.u64[1];
}
/* Used in cleaning up workslot. */
static __rte_always_inline uint16_t
cn9k_sso_hws_get_work_empty(uint64_t base, struct rte_event *ev,
const uint32_t flags, void *lookup_mem,
struct cnxk_timesync_info **tstamp)
{
union {
__uint128_t get_work;
uint64_t u64[2];
} gw;
uint64_t mbuf;
#ifdef RTE_ARCH_ARM64
asm volatile(PLT_CPU_FEATURE_PREAMBLE
" ldr %[tag], [%[tag_loc]] \n"
" ldr %[wqp], [%[wqp_loc]] \n"
" tbz %[tag], 63, done%= \n"
" sevl \n"
"rty%=: wfe \n"
" ldr %[tag], [%[tag_loc]] \n"
" ldr %[wqp], [%[wqp_loc]] \n"
" tbnz %[tag], 63, rty%= \n"
"done%=: dmb ld \n"
" sub %[mbuf], %[wqp], #0x80 \n"
: [tag] "=&r"(gw.u64[0]), [wqp] "=&r"(gw.u64[1]),
[mbuf] "=&r"(mbuf)
: [tag_loc] "r"(base + SSOW_LF_GWS_TAG),
[wqp_loc] "r"(base + SSOW_LF_GWS_WQP));
#else
gw.u64[0] = plt_read64(base + SSOW_LF_GWS_TAG);
while ((BIT_ULL(63)) & gw.u64[0])
gw.u64[0] = plt_read64(base + SSOW_LF_GWS_TAG);
gw.u64[1] = plt_read64(base + SSOW_LF_GWS_WQP);
mbuf = (uint64_t)((char *)gw.u64[1] - sizeof(struct rte_mbuf));
#endif
if (gw.u64[1])
cn9k_sso_hws_post_process(gw.u64, mbuf, flags, lookup_mem,
tstamp);
ev->event = gw.u64[0];
ev->u64 = gw.u64[1];
return !!gw.u64[1];
}
/* CN9K Fastpath functions. */
uint16_t __rte_hot cn9k_sso_hws_enq(void *port, const struct rte_event *ev);
uint16_t __rte_hot cn9k_sso_hws_enq_burst(void *port,
const struct rte_event ev[],
uint16_t nb_events);
uint16_t __rte_hot cn9k_sso_hws_enq_new_burst(void *port,
const struct rte_event ev[],
uint16_t nb_events);
uint16_t __rte_hot cn9k_sso_hws_enq_fwd_burst(void *port,
const struct rte_event ev[],
uint16_t nb_events);
uint16_t __rte_hot cn9k_sso_hws_dual_enq(void *port,
const struct rte_event *ev);
uint16_t __rte_hot cn9k_sso_hws_dual_enq_burst(void *port,
const struct rte_event ev[],
uint16_t nb_events);
uint16_t __rte_hot cn9k_sso_hws_dual_enq_new_burst(void *port,
const struct rte_event ev[],
uint16_t nb_events);
uint16_t __rte_hot cn9k_sso_hws_dual_enq_fwd_burst(void *port,
const struct rte_event ev[],
uint16_t nb_events);
uint16_t __rte_hot cn9k_sso_hws_ca_enq(void *port, struct rte_event ev[],
uint16_t nb_events);
uint16_t __rte_hot cn9k_sso_hws_dual_ca_enq(void *port, struct rte_event ev[],
uint16_t nb_events);
#define R(name, flags) \
uint16_t __rte_hot cn9k_sso_hws_deq_##name( \
void *port, struct rte_event *ev, uint64_t timeout_ticks); \
uint16_t __rte_hot cn9k_sso_hws_deq_burst_##name( \
void *port, struct rte_event ev[], uint16_t nb_events, \
uint64_t timeout_ticks); \
uint16_t __rte_hot cn9k_sso_hws_deq_tmo_##name( \
void *port, struct rte_event *ev, uint64_t timeout_ticks); \
uint16_t __rte_hot cn9k_sso_hws_deq_tmo_burst_##name( \
void *port, struct rte_event ev[], uint16_t nb_events, \
uint64_t timeout_ticks); \
uint16_t __rte_hot cn9k_sso_hws_deq_ca_##name( \
void *port, struct rte_event *ev, uint64_t timeout_ticks); \
uint16_t __rte_hot cn9k_sso_hws_deq_ca_burst_##name( \
void *port, struct rte_event ev[], uint16_t nb_events, \
uint64_t timeout_ticks); \
uint16_t __rte_hot cn9k_sso_hws_deq_tmo_ca_##name( \
void *port, struct rte_event *ev, uint64_t timeout_ticks); \
uint16_t __rte_hot cn9k_sso_hws_deq_tmo_ca_burst_##name( \
void *port, struct rte_event ev[], uint16_t nb_events, \
uint64_t timeout_ticks); \
uint16_t __rte_hot cn9k_sso_hws_deq_seg_##name( \
void *port, struct rte_event *ev, uint64_t timeout_ticks); \
uint16_t __rte_hot cn9k_sso_hws_deq_seg_burst_##name( \
void *port, struct rte_event ev[], uint16_t nb_events, \
uint64_t timeout_ticks); \
uint16_t __rte_hot cn9k_sso_hws_deq_tmo_seg_##name( \
void *port, struct rte_event *ev, uint64_t timeout_ticks); \
uint16_t __rte_hot cn9k_sso_hws_deq_tmo_seg_burst_##name( \
void *port, struct rte_event ev[], uint16_t nb_events, \
uint64_t timeout_ticks); \
uint16_t __rte_hot cn9k_sso_hws_deq_ca_seg_##name( \
void *port, struct rte_event *ev, uint64_t timeout_ticks); \
uint16_t __rte_hot cn9k_sso_hws_deq_ca_seg_burst_##name( \
void *port, struct rte_event ev[], uint16_t nb_events, \
uint64_t timeout_ticks); \
uint16_t __rte_hot cn9k_sso_hws_deq_tmo_ca_seg_##name( \
void *port, struct rte_event *ev, uint64_t timeout_ticks); \
uint16_t __rte_hot cn9k_sso_hws_deq_tmo_ca_seg_burst_##name( \
void *port, struct rte_event ev[], uint16_t nb_events, \
uint64_t timeout_ticks);
NIX_RX_FASTPATH_MODES
#undef R
#define SSO_DEQ(fn, flags) \
uint16_t __rte_hot fn(void *port, struct rte_event *ev, \
uint64_t timeout_ticks) \
{ \
struct cn9k_sso_hws *ws = port; \
RTE_SET_USED(timeout_ticks); \
if (ws->swtag_req) { \
ws->swtag_req = 0; \
cnxk_sso_hws_swtag_wait(ws->base + SSOW_LF_GWS_TAG); \
return 1; \
} \
return cn9k_sso_hws_get_work(ws, ev, flags, ws->lookup_mem); \
}
#define SSO_DEQ_SEG(fn, flags) SSO_DEQ(fn, flags | NIX_RX_MULTI_SEG_F)
#define SSO_DEQ_CA(fn, flags) SSO_DEQ(fn, flags | CPT_RX_WQE_F)
#define SSO_DEQ_CA_SEG(fn, flags) SSO_DEQ_SEG(fn, flags | CPT_RX_WQE_F)
#define SSO_DEQ_TMO(fn, flags) \
uint16_t __rte_hot fn(void *port, struct rte_event *ev, \
uint64_t timeout_ticks) \
{ \
struct cn9k_sso_hws *ws = port; \
uint16_t ret = 1; \
uint64_t iter; \
if (ws->swtag_req) { \
ws->swtag_req = 0; \
cnxk_sso_hws_swtag_wait(ws->base + SSOW_LF_GWS_TAG); \
return ret; \
} \
ret = cn9k_sso_hws_get_work(ws, ev, flags, ws->lookup_mem); \
for (iter = 1; iter < timeout_ticks && (ret == 0); iter++) \
ret = cn9k_sso_hws_get_work(ws, ev, flags, \
ws->lookup_mem); \
return ret; \
}
#define SSO_DEQ_TMO_SEG(fn, flags) SSO_DEQ_TMO(fn, flags | NIX_RX_MULTI_SEG_F)
#define SSO_DEQ_TMO_CA(fn, flags) SSO_DEQ_TMO(fn, flags | CPT_RX_WQE_F)
#define SSO_DEQ_TMO_CA_SEG(fn, flags) SSO_DEQ_TMO_SEG(fn, flags | CPT_RX_WQE_F)
#define R(name, flags) \
uint16_t __rte_hot cn9k_sso_hws_dual_deq_##name( \
void *port, struct rte_event *ev, uint64_t timeout_ticks); \
uint16_t __rte_hot cn9k_sso_hws_dual_deq_burst_##name( \
void *port, struct rte_event ev[], uint16_t nb_events, \
uint64_t timeout_ticks); \
uint16_t __rte_hot cn9k_sso_hws_dual_deq_tmo_##name( \
void *port, struct rte_event *ev, uint64_t timeout_ticks); \
uint16_t __rte_hot cn9k_sso_hws_dual_deq_tmo_burst_##name( \
void *port, struct rte_event ev[], uint16_t nb_events, \
uint64_t timeout_ticks); \
uint16_t __rte_hot cn9k_sso_hws_dual_deq_ca_##name( \
void *port, struct rte_event *ev, uint64_t timeout_ticks); \
uint16_t __rte_hot cn9k_sso_hws_dual_deq_ca_burst_##name( \
void *port, struct rte_event ev[], uint16_t nb_events, \
uint64_t timeout_ticks); \
uint16_t __rte_hot cn9k_sso_hws_dual_deq_tmo_ca_##name( \
void *port, struct rte_event *ev, uint64_t timeout_ticks); \
uint16_t __rte_hot cn9k_sso_hws_dual_deq_tmo_ca_burst_##name( \
void *port, struct rte_event ev[], uint16_t nb_events, \
uint64_t timeout_ticks); \
uint16_t __rte_hot cn9k_sso_hws_dual_deq_seg_##name( \
void *port, struct rte_event *ev, uint64_t timeout_ticks); \
uint16_t __rte_hot cn9k_sso_hws_dual_deq_seg_burst_##name( \
void *port, struct rte_event ev[], uint16_t nb_events, \
uint64_t timeout_ticks); \
uint16_t __rte_hot cn9k_sso_hws_dual_deq_tmo_seg_##name( \
void *port, struct rte_event *ev, uint64_t timeout_ticks); \
uint16_t __rte_hot cn9k_sso_hws_dual_deq_tmo_seg_burst_##name( \
void *port, struct rte_event ev[], uint16_t nb_events, \
uint64_t timeout_ticks); \
uint16_t __rte_hot cn9k_sso_hws_dual_deq_ca_seg_##name( \
void *port, struct rte_event *ev, uint64_t timeout_ticks); \
uint16_t __rte_hot cn9k_sso_hws_dual_deq_ca_seg_burst_##name( \
void *port, struct rte_event ev[], uint16_t nb_events, \
uint64_t timeout_ticks); \
uint16_t __rte_hot cn9k_sso_hws_dual_deq_tmo_ca_seg_##name( \
void *port, struct rte_event *ev, uint64_t timeout_ticks); \
uint16_t __rte_hot cn9k_sso_hws_dual_deq_tmo_ca_seg_burst_##name( \
void *port, struct rte_event ev[], uint16_t nb_events, \
uint64_t timeout_ticks);
NIX_RX_FASTPATH_MODES
#undef R
#define SSO_DUAL_DEQ(fn, flags) \
uint16_t __rte_hot fn(void *port, struct rte_event *ev, \
uint64_t timeout_ticks) \
{ \
struct cn9k_sso_hws_dual *dws = port; \
uint16_t gw; \
RTE_SET_USED(timeout_ticks); \
if (dws->swtag_req) { \
dws->swtag_req = 0; \
cnxk_sso_hws_swtag_wait(dws->base[!dws->vws] + \
SSOW_LF_GWS_TAG); \
return 1; \
} \
gw = cn9k_sso_hws_dual_get_work(dws->base[dws->vws], \
dws->base[!dws->vws], ev, \
flags, dws); \
dws->vws = !dws->vws; \
return gw; \
}
#define SSO_DUAL_DEQ_SEG(fn, flags) SSO_DUAL_DEQ(fn, flags | NIX_RX_MULTI_SEG_F)
#define SSO_DUAL_DEQ_CA(fn, flags) SSO_DUAL_DEQ(fn, flags | CPT_RX_WQE_F)
#define SSO_DUAL_DEQ_CA_SEG(fn, flags) \
SSO_DUAL_DEQ_SEG(fn, flags | CPT_RX_WQE_F)
#define SSO_DUAL_DEQ_TMO(fn, flags) \
uint16_t __rte_hot fn(void *port, struct rte_event *ev, \
uint64_t timeout_ticks) \
{ \
struct cn9k_sso_hws_dual *dws = port; \
uint16_t ret = 1; \
uint64_t iter; \
if (dws->swtag_req) { \
dws->swtag_req = 0; \
cnxk_sso_hws_swtag_wait(dws->base[!dws->vws] + \
SSOW_LF_GWS_TAG); \
return ret; \
} \
ret = cn9k_sso_hws_dual_get_work(dws->base[dws->vws], \
dws->base[!dws->vws], ev, \
flags, dws); \
dws->vws = !dws->vws; \
for (iter = 1; iter < timeout_ticks && (ret == 0); iter++) { \
ret = cn9k_sso_hws_dual_get_work(dws->base[dws->vws], \
dws->base[!dws->vws], \
ev, flags, dws); \
dws->vws = !dws->vws; \
} \
return ret; \
}
#define SSO_DUAL_DEQ_TMO_SEG(fn, flags) \
SSO_DUAL_DEQ_TMO(fn, flags | NIX_RX_MULTI_SEG_F)
#define SSO_DUAL_DEQ_TMO_CA(fn, flags) \
SSO_DUAL_DEQ_TMO(fn, flags | CPT_RX_WQE_F)
#define SSO_DUAL_DEQ_TMO_CA_SEG(fn, flags) \
SSO_DUAL_DEQ_TMO_SEG(fn, flags | CPT_RX_WQE_F)
#define SSO_CMN_DEQ_BURST(fnb, fn, flags) \
uint16_t __rte_hot fnb(void *port, struct rte_event ev[], \
uint16_t nb_events, uint64_t timeout_ticks) \
{ \
RTE_SET_USED(nb_events); \
return fn(port, ev, timeout_ticks); \
}
#define SSO_CMN_DEQ_SEG_BURST(fnb, fn, flags) \
uint16_t __rte_hot fnb(void *port, struct rte_event ev[], \
uint16_t nb_events, uint64_t timeout_ticks) \
{ \
RTE_SET_USED(nb_events); \
return fn(port, ev, timeout_ticks); \
}
static __rte_always_inline void
cn9k_sso_txq_fc_wait(const struct cn9k_eth_txq *txq)
{
while ((uint64_t)txq->nb_sqb_bufs_adj <=
__atomic_load_n(txq->fc_mem, __ATOMIC_RELAXED))
;
}
static __rte_always_inline struct cn9k_eth_txq *
cn9k_sso_hws_xtract_meta(struct rte_mbuf *m, uint64_t *txq_data)
{
return (struct cn9k_eth_txq
*)(txq_data[(txq_data[m->port] >> 48) +
rte_event_eth_tx_adapter_txq_get(m)] &
(BIT_ULL(48) - 1));
}
#if defined(RTE_ARCH_ARM64)
static __rte_always_inline void
cn9k_sso_hws_xmit_sec_one(const struct cn9k_eth_txq *txq, uint64_t base,
struct rte_mbuf *m, uint64_t *cmd,
uint32_t flags)
{
struct cn9k_outb_priv_data *outb_priv;
rte_iova_t io_addr = txq->cpt_io_addr;
uint64_t *lmt_addr = txq->lmt_addr;
struct cn9k_sec_sess_priv mdata;
struct nix_send_hdr_s *send_hdr;
uint64_t sa_base = txq->sa_base;
uint32_t pkt_len, dlen_adj, rlen;
struct roc_ie_on_outb_hdr *hdr;
uint64x2_t cmd01, cmd23;
uint64_t lmt_status, sa;
union nix_send_sg_s *sg;
uint32_t esn_lo, esn_hi;
uintptr_t dptr, nixtx;
uint64_t ucode_cmd[4];
uint64_t esn;
uint8_t l2_len;
mdata.u64 = *rte_security_dynfield(m);
send_hdr = (struct nix_send_hdr_s *)cmd;
if (flags & NIX_TX_NEED_EXT_HDR)
sg = (union nix_send_sg_s *)&cmd[4];
else
sg = (union nix_send_sg_s *)&cmd[2];
if (flags & NIX_TX_NEED_SEND_HDR_W1)
l2_len = cmd[1] & 0xFF;
else
l2_len = m->l2_len;
/* Retrieve DPTR */
dptr = *(uint64_t *)(sg + 1);
pkt_len = send_hdr->w0.total;
/* Calculate rlen */
rlen = pkt_len - l2_len;
rlen = (rlen + mdata.roundup_len) + (mdata.roundup_byte - 1);
rlen &= ~(uint64_t)(mdata.roundup_byte - 1);
rlen += mdata.partial_len;
dlen_adj = rlen - pkt_len + l2_len;
/* Update send descriptors. Security is single segment only */
send_hdr->w0.total = pkt_len + dlen_adj;
sg->seg1_size = pkt_len + dlen_adj;
/* Get area where NIX descriptor needs to be stored */
nixtx = dptr + pkt_len + dlen_adj;
nixtx += BIT_ULL(7);
nixtx = (nixtx - 1) & ~(BIT_ULL(7) - 1);
roc_lmt_mov_nv((void *)(nixtx + 16), cmd, cn9k_nix_tx_ext_subs(flags));
/* Load opcode and cptr already prepared at pkt metadata set */
pkt_len -= l2_len;
pkt_len += (sizeof(struct roc_ie_on_outb_hdr) - ROC_IE_ON_MAX_IV_LEN) +
ROC_ONF_IPSEC_OUTB_MAX_L2_INFO_SZ;
sa_base &= ~(ROC_NIX_INL_SA_BASE_ALIGN - 1);
sa = (uintptr_t)roc_nix_inl_on_ipsec_outb_sa(sa_base, mdata.sa_idx);
ucode_cmd[3] = (ROC_CPT_DFLT_ENG_GRP_SE_IE << 61 | sa);
ucode_cmd[0] = (((ROC_IE_ON_OUTB_MAX_CTX_LEN << 8) |
ROC_IE_ON_MAJOR_OP_PROCESS_OUTBOUND_IPSEC)
<< 48 |
(ROC_IE_ON_OUTB_IKEV2_SINGLE_SA_SUPPORT |
(ROC_ONF_IPSEC_OUTB_MAX_L2_INFO_SZ >>
3)) << 32 |
pkt_len);
/* CPT Word 0 and Word 1 */
cmd01 = vdupq_n_u64((nixtx + 16) | (cn9k_nix_tx_ext_subs(flags) + 1));
/* CPT_RES_S is 16B above NIXTX */
cmd01 = vsetq_lane_u8(nixtx & BIT_ULL(7), cmd01, 8);
/* CPT word 2 and 3 */
cmd23 = vdupq_n_u64(0);
cmd23 = vsetq_lane_u64((((uint64_t)RTE_EVENT_TYPE_CPU << 28) |
CNXK_ETHDEV_SEC_OUTB_EV_SUB << 20),
cmd23, 0);
cmd23 = vsetq_lane_u64(((uintptr_t)m + sizeof(struct rte_mbuf)) | 1,
cmd23, 1);
dptr += l2_len - ROC_ONF_IPSEC_OUTB_MAX_L2_INFO_SZ -
(sizeof(struct roc_ie_on_outb_hdr) - ROC_IE_ON_MAX_IV_LEN);
ucode_cmd[1] = dptr;
ucode_cmd[2] = dptr;
/* Update l2 sz */
*(uint16_t *)(dptr + (sizeof(struct roc_ie_on_outb_hdr) -
ROC_IE_ON_MAX_IV_LEN)) =
rte_cpu_to_be_16(ROC_ONF_IPSEC_OUTB_MAX_L2_INFO_SZ);
/* Head wait if needed */
if (base)
roc_sso_hws_head_wait(base);
/* ESN */
outb_priv = roc_nix_inl_on_ipsec_outb_sa_sw_rsvd((void *)sa);
esn = outb_priv->esn;
outb_priv->esn = esn + 1;
esn_lo = rte_cpu_to_be_32(esn & (BIT_ULL(32) - 1));
esn_hi = rte_cpu_to_be_32(esn >> 32);
/* Update ESN, IPID and IV */
hdr = (struct roc_ie_on_outb_hdr *)dptr;
hdr->ip_id = esn_lo;
hdr->seq = esn_lo;
hdr->esn = esn_hi;
hdr->df_tos = 0;
rte_io_wmb();
cn9k_sso_txq_fc_wait(txq);
/* Write CPT instruction to lmt line */
vst1q_u64(lmt_addr, cmd01);
vst1q_u64(lmt_addr + 2, cmd23);
roc_lmt_mov_seg(lmt_addr + 4, ucode_cmd, 2);
if (roc_lmt_submit_ldeor(io_addr) == 0) {
do {
vst1q_u64(lmt_addr, cmd01);
vst1q_u64(lmt_addr + 2, cmd23);
roc_lmt_mov_seg(lmt_addr + 4, ucode_cmd, 2);
lmt_status = roc_lmt_submit_ldeor(io_addr);
} while (lmt_status == 0);
}
}
#else
static inline void
cn9k_sso_hws_xmit_sec_one(const struct cn9k_eth_txq *txq, uint64_t base,
struct rte_mbuf *m, uint64_t *cmd,
uint32_t flags)
{
RTE_SET_USED(txq);
RTE_SET_USED(base);
RTE_SET_USED(m);
RTE_SET_USED(cmd);
RTE_SET_USED(flags);
}
#endif
static __rte_always_inline uint16_t
cn9k_sso_hws_event_tx(uint64_t base, struct rte_event *ev, uint64_t *cmd,
uint64_t *txq_data, const uint32_t flags)
{
struct rte_mbuf *m = ev->mbuf;
uint16_t ref_cnt = m->refcnt;
struct cn9k_eth_txq *txq;
/* Perform header writes before barrier for TSO */
cn9k_nix_xmit_prepare_tso(m, flags);
/* Lets commit any changes in the packet here in case when
* fast free is set as no further changes will be made to mbuf.
* In case of fast free is not set, both cn9k_nix_prepare_mseg()
* and cn9k_nix_xmit_prepare() has a barrier after refcnt update.
*/
if (!(flags & NIX_TX_OFFLOAD_MBUF_NOFF_F) &&
!(flags & NIX_TX_OFFLOAD_SECURITY_F))
rte_io_wmb();
txq = cn9k_sso_hws_xtract_meta(m, txq_data);
if (((txq->nb_sqb_bufs_adj -
__atomic_load_n((int16_t *)txq->fc_mem, __ATOMIC_RELAXED))
<< txq->sqes_per_sqb_log2) <= 0)
return 0;
cn9k_nix_tx_skeleton(txq, cmd, flags, 0);
cn9k_nix_xmit_prepare(m, cmd, flags, txq->lso_tun_fmt, txq->mark_flag,
txq->mark_fmt);
if (flags & NIX_TX_OFFLOAD_SECURITY_F) {
uint64_t ol_flags = m->ol_flags;
if (ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD) {
uintptr_t ssow_base = base;
if (ev->sched_type)
ssow_base = 0;
cn9k_sso_hws_xmit_sec_one(txq, ssow_base, m, cmd,
flags);
goto done;
}
if (!(flags & NIX_TX_OFFLOAD_MBUF_NOFF_F))
rte_io_wmb();
}
if (flags & NIX_TX_MULTI_SEG_F) {
const uint16_t segdw = cn9k_nix_prepare_mseg(m, cmd, flags);
cn9k_nix_xmit_prepare_tstamp(txq, cmd, m->ol_flags, segdw,
flags);
if (!CNXK_TT_FROM_EVENT(ev->event)) {
cn9k_nix_xmit_mseg_prep_lmt(cmd, txq->lmt_addr, segdw);
roc_sso_hws_head_wait(base);
cn9k_sso_txq_fc_wait(txq);
if (cn9k_nix_xmit_submit_lmt(txq->io_addr) == 0)
cn9k_nix_xmit_mseg_one(cmd, txq->lmt_addr,
txq->io_addr, segdw);
} else {
cn9k_nix_xmit_mseg_one(cmd, txq->lmt_addr, txq->io_addr,
segdw);
}
} else {
cn9k_nix_xmit_prepare_tstamp(txq, cmd, m->ol_flags, 4, flags);
if (!CNXK_TT_FROM_EVENT(ev->event)) {
cn9k_nix_xmit_prep_lmt(cmd, txq->lmt_addr, flags);
roc_sso_hws_head_wait(base);
cn9k_sso_txq_fc_wait(txq);
if (cn9k_nix_xmit_submit_lmt(txq->io_addr) == 0)
cn9k_nix_xmit_one(cmd, txq->lmt_addr,
txq->io_addr, flags);
} else {
cn9k_nix_xmit_one(cmd, txq->lmt_addr, txq->io_addr,
flags);
}
}
done:
if (flags & NIX_TX_OFFLOAD_MBUF_NOFF_F) {
if (ref_cnt > 1)
return 1;
}
cn9k_sso_tx_tag_flush(base);
return 1;
}
#define T(name, sz, flags) \
uint16_t __rte_hot cn9k_sso_hws_tx_adptr_enq_##name( \
void *port, struct rte_event ev[], uint16_t nb_events); \
uint16_t __rte_hot cn9k_sso_hws_tx_adptr_enq_seg_##name( \
void *port, struct rte_event ev[], uint16_t nb_events); \
uint16_t __rte_hot cn9k_sso_hws_dual_tx_adptr_enq_##name( \
void *port, struct rte_event ev[], uint16_t nb_events); \
uint16_t __rte_hot cn9k_sso_hws_dual_tx_adptr_enq_seg_##name( \
void *port, struct rte_event ev[], uint16_t nb_events);
NIX_TX_FASTPATH_MODES
#undef T
#define SSO_TX(fn, sz, flags) \
uint16_t __rte_hot fn(void *port, struct rte_event ev[], \
uint16_t nb_events) \
{ \
struct cn9k_sso_hws *ws = port; \
uint64_t cmd[sz]; \
RTE_SET_USED(nb_events); \
return cn9k_sso_hws_event_tx(ws->base, &ev[0], cmd, \
(uint64_t *)ws->tx_adptr_data, \
flags); \
}
#define SSO_TX_SEG(fn, sz, flags) \
uint16_t __rte_hot fn(void *port, struct rte_event ev[], \
uint16_t nb_events) \
{ \
uint64_t cmd[(sz) + CNXK_NIX_TX_MSEG_SG_DWORDS - 2]; \
struct cn9k_sso_hws *ws = port; \
RTE_SET_USED(nb_events); \
return cn9k_sso_hws_event_tx(ws->base, &ev[0], cmd, \
(uint64_t *)ws->tx_adptr_data, \
(flags) | NIX_TX_MULTI_SEG_F); \
}
#define SSO_DUAL_TX(fn, sz, flags) \
uint16_t __rte_hot fn(void *port, struct rte_event ev[], \
uint16_t nb_events) \
{ \
struct cn9k_sso_hws_dual *ws = port; \
uint64_t cmd[sz]; \
RTE_SET_USED(nb_events); \
return cn9k_sso_hws_event_tx(ws->base[!ws->vws], &ev[0], cmd, \
(uint64_t *)ws->tx_adptr_data, \
flags); \
}
#define SSO_DUAL_TX_SEG(fn, sz, flags) \
uint16_t __rte_hot fn(void *port, struct rte_event ev[], \
uint16_t nb_events) \
{ \
uint64_t cmd[(sz) + CNXK_NIX_TX_MSEG_SG_DWORDS - 2]; \
struct cn9k_sso_hws_dual *ws = port; \
RTE_SET_USED(nb_events); \
return cn9k_sso_hws_event_tx(ws->base[!ws->vws], &ev[0], cmd, \
(uint64_t *)ws->tx_adptr_data, \
(flags) | NIX_TX_MULTI_SEG_F); \
}
#endif