numam-dpdk/drivers/event/dsw/dsw_event.c
Mattias Rönnblom 70cb0278a4 event/dsw: fix flow migration
Fix bug in flow migration, which under certain conditions causes
reordering and violation of atomicity guarantees.

The issue occurs when the processing of a flow (on an atomic queue)
has resulted in events enqueued to a flow currently being migrated,
and the former (producer) flow is also selected for migration. The
events are buffered ("paused") on the originating port, and released
(forwarded) when the migration has completed. However, at the time of
"unpausing" the latter (consumer) flow, processing of the producer
flow on the port to which it was migrated may have already produced
events, for the same paused flow. This constitutes a race condition,
and depending on which port wins, reordering may have been introduced.

This patch forbids migration when a port has paused events, since
those events may have been the result of processing a to-be-migrated
flow.

This patch also disallows processing events pertaining to a flow under
migration, for the same reason. A new buffer is introduced, which
holds such not-yet-processed events dequeued from the port's input
ring. Such events are forwarded to the target port as a part of the
migration process.

The 'forwarding' migration state is eliminated, and instead background
processing is only performed if there are no unreleased events on the
port.

The bug is primarily triggered in situations where multiple flows are
migrated as one transaction, but may occur even if only a single flow
is migrated (e.g., with older DSW versions, which does not support
multi-flow migration).

Fixes: f6257b22e7 ("event/dsw: add load balancing")
Cc: stable@dpdk.org

Signed-off-by: Mattias Rönnblom <mattias.ronnblom@ericsson.com>
2022-09-26 15:33:46 +02:00

1551 lines
40 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Ericsson AB
*/
#include "dsw_evdev.h"
#ifdef DSW_SORT_DEQUEUED
#include "dsw_sort.h"
#endif
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
#include <rte_cycles.h>
#include <rte_memcpy.h>
#include <rte_random.h>
static bool
dsw_port_acquire_credits(struct dsw_evdev *dsw, struct dsw_port *port,
int32_t credits)
{
int32_t inflight_credits = port->inflight_credits;
int32_t missing_credits = credits - inflight_credits;
int32_t total_on_loan;
int32_t available;
int32_t acquired_credits;
int32_t new_total_on_loan;
if (likely(missing_credits <= 0)) {
port->inflight_credits -= credits;
return true;
}
total_on_loan =
__atomic_load_n(&dsw->credits_on_loan, __ATOMIC_RELAXED);
available = dsw->max_inflight - total_on_loan;
acquired_credits = RTE_MAX(missing_credits, DSW_PORT_MIN_CREDITS);
if (available < acquired_credits)
return false;
/* This is a race, no locks are involved, and thus some other
* thread can allocate tokens in between the check and the
* allocation.
*/
new_total_on_loan =
__atomic_add_fetch(&dsw->credits_on_loan, acquired_credits,
__ATOMIC_RELAXED);
if (unlikely(new_total_on_loan > dsw->max_inflight)) {
/* Some other port took the last credits */
__atomic_sub_fetch(&dsw->credits_on_loan, acquired_credits,
__ATOMIC_RELAXED);
return false;
}
DSW_LOG_DP_PORT(DEBUG, port->id, "Acquired %d tokens from pool.\n",
acquired_credits);
port->inflight_credits += acquired_credits;
port->inflight_credits -= credits;
return true;
}
static void
dsw_port_return_credits(struct dsw_evdev *dsw, struct dsw_port *port,
int32_t credits)
{
port->inflight_credits += credits;
if (unlikely(port->inflight_credits > DSW_PORT_MAX_CREDITS)) {
int32_t leave_credits = DSW_PORT_MIN_CREDITS;
int32_t return_credits =
port->inflight_credits - leave_credits;
port->inflight_credits = leave_credits;
__atomic_sub_fetch(&dsw->credits_on_loan, return_credits,
__ATOMIC_RELAXED);
DSW_LOG_DP_PORT(DEBUG, port->id,
"Returned %d tokens to pool.\n",
return_credits);
}
}
static void
dsw_port_enqueue_stats(struct dsw_port *port, uint16_t num_new,
uint16_t num_forward, uint16_t num_release)
{
port->new_enqueued += num_new;
port->forward_enqueued += num_forward;
port->release_enqueued += num_release;
}
static void
dsw_port_queue_enqueue_stats(struct dsw_port *source_port, uint8_t queue_id)
{
source_port->queue_enqueued[queue_id]++;
}
static void
dsw_port_dequeue_stats(struct dsw_port *port, uint16_t num)
{
port->dequeued += num;
}
static void
dsw_port_queue_dequeued_stats(struct dsw_port *source_port, uint8_t queue_id)
{
source_port->queue_dequeued[queue_id]++;
}
static void
dsw_port_load_record(struct dsw_port *port, unsigned int dequeued)
{
if (dequeued > 0 && port->busy_start == 0)
/* work period begins */
port->busy_start = rte_get_timer_cycles();
else if (dequeued == 0 && port->busy_start > 0) {
/* work period ends */
uint64_t work_period =
rte_get_timer_cycles() - port->busy_start;
port->busy_cycles += work_period;
port->busy_start = 0;
}
}
static int16_t
dsw_port_load_close_period(struct dsw_port *port, uint64_t now)
{
uint64_t passed = now - port->measurement_start;
uint64_t busy_cycles = port->busy_cycles;
if (port->busy_start > 0) {
busy_cycles += (now - port->busy_start);
port->busy_start = now;
}
int16_t load = (DSW_MAX_LOAD * busy_cycles) / passed;
port->measurement_start = now;
port->busy_cycles = 0;
port->total_busy_cycles += busy_cycles;
return load;
}
static void
dsw_port_load_update(struct dsw_port *port, uint64_t now)
{
int16_t old_load;
int16_t period_load;
int16_t new_load;
old_load = __atomic_load_n(&port->load, __ATOMIC_RELAXED);
period_load = dsw_port_load_close_period(port, now);
new_load = (period_load + old_load*DSW_OLD_LOAD_WEIGHT) /
(DSW_OLD_LOAD_WEIGHT+1);
__atomic_store_n(&port->load, new_load, __ATOMIC_RELAXED);
/* The load of the recently immigrated flows should hopefully
* be reflected the load estimate by now.
*/
__atomic_store_n(&port->immigration_load, 0, __ATOMIC_RELAXED);
}
static void
dsw_port_consider_load_update(struct dsw_port *port, uint64_t now)
{
if (now < port->next_load_update)
return;
port->next_load_update = now + port->load_update_interval;
dsw_port_load_update(port, now);
}
static void
dsw_port_ctl_enqueue(struct dsw_port *port, struct dsw_ctl_msg *msg)
{
/* there's always room on the ring */
while (rte_ring_enqueue_elem(port->ctl_in_ring, msg, sizeof(*msg)) != 0)
rte_pause();
}
static int
dsw_port_ctl_dequeue(struct dsw_port *port, struct dsw_ctl_msg *msg)
{
return rte_ring_dequeue_elem(port->ctl_in_ring, msg, sizeof(*msg));
}
static void
dsw_port_ctl_broadcast(struct dsw_evdev *dsw, struct dsw_port *source_port,
uint8_t type, struct dsw_queue_flow *qfs,
uint8_t qfs_len)
{
uint16_t port_id;
struct dsw_ctl_msg msg = {
.type = type,
.originating_port_id = source_port->id,
.qfs_len = qfs_len
};
memcpy(msg.qfs, qfs, sizeof(struct dsw_queue_flow) * qfs_len);
for (port_id = 0; port_id < dsw->num_ports; port_id++)
if (port_id != source_port->id)
dsw_port_ctl_enqueue(&dsw->ports[port_id], &msg);
}
static __rte_always_inline bool
dsw_is_queue_flow_in_ary(const struct dsw_queue_flow *qfs, uint16_t qfs_len,
uint8_t queue_id, uint16_t flow_hash)
{
uint16_t i;
for (i = 0; i < qfs_len; i++)
if (qfs[i].queue_id == queue_id &&
qfs[i].flow_hash == flow_hash)
return true;
return false;
}
static __rte_always_inline bool
dsw_port_is_flow_paused(struct dsw_port *port, uint8_t queue_id,
uint16_t flow_hash)
{
return dsw_is_queue_flow_in_ary(port->paused_flows,
port->paused_flows_len,
queue_id, flow_hash);
}
static __rte_always_inline bool
dsw_port_is_flow_migrating(struct dsw_port *port, uint8_t queue_id,
uint16_t flow_hash)
{
return dsw_is_queue_flow_in_ary(port->emigration_target_qfs,
port->emigration_targets_len,
queue_id, flow_hash);
}
static void
dsw_port_add_paused_flows(struct dsw_port *port, struct dsw_queue_flow *qfs,
uint8_t qfs_len)
{
uint8_t i;
for (i = 0; i < qfs_len; i++) {
struct dsw_queue_flow *qf = &qfs[i];
DSW_LOG_DP_PORT(DEBUG, port->id,
"Pausing queue_id %d flow_hash %d.\n",
qf->queue_id, qf->flow_hash);
port->paused_flows[port->paused_flows_len] = *qf;
port->paused_flows_len++;
};
}
static void
dsw_port_remove_paused_flow(struct dsw_port *port,
struct dsw_queue_flow *target_qf)
{
uint16_t i;
for (i = 0; i < port->paused_flows_len; i++) {
struct dsw_queue_flow *qf = &port->paused_flows[i];
if (qf->queue_id == target_qf->queue_id &&
qf->flow_hash == target_qf->flow_hash) {
uint16_t last_idx = port->paused_flows_len-1;
if (i != last_idx)
port->paused_flows[i] =
port->paused_flows[last_idx];
port->paused_flows_len--;
DSW_LOG_DP_PORT(DEBUG, port->id,
"Unpausing queue_id %d flow_hash %d.\n",
target_qf->queue_id,
target_qf->flow_hash);
return;
}
}
DSW_LOG_DP_PORT(ERR, port->id,
"Failed to unpause queue_id %d flow_hash %d.\n",
target_qf->queue_id, target_qf->flow_hash);
}
static void
dsw_port_remove_paused_flows(struct dsw_port *port,
struct dsw_queue_flow *qfs, uint8_t qfs_len)
{
uint8_t i;
for (i = 0; i < qfs_len; i++)
dsw_port_remove_paused_flow(port, &qfs[i]);
}
static void
dsw_port_flush_out_buffers(struct dsw_evdev *dsw, struct dsw_port *source_port);
static void
dsw_port_handle_pause_flows(struct dsw_evdev *dsw, struct dsw_port *port,
uint8_t originating_port_id,
struct dsw_queue_flow *paused_qfs,
uint8_t qfs_len)
{
struct dsw_ctl_msg cfm = {
.type = DSW_CTL_CFM,
.originating_port_id = port->id
};
/* There might be already-scheduled events belonging to the
* paused flow in the output buffers.
*/
dsw_port_flush_out_buffers(dsw, port);
dsw_port_add_paused_flows(port, paused_qfs, qfs_len);
/* Make sure any stores to the original port's in_ring is seen
* before the ctl message.
*/
rte_smp_wmb();
dsw_port_ctl_enqueue(&dsw->ports[originating_port_id], &cfm);
}
struct dsw_queue_flow_burst {
struct dsw_queue_flow queue_flow;
uint16_t count;
};
#define DSW_QF_TO_INT(_qf) \
((int)((((_qf)->queue_id)<<16)|((_qf)->flow_hash)))
static inline int
dsw_cmp_qf(const void *v_qf_a, const void *v_qf_b)
{
const struct dsw_queue_flow *qf_a = v_qf_a;
const struct dsw_queue_flow *qf_b = v_qf_b;
return DSW_QF_TO_INT(qf_a) - DSW_QF_TO_INT(qf_b);
}
static uint16_t
dsw_sort_qfs_to_bursts(struct dsw_queue_flow *qfs, uint16_t qfs_len,
struct dsw_queue_flow_burst *bursts)
{
uint16_t i;
struct dsw_queue_flow_burst *current_burst = NULL;
uint16_t num_bursts = 0;
/* We don't need the stable property, and the list is likely
* large enough for qsort() to outperform dsw_stable_sort(),
* so we use qsort() here.
*/
qsort(qfs, qfs_len, sizeof(qfs[0]), dsw_cmp_qf);
/* arrange the (now-consecutive) events into bursts */
for (i = 0; i < qfs_len; i++) {
if (i == 0 ||
dsw_cmp_qf(&qfs[i], &current_burst->queue_flow) != 0) {
current_burst = &bursts[num_bursts];
current_burst->queue_flow = qfs[i];
current_burst->count = 0;
num_bursts++;
}
current_burst->count++;
}
return num_bursts;
}
static bool
dsw_retrieve_port_loads(struct dsw_evdev *dsw, int16_t *port_loads,
int16_t load_limit)
{
bool below_limit = false;
uint16_t i;
for (i = 0; i < dsw->num_ports; i++) {
int16_t measured_load =
__atomic_load_n(&dsw->ports[i].load, __ATOMIC_RELAXED);
int32_t immigration_load =
__atomic_load_n(&dsw->ports[i].immigration_load,
__ATOMIC_RELAXED);
int32_t load = measured_load + immigration_load;
load = RTE_MIN(load, DSW_MAX_LOAD);
if (load < load_limit)
below_limit = true;
port_loads[i] = load;
}
return below_limit;
}
static int16_t
dsw_flow_load(uint16_t num_events, int16_t port_load)
{
return ((int32_t)port_load * (int32_t)num_events) /
DSW_MAX_EVENTS_RECORDED;
}
static int16_t
dsw_evaluate_migration(int16_t source_load, int16_t target_load,
int16_t flow_load)
{
int32_t res_target_load;
int32_t imbalance;
if (target_load > DSW_MAX_TARGET_LOAD_FOR_MIGRATION)
return -1;
imbalance = source_load - target_load;
if (imbalance < DSW_REBALANCE_THRESHOLD)
return -1;
res_target_load = target_load + flow_load;
/* If the estimated load of the target port will be higher
* than the source port's load, it doesn't make sense to move
* the flow.
*/
if (res_target_load > source_load)
return -1;
/* The more idle the target will be, the better. This will
* make migration prefer moving smaller flows, and flows to
* lightly loaded ports.
*/
return DSW_MAX_LOAD - res_target_load;
}
static bool
dsw_is_serving_port(struct dsw_evdev *dsw, uint8_t port_id, uint8_t queue_id)
{
struct dsw_queue *queue = &dsw->queues[queue_id];
uint16_t i;
for (i = 0; i < queue->num_serving_ports; i++)
if (queue->serving_ports[i] == port_id)
return true;
return false;
}
static bool
dsw_select_emigration_target(struct dsw_evdev *dsw,
struct dsw_port *source_port,
struct dsw_queue_flow_burst *bursts,
uint16_t num_bursts,
int16_t *port_loads, uint16_t num_ports,
uint8_t *target_port_ids,
struct dsw_queue_flow *target_qfs,
uint8_t *targets_len)
{
int16_t source_port_load = port_loads[source_port->id];
struct dsw_queue_flow *candidate_qf = NULL;
uint8_t candidate_port_id = 0;
int16_t candidate_weight = -1;
int16_t candidate_flow_load = -1;
uint16_t i;
if (source_port_load < DSW_MIN_SOURCE_LOAD_FOR_MIGRATION)
return false;
for (i = 0; i < num_bursts; i++) {
struct dsw_queue_flow_burst *burst = &bursts[i];
struct dsw_queue_flow *qf = &burst->queue_flow;
int16_t flow_load;
uint16_t port_id;
if (dsw_is_queue_flow_in_ary(target_qfs, *targets_len,
qf->queue_id, qf->flow_hash))
continue;
flow_load = dsw_flow_load(burst->count, source_port_load);
for (port_id = 0; port_id < num_ports; port_id++) {
int16_t weight;
if (port_id == source_port->id)
continue;
if (!dsw_is_serving_port(dsw, port_id, qf->queue_id))
continue;
weight = dsw_evaluate_migration(source_port_load,
port_loads[port_id],
flow_load);
if (weight > candidate_weight) {
candidate_qf = qf;
candidate_port_id = port_id;
candidate_weight = weight;
candidate_flow_load = flow_load;
}
}
}
if (candidate_weight < 0)
return false;
DSW_LOG_DP_PORT(DEBUG, source_port->id, "Selected queue_id %d "
"flow_hash %d (with flow load %d) for migration "
"to port %d.\n", candidate_qf->queue_id,
candidate_qf->flow_hash,
DSW_LOAD_TO_PERCENT(candidate_flow_load),
candidate_port_id);
port_loads[candidate_port_id] += candidate_flow_load;
port_loads[source_port->id] -= candidate_flow_load;
target_port_ids[*targets_len] = candidate_port_id;
target_qfs[*targets_len] = *candidate_qf;
(*targets_len)++;
__atomic_add_fetch(&dsw->ports[candidate_port_id].immigration_load,
candidate_flow_load, __ATOMIC_RELAXED);
return true;
}
static void
dsw_select_emigration_targets(struct dsw_evdev *dsw,
struct dsw_port *source_port,
struct dsw_queue_flow_burst *bursts,
uint16_t num_bursts, int16_t *port_loads)
{
struct dsw_queue_flow *target_qfs = source_port->emigration_target_qfs;
uint8_t *target_port_ids = source_port->emigration_target_port_ids;
uint8_t *targets_len = &source_port->emigration_targets_len;
uint16_t i;
for (i = 0; i < DSW_MAX_FLOWS_PER_MIGRATION; i++) {
bool found;
found = dsw_select_emigration_target(dsw, source_port,
bursts, num_bursts,
port_loads, dsw->num_ports,
target_port_ids,
target_qfs,
targets_len);
if (!found)
break;
}
if (*targets_len == 0)
DSW_LOG_DP_PORT(DEBUG, source_port->id,
"For the %d flows considered, no target port "
"was found.\n", num_bursts);
}
static uint8_t
dsw_schedule(struct dsw_evdev *dsw, uint8_t queue_id, uint16_t flow_hash)
{
struct dsw_queue *queue = &dsw->queues[queue_id];
uint8_t port_id;
if (queue->num_serving_ports > 1)
port_id = queue->flow_to_port_map[flow_hash];
else
/* A single-link queue, or atomic/ordered/parallel but
* with just a single serving port.
*/
port_id = queue->serving_ports[0];
DSW_LOG_DP(DEBUG, "Event with queue_id %d flow_hash %d is scheduled "
"to port %d.\n", queue_id, flow_hash, port_id);
return port_id;
}
static void
dsw_port_transmit_buffered(struct dsw_evdev *dsw, struct dsw_port *source_port,
uint8_t dest_port_id)
{
struct dsw_port *dest_port = &(dsw->ports[dest_port_id]);
uint16_t *buffer_len = &source_port->out_buffer_len[dest_port_id];
struct rte_event *buffer = source_port->out_buffer[dest_port_id];
uint16_t enqueued = 0;
if (*buffer_len == 0)
return;
/* The rings are dimensioned to fit all in-flight events (even
* on a single ring), so looping will work.
*/
do {
enqueued +=
rte_event_ring_enqueue_burst(dest_port->in_ring,
buffer+enqueued,
*buffer_len-enqueued,
NULL);
} while (unlikely(enqueued != *buffer_len));
(*buffer_len) = 0;
}
static uint16_t
dsw_port_get_parallel_flow_id(struct dsw_port *port)
{
uint16_t flow_id = port->next_parallel_flow_id;
port->next_parallel_flow_id =
(port->next_parallel_flow_id + 1) % DSW_PARALLEL_FLOWS;
return flow_id;
}
static void
dsw_port_buffer_paused(struct dsw_port *port,
const struct rte_event *paused_event)
{
port->paused_events[port->paused_events_len] = *paused_event;
port->paused_events_len++;
}
static void
dsw_port_buffer_non_paused(struct dsw_evdev *dsw, struct dsw_port *source_port,
uint8_t dest_port_id, const struct rte_event *event)
{
struct rte_event *buffer = source_port->out_buffer[dest_port_id];
uint16_t *buffer_len = &source_port->out_buffer_len[dest_port_id];
if (*buffer_len == DSW_MAX_PORT_OUT_BUFFER)
dsw_port_transmit_buffered(dsw, source_port, dest_port_id);
buffer[*buffer_len] = *event;
(*buffer_len)++;
}
#define DSW_FLOW_ID_BITS (24)
static uint16_t
dsw_flow_id_hash(uint32_t flow_id)
{
uint16_t hash = 0;
uint16_t offset = 0;
do {
hash ^= ((flow_id >> offset) & DSW_MAX_FLOWS_MASK);
offset += DSW_MAX_FLOWS_BITS;
} while (offset < DSW_FLOW_ID_BITS);
return hash;
}
static void
dsw_port_buffer_parallel(struct dsw_evdev *dsw, struct dsw_port *source_port,
struct rte_event event)
{
uint8_t dest_port_id;
event.flow_id = dsw_port_get_parallel_flow_id(source_port);
dest_port_id = dsw_schedule(dsw, event.queue_id,
dsw_flow_id_hash(event.flow_id));
dsw_port_buffer_non_paused(dsw, source_port, dest_port_id, &event);
}
static void
dsw_port_buffer_event(struct dsw_evdev *dsw, struct dsw_port *source_port,
const struct rte_event *event)
{
uint16_t flow_hash;
uint8_t dest_port_id;
if (unlikely(dsw->queues[event->queue_id].schedule_type ==
RTE_SCHED_TYPE_PARALLEL)) {
dsw_port_buffer_parallel(dsw, source_port, *event);
return;
}
flow_hash = dsw_flow_id_hash(event->flow_id);
if (unlikely(dsw_port_is_flow_paused(source_port, event->queue_id,
flow_hash))) {
dsw_port_buffer_paused(source_port, event);
return;
}
dest_port_id = dsw_schedule(dsw, event->queue_id, flow_hash);
dsw_port_buffer_non_paused(dsw, source_port, dest_port_id, event);
}
static void
dsw_port_flush_no_longer_paused_events(struct dsw_evdev *dsw,
struct dsw_port *source_port)
{
uint16_t paused_events_len = source_port->paused_events_len;
struct rte_event paused_events[paused_events_len];
uint16_t i;
if (paused_events_len == 0)
return;
rte_memcpy(paused_events, source_port->paused_events,
paused_events_len * sizeof(struct rte_event));
source_port->paused_events_len = 0;
for (i = 0; i < paused_events_len; i++) {
struct rte_event *event = &paused_events[i];
uint16_t flow_hash;
flow_hash = dsw_flow_id_hash(event->flow_id);
if (dsw_port_is_flow_paused(source_port, event->queue_id,
flow_hash))
dsw_port_buffer_paused(source_port, event);
else {
uint8_t dest_port_id;
dest_port_id = dsw_schedule(dsw, event->queue_id,
flow_hash);
dsw_port_buffer_non_paused(dsw, source_port,
dest_port_id, event);
}
}
}
static void
dsw_port_emigration_stats(struct dsw_port *port, uint8_t finished)
{
uint64_t flow_migration_latency;
flow_migration_latency =
(rte_get_timer_cycles() - port->emigration_start);
port->emigration_latency += (flow_migration_latency * finished);
port->emigrations += finished;
}
static void
dsw_port_end_emigration(struct dsw_evdev *dsw, struct dsw_port *port,
uint8_t schedule_type)
{
uint8_t i;
struct dsw_queue_flow left_qfs[DSW_MAX_FLOWS_PER_MIGRATION];
uint8_t left_port_ids[DSW_MAX_FLOWS_PER_MIGRATION];
uint8_t left_qfs_len = 0;
uint8_t finished;
for (i = 0; i < port->emigration_targets_len; i++) {
struct dsw_queue_flow *qf = &port->emigration_target_qfs[i];
uint8_t queue_id = qf->queue_id;
uint8_t queue_schedule_type =
dsw->queues[queue_id].schedule_type;
uint16_t flow_hash = qf->flow_hash;
if (queue_schedule_type != schedule_type) {
left_port_ids[left_qfs_len] =
port->emigration_target_port_ids[i];
left_qfs[left_qfs_len] = *qf;
left_qfs_len++;
continue;
}
DSW_LOG_DP_PORT(DEBUG, port->id, "Migration completed for "
"queue_id %d flow_hash %d.\n", queue_id,
flow_hash);
}
finished = port->emigration_targets_len - left_qfs_len;
if (finished > 0)
dsw_port_emigration_stats(port, finished);
for (i = 0; i < left_qfs_len; i++) {
port->emigration_target_port_ids[i] = left_port_ids[i];
port->emigration_target_qfs[i] = left_qfs[i];
}
port->emigration_targets_len = left_qfs_len;
if (port->emigration_targets_len == 0) {
port->migration_state = DSW_MIGRATION_STATE_IDLE;
port->seen_events_len = 0;
}
}
static void
dsw_port_move_parallel_flows(struct dsw_evdev *dsw,
struct dsw_port *source_port)
{
uint8_t i;
for (i = 0; i < source_port->emigration_targets_len; i++) {
struct dsw_queue_flow *qf =
&source_port->emigration_target_qfs[i];
uint8_t queue_id = qf->queue_id;
if (dsw->queues[queue_id].schedule_type ==
RTE_SCHED_TYPE_PARALLEL) {
uint8_t dest_port_id =
source_port->emigration_target_port_ids[i];
uint16_t flow_hash = qf->flow_hash;
/* Single byte-sized stores are always atomic. */
dsw->queues[queue_id].flow_to_port_map[flow_hash] =
dest_port_id;
}
}
rte_smp_wmb();
dsw_port_end_emigration(dsw, source_port, RTE_SCHED_TYPE_PARALLEL);
}
static void
dsw_port_consider_emigration(struct dsw_evdev *dsw,
struct dsw_port *source_port,
uint64_t now)
{
bool any_port_below_limit;
struct dsw_queue_flow *seen_events = source_port->seen_events;
uint16_t seen_events_len = source_port->seen_events_len;
struct dsw_queue_flow_burst bursts[DSW_MAX_EVENTS_RECORDED];
uint16_t num_bursts;
int16_t source_port_load;
int16_t port_loads[dsw->num_ports];
if (now < source_port->next_emigration)
return;
if (dsw->num_ports == 1)
return;
DSW_LOG_DP_PORT(DEBUG, source_port->id, "Considering emigration.\n");
if (seen_events_len < DSW_MAX_EVENTS_RECORDED) {
DSW_LOG_DP_PORT(DEBUG, source_port->id, "Not enough events "
"are recorded to allow for a migration.\n");
return;
}
/* A flow migration cannot be initiated if there are paused
* events, since some/all of those events may be have been
* produced as a result of processing the flow(s) selected for
* migration. Moving such a flow would potentially introduced
* reordering, since processing the migrated flow on the
* receiving flow may commence before the to-be-enqueued-to
* flows are unpaused, leading to paused events on the second
* port as well, destined for the same paused flow(s). When
* those flows are unpaused, the resulting events are
* delivered the owning port in an undefined order.
*/
if (source_port->paused_events_len > 0) {
DSW_LOG_DP_PORT(DEBUG, source_port->id, "There are "
"events in the paus buffer.\n");
return;
}
/* Randomize interval to avoid having all threads considering
* emigration at the same in point in time, which might lead
* to all choosing the same target port.
*/
source_port->next_emigration = now +
source_port->migration_interval / 2 +
rte_rand() % source_port->migration_interval;
if (source_port->migration_state != DSW_MIGRATION_STATE_IDLE) {
DSW_LOG_DP_PORT(DEBUG, source_port->id,
"Emigration already in progress.\n");
return;
}
/* For simplicity, avoid migration in the unlikely case there
* is still events to consume in the in_buffer (from the last
* emigration).
*/
if (source_port->in_buffer_len > 0) {
DSW_LOG_DP_PORT(DEBUG, source_port->id, "There are still "
"events in the input buffer.\n");
return;
}
source_port_load =
__atomic_load_n(&source_port->load, __ATOMIC_RELAXED);
if (source_port_load < DSW_MIN_SOURCE_LOAD_FOR_MIGRATION) {
DSW_LOG_DP_PORT(DEBUG, source_port->id,
"Load %d is below threshold level %d.\n",
DSW_LOAD_TO_PERCENT(source_port_load),
DSW_LOAD_TO_PERCENT(DSW_MIN_SOURCE_LOAD_FOR_MIGRATION));
return;
}
/* Avoid starting any expensive operations (sorting etc), in
* case of a scenario with all ports above the load limit.
*/
any_port_below_limit =
dsw_retrieve_port_loads(dsw, port_loads,
DSW_MAX_TARGET_LOAD_FOR_MIGRATION);
if (!any_port_below_limit) {
DSW_LOG_DP_PORT(DEBUG, source_port->id,
"Candidate target ports are all too highly "
"loaded.\n");
return;
}
num_bursts = dsw_sort_qfs_to_bursts(seen_events, seen_events_len,
bursts);
/* For non-big-little systems, there's no point in moving the
* only (known) flow.
*/
if (num_bursts < 2) {
DSW_LOG_DP_PORT(DEBUG, source_port->id, "Only a single flow "
"queue_id %d flow_hash %d has been seen.\n",
bursts[0].queue_flow.queue_id,
bursts[0].queue_flow.flow_hash);
return;
}
dsw_select_emigration_targets(dsw, source_port, bursts, num_bursts,
port_loads);
if (source_port->emigration_targets_len == 0)
return;
source_port->migration_state = DSW_MIGRATION_STATE_PAUSING;
source_port->emigration_start = rte_get_timer_cycles();
/* No need to go through the whole pause procedure for
* parallel queues, since atomic/ordered semantics need not to
* be maintained.
*/
dsw_port_move_parallel_flows(dsw, source_port);
/* All flows were on PARALLEL queues. */
if (source_port->migration_state == DSW_MIGRATION_STATE_IDLE)
return;
/* There might be 'loopback' events already scheduled in the
* output buffers.
*/
dsw_port_flush_out_buffers(dsw, source_port);
dsw_port_add_paused_flows(source_port,
source_port->emigration_target_qfs,
source_port->emigration_targets_len);
dsw_port_ctl_broadcast(dsw, source_port, DSW_CTL_PAUS_REQ,
source_port->emigration_target_qfs,
source_port->emigration_targets_len);
source_port->cfm_cnt = 0;
}
static void
dsw_port_flush_no_longer_paused_events(struct dsw_evdev *dsw,
struct dsw_port *source_port);
static void
dsw_port_handle_unpause_flows(struct dsw_evdev *dsw, struct dsw_port *port,
uint8_t originating_port_id,
struct dsw_queue_flow *paused_qfs,
uint8_t qfs_len)
{
uint16_t i;
struct dsw_ctl_msg cfm = {
.type = DSW_CTL_CFM,
.originating_port_id = port->id
};
dsw_port_remove_paused_flows(port, paused_qfs, qfs_len);
rte_smp_rmb();
dsw_port_ctl_enqueue(&dsw->ports[originating_port_id], &cfm);
for (i = 0; i < qfs_len; i++) {
struct dsw_queue_flow *qf = &paused_qfs[i];
if (dsw_schedule(dsw, qf->queue_id, qf->flow_hash) == port->id)
port->immigrations++;
}
dsw_port_flush_no_longer_paused_events(dsw, port);
}
static void
dsw_port_buffer_in_buffer(struct dsw_port *port,
const struct rte_event *event)
{
RTE_ASSERT(port->in_buffer_start == 0);
port->in_buffer[port->in_buffer_len] = *event;
port->in_buffer_len++;
}
static void
dsw_port_forward_emigrated_event(struct dsw_evdev *dsw,
struct dsw_port *source_port,
struct rte_event *event)
{
uint16_t i;
for (i = 0; i < source_port->emigration_targets_len; i++) {
struct dsw_queue_flow *qf =
&source_port->emigration_target_qfs[i];
uint8_t dest_port_id =
source_port->emigration_target_port_ids[i];
struct dsw_port *dest_port = &dsw->ports[dest_port_id];
if (event->queue_id == qf->queue_id &&
dsw_flow_id_hash(event->flow_id) == qf->flow_hash) {
/* No need to care about bursting forwarded
* events (to the destination port's in_ring),
* since migration doesn't happen very often,
* and also the majority of the dequeued
* events will likely *not* be forwarded.
*/
while (rte_event_ring_enqueue_burst(dest_port->in_ring,
event, 1,
NULL) != 1)
rte_pause();
return;
}
}
/* Event did not belong to the emigrated flows */
dsw_port_buffer_in_buffer(source_port, event);
}
static void
dsw_port_stash_migrating_event(struct dsw_port *port,
const struct rte_event *event)
{
port->emigrating_events[port->emigrating_events_len] = *event;
port->emigrating_events_len++;
}
#define DRAIN_DEQUEUE_BURST_SIZE (32)
static void
dsw_port_drain_in_ring(struct dsw_port *source_port)
{
uint16_t num_events;
uint16_t dequeued;
/* Control ring message should been seen before the ring count
* is read on the port's in_ring.
*/
rte_smp_rmb();
num_events = rte_event_ring_count(source_port->in_ring);
for (dequeued = 0; dequeued < num_events; ) {
uint16_t burst_size = RTE_MIN(DRAIN_DEQUEUE_BURST_SIZE,
num_events - dequeued);
struct rte_event events[burst_size];
uint16_t len;
uint16_t i;
len = rte_event_ring_dequeue_burst(source_port->in_ring,
events, burst_size,
NULL);
for (i = 0; i < len; i++) {
struct rte_event *event = &events[i];
uint16_t flow_hash;
flow_hash = dsw_flow_id_hash(event->flow_id);
if (unlikely(dsw_port_is_flow_migrating(source_port,
event->queue_id,
flow_hash)))
dsw_port_stash_migrating_event(source_port,
event);
else
dsw_port_buffer_in_buffer(source_port, event);
}
dequeued += len;
}
}
static void
dsw_port_forward_emigrated_flows(struct dsw_evdev *dsw,
struct dsw_port *source_port)
{
uint16_t i;
for (i = 0; i < source_port->emigrating_events_len; i++) {
struct rte_event *event = &source_port->emigrating_events[i];
dsw_port_forward_emigrated_event(dsw, source_port, event);
}
source_port->emigrating_events_len = 0;
}
static void
dsw_port_move_emigrating_flows(struct dsw_evdev *dsw,
struct dsw_port *source_port)
{
uint8_t i;
dsw_port_flush_out_buffers(dsw, source_port);
for (i = 0; i < source_port->emigration_targets_len; i++) {
struct dsw_queue_flow *qf =
&source_port->emigration_target_qfs[i];
uint8_t dest_port_id =
source_port->emigration_target_port_ids[i];
dsw->queues[qf->queue_id].flow_to_port_map[qf->flow_hash] =
dest_port_id;
}
rte_smp_wmb();
dsw_port_drain_in_ring(source_port);
dsw_port_forward_emigrated_flows(dsw, source_port);
dsw_port_remove_paused_flows(source_port,
source_port->emigration_target_qfs,
source_port->emigration_targets_len);
dsw_port_flush_no_longer_paused_events(dsw, source_port);
/* Flow table update and migration destination port's enqueues
* must be seen before the control message.
*/
rte_smp_wmb();
dsw_port_ctl_broadcast(dsw, source_port, DSW_CTL_UNPAUS_REQ,
source_port->emigration_target_qfs,
source_port->emigration_targets_len);
source_port->cfm_cnt = 0;
source_port->migration_state = DSW_MIGRATION_STATE_UNPAUSING;
}
static void
dsw_port_handle_confirm(struct dsw_evdev *dsw, struct dsw_port *port)
{
port->cfm_cnt++;
if (port->cfm_cnt == (dsw->num_ports-1)) {
switch (port->migration_state) {
case DSW_MIGRATION_STATE_PAUSING:
dsw_port_move_emigrating_flows(dsw, port);
break;
case DSW_MIGRATION_STATE_UNPAUSING:
dsw_port_end_emigration(dsw, port,
RTE_SCHED_TYPE_ATOMIC);
break;
default:
RTE_ASSERT(0);
break;
}
}
}
static void
dsw_port_ctl_process(struct dsw_evdev *dsw, struct dsw_port *port)
{
struct dsw_ctl_msg msg;
if (dsw_port_ctl_dequeue(port, &msg) == 0) {
switch (msg.type) {
case DSW_CTL_PAUS_REQ:
dsw_port_handle_pause_flows(dsw, port,
msg.originating_port_id,
msg.qfs, msg.qfs_len);
break;
case DSW_CTL_UNPAUS_REQ:
dsw_port_handle_unpause_flows(dsw, port,
msg.originating_port_id,
msg.qfs, msg.qfs_len);
break;
case DSW_CTL_CFM:
dsw_port_handle_confirm(dsw, port);
break;
}
}
}
static void
dsw_port_note_op(struct dsw_port *port, uint16_t num_events)
{
port->ops_since_bg_task += (num_events+1);
}
static void
dsw_port_bg_process(struct dsw_evdev *dsw, struct dsw_port *port)
{
/* For simplicity (in the migration logic), avoid all
* background processing in case event processing is in
* progress.
*/
if (port->pending_releases > 0)
return;
/* Polling the control ring is relatively inexpensive, and
* polling it often helps bringing down migration latency, so
* do this for every iteration.
*/
dsw_port_ctl_process(dsw, port);
/* To avoid considering migration and flushing output buffers
* on every dequeue/enqueue call, the scheduler only performs
* such 'background' tasks every nth
* (i.e. DSW_MAX_PORT_OPS_PER_BG_TASK) operation.
*/
if (unlikely(port->ops_since_bg_task >= DSW_MAX_PORT_OPS_PER_BG_TASK)) {
uint64_t now;
now = rte_get_timer_cycles();
port->last_bg = now;
/* Logic to avoid having events linger in the output
* buffer too long.
*/
dsw_port_flush_out_buffers(dsw, port);
dsw_port_consider_load_update(port, now);
dsw_port_consider_emigration(dsw, port, now);
port->ops_since_bg_task = 0;
}
}
static void
dsw_port_flush_out_buffers(struct dsw_evdev *dsw, struct dsw_port *source_port)
{
uint16_t dest_port_id;
for (dest_port_id = 0; dest_port_id < dsw->num_ports; dest_port_id++)
dsw_port_transmit_buffered(dsw, source_port, dest_port_id);
}
uint16_t
dsw_event_enqueue(void *port, const struct rte_event *ev)
{
return dsw_event_enqueue_burst(port, ev, unlikely(ev == NULL) ? 0 : 1);
}
static __rte_always_inline uint16_t
dsw_event_enqueue_burst_generic(struct dsw_port *source_port,
const struct rte_event events[],
uint16_t events_len, bool op_types_known,
uint16_t num_new, uint16_t num_release,
uint16_t num_non_release)
{
struct dsw_evdev *dsw = source_port->dsw;
bool enough_credits;
uint16_t i;
DSW_LOG_DP_PORT(DEBUG, source_port->id, "Attempting to enqueue %d "
"events.\n", events_len);
dsw_port_bg_process(dsw, source_port);
/* XXX: For performance (=ring efficiency) reasons, the
* scheduler relies on internal non-ring buffers instead of
* immediately sending the event to the destination ring. For
* a producer that doesn't intend to produce or consume any
* more events, the scheduler provides a way to flush the
* buffer, by means of doing an enqueue of zero events. In
* addition, a port cannot be left "unattended" (e.g. unused)
* for long periods of time, since that would stall
* migration. Eventdev API extensions to provide a cleaner way
* to archive both of these functions should be
* considered.
*/
if (unlikely(events_len == 0)) {
dsw_port_note_op(source_port, DSW_MAX_PORT_OPS_PER_BG_TASK);
dsw_port_flush_out_buffers(dsw, source_port);
return 0;
}
dsw_port_note_op(source_port, events_len);
if (!op_types_known)
for (i = 0; i < events_len; i++) {
switch (events[i].op) {
case RTE_EVENT_OP_RELEASE:
num_release++;
break;
case RTE_EVENT_OP_NEW:
num_new++;
/* Falls through. */
default:
num_non_release++;
break;
}
}
/* Technically, we could allow the non-new events up to the
* first new event in the array into the system, but for
* simplicity reasons, we deny the whole burst if the port is
* above the water mark.
*/
if (unlikely(num_new > 0 &&
__atomic_load_n(&dsw->credits_on_loan, __ATOMIC_RELAXED) >
source_port->new_event_threshold))
return 0;
enough_credits = dsw_port_acquire_credits(dsw, source_port,
num_non_release);
if (unlikely(!enough_credits))
return 0;
source_port->pending_releases -= num_release;
dsw_port_enqueue_stats(source_port, num_new,
num_non_release-num_new, num_release);
for (i = 0; i < events_len; i++) {
const struct rte_event *event = &events[i];
if (likely(num_release == 0 ||
event->op != RTE_EVENT_OP_RELEASE))
dsw_port_buffer_event(dsw, source_port, event);
dsw_port_queue_enqueue_stats(source_port, event->queue_id);
}
DSW_LOG_DP_PORT(DEBUG, source_port->id, "%d non-release events "
"accepted.\n", num_non_release);
return (num_non_release + num_release);
}
uint16_t
dsw_event_enqueue_burst(void *port, const struct rte_event events[],
uint16_t events_len)
{
struct dsw_port *source_port = port;
if (unlikely(events_len > source_port->enqueue_depth))
events_len = source_port->enqueue_depth;
return dsw_event_enqueue_burst_generic(source_port, events,
events_len, false, 0, 0, 0);
}
uint16_t
dsw_event_enqueue_new_burst(void *port, const struct rte_event events[],
uint16_t events_len)
{
struct dsw_port *source_port = port;
if (unlikely(events_len > source_port->enqueue_depth))
events_len = source_port->enqueue_depth;
return dsw_event_enqueue_burst_generic(source_port, events,
events_len, true, events_len,
0, events_len);
}
uint16_t
dsw_event_enqueue_forward_burst(void *port, const struct rte_event events[],
uint16_t events_len)
{
struct dsw_port *source_port = port;
if (unlikely(events_len > source_port->enqueue_depth))
events_len = source_port->enqueue_depth;
return dsw_event_enqueue_burst_generic(source_port, events,
events_len, true, 0, 0,
events_len);
}
uint16_t
dsw_event_dequeue(void *port, struct rte_event *events, uint64_t wait)
{
return dsw_event_dequeue_burst(port, events, 1, wait);
}
static void
dsw_port_record_seen_events(struct dsw_port *port, struct rte_event *events,
uint16_t num)
{
uint16_t i;
dsw_port_dequeue_stats(port, num);
for (i = 0; i < num; i++) {
uint16_t l_idx = port->seen_events_idx;
struct dsw_queue_flow *qf = &port->seen_events[l_idx];
struct rte_event *event = &events[i];
qf->queue_id = event->queue_id;
qf->flow_hash = dsw_flow_id_hash(event->flow_id);
port->seen_events_idx = (l_idx+1) % DSW_MAX_EVENTS_RECORDED;
dsw_port_queue_dequeued_stats(port, event->queue_id);
}
if (unlikely(port->seen_events_len != DSW_MAX_EVENTS_RECORDED))
port->seen_events_len =
RTE_MIN(port->seen_events_len + num,
DSW_MAX_EVENTS_RECORDED);
}
#ifdef DSW_SORT_DEQUEUED
#define DSW_EVENT_TO_INT(_event) \
((int)((((_event)->queue_id)<<16)|((_event)->flow_id)))
static inline int
dsw_cmp_event(const void *v_event_a, const void *v_event_b)
{
const struct rte_event *event_a = v_event_a;
const struct rte_event *event_b = v_event_b;
return DSW_EVENT_TO_INT(event_a) - DSW_EVENT_TO_INT(event_b);
}
#endif
static uint16_t
dsw_port_dequeue_burst(struct dsw_port *port, struct rte_event *events,
uint16_t num)
{
if (unlikely(port->in_buffer_len > 0)) {
uint16_t dequeued = RTE_MIN(num, port->in_buffer_len);
rte_memcpy(events, &port->in_buffer[port->in_buffer_start],
dequeued * sizeof(struct rte_event));
port->in_buffer_start += dequeued;
port->in_buffer_len -= dequeued;
if (port->in_buffer_len == 0)
port->in_buffer_start = 0;
return dequeued;
}
return rte_event_ring_dequeue_burst(port->in_ring, events, num, NULL);
}
static void
dsw_port_stash_migrating_events(struct dsw_port *port,
struct rte_event *events, uint16_t *num)
{
uint16_t i;
/* The assumption here - performance-wise - is that events
* belonging to migrating flows are relatively rare.
*/
for (i = 0; i < (*num); ) {
struct rte_event *event = &events[i];
uint16_t flow_hash;
flow_hash = dsw_flow_id_hash(event->flow_id);
if (unlikely(dsw_port_is_flow_migrating(port, event->queue_id,
flow_hash))) {
uint16_t left;
dsw_port_stash_migrating_event(port, event);
(*num)--;
left = *num - i;
if (left > 0)
memmove(event, event + 1,
left * sizeof(struct rte_event));
} else
i++;
}
}
uint16_t
dsw_event_dequeue_burst(void *port, struct rte_event *events, uint16_t num,
uint64_t wait __rte_unused)
{
struct dsw_port *source_port = port;
struct dsw_evdev *dsw = source_port->dsw;
uint16_t dequeued;
source_port->pending_releases = 0;
dsw_port_bg_process(dsw, source_port);
if (unlikely(num > source_port->dequeue_depth))
num = source_port->dequeue_depth;
dequeued = dsw_port_dequeue_burst(source_port, events, num);
if (unlikely(source_port->migration_state ==
DSW_MIGRATION_STATE_PAUSING))
dsw_port_stash_migrating_events(source_port, events,
&dequeued);
source_port->pending_releases = dequeued;
dsw_port_load_record(source_port, dequeued);
dsw_port_note_op(source_port, dequeued);
if (dequeued > 0) {
DSW_LOG_DP_PORT(DEBUG, source_port->id, "Dequeued %d events.\n",
dequeued);
dsw_port_return_credits(dsw, source_port, dequeued);
/* One potential optimization one might think of is to
* add a migration state (prior to 'pausing'), and
* only record seen events when the port is in this
* state (and transit to 'pausing' when enough events
* have been gathered). However, that schema doesn't
* seem to improve performance.
*/
dsw_port_record_seen_events(port, events, dequeued);
} else /* Zero-size dequeue means a likely idle port, and thus
* we can afford trading some efficiency for a slightly
* reduced event wall-time latency.
*/
dsw_port_flush_out_buffers(dsw, port);
#ifdef DSW_SORT_DEQUEUED
dsw_stable_sort(events, dequeued, sizeof(events[0]), dsw_cmp_event);
#endif
return dequeued;
}
void dsw_event_maintain(void *port, int op)
{
struct dsw_port *source_port = port;
struct dsw_evdev *dsw = source_port->dsw;
dsw_port_note_op(source_port, 0);
dsw_port_bg_process(dsw, source_port);
if (op & RTE_EVENT_DEV_MAINT_OP_FLUSH)
dsw_port_flush_out_buffers(dsw, source_port);
}