numam-dpdk/drivers/net/ark/ark_ethdev_rx.c
Ed Czeck f0d33f78f7 net/ark: update UDM functions for firmware update
- New firmware version for UDM (Upstream Data Mover)
- Remove device-level start, stop, and reset operations
- Add queue-based start, stop and reset as required by firmware
- Remove performance structs as they are not in the firmware module

Signed-off-by: Ed Czeck <ed.czeck@atomicrules.com>
2022-06-08 10:38:39 +02:00

630 lines
16 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (c) 2015-2018 Atomic Rules LLC
*/
#include <unistd.h>
#include "ark_ethdev_rx.h"
#include "ark_global.h"
#include "ark_logs.h"
#include "ark_mpu.h"
#include "ark_udm.h"
#define ARK_RX_META_SIZE 32
#define ARK_RX_META_OFFSET (RTE_PKTMBUF_HEADROOM - ARK_RX_META_SIZE)
#define ARK_RX_MPU_CHUNK (64U)
/* Forward declarations */
struct ark_rx_queue;
struct ark_rx_meta;
static void dump_mbuf_data(struct rte_mbuf *mbuf, uint16_t lo, uint16_t hi);
static void ark_ethdev_rx_dump(const char *name, struct ark_rx_queue *queue);
static uint32_t eth_ark_rx_jumbo(struct ark_rx_queue *queue,
struct ark_rx_meta *meta,
struct rte_mbuf *mbuf0,
uint32_t cons_index);
static inline int eth_ark_rx_seed_mbufs(struct ark_rx_queue *queue);
/* ************************************************************************* */
struct ark_rx_queue {
/* array of mbufs to populate */
struct rte_mbuf **reserve_q;
/* array of physical addresses of the mbuf data pointer */
/* This point is a virtual address */
rte_iova_t *paddress_q;
struct rte_mempool *mb_pool;
struct ark_udm_t *udm;
struct ark_mpu_t *mpu;
rx_user_meta_hook_fn rx_user_meta_hook;
void *ext_user_data;
uint32_t dataroom;
uint32_t headroom;
uint32_t queue_size;
uint32_t queue_mask;
uint32_t seed_index; /* step 1 set with empty mbuf */
uint32_t cons_index; /* step 3 consumed by driver */
/* The queue Id is used to identify the HW Q */
uint16_t phys_qid;
/* The queue Index is used within the dpdk device structures */
uint16_t queue_index;
uint32_t unused;
/* next cache line - fields written by device */
RTE_MARKER cacheline1 __rte_cache_min_aligned;
volatile uint32_t prod_index; /* step 2 filled by FPGA */
} __rte_cache_aligned;
/* ************************************************************************* */
static int
eth_ark_rx_hw_setup(struct rte_eth_dev *dev,
struct ark_rx_queue *queue,
uint16_t rx_queue_id __rte_unused, uint16_t rx_queue_idx)
{
rte_iova_t queue_base;
rte_iova_t phys_addr_q_base;
rte_iova_t phys_addr_prod_index;
queue_base = rte_malloc_virt2iova(queue);
phys_addr_prod_index = queue_base +
offsetof(struct ark_rx_queue, prod_index);
phys_addr_q_base = rte_malloc_virt2iova(queue->paddress_q);
/* Verify HW */
if (ark_mpu_verify(queue->mpu, sizeof(rte_iova_t))) {
ARK_PMD_LOG(ERR, "Illegal configuration rx queue\n");
return -1;
}
/* Stop and Reset and configure MPU */
ark_mpu_configure(queue->mpu, phys_addr_q_base, queue->queue_size, 0);
ark_udm_write_addr(queue->udm, phys_addr_prod_index);
/* The seed is the producer index for the HW */
ark_mpu_set_producer(queue->mpu, queue->seed_index);
dev->data->rx_queue_state[rx_queue_idx] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
static inline void
eth_ark_rx_update_cons_index(struct ark_rx_queue *queue, uint32_t cons_index)
{
queue->cons_index = cons_index;
if ((cons_index + queue->queue_size - queue->seed_index) >= ARK_RX_MPU_CHUNK) {
eth_ark_rx_seed_mbufs(queue);
ark_mpu_set_producer(queue->mpu, queue->seed_index);
}
}
/* ************************************************************************* */
int
eth_ark_dev_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mb_pool)
{
static int warning1; /* = 0 */
struct ark_adapter *ark = dev->data->dev_private;
struct ark_rx_queue *queue;
uint32_t i;
int status;
int qidx = queue_idx;
/* We may already be setup, free memory prior to re-allocation */
if (dev->data->rx_queues[queue_idx] != NULL) {
eth_ark_dev_rx_queue_release(dev->data->rx_queues[queue_idx]);
dev->data->rx_queues[queue_idx] = NULL;
}
if (rx_conf != NULL && warning1 == 0) {
warning1 = 1;
ARK_PMD_LOG(NOTICE,
"Arkville ignores rte_eth_rxconf argument.\n");
}
if (RTE_PKTMBUF_HEADROOM < ARK_RX_META_SIZE) {
ARK_PMD_LOG(ERR,
"Error: DPDK Arkville requires head room > %d bytes (%s)\n",
ARK_RX_META_SIZE, __func__);
return -1; /* ERROR CODE */
}
if (!rte_is_power_of_2(nb_desc)) {
ARK_PMD_LOG(ERR,
"DPDK Arkville configuration queue size must be power of two %u (%s)\n",
nb_desc, __func__);
return -1; /* ERROR CODE */
}
/* Allocate queue struct */
queue = rte_zmalloc_socket("Ark_rxqueue",
sizeof(struct ark_rx_queue),
64,
socket_id);
if (queue == 0) {
ARK_PMD_LOG(ERR, "Failed to allocate memory in %s\n", __func__);
return -ENOMEM;
}
/* NOTE zmalloc is used, no need to 0 indexes, etc. */
queue->mb_pool = mb_pool;
queue->dataroom = rte_pktmbuf_data_room_size(mb_pool) -
RTE_PKTMBUF_HEADROOM;
queue->headroom = RTE_PKTMBUF_HEADROOM;
queue->phys_qid = qidx;
queue->queue_index = queue_idx;
queue->queue_size = nb_desc;
queue->queue_mask = nb_desc - 1;
queue->rx_user_meta_hook = ark->user_ext.rx_user_meta_hook;
queue->ext_user_data = ark->user_data[dev->data->port_id];
queue->reserve_q =
rte_zmalloc_socket("Ark_rx_queue mbuf",
nb_desc * sizeof(struct rte_mbuf *),
512,
socket_id);
queue->paddress_q =
rte_zmalloc_socket("Ark_rx_queue paddr",
nb_desc * sizeof(rte_iova_t),
512,
socket_id);
if (queue->reserve_q == 0 || queue->paddress_q == 0) {
ARK_PMD_LOG(ERR,
"Failed to allocate queue memory in %s\n",
__func__);
rte_free(queue->reserve_q);
rte_free(queue->paddress_q);
rte_free(queue);
return -ENOMEM;
}
dev->data->rx_queues[queue_idx] = queue;
queue->udm = RTE_PTR_ADD(ark->udm.v, qidx * ARK_UDM_QOFFSET);
queue->mpu = RTE_PTR_ADD(ark->mpurx.v, qidx * ARK_MPU_QOFFSET);
/* Configure UDM per queue */
ark_udm_configure(queue->udm,
RTE_PKTMBUF_HEADROOM,
queue->dataroom);
ark_udm_queue_stats_reset(queue->udm);
/* populate mbuf reserve */
status = eth_ark_rx_seed_mbufs(queue);
if (queue->seed_index != nb_desc) {
ARK_PMD_LOG(ERR, "Failed to allocate %u mbufs for RX queue %d\n",
nb_desc, qidx);
status = -1;
}
/* MPU Setup */
if (status == 0)
status = eth_ark_rx_hw_setup(dev, queue, qidx, queue_idx);
if (unlikely(status != 0)) {
struct rte_mbuf **mbuf;
ARK_PMD_LOG(ERR, "Failed to initialize RX queue %d %s\n",
qidx,
__func__);
/* Free the mbufs allocated */
for (i = 0, mbuf = queue->reserve_q;
i < queue->seed_index; ++i, mbuf++) {
rte_pktmbuf_free(*mbuf);
}
rte_free(queue->reserve_q);
rte_free(queue->paddress_q);
rte_free(queue);
return -1; /* ERROR CODE */
}
return 0;
}
/* ************************************************************************* */
uint16_t
eth_ark_recv_pkts(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct ark_rx_queue *queue;
register uint32_t cons_index, prod_index;
uint16_t nb;
uint16_t i;
struct rte_mbuf *mbuf;
struct rte_mbuf **pmbuf;
struct ark_rx_meta *meta;
rx_user_meta_hook_fn rx_user_meta_hook;
queue = (struct ark_rx_queue *)rx_queue;
if (unlikely(queue == 0))
return 0;
if (unlikely(nb_pkts == 0))
return 0;
prod_index = queue->prod_index;
cons_index = queue->cons_index;
if (prod_index == cons_index)
return 0;
nb = 0;
while (prod_index != cons_index) {
mbuf = queue->reserve_q[cons_index & queue->queue_mask];
/* prefetch mbuf */
rte_mbuf_prefetch_part1(mbuf);
rte_mbuf_prefetch_part2(mbuf);
/* META DATA embedded in headroom */
meta = RTE_PTR_ADD(mbuf->buf_addr, ARK_RX_META_OFFSET);
mbuf->pkt_len = meta->pkt_len;
mbuf->data_len = meta->pkt_len;
if (ARK_DEBUG_CORE) { /* debug sanity checks */
if ((meta->pkt_len > (1024 * 16)) ||
(meta->pkt_len == 0)) {
ARK_PMD_LOG(DEBUG, "RX: Bad Meta Q: %u"
" cons: %" PRIU32
" prod: %" PRIU32
" seed_index %" PRIU32
"\n",
queue->phys_qid,
cons_index,
queue->prod_index,
queue->seed_index);
ARK_PMD_LOG(DEBUG, " : UDM"
" prod: %" PRIU32
" len: %u\n",
queue->udm->rt_cfg.prod_idx,
meta->pkt_len);
ark_mpu_dump(queue->mpu,
" ",
queue->phys_qid);
dump_mbuf_data(mbuf, 0, 256);
/* its FUBAR so fix it */
mbuf->pkt_len = 63;
meta->pkt_len = 63;
}
}
if (unlikely(meta->pkt_len > queue->dataroom))
cons_index = eth_ark_rx_jumbo
(queue, meta, mbuf, cons_index + 1);
else
cons_index += 1;
rx_pkts[nb] = mbuf;
nb++;
if (nb >= nb_pkts)
break;
}
rx_user_meta_hook = queue->rx_user_meta_hook;
for (pmbuf = rx_pkts, i = 0; rx_user_meta_hook && i < nb; i++) {
mbuf = *pmbuf++;
meta = RTE_PTR_ADD(mbuf->buf_addr, ARK_RX_META_OFFSET);
rx_user_meta_hook(mbuf, meta->user_meta, queue->ext_user_data);
}
eth_ark_rx_update_cons_index(queue, cons_index);
return nb;
}
/* ************************************************************************* */
static uint32_t
eth_ark_rx_jumbo(struct ark_rx_queue *queue,
struct ark_rx_meta *meta,
struct rte_mbuf *mbuf0,
uint32_t cons_index)
{
struct rte_mbuf *mbuf_prev;
struct rte_mbuf *mbuf;
uint16_t remaining;
uint16_t data_len;
uint16_t segments;
/* first buf populated by called */
mbuf_prev = mbuf0;
segments = 1;
data_len = RTE_MIN(meta->pkt_len, queue->dataroom);
remaining = meta->pkt_len - data_len;
mbuf0->data_len = data_len;
/* HW guarantees that the data does not exceed prod_index! */
while (remaining != 0) {
data_len = RTE_MIN(remaining,
queue->dataroom);
remaining -= data_len;
segments += 1;
mbuf = queue->reserve_q[cons_index & queue->queue_mask];
mbuf_prev->next = mbuf;
mbuf_prev = mbuf;
mbuf->data_len = data_len;
cons_index += 1;
}
mbuf0->nb_segs = segments;
return cons_index;
}
/* Drain the internal queue allowing hw to clear out. */
static void
eth_ark_rx_queue_drain(struct ark_rx_queue *queue)
{
register uint32_t cons_index;
struct rte_mbuf *mbuf;
cons_index = queue->cons_index;
/* NOT performance optimized, since this is a one-shot call */
while ((cons_index ^ queue->prod_index) & queue->queue_mask) {
mbuf = queue->reserve_q[cons_index & queue->queue_mask];
rte_pktmbuf_free(mbuf);
cons_index++;
eth_ark_rx_update_cons_index(queue, cons_index);
}
}
uint32_t
eth_ark_dev_rx_queue_count(void *rx_queue)
{
struct ark_rx_queue *queue;
queue = rx_queue;
return (queue->prod_index - queue->cons_index); /* mod arith */
}
/* ************************************************************************* */
int
eth_ark_rx_start_queue(struct rte_eth_dev *dev, uint16_t queue_id)
{
struct ark_rx_queue *queue;
queue = dev->data->rx_queues[queue_id];
if (queue == 0)
return -1;
dev->data->rx_queue_state[queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
ark_mpu_set_producer(queue->mpu, queue->seed_index);
ark_mpu_start(queue->mpu);
ark_udm_queue_enable(queue->udm, 1);
return 0;
}
/* ************************************************************************* */
/* Queue can be restarted. data remains
*/
int
eth_ark_rx_stop_queue(struct rte_eth_dev *dev, uint16_t queue_id)
{
struct ark_rx_queue *queue;
queue = dev->data->rx_queues[queue_id];
if (queue == 0)
return -1;
ark_udm_queue_enable(queue->udm, 0);
dev->data->rx_queue_state[queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
/* ************************************************************************* */
static inline int
eth_ark_rx_seed_mbufs(struct ark_rx_queue *queue)
{
uint32_t limit = (queue->cons_index & ~(ARK_RX_MPU_CHUNK - 1)) +
queue->queue_size;
uint32_t seed_index = queue->seed_index;
uint32_t count = 0;
uint32_t seed_m = queue->seed_index & queue->queue_mask;
uint32_t nb = limit - seed_index;
/* Handle wrap around -- remainder is filled on the next call */
if (unlikely(seed_m + nb > queue->queue_size))
nb = queue->queue_size - seed_m;
struct rte_mbuf **mbufs = &queue->reserve_q[seed_m];
int status = rte_pktmbuf_alloc_bulk(queue->mb_pool, mbufs, nb);
if (unlikely(status != 0)) {
ARK_PMD_LOG(NOTICE,
"Could not allocate %u mbufs from pool"
" for RX queue %u;"
" %u free buffers remaining in queue\n",
nb, queue->queue_index,
queue->seed_index - queue->cons_index);
return -1;
}
if (ARK_DEBUG_CORE) { /* DEBUG */
while (count != nb) {
struct rte_mbuf *mbuf_init =
queue->reserve_q[seed_m + count];
memset(mbuf_init->buf_addr, -1, 512);
*((uint32_t *)mbuf_init->buf_addr) =
seed_index + count;
*(uint16_t *)RTE_PTR_ADD(mbuf_init->buf_addr, 4) =
queue->phys_qid;
count++;
}
count = 0;
} /* DEBUG */
queue->seed_index += nb;
/* Duff's device https://en.wikipedia.org/wiki/Duff's_device */
switch (nb % 4) {
case 0:
while (count != nb) {
queue->paddress_q[seed_m++] =
(*mbufs++)->buf_iova;
count++;
/* FALLTHROUGH */
case 3:
queue->paddress_q[seed_m++] =
(*mbufs++)->buf_iova;
count++;
/* FALLTHROUGH */
case 2:
queue->paddress_q[seed_m++] =
(*mbufs++)->buf_iova;
count++;
/* FALLTHROUGH */
case 1:
queue->paddress_q[seed_m++] =
(*mbufs++)->buf_iova;
count++;
/* FALLTHROUGH */
} /* while (count != nb) */
} /* switch */
return 0;
}
void
eth_ark_rx_dump_queue(struct rte_eth_dev *dev, uint16_t queue_id,
const char *msg)
{
struct ark_rx_queue *queue;
queue = dev->data->rx_queues[queue_id];
ark_ethdev_rx_dump(msg, queue);
}
/* ************************************************************************* */
/* Call on device closed no user API, queue is stopped */
void
eth_ark_dev_rx_queue_release(void *vqueue)
{
struct ark_rx_queue *queue;
uint32_t i;
queue = (struct ark_rx_queue *)vqueue;
if (queue == 0)
return;
ark_udm_queue_enable(queue->udm, 0);
/* Stop the MPU since pointer are going away */
ark_mpu_stop(queue->mpu);
/* Need to clear out mbufs here, dropping packets along the way */
eth_ark_rx_queue_drain(queue);
for (i = 0; i < queue->queue_size; ++i)
rte_pktmbuf_free(queue->reserve_q[i]);
rte_free(queue->reserve_q);
rte_free(queue->paddress_q);
rte_free(queue);
}
void
eth_rx_queue_stats_get(void *vqueue, struct rte_eth_stats *stats)
{
struct ark_rx_queue *queue;
struct ark_udm_t *udm;
queue = vqueue;
if (queue == 0)
return;
udm = queue->udm;
uint64_t ibytes = ark_udm_bytes(udm);
uint64_t ipackets = ark_udm_packets(udm);
uint64_t idropped = ark_udm_dropped(queue->udm);
stats->q_ipackets[queue->queue_index] = ipackets;
stats->q_ibytes[queue->queue_index] = ibytes;
stats->q_errors[queue->queue_index] = idropped;
stats->ipackets += ipackets;
stats->ibytes += ibytes;
stats->imissed += idropped;
}
void
eth_rx_queue_stats_reset(void *vqueue)
{
struct ark_rx_queue *queue;
queue = vqueue;
if (queue == 0)
return;
ark_udm_queue_stats_reset(queue->udm);
}
static void
ark_ethdev_rx_dump(const char *name, struct ark_rx_queue *queue)
{
if (queue == NULL)
return;
ARK_PMD_LOG(DEBUG, "RX QUEUE %d -- %s", queue->phys_qid, name);
ARK_PMD_LOG(DEBUG, ARK_SU32 ARK_SU32 ARK_SU32 ARK_SU32 "\n",
"queue_size", queue->queue_size,
"seed_index", queue->seed_index,
"prod_index", queue->prod_index,
"cons_index", queue->cons_index);
ark_mpu_dump(queue->mpu, name, queue->phys_qid);
ark_mpu_dump_setup(queue->mpu, queue->phys_qid);
ark_udm_dump_setup(queue->udm, queue->phys_qid);
}
/* Only used in debug.
* This function is a raw memory dump of a portion of an mbuf's memory
* region. The usual function, rte_pktmbuf_dump() only shows data
* with respect to the data_off field. This function show data
* anywhere in the mbuf's buffer. This is useful for examining
* data in the headroom or tailroom portion of an mbuf.
*/
static void
dump_mbuf_data(struct rte_mbuf *mbuf, uint16_t lo, uint16_t hi)
{
uint16_t i, j;
ARK_PMD_LOG(DEBUG, " MBUF: %p len %d, off: %d\n",
mbuf, mbuf->pkt_len, mbuf->data_off);
for (i = lo; i < hi; i += 16) {
uint8_t *dp = RTE_PTR_ADD(mbuf->buf_addr, i);
ARK_PMD_LOG(DEBUG, " %6d: ", i);
for (j = 0; j < 16; j++)
ARK_PMD_LOG(DEBUG, " %02x", dp[j]);
ARK_PMD_LOG(DEBUG, "\n");
}
}