numam-dpdk/drivers/net/atlantic/atl_rxtx.c
David Marchand f25fa03ad1 net/atlantic: fix build with clang 15
This variable is not used.

Fixes: 2b1472d715 ("net/atlantic: implement Tx path")
Cc: stable@dpdk.org

Signed-off-by: David Marchand <david.marchand@redhat.com>
Acked-by: Tyler Retzlaff <roretzla@linux.microsoft.com>
2022-11-21 11:19:14 +01:00

1345 lines
30 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Aquantia Corporation
*/
#include <rte_malloc.h>
#include <ethdev_driver.h>
#include <rte_net.h>
#include "atl_ethdev.h"
#include "atl_hw_regs.h"
#include "atl_logs.h"
#include "hw_atl/hw_atl_llh.h"
#include "hw_atl/hw_atl_b0.h"
#include "hw_atl/hw_atl_b0_internal.h"
#define ATL_TX_CKSUM_OFFLOAD_MASK ( \
RTE_MBUF_F_TX_IP_CKSUM | \
RTE_MBUF_F_TX_L4_MASK | \
RTE_MBUF_F_TX_TCP_SEG)
#define ATL_TX_OFFLOAD_MASK ( \
RTE_MBUF_F_TX_VLAN | \
RTE_MBUF_F_TX_IPV6 | \
RTE_MBUF_F_TX_IPV4 | \
RTE_MBUF_F_TX_IP_CKSUM | \
RTE_MBUF_F_TX_L4_MASK | \
RTE_MBUF_F_TX_TCP_SEG)
#define ATL_TX_OFFLOAD_NOTSUP_MASK \
(RTE_MBUF_F_TX_OFFLOAD_MASK ^ ATL_TX_OFFLOAD_MASK)
/**
* Structure associated with each descriptor of the RX ring of a RX queue.
*/
struct atl_rx_entry {
struct rte_mbuf *mbuf;
};
/**
* Structure associated with each descriptor of the TX ring of a TX queue.
*/
struct atl_tx_entry {
struct rte_mbuf *mbuf;
uint16_t next_id;
uint16_t last_id;
};
/**
* Structure associated with each RX queue.
*/
struct atl_rx_queue {
struct rte_mempool *mb_pool;
struct hw_atl_rxd_s *hw_ring;
uint64_t hw_ring_phys_addr;
struct atl_rx_entry *sw_ring;
uint16_t nb_rx_desc;
uint16_t rx_tail;
uint16_t nb_rx_hold;
uint16_t rx_free_thresh;
uint16_t queue_id;
uint16_t port_id;
uint16_t buff_size;
bool l3_csum_enabled;
bool l4_csum_enabled;
};
/**
* Structure associated with each TX queue.
*/
struct atl_tx_queue {
struct hw_atl_txd_s *hw_ring;
uint64_t hw_ring_phys_addr;
struct atl_tx_entry *sw_ring;
uint16_t nb_tx_desc;
uint16_t tx_tail;
uint16_t tx_head;
uint16_t queue_id;
uint16_t port_id;
uint16_t tx_free_thresh;
uint16_t tx_free;
};
static inline void
atl_reset_rx_queue(struct atl_rx_queue *rxq)
{
struct hw_atl_rxd_s *rxd = NULL;
int i;
PMD_INIT_FUNC_TRACE();
for (i = 0; i < rxq->nb_rx_desc; i++) {
rxd = (struct hw_atl_rxd_s *)&rxq->hw_ring[i];
rxd->buf_addr = 0;
rxd->hdr_addr = 0;
}
rxq->rx_tail = 0;
}
int
atl_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id,
uint16_t nb_rx_desc, unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mb_pool)
{
struct atl_rx_queue *rxq;
const struct rte_memzone *mz;
PMD_INIT_FUNC_TRACE();
/* make sure a valid number of descriptors have been requested */
if (nb_rx_desc < AQ_HW_MIN_RX_RING_SIZE ||
nb_rx_desc > AQ_HW_MAX_RX_RING_SIZE) {
PMD_INIT_LOG(ERR, "Number of Rx descriptors must be "
"less than or equal to %d, "
"greater than or equal to %d", AQ_HW_MAX_RX_RING_SIZE,
AQ_HW_MIN_RX_RING_SIZE);
return -EINVAL;
}
/*
* if this queue existed already, free the associated memory. The
* queue cannot be reused in case we need to allocate memory on
* different socket than was previously used.
*/
if (dev->data->rx_queues[rx_queue_id] != NULL) {
atl_rx_queue_release(dev, rx_queue_id);
dev->data->rx_queues[rx_queue_id] = NULL;
}
/* allocate memory for the queue structure */
rxq = rte_zmalloc_socket("atlantic Rx queue", sizeof(*rxq),
RTE_CACHE_LINE_SIZE, socket_id);
if (rxq == NULL) {
PMD_INIT_LOG(ERR, "Cannot allocate queue structure");
return -ENOMEM;
}
/* setup queue */
rxq->mb_pool = mb_pool;
rxq->nb_rx_desc = nb_rx_desc;
rxq->port_id = dev->data->port_id;
rxq->queue_id = rx_queue_id;
rxq->rx_free_thresh = rx_conf->rx_free_thresh;
rxq->l3_csum_enabled = dev->data->dev_conf.rxmode.offloads &
RTE_ETH_RX_OFFLOAD_IPV4_CKSUM;
rxq->l4_csum_enabled = dev->data->dev_conf.rxmode.offloads &
(RTE_ETH_RX_OFFLOAD_UDP_CKSUM | RTE_ETH_RX_OFFLOAD_TCP_CKSUM);
if (dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
PMD_DRV_LOG(ERR, "PMD does not support KEEP_CRC offload");
/* allocate memory for the software ring */
rxq->sw_ring = rte_zmalloc_socket("atlantic sw rx ring",
nb_rx_desc * sizeof(struct atl_rx_entry),
RTE_CACHE_LINE_SIZE, socket_id);
if (rxq->sw_ring == NULL) {
PMD_INIT_LOG(ERR,
"Port %d: Cannot allocate software ring for queue %d",
rxq->port_id, rxq->queue_id);
rte_free(rxq);
return -ENOMEM;
}
/*
* allocate memory for the hardware descriptor ring. A memzone large
* enough to hold the maximum ring size is requested to allow for
* resizing in later calls to the queue setup function.
*/
mz = rte_eth_dma_zone_reserve(dev, "rx hw_ring", rx_queue_id,
HW_ATL_B0_MAX_RXD *
sizeof(struct hw_atl_rxd_s),
128, socket_id);
if (mz == NULL) {
PMD_INIT_LOG(ERR,
"Port %d: Cannot allocate hardware ring for queue %d",
rxq->port_id, rxq->queue_id);
rte_free(rxq->sw_ring);
rte_free(rxq);
return -ENOMEM;
}
rxq->hw_ring = mz->addr;
rxq->hw_ring_phys_addr = mz->iova;
atl_reset_rx_queue(rxq);
dev->data->rx_queues[rx_queue_id] = rxq;
return 0;
}
static inline void
atl_reset_tx_queue(struct atl_tx_queue *txq)
{
struct atl_tx_entry *tx_entry;
union hw_atl_txc_s *txc;
uint16_t i;
PMD_INIT_FUNC_TRACE();
if (!txq) {
PMD_DRV_LOG(ERR, "Pointer to txq is NULL");
return;
}
tx_entry = txq->sw_ring;
for (i = 0; i < txq->nb_tx_desc; i++) {
txc = (union hw_atl_txc_s *)&txq->hw_ring[i];
txc->flags1 = 0;
txc->flags2 = 2;
}
for (i = 0; i < txq->nb_tx_desc; i++) {
txq->hw_ring[i].dd = 1;
tx_entry[i].mbuf = NULL;
}
txq->tx_tail = 0;
txq->tx_head = 0;
txq->tx_free = txq->nb_tx_desc - 1;
}
int
atl_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id,
uint16_t nb_tx_desc, unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
struct atl_tx_queue *txq;
const struct rte_memzone *mz;
PMD_INIT_FUNC_TRACE();
/* make sure a valid number of descriptors have been requested */
if (nb_tx_desc < AQ_HW_MIN_TX_RING_SIZE ||
nb_tx_desc > AQ_HW_MAX_TX_RING_SIZE) {
PMD_INIT_LOG(ERR, "Number of Tx descriptors must be "
"less than or equal to %d, "
"greater than or equal to %d", AQ_HW_MAX_TX_RING_SIZE,
AQ_HW_MIN_TX_RING_SIZE);
return -EINVAL;
}
/*
* if this queue existed already, free the associated memory. The
* queue cannot be reused in case we need to allocate memory on
* different socket than was previously used.
*/
if (dev->data->tx_queues[tx_queue_id] != NULL) {
atl_tx_queue_release(dev, tx_queue_id);
dev->data->tx_queues[tx_queue_id] = NULL;
}
/* allocate memory for the queue structure */
txq = rte_zmalloc_socket("atlantic Tx queue", sizeof(*txq),
RTE_CACHE_LINE_SIZE, socket_id);
if (txq == NULL) {
PMD_INIT_LOG(ERR, "Cannot allocate queue structure");
return -ENOMEM;
}
/* setup queue */
txq->nb_tx_desc = nb_tx_desc;
txq->port_id = dev->data->port_id;
txq->queue_id = tx_queue_id;
txq->tx_free_thresh = tx_conf->tx_free_thresh;
/* allocate memory for the software ring */
txq->sw_ring = rte_zmalloc_socket("atlantic sw tx ring",
nb_tx_desc * sizeof(struct atl_tx_entry),
RTE_CACHE_LINE_SIZE, socket_id);
if (txq->sw_ring == NULL) {
PMD_INIT_LOG(ERR,
"Port %d: Cannot allocate software ring for queue %d",
txq->port_id, txq->queue_id);
rte_free(txq);
return -ENOMEM;
}
/*
* allocate memory for the hardware descriptor ring. A memzone large
* enough to hold the maximum ring size is requested to allow for
* resizing in later calls to the queue setup function.
*/
mz = rte_eth_dma_zone_reserve(dev, "tx hw_ring", tx_queue_id,
HW_ATL_B0_MAX_TXD * sizeof(struct hw_atl_txd_s),
128, socket_id);
if (mz == NULL) {
PMD_INIT_LOG(ERR,
"Port %d: Cannot allocate hardware ring for queue %d",
txq->port_id, txq->queue_id);
rte_free(txq->sw_ring);
rte_free(txq);
return -ENOMEM;
}
txq->hw_ring = mz->addr;
txq->hw_ring_phys_addr = mz->iova;
atl_reset_tx_queue(txq);
dev->data->tx_queues[tx_queue_id] = txq;
return 0;
}
int
atl_tx_init(struct rte_eth_dev *eth_dev)
{
struct aq_hw_s *hw = ATL_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
struct atl_tx_queue *txq;
uint64_t base_addr = 0;
int i = 0;
int err = 0;
PMD_INIT_FUNC_TRACE();
for (i = 0; i < eth_dev->data->nb_tx_queues; i++) {
txq = eth_dev->data->tx_queues[i];
base_addr = txq->hw_ring_phys_addr;
err = hw_atl_b0_hw_ring_tx_init(hw, base_addr,
txq->queue_id,
txq->nb_tx_desc, 0,
txq->port_id);
if (err) {
PMD_INIT_LOG(ERR,
"Port %d: Cannot init TX queue %d",
txq->port_id, txq->queue_id);
break;
}
}
return err;
}
int
atl_rx_init(struct rte_eth_dev *eth_dev)
{
struct aq_hw_s *hw = ATL_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
struct aq_rss_parameters *rss_params = &hw->aq_nic_cfg->aq_rss;
struct atl_rx_queue *rxq;
uint64_t base_addr = 0;
int i = 0;
int err = 0;
PMD_INIT_FUNC_TRACE();
for (i = 0; i < eth_dev->data->nb_rx_queues; i++) {
rxq = eth_dev->data->rx_queues[i];
base_addr = rxq->hw_ring_phys_addr;
/* Take requested pool mbuf size and adapt
* descriptor buffer to best fit
*/
int buff_size = rte_pktmbuf_data_room_size(rxq->mb_pool) -
RTE_PKTMBUF_HEADROOM;
buff_size = RTE_ALIGN_FLOOR(buff_size, 1024);
if (buff_size > HW_ATL_B0_RXD_BUF_SIZE_MAX) {
PMD_INIT_LOG(WARNING,
"Port %d queue %d: mem pool buff size is too big\n",
rxq->port_id, rxq->queue_id);
buff_size = HW_ATL_B0_RXD_BUF_SIZE_MAX;
}
if (buff_size < 1024) {
PMD_INIT_LOG(ERR,
"Port %d queue %d: mem pool buff size is too small\n",
rxq->port_id, rxq->queue_id);
return -EINVAL;
}
rxq->buff_size = buff_size;
err = hw_atl_b0_hw_ring_rx_init(hw, base_addr, rxq->queue_id,
rxq->nb_rx_desc, buff_size, 0,
rxq->port_id);
if (err) {
PMD_INIT_LOG(ERR, "Port %d: Cannot init RX queue %d",
rxq->port_id, rxq->queue_id);
break;
}
}
for (i = rss_params->indirection_table_size; i--;)
rss_params->indirection_table[i] = i &
(eth_dev->data->nb_rx_queues - 1);
hw_atl_b0_hw_rss_set(hw, rss_params);
return err;
}
static int
atl_alloc_rx_queue_mbufs(struct atl_rx_queue *rxq)
{
struct atl_rx_entry *rx_entry = rxq->sw_ring;
struct hw_atl_rxd_s *rxd;
uint64_t dma_addr = 0;
uint32_t i = 0;
PMD_INIT_FUNC_TRACE();
/* fill Rx ring */
for (i = 0; i < rxq->nb_rx_desc; i++) {
struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
if (mbuf == NULL) {
PMD_INIT_LOG(ERR,
"Port %d: mbuf alloc failed for rx queue %d",
rxq->port_id, rxq->queue_id);
return -ENOMEM;
}
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
mbuf->port = rxq->port_id;
dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
rxd = (struct hw_atl_rxd_s *)&rxq->hw_ring[i];
rxd->buf_addr = dma_addr;
rxd->hdr_addr = 0;
rx_entry[i].mbuf = mbuf;
}
return 0;
}
static void
atl_rx_queue_release_mbufs(struct atl_rx_queue *rxq)
{
int i;
PMD_INIT_FUNC_TRACE();
if (rxq->sw_ring != NULL) {
for (i = 0; i < rxq->nb_rx_desc; i++) {
if (rxq->sw_ring[i].mbuf != NULL) {
rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
rxq->sw_ring[i].mbuf = NULL;
}
}
}
}
int
atl_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct aq_hw_s *hw = ATL_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct atl_rx_queue *rxq = NULL;
PMD_INIT_FUNC_TRACE();
if (rx_queue_id < dev->data->nb_rx_queues) {
rxq = dev->data->rx_queues[rx_queue_id];
if (atl_alloc_rx_queue_mbufs(rxq) != 0) {
PMD_INIT_LOG(ERR,
"Port %d: Allocate mbufs for queue %d failed",
rxq->port_id, rxq->queue_id);
return -1;
}
hw_atl_b0_hw_ring_rx_start(hw, rx_queue_id);
rte_wmb();
hw_atl_reg_rx_dma_desc_tail_ptr_set(hw, rxq->nb_rx_desc - 1,
rx_queue_id);
dev->data->rx_queue_state[rx_queue_id] =
RTE_ETH_QUEUE_STATE_STARTED;
} else {
return -1;
}
return 0;
}
int
atl_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct aq_hw_s *hw = ATL_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct atl_rx_queue *rxq = NULL;
PMD_INIT_FUNC_TRACE();
if (rx_queue_id < dev->data->nb_rx_queues) {
rxq = dev->data->rx_queues[rx_queue_id];
hw_atl_b0_hw_ring_rx_stop(hw, rx_queue_id);
atl_rx_queue_release_mbufs(rxq);
atl_reset_rx_queue(rxq);
dev->data->rx_queue_state[rx_queue_id] =
RTE_ETH_QUEUE_STATE_STOPPED;
} else {
return -1;
}
return 0;
}
void
atl_rx_queue_release(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct atl_rx_queue *rxq = dev->data->rx_queues[rx_queue_id];
PMD_INIT_FUNC_TRACE();
if (rxq != NULL) {
atl_rx_queue_release_mbufs(rxq);
rte_free(rxq->sw_ring);
rte_free(rxq);
}
}
static void
atl_tx_queue_release_mbufs(struct atl_tx_queue *txq)
{
int i;
PMD_INIT_FUNC_TRACE();
if (txq->sw_ring != NULL) {
for (i = 0; i < txq->nb_tx_desc; i++) {
if (txq->sw_ring[i].mbuf != NULL) {
rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
txq->sw_ring[i].mbuf = NULL;
}
}
}
}
int
atl_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct aq_hw_s *hw = ATL_DEV_PRIVATE_TO_HW(dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
if (tx_queue_id < dev->data->nb_tx_queues) {
hw_atl_b0_hw_ring_tx_start(hw, tx_queue_id);
rte_wmb();
hw_atl_b0_hw_tx_ring_tail_update(hw, 0, tx_queue_id);
dev->data->tx_queue_state[tx_queue_id] =
RTE_ETH_QUEUE_STATE_STARTED;
} else {
return -1;
}
return 0;
}
int
atl_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct aq_hw_s *hw = ATL_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct atl_tx_queue *txq;
PMD_INIT_FUNC_TRACE();
txq = dev->data->tx_queues[tx_queue_id];
hw_atl_b0_hw_ring_tx_stop(hw, tx_queue_id);
atl_tx_queue_release_mbufs(txq);
atl_reset_tx_queue(txq);
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
void
atl_tx_queue_release(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct atl_tx_queue *txq = dev->data->tx_queues[tx_queue_id];
PMD_INIT_FUNC_TRACE();
if (txq != NULL) {
atl_tx_queue_release_mbufs(txq);
rte_free(txq->sw_ring);
rte_free(txq);
}
}
void
atl_free_queues(struct rte_eth_dev *dev)
{
unsigned int i;
PMD_INIT_FUNC_TRACE();
for (i = 0; i < dev->data->nb_rx_queues; i++) {
atl_rx_queue_release(dev, i);
dev->data->rx_queues[i] = 0;
}
dev->data->nb_rx_queues = 0;
for (i = 0; i < dev->data->nb_tx_queues; i++) {
atl_tx_queue_release(dev, i);
dev->data->tx_queues[i] = 0;
}
dev->data->nb_tx_queues = 0;
}
int
atl_start_queues(struct rte_eth_dev *dev)
{
int i;
PMD_INIT_FUNC_TRACE();
for (i = 0; i < dev->data->nb_tx_queues; i++) {
if (atl_tx_queue_start(dev, i) != 0) {
PMD_DRV_LOG(ERR,
"Port %d: Start Tx queue %d failed",
dev->data->port_id, i);
return -1;
}
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
if (atl_rx_queue_start(dev, i) != 0) {
PMD_DRV_LOG(ERR,
"Port %d: Start Rx queue %d failed",
dev->data->port_id, i);
return -1;
}
}
return 0;
}
int
atl_stop_queues(struct rte_eth_dev *dev)
{
int i;
PMD_INIT_FUNC_TRACE();
for (i = 0; i < dev->data->nb_tx_queues; i++) {
if (atl_tx_queue_stop(dev, i) != 0) {
PMD_DRV_LOG(ERR,
"Port %d: Stop Tx queue %d failed",
dev->data->port_id, i);
return -1;
}
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
if (atl_rx_queue_stop(dev, i) != 0) {
PMD_DRV_LOG(ERR,
"Port %d: Stop Rx queue %d failed",
dev->data->port_id, i);
return -1;
}
}
return 0;
}
void
atl_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
struct rte_eth_rxq_info *qinfo)
{
struct atl_rx_queue *rxq;
PMD_INIT_FUNC_TRACE();
rxq = dev->data->rx_queues[queue_id];
qinfo->mp = rxq->mb_pool;
qinfo->scattered_rx = dev->data->scattered_rx;
qinfo->nb_desc = rxq->nb_rx_desc;
}
void
atl_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
struct rte_eth_txq_info *qinfo)
{
struct atl_tx_queue *txq;
PMD_INIT_FUNC_TRACE();
txq = dev->data->tx_queues[queue_id];
qinfo->nb_desc = txq->nb_tx_desc;
}
/* Return Rx queue avail count */
uint32_t
atl_rx_queue_count(void *rx_queue)
{
struct atl_rx_queue *rxq;
PMD_INIT_FUNC_TRACE();
rxq = rx_queue;
if (rxq == NULL)
return 0;
return rxq->nb_rx_desc - rxq->nb_rx_hold;
}
int
atl_dev_rx_descriptor_status(void *rx_queue, uint16_t offset)
{
struct atl_rx_queue *rxq = rx_queue;
struct hw_atl_rxd_wb_s *rxd;
uint32_t idx;
PMD_INIT_FUNC_TRACE();
if (unlikely(offset >= rxq->nb_rx_desc))
return -EINVAL;
if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
return RTE_ETH_RX_DESC_UNAVAIL;
idx = rxq->rx_tail + offset;
if (idx >= rxq->nb_rx_desc)
idx -= rxq->nb_rx_desc;
rxd = (struct hw_atl_rxd_wb_s *)&rxq->hw_ring[idx];
if (rxd->dd)
return RTE_ETH_RX_DESC_DONE;
return RTE_ETH_RX_DESC_AVAIL;
}
int
atl_dev_tx_descriptor_status(void *tx_queue, uint16_t offset)
{
struct atl_tx_queue *txq = tx_queue;
struct hw_atl_txd_s *txd;
uint32_t idx;
PMD_INIT_FUNC_TRACE();
if (unlikely(offset >= txq->nb_tx_desc))
return -EINVAL;
idx = txq->tx_tail + offset;
if (idx >= txq->nb_tx_desc)
idx -= txq->nb_tx_desc;
txd = &txq->hw_ring[idx];
if (txd->dd)
return RTE_ETH_TX_DESC_DONE;
return RTE_ETH_TX_DESC_FULL;
}
static int
atl_rx_enable_intr(struct rte_eth_dev *dev, uint16_t queue_id, bool enable)
{
struct aq_hw_s *hw = ATL_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct atl_rx_queue *rxq;
PMD_INIT_FUNC_TRACE();
if (queue_id >= dev->data->nb_rx_queues) {
PMD_DRV_LOG(ERR, "Invalid RX queue id=%d", queue_id);
return -EINVAL;
}
rxq = dev->data->rx_queues[queue_id];
if (rxq == NULL)
return 0;
/* Mapping interrupt vector */
hw_atl_itr_irq_map_en_rx_set(hw, enable, queue_id);
return 0;
}
int
atl_dev_rx_queue_intr_enable(struct rte_eth_dev *eth_dev, uint16_t queue_id)
{
return atl_rx_enable_intr(eth_dev, queue_id, true);
}
int
atl_dev_rx_queue_intr_disable(struct rte_eth_dev *eth_dev, uint16_t queue_id)
{
return atl_rx_enable_intr(eth_dev, queue_id, false);
}
uint16_t
atl_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
int i, ret;
uint64_t ol_flags;
struct rte_mbuf *m;
PMD_INIT_FUNC_TRACE();
for (i = 0; i < nb_pkts; i++) {
m = tx_pkts[i];
ol_flags = m->ol_flags;
if (m->nb_segs > AQ_HW_MAX_SEGS_SIZE) {
rte_errno = EINVAL;
return i;
}
if (ol_flags & ATL_TX_OFFLOAD_NOTSUP_MASK) {
rte_errno = ENOTSUP;
return i;
}
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
ret = rte_validate_tx_offload(m);
if (ret != 0) {
rte_errno = -ret;
return i;
}
#endif
ret = rte_net_intel_cksum_prepare(m);
if (ret != 0) {
rte_errno = -ret;
return i;
}
}
return i;
}
static uint64_t
atl_desc_to_offload_flags(struct atl_rx_queue *rxq,
struct hw_atl_rxd_wb_s *rxd_wb)
{
uint64_t mbuf_flags = 0;
PMD_INIT_FUNC_TRACE();
/* IPv4 ? */
if (rxq->l3_csum_enabled && ((rxd_wb->pkt_type & 0x3) == 0)) {
/* IPv4 csum error ? */
if (rxd_wb->rx_stat & BIT(1))
mbuf_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
else
mbuf_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
} else {
mbuf_flags |= RTE_MBUF_F_RX_IP_CKSUM_UNKNOWN;
}
/* CSUM calculated ? */
if (rxq->l4_csum_enabled && (rxd_wb->rx_stat & BIT(3))) {
if (rxd_wb->rx_stat & BIT(2))
mbuf_flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
else
mbuf_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
} else {
mbuf_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
}
return mbuf_flags;
}
static uint32_t
atl_desc_to_pkt_type(struct hw_atl_rxd_wb_s *rxd_wb)
{
uint32_t type = RTE_PTYPE_UNKNOWN;
uint16_t l2_l3_type = rxd_wb->pkt_type & 0x3;
uint16_t l4_type = (rxd_wb->pkt_type & 0x1C) >> 2;
switch (l2_l3_type) {
case 0:
type = RTE_PTYPE_L3_IPV4;
break;
case 1:
type = RTE_PTYPE_L3_IPV6;
break;
case 2:
type = RTE_PTYPE_L2_ETHER;
break;
case 3:
type = RTE_PTYPE_L2_ETHER_ARP;
break;
}
switch (l4_type) {
case 0:
type |= RTE_PTYPE_L4_TCP;
break;
case 1:
type |= RTE_PTYPE_L4_UDP;
break;
case 2:
type |= RTE_PTYPE_L4_SCTP;
break;
case 3:
type |= RTE_PTYPE_L4_ICMP;
break;
}
if (rxd_wb->pkt_type & BIT(5))
type |= RTE_PTYPE_L2_ETHER_VLAN;
return type;
}
uint16_t
atl_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
struct atl_rx_queue *rxq = (struct atl_rx_queue *)rx_queue;
struct rte_eth_dev *dev = &rte_eth_devices[rxq->port_id];
struct atl_adapter *adapter =
ATL_DEV_TO_ADAPTER(&rte_eth_devices[rxq->port_id]);
struct aq_hw_s *hw = ATL_DEV_PRIVATE_TO_HW(adapter);
struct aq_hw_cfg_s *cfg =
ATL_DEV_PRIVATE_TO_CFG(dev->data->dev_private);
struct atl_rx_entry *sw_ring = rxq->sw_ring;
struct rte_mbuf *new_mbuf;
struct rte_mbuf *rx_mbuf, *rx_mbuf_prev, *rx_mbuf_first;
struct atl_rx_entry *rx_entry;
uint16_t nb_rx = 0;
uint16_t nb_hold = 0;
struct hw_atl_rxd_wb_s rxd_wb;
struct hw_atl_rxd_s *rxd = NULL;
uint16_t tail = rxq->rx_tail;
uint64_t dma_addr;
uint16_t pkt_len = 0;
while (nb_rx < nb_pkts) {
uint16_t eop_tail = tail;
rxd = (struct hw_atl_rxd_s *)&rxq->hw_ring[tail];
rxd_wb = *(struct hw_atl_rxd_wb_s *)rxd;
if (!rxd_wb.dd) { /* RxD is not done */
break;
}
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u tail=%u "
"eop=0x%x pkt_len=%u hash=0x%x hash_type=0x%x",
(unsigned int)rxq->port_id,
(unsigned int)rxq->queue_id,
(unsigned int)tail, (unsigned int)rxd_wb.eop,
(unsigned int)rte_le_to_cpu_16(rxd_wb.pkt_len),
rxd_wb.rss_hash, rxd_wb.rss_type);
/* RxD is not done */
if (!rxd_wb.eop) {
while (true) {
struct hw_atl_rxd_wb_s *eop_rxwbd;
eop_tail = (eop_tail + 1) % rxq->nb_rx_desc;
eop_rxwbd = (struct hw_atl_rxd_wb_s *)
&rxq->hw_ring[eop_tail];
if (!eop_rxwbd->dd) {
/* no EOP received yet */
eop_tail = tail;
break;
}
if (eop_rxwbd->dd && eop_rxwbd->eop)
break;
}
/* No EOP in ring */
if (eop_tail == tail)
break;
}
rx_mbuf_prev = NULL;
rx_mbuf_first = NULL;
/* Run through packet segments */
while (true) {
new_mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
if (new_mbuf == NULL) {
PMD_RX_LOG(DEBUG,
"RX mbuf alloc failed port_id=%u "
"queue_id=%u", (unsigned int)rxq->port_id,
(unsigned int)rxq->queue_id);
dev->data->rx_mbuf_alloc_failed++;
adapter->sw_stats.rx_nombuf++;
goto err_stop;
}
nb_hold++;
rx_entry = &sw_ring[tail];
rx_mbuf = rx_entry->mbuf;
rx_entry->mbuf = new_mbuf;
dma_addr = rte_cpu_to_le_64(
rte_mbuf_data_iova_default(new_mbuf));
/* setup RX descriptor */
rxd->hdr_addr = 0;
rxd->buf_addr = dma_addr;
/*
* Initialize the returned mbuf.
* 1) setup generic mbuf fields:
* - number of segments,
* - next segment,
* - packet length,
* - RX port identifier.
* 2) integrate hardware offload data, if any:
* < - RSS flag & hash,
* - IP checksum flag,
* - VLAN TCI, if any,
* - error flags.
*/
pkt_len = (uint16_t)rte_le_to_cpu_16(rxd_wb.pkt_len);
rx_mbuf->data_off = RTE_PKTMBUF_HEADROOM;
rte_prefetch1((char *)rx_mbuf->buf_addr +
rx_mbuf->data_off);
rx_mbuf->nb_segs = 0;
rx_mbuf->next = NULL;
rx_mbuf->pkt_len = pkt_len;
rx_mbuf->data_len = pkt_len;
if (rxd_wb.eop) {
u16 remainder_len = pkt_len % rxq->buff_size;
if (!remainder_len)
remainder_len = rxq->buff_size;
rx_mbuf->data_len = remainder_len;
} else {
rx_mbuf->data_len = pkt_len > rxq->buff_size ?
rxq->buff_size : pkt_len;
}
rx_mbuf->port = rxq->port_id;
rx_mbuf->hash.rss = rxd_wb.rss_hash;
rx_mbuf->vlan_tci = rxd_wb.vlan;
rx_mbuf->ol_flags =
atl_desc_to_offload_flags(rxq, &rxd_wb);
rx_mbuf->packet_type = atl_desc_to_pkt_type(&rxd_wb);
if (rx_mbuf->packet_type & RTE_PTYPE_L2_ETHER_VLAN) {
rx_mbuf->ol_flags |= RTE_MBUF_F_RX_VLAN;
rx_mbuf->vlan_tci = rxd_wb.vlan;
if (cfg->vlan_strip)
rx_mbuf->ol_flags |=
RTE_MBUF_F_RX_VLAN_STRIPPED;
}
if (!rx_mbuf_first)
rx_mbuf_first = rx_mbuf;
rx_mbuf_first->nb_segs++;
if (rx_mbuf_prev)
rx_mbuf_prev->next = rx_mbuf;
rx_mbuf_prev = rx_mbuf;
tail = (tail + 1) % rxq->nb_rx_desc;
/* Prefetch next mbufs */
rte_prefetch0(sw_ring[tail].mbuf);
if ((tail & 0x3) == 0) {
rte_prefetch0(&sw_ring[tail]);
rte_prefetch0(&sw_ring[tail]);
}
/* filled mbuf_first */
if (rxd_wb.eop)
break;
rxd = (struct hw_atl_rxd_s *)&rxq->hw_ring[tail];
rxd_wb = *(struct hw_atl_rxd_wb_s *)rxd;
};
/*
* Store the mbuf address into the next entry of the array
* of returned packets.
*/
rx_pkts[nb_rx++] = rx_mbuf_first;
adapter->sw_stats.q_ipackets[rxq->queue_id]++;
adapter->sw_stats.q_ibytes[rxq->queue_id] +=
rx_mbuf_first->pkt_len;
PMD_RX_LOG(DEBUG, "add mbuf segs=%d pkt_len=%d",
rx_mbuf_first->nb_segs,
rx_mbuf_first->pkt_len);
}
err_stop:
rxq->rx_tail = tail;
/*
* If the number of free RX descriptors is greater than the RX free
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
* register.
* Update the RDT with the value of the last processed RX descriptor
* minus 1, to guarantee that the RDT register is never equal to the
* RDH register, which creates a "full" ring situation from the
* hardware point of view...
*/
nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
if (nb_hold > rxq->rx_free_thresh) {
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
"nb_hold=%u nb_rx=%u",
(unsigned int)rxq->port_id, (unsigned int)rxq->queue_id,
(unsigned int)tail, (unsigned int)nb_hold,
(unsigned int)nb_rx);
tail = (uint16_t)((tail == 0) ?
(rxq->nb_rx_desc - 1) : (tail - 1));
hw_atl_reg_rx_dma_desc_tail_ptr_set(hw, tail, rxq->queue_id);
nb_hold = 0;
}
rxq->nb_rx_hold = nb_hold;
return nb_rx;
}
static void
atl_xmit_cleanup(struct atl_tx_queue *txq)
{
struct atl_tx_entry *sw_ring;
struct hw_atl_txd_s *txd;
int to_clean = 0;
if (txq != NULL) {
sw_ring = txq->sw_ring;
int head = txq->tx_head;
int cnt = head;
while (true) {
txd = &txq->hw_ring[cnt];
if (txd->dd)
to_clean++;
cnt = (cnt + 1) % txq->nb_tx_desc;
if (cnt == txq->tx_tail)
break;
}
if (to_clean == 0)
return;
while (to_clean) {
txd = &txq->hw_ring[head];
struct atl_tx_entry *rx_entry = &sw_ring[head];
if (rx_entry->mbuf) {
rte_pktmbuf_free_seg(rx_entry->mbuf);
rx_entry->mbuf = NULL;
}
if (txd->dd)
to_clean--;
txd->buf_addr = 0;
txd->flags = 0;
head = (head + 1) % txq->nb_tx_desc;
txq->tx_free++;
}
txq->tx_head = head;
}
}
static int
atl_tso_setup(struct rte_mbuf *tx_pkt, union hw_atl_txc_s *txc)
{
uint32_t tx_cmd = 0;
uint64_t ol_flags = tx_pkt->ol_flags;
if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
tx_cmd |= tx_desc_cmd_lso | tx_desc_cmd_l4cs;
txc->cmd = 0x4;
if (ol_flags & RTE_MBUF_F_TX_IPV6)
txc->cmd |= 0x2;
txc->l2_len = tx_pkt->l2_len;
txc->l3_len = tx_pkt->l3_len;
txc->l4_len = tx_pkt->l4_len;
txc->mss_len = tx_pkt->tso_segsz;
}
if (ol_flags & RTE_MBUF_F_TX_VLAN) {
tx_cmd |= tx_desc_cmd_vlan;
txc->vlan_tag = tx_pkt->vlan_tci;
}
if (tx_cmd) {
txc->type = tx_desc_type_ctx;
txc->idx = 0;
}
return tx_cmd;
}
static inline void
atl_setup_csum_offload(struct rte_mbuf *mbuf, struct hw_atl_txd_s *txd,
uint32_t tx_cmd)
{
txd->cmd |= tx_desc_cmd_fcs;
txd->cmd |= (mbuf->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) ? tx_desc_cmd_ipv4 : 0;
/* L4 csum requested */
txd->cmd |= (mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) ? tx_desc_cmd_l4cs : 0;
txd->cmd |= tx_cmd;
}
static inline void
atl_xmit_pkt(struct aq_hw_s *hw, struct atl_tx_queue *txq,
struct rte_mbuf *tx_pkt)
{
struct atl_adapter *adapter =
ATL_DEV_TO_ADAPTER(&rte_eth_devices[txq->port_id]);
uint32_t pay_len = 0;
int tail = 0;
struct atl_tx_entry *tx_entry;
uint64_t buf_dma_addr;
struct rte_mbuf *m_seg;
union hw_atl_txc_s *txc = NULL;
struct hw_atl_txd_s *txd = NULL;
u32 tx_cmd = 0U;
int desc_count = 0;
tail = txq->tx_tail;
txc = (union hw_atl_txc_s *)&txq->hw_ring[tail];
txc->flags1 = 0U;
txc->flags2 = 0U;
tx_cmd = atl_tso_setup(tx_pkt, txc);
if (tx_cmd) {
/* We've consumed the first desc, adjust counters */
tail = (tail + 1) % txq->nb_tx_desc;
txq->tx_tail = tail;
txq->tx_free -= 1;
txd = &txq->hw_ring[tail];
txd->flags = 0U;
} else {
txd = (struct hw_atl_txd_s *)txc;
}
txd->ct_en = !!tx_cmd;
txd->type = tx_desc_type_desc;
atl_setup_csum_offload(tx_pkt, txd, tx_cmd);
if (tx_cmd)
txd->ct_idx = 0;
pay_len = tx_pkt->pkt_len;
txd->pay_len = pay_len;
for (m_seg = tx_pkt; m_seg; m_seg = m_seg->next) {
if (desc_count > 0) {
txd = &txq->hw_ring[tail];
txd->flags = 0U;
}
buf_dma_addr = rte_mbuf_data_iova(m_seg);
txd->buf_addr = rte_cpu_to_le_64(buf_dma_addr);
txd->type = tx_desc_type_desc;
txd->len = m_seg->data_len;
txd->pay_len = pay_len;
/* Store mbuf for freeing later */
tx_entry = &txq->sw_ring[tail];
if (tx_entry->mbuf)
rte_pktmbuf_free_seg(tx_entry->mbuf);
tx_entry->mbuf = m_seg;
tail = (tail + 1) % txq->nb_tx_desc;
desc_count++;
}
// Last descriptor requires EOP and WB
txd->eop = 1U;
txd->cmd |= tx_desc_cmd_wb;
hw_atl_b0_hw_tx_ring_tail_update(hw, tail, txq->queue_id);
txq->tx_tail = tail;
txq->tx_free -= desc_count;
adapter->sw_stats.q_opackets[txq->queue_id]++;
adapter->sw_stats.q_obytes[txq->queue_id] += pay_len;
}
uint16_t
atl_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
struct rte_eth_dev *dev = NULL;
struct aq_hw_s *hw = NULL;
struct atl_tx_queue *txq = tx_queue;
struct rte_mbuf *tx_pkt;
uint16_t nb_tx;
dev = &rte_eth_devices[txq->port_id];
hw = ATL_DEV_PRIVATE_TO_HW(dev->data->dev_private);
PMD_TX_LOG(DEBUG,
"port %d txq %d pkts: %d tx_free=%d tx_tail=%d tx_head=%d",
txq->port_id, txq->queue_id, nb_pkts, txq->tx_free,
txq->tx_tail, txq->tx_head);
for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
tx_pkt = *tx_pkts++;
/* Clean Tx queue if needed */
if (txq->tx_free < txq->tx_free_thresh)
atl_xmit_cleanup(txq);
/* Check if we have enough free descriptors */
if (txq->tx_free < tx_pkt->nb_segs)
break;
/* check mbuf is valid */
if ((tx_pkt->nb_segs == 0) ||
((tx_pkt->nb_segs > 1) && (tx_pkt->next == NULL)))
break;
/* Send the packet */
atl_xmit_pkt(hw, txq, tx_pkt);
}
PMD_TX_LOG(DEBUG, "atl_xmit_pkts %d transmitted", nb_tx);
return nb_tx;
}