numam-dpdk/drivers/net/bnx2x/bnx2x.h
David Marchand 1f37cb2bb4 bus/pci: make driver-only headers private
The pci bus interface is for drivers only.
Mark as internal and move the header in the driver headers list.

While at it, cleanup the code:
- fix indentation,
- remove unneeded reference to bus specific singleton object,
- remove unneeded list head structure type,
- reorder the definitions and macro manipulating the bus singleton object,
- remove inclusion of rte_bus.h and fix the code that relied on implicit
  inclusion,

Signed-off-by: David Marchand <david.marchand@redhat.com>
Acked-by: Bruce Richardson <bruce.richardson@intel.com>
Acked-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
Acked-by: Rosen Xu <rosen.xu@intel.com>
2022-09-23 16:14:34 +02:00

2099 lines
69 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (c) 2007-2013 Broadcom Corporation.
*
* Eric Davis <edavis@broadcom.com>
* David Christensen <davidch@broadcom.com>
* Gary Zambrano <zambrano@broadcom.com>
*
* Copyright (c) 2013-2015 Brocade Communications Systems, Inc.
* Copyright (c) 2015-2018 Cavium Inc.
* All rights reserved.
* www.cavium.com
*/
#ifndef __BNX2X_H__
#define __BNX2X_H__
#include <rte_byteorder.h>
#include <rte_spinlock.h>
#include <bus_pci_driver.h>
#include <rte_io.h>
#include "bnx2x_osal.h"
#include "bnx2x_ethdev.h"
#include "ecore_mfw_req.h"
#include "ecore_fw_defs.h"
#include "ecore_hsi.h"
#include "ecore_reg.h"
#include "bnx2x_stats.h"
#include "bnx2x_vfpf.h"
#include "elink.h"
#ifndef RTE_EXEC_ENV_FREEBSD
#include <linux/pci_regs.h>
#define PCIY_PMG PCI_CAP_ID_PM
#define PCIY_MSI PCI_CAP_ID_MSI
#define PCIY_EXPRESS PCI_CAP_ID_EXP
#define PCIY_MSIX PCI_CAP_ID_MSIX
#define PCIR_EXPRESS_DEVICE_STA PCI_EXP_TYPE_RC_EC
#define PCIM_EXP_STA_TRANSACTION_PND PCI_EXP_DEVSTA_TRPND
#define PCIR_EXPRESS_LINK_STA PCI_EXP_LNKSTA
#define PCIM_LINK_STA_WIDTH PCI_EXP_LNKSTA_NLW
#define PCIM_LINK_STA_SPEED PCI_EXP_LNKSTA_CLS
#define PCIR_EXPRESS_DEVICE_CTL PCI_EXP_DEVCTL
#define PCIM_EXP_CTL_MAX_PAYLOAD PCI_EXP_DEVCTL_PAYLOAD
#define PCIM_EXP_CTL_MAX_READ_REQUEST PCI_EXP_DEVCTL_READRQ
#define PCIR_POWER_STATUS PCI_PM_CTRL
#define PCIM_PSTAT_DMASK PCI_PM_CTRL_STATE_MASK
#define PCIM_PSTAT_PME PCI_PM_CTRL_PME_STATUS
#define PCIM_PSTAT_D3 0x3
#define PCIM_PSTAT_PMEENABLE PCI_PM_CTRL_PME_ENABLE
#define PCIR_MSIX_CTRL PCI_MSIX_FLAGS
#define PCIM_MSIXCTRL_TABLE_SIZE PCI_MSIX_FLAGS_QSIZE
#else
#include <dev/pci/pcireg.h>
#endif
#define IFM_10G_CX4 20 /* 10GBase CX4 copper */
#define IFM_10G_TWINAX 22 /* 10GBase Twinax copper */
#define IFM_10G_T 26 /* 10GBase-T - RJ45 */
#ifndef RTE_EXEC_ENV_FREEBSD
#define PCIR_EXPRESS_DEVICE_STA PCI_EXP_TYPE_RC_EC
#define PCIM_EXP_STA_TRANSACTION_PND PCI_EXP_DEVSTA_TRPND
#define PCIR_EXPRESS_LINK_STA PCI_EXP_LNKSTA
#define PCIM_LINK_STA_WIDTH PCI_EXP_LNKSTA_NLW
#define PCIM_LINK_STA_SPEED PCI_EXP_LNKSTA_CLS
#define PCIR_EXPRESS_DEVICE_CTL PCI_EXP_DEVCTL
#define PCIM_EXP_CTL_MAX_PAYLOAD PCI_EXP_DEVCTL_PAYLOAD
#define PCIM_EXP_CTL_MAX_READ_REQUEST PCI_EXP_DEVCTL_READRQ
#else
#define PCIR_EXPRESS_DEVICE_STA PCIER_DEVICE_STA
#define PCIM_EXP_STA_TRANSACTION_PND PCIEM_STA_TRANSACTION_PND
#define PCIR_EXPRESS_LINK_STA PCIER_LINK_STA
#define PCIM_LINK_STA_WIDTH PCIEM_LINK_STA_WIDTH
#define PCIM_LINK_STA_SPEED PCIEM_LINK_STA_SPEED
#define PCIR_EXPRESS_DEVICE_CTL PCIER_DEVICE_CTL
#define PCIM_EXP_CTL_MAX_PAYLOAD PCIEM_CTL_MAX_PAYLOAD
#define PCIM_EXP_CTL_MAX_READ_REQUEST PCIEM_CTL_MAX_READ_REQUEST
#endif
#ifndef ARRAY_SIZE
#define ARRAY_SIZE(arr) RTE_DIM(arr)
#endif
#ifndef DIV_ROUND_UP
#define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
#endif
#ifndef roundup
#define roundup(x, y) ((((x) + ((y) - 1)) / (y)) * (y))
#endif
#ifndef ilog2
static inline
int bnx2x_ilog2(int x)
{
int log = 0;
x >>= 1;
while(x) {
log++;
x >>= 1;
}
return log;
}
#define ilog2(x) bnx2x_ilog2(x)
#endif
#define BNX2X_BC_VER 0x040200
#include "ecore_sp.h"
struct bnx2x_device_type {
uint16_t bnx2x_vid;
uint16_t bnx2x_did;
uint16_t bnx2x_svid;
uint16_t bnx2x_sdid;
char *bnx2x_name;
};
#define BNX2X_PAGE_SHIFT 12
#define BNX2X_PAGE_SIZE (1 << BNX2X_PAGE_SHIFT)
#define BNX2X_PAGE_MASK (~(BNX2X_PAGE_SIZE - 1))
#define BNX2X_PAGE_ALIGN(addr) ((addr + BNX2X_PAGE_SIZE - 1) & BNX2X_PAGE_MASK)
#if BNX2X_PAGE_SIZE != 4096
#error Page sizes other than 4KB are unsupported!
#endif
#define U64_LO(addr) ((uint32_t)(((uint64_t)(addr)) & 0xFFFFFFFF))
#define U64_HI(addr) ((uint32_t)(((uint64_t)(addr)) >> 32))
#define HILO_U64(hi, lo) ((((uint64_t)(hi)) << 32) + (lo))
/* dropless fc FW/HW related params */
#define BRB_SIZE(sc) (CHIP_IS_E3(sc) ? 1024 : 512)
#define MAX_AGG_QS(sc) ETH_MAX_AGGREGATION_QUEUES_E1H_E2
#define FW_DROP_LEVEL(sc) (3 + MAX_SPQ_PENDING + MAX_AGG_QS(sc))
#define FW_PREFETCH_CNT 16U
#define DROPLESS_FC_HEADROOM 100
/*
* Transmit Buffer Descriptor (tx_bd) definitions*
*/
/* NUM_TX_PAGES must be a power of 2. */
#define NUM_TX_PAGES 16
#define TOTAL_TX_BD_PER_PAGE (BNX2X_PAGE_SIZE / sizeof(union eth_tx_bd_types)) /* 256 */
#define USABLE_TX_BD_PER_PAGE (TOTAL_TX_BD_PER_PAGE - 1) /* 255 */
#define TOTAL_TX_BD(q) (TOTAL_TX_BD_PER_PAGE * q->nb_tx_pages) /* 512 */
#define USABLE_TX_BD(q) (USABLE_TX_BD_PER_PAGE * q->nb_tx_pages) /* 510 */
#define MAX_TX_BD(q) (TOTAL_TX_BD(q) - 1) /* 511 */
#define MAX_TX_AVAIL (USABLE_TX_BD_PER_PAGE * NUM_TX_PAGES - 2)
#define NEXT_TX_BD(x) \
((((x) & USABLE_TX_BD_PER_PAGE) == \
(USABLE_TX_BD_PER_PAGE - 1)) ? (x) + 2 : (x) + 1)
#define TX_BD(x, q) ((x) & MAX_TX_BD(q))
#define TX_PAGE(x) (((x) & ~USABLE_TX_BD_PER_PAGE) >> 8)
#define TX_IDX(x) ((x) & USABLE_TX_BD_PER_PAGE)
#define BDS_PER_TX_PKT (3)
/*
* Trigger pending transmits when the number of available BDs is greater
* than 1/8 of the total number of usable BDs.
*/
#define BNX2X_TX_CLEANUP_THRESHOLD(q) (USABLE_TX_BD(q) / 8)
#define BNX2X_TX_TIMEOUT 5
/*
* Receive Buffer Descriptor (rx_bd) definitions*
*/
#define MAX_RX_PAGES 8
#define TOTAL_RX_BD_PER_PAGE (BNX2X_PAGE_SIZE / sizeof(struct eth_rx_bd)) /* 512 */
#define USABLE_RX_BD_PER_PAGE (TOTAL_RX_BD_PER_PAGE - 2) /* 510 */
#define RX_BD_PER_PAGE_MASK (TOTAL_RX_BD_PER_PAGE - 1) /* 511 */
#define TOTAL_RX_BD(q) (TOTAL_RX_BD_PER_PAGE * q->nb_rx_pages) /* 512 */
#define USABLE_RX_BD(q) (USABLE_RX_BD_PER_PAGE * q->nb_rx_pages) /* 510 */
#define MAX_RX_BD(q) (TOTAL_RX_BD(q) - 1) /* 511 */
#define MAX_RX_AVAIL (USABLE_RX_BD_PER_PAGE * MAX_RX_PAGES - 2)
#define RX_BD_NEXT_PAGE_DESC_CNT 2
#define NEXT_RX_BD(x) \
((((x) & RX_BD_PER_PAGE_MASK) == \
(USABLE_RX_BD_PER_PAGE - 1)) ? (x) + 3 : (x) + 1)
/* x & 0x3ff */
#define RX_BD(x, q) ((x) & MAX_RX_BD(q))
#define RX_PAGE(x) (((x) & ~RX_BD_PER_PAGE_MASK) >> 9)
#define RX_IDX(x) ((x) & RX_BD_PER_PAGE_MASK)
/*
* Receive Completion Queue definitions*
*/
//#define NUM_RCQ_PAGES (NUM_RX_PAGES * 4)
#define TOTAL_RCQ_ENTRIES_PER_PAGE (BNX2X_PAGE_SIZE / sizeof(union eth_rx_cqe)) /* 128 */
#define USABLE_RCQ_ENTRIES_PER_PAGE (TOTAL_RCQ_ENTRIES_PER_PAGE - 1) /* 127 */
#define TOTAL_RCQ_ENTRIES(q) (TOTAL_RCQ_ENTRIES_PER_PAGE * q->nb_cq_pages) /* 512 */
#define USABLE_RCQ_ENTRIES(q) (USABLE_RCQ_ENTRIES_PER_PAGE * q->nb_cq_pages) /* 508 */
#define MAX_RCQ_ENTRIES(q) (TOTAL_RCQ_ENTRIES(q) - 1) /* 511 */
#define RCQ_NEXT_PAGE_DESC_CNT 1
#define NEXT_RCQ_IDX(x) \
((((x) & USABLE_RCQ_ENTRIES_PER_PAGE) == \
(USABLE_RCQ_ENTRIES_PER_PAGE - 1)) ? (x) + 2 : (x) + 1)
#define CQE_BD_REL \
(sizeof(union eth_rx_cqe) / sizeof(struct eth_rx_bd))
#define RCQ_BD_PAGES(q) \
(q->nb_rx_pages * CQE_BD_REL)
#define RCQ_ENTRY(x, q) ((x) & MAX_RCQ_ENTRIES(q))
#define RCQ_PAGE(x) (((x) & ~USABLE_RCQ_ENTRIES_PER_PAGE) >> 7)
#define RCQ_IDX(x) ((x) & USABLE_RCQ_ENTRIES_PER_PAGE)
/*
* dropless fc calculations for BDs
* Number of BDs should be as number of buffers in BRB:
* Low threshold takes into account RX_BD_NEXT_PAGE_DESC_CNT
* "next" elements on each page
*/
#define NUM_BD_REQ(sc) \
BRB_SIZE(sc)
#define NUM_BD_PG_REQ(sc) \
((NUM_BD_REQ(sc) + USABLE_RX_BD_PER_PAGE - 1) / USABLE_RX_BD_PER_PAGE)
#define BD_TH_LO(sc) \
(NUM_BD_REQ(sc) + \
NUM_BD_PG_REQ(sc) * RX_BD_NEXT_PAGE_DESC_CNT + \
FW_DROP_LEVEL(sc))
#define BD_TH_HI(sc) \
(BD_TH_LO(sc) + DROPLESS_FC_HEADROOM)
#define MIN_RX_AVAIL(sc) \
((sc)->dropless_fc ? BD_TH_HI(sc) + 128 : 128)
#define MIN_RX_SIZE_NONTPA_HW ETH_MIN_RX_CQES_WITHOUT_TPA
#define MIN_RX_SIZE_NONTPA (RTE_MAX((uint32_t)MIN_RX_SIZE_NONTPA_HW,\
(uint32_t)MIN_RX_AVAIL(sc)))
/*
* dropless fc calculations for RCQs
* Number of RCQs should be as number of buffers in BRB:
* Low threshold takes into account RCQ_NEXT_PAGE_DESC_CNT
* "next" elements on each page
*/
#define NUM_RCQ_REQ(sc) \
BRB_SIZE(sc)
#define NUM_RCQ_PG_REQ(sc) \
((NUM_RCQ_REQ(sc) + USABLE_RCQ_ENTRIES_PER_PAGE - 1) / USABLE_RCQ_ENTRIES_PER_PAGE)
#define RCQ_TH_LO(sc) \
(NUM_RCQ_REQ(sc) + \
NUM_RCQ_PG_REQ(sc) * RCQ_NEXT_PAGE_DESC_CNT + \
FW_DROP_LEVEL(sc))
#define RCQ_TH_HI(sc) \
(RCQ_TH_LO(sc) + DROPLESS_FC_HEADROOM)
/* Load / Unload modes */
#define LOAD_NORMAL 0
#define LOAD_OPEN 1
#define LOAD_DIAG 2
#define LOAD_LOOPBACK_EXT 3
#define UNLOAD_NORMAL 0
#define UNLOAD_CLOSE 1
#define UNLOAD_RECOVERY 2
/* Some constants... */
//#define MAX_PATH_NUM 2
//#define E2_MAX_NUM_OF_VFS 64
//#define E1H_FUNC_MAX 8
//#define E2_FUNC_MAX 4 /* per path */
#define MAX_VNIC_NUM 4
#define MAX_FUNC_NUM 8 /* common to all chips */
//#define MAX_NDSB HC_SB_MAX_SB_E2 /* max non-default status block */
#define MAX_RSS_CHAINS 16 /* a constant for HW limit */
#define MAX_MSI_VECTOR 8 /* a constant for HW limit */
#define ILT_NUM_PAGE_ENTRIES 3072
/*
* 57711 we use whole table since we have 8 functions.
* 57712 we have only 4 functions, but use same size per func, so only half
* of the table is used.
*/
#define ILT_PER_FUNC (ILT_NUM_PAGE_ENTRIES / 8)
#define FUNC_ILT_BASE(func) (func * ILT_PER_FUNC)
/*
* the phys address is shifted right 12 bits and has an added
* 1=valid bit added to the 53rd bit
* then since this is a wide register(TM)
* we split it into two 32 bit writes
*/
#define ONCHIP_ADDR1(x) ((uint32_t)(((uint64_t)x >> 12) & 0xFFFFFFFF))
#define ONCHIP_ADDR2(x) ((uint32_t)((1 << 20) | ((uint64_t)x >> 44)))
/* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */
#define ETH_HLEN 14
#define ETH_OVERHEAD (ETH_HLEN + 8 + 8)
#define ETH_MIN_PACKET_SIZE 60
#define ETH_MAX_PACKET_SIZE ETHERMTU /* 1500 */
#define ETH_MAX_JUMBO_PACKET_SIZE 9600
/* TCP with Timestamp Option (32) + IPv6 (40) */
/* max supported alignment is 256 (8 shift) */
#define BNX2X_RX_ALIGN_SHIFT RTE_MAX(6, min(8, RTE_CACHE_LINE_SIZE_LOG2))
#define BNX2X_PXP_DRAM_ALIGN (BNX2X_RX_ALIGN_SHIFT - 5)
struct bnx2x_bar {
void *base_addr;
};
/* Used to manage DMA allocations. */
struct bnx2x_dma {
struct bnx2x_softc *sc;
rte_iova_t paddr;
void *vaddr;
int nseg;
const void *mzone;
char msg[RTE_MEMZONE_NAMESIZE - 6];
};
/* attn group wiring */
#define MAX_DYNAMIC_ATTN_GRPS 8
struct attn_route {
uint32_t sig[5];
};
struct iro {
uint32_t base;
uint16_t m1;
uint16_t m2;
uint16_t m3;
uint16_t size;
};
union bnx2x_host_hc_status_block {
/* pointer to fp status block e2 */
struct host_hc_status_block_e2 *e2_sb;
/* pointer to fp status block e1x */
struct host_hc_status_block_e1x *e1x_sb;
};
union bnx2x_db_prod {
struct doorbell_set_prod data;
uint32_t raw;
};
struct bnx2x_sw_tx_bd {
struct mbuf *m;
uint16_t first_bd;
uint8_t flags;
/* set on the first BD descriptor when there is a split BD */
#define BNX2X_TSO_SPLIT_BD (1 << 0)
};
/*
* This is the HSI fastpath data structure. There can be up to MAX_RSS_CHAIN
* instances of the fastpath structure when using multiple queues.
*/
struct bnx2x_fastpath {
/* pointer back to parent structure */
struct bnx2x_softc *sc;
/* Used to synchronize fastpath Rx access */
rte_spinlock_t rx_mtx;
/* status block */
struct bnx2x_dma sb_dma;
union bnx2x_host_hc_status_block status_block;
rte_iova_t tx_desc_mapping;
rte_iova_t rx_desc_mapping;
rte_iova_t rx_comp_mapping;
uint16_t *sb_index_values;
uint16_t *sb_running_index;
uint32_t ustorm_rx_prods_offset;
uint8_t igu_sb_id; /* status block number in HW */
uint8_t fw_sb_id; /* status block number in FW */
uint32_t rx_buf_size;
int state;
#define BNX2X_FP_STATE_CLOSED 0x01
#define BNX2X_FP_STATE_IRQ 0x02
#define BNX2X_FP_STATE_OPENING 0x04
#define BNX2X_FP_STATE_OPEN 0x08
#define BNX2X_FP_STATE_HALTING 0x10
#define BNX2X_FP_STATE_HALTED 0x20
/* reference back to this fastpath queue number */
uint8_t index; /* this is also the 'cid' */
#define FP_IDX(fp) (fp->index)
/* ethernet client ID (each fastpath set of RX/TX/CQE is a client) */
uint8_t cl_id;
#define FP_CL_ID(fp) (fp->cl_id)
uint8_t cl_qzone_id;
uint16_t fp_hc_idx;
union bnx2x_db_prod tx_db;
struct tstorm_per_queue_stats old_tclient;
struct ustorm_per_queue_stats old_uclient;
struct xstorm_per_queue_stats old_xclient;
struct bnx2x_eth_q_stats eth_q_stats;
struct bnx2x_eth_q_stats_old eth_q_stats_old;
/* Pointer to the receive consumer in the status block */
uint16_t *rx_cq_cons_sb;
/* Pointer to the transmit consumer in the status block */
uint16_t *tx_cons_sb;
/* transmit timeout until chip reset */
int watchdog_timer;
}; /* struct bnx2x_fastpath */
#define BNX2X_MAX_NUM_OF_VFS 64
#define BNX2X_VF_ID_INVALID 0xFF
/* maximum number of fast-path interrupt contexts */
#define FP_SB_MAX_E1x 16
#define FP_SB_MAX_E2 HC_SB_MAX_SB_E2
union cdu_context {
struct eth_context eth;
char pad[1024];
};
/* CDU host DB constants */
#define CDU_ILT_PAGE_SZ_HW 2
#define CDU_ILT_PAGE_SZ (8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */
#define ILT_PAGE_CIDS (CDU_ILT_PAGE_SZ / sizeof(union cdu_context))
#define CNIC_ISCSI_CID_MAX 256
#define CNIC_FCOE_CID_MAX 2048
#define CNIC_CID_MAX (CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX)
#define CNIC_ILT_LINES DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS)
#define QM_ILT_PAGE_SZ_HW 0
#define QM_ILT_PAGE_SZ (4096 << QM_ILT_PAGE_SZ_HW) /* 4K */
#define QM_CID_ROUND 1024
/* TM (timers) host DB constants */
#define TM_ILT_PAGE_SZ_HW 0
#define TM_ILT_PAGE_SZ (4096 << TM_ILT_PAGE_SZ_HW) /* 4K */
/*#define TM_CONN_NUM (CNIC_STARTING_CID+CNIC_ISCSI_CXT_MAX) */
#define TM_CONN_NUM 1024
#define TM_ILT_SZ (8 * TM_CONN_NUM)
#define TM_ILT_LINES DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ)
/* SRC (Searcher) host DB constants */
#define SRC_ILT_PAGE_SZ_HW 0
#define SRC_ILT_PAGE_SZ (4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */
#define SRC_HASH_BITS 10
#define SRC_CONN_NUM (1 << SRC_HASH_BITS) /* 1024 */
#define SRC_ILT_SZ (sizeof(struct src_ent) * SRC_CONN_NUM)
#define SRC_T2_SZ SRC_ILT_SZ
#define SRC_ILT_LINES DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ)
struct hw_context {
struct bnx2x_dma vcxt_dma;
union cdu_context *vcxt;
//rte_iova_t cxt_mapping;
size_t size;
};
#define SM_RX_ID 0
#define SM_TX_ID 1
/* defines for multiple tx priority indices */
#define FIRST_TX_ONLY_COS_INDEX 1
#define FIRST_TX_COS_INDEX 0
#define CID_TO_FP(cid, sc) ((cid) % BNX2X_NUM_NON_CNIC_QUEUES(sc))
#define HC_INDEX_ETH_RX_CQ_CONS 1
#define HC_INDEX_OOO_TX_CQ_CONS 4
#define HC_INDEX_ETH_TX_CQ_CONS_COS0 5
#define HC_INDEX_ETH_TX_CQ_CONS_COS1 6
#define HC_INDEX_ETH_TX_CQ_CONS_COS2 7
#define HC_INDEX_ETH_FIRST_TX_CQ_CONS HC_INDEX_ETH_TX_CQ_CONS_COS0
/* congestion management fairness mode */
#define CMNG_FNS_NONE 0
#define CMNG_FNS_MINMAX 1
/* CMNG constants, as derived from system spec calculations */
/* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */
#define DEF_MIN_RATE 100
/* resolution of the rate shaping timer - 400 usec */
#define RS_PERIODIC_TIMEOUT_USEC 400
/* number of bytes in single QM arbitration cycle -
* coefficient for calculating the fairness timer */
#define QM_ARB_BYTES 160000
/* resolution of Min algorithm 1:100 */
#define MIN_RES 100
/* how many bytes above threshold for the minimal credit of Min algorithm*/
#define MIN_ABOVE_THRESH 32768
/* fairness algorithm integration time coefficient -
* for calculating the actual Tfair */
#define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
/* memory of fairness algorithm - 2 cycles */
#define FAIR_MEM 2
#define HC_SEG_ACCESS_DEF 0 /* Driver decision 0-3 */
#define HC_SEG_ACCESS_ATTN 4
#define HC_SEG_ACCESS_NORM 0 /* Driver decision 0-1 */
/*
* The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is
* control by the number of fast-path status blocks supported by the
* device (HW/FW). Each fast-path status block (FP-SB) aka non-default
* status block represents an independent interrupts context that can
* serve a regular L2 networking queue. However special L2 queues such
* as the FCoE queue do not require a FP-SB and other components like
* the CNIC may consume FP-SB reducing the number of possible L2 queues
*
* If the maximum number of FP-SB available is X then:
* a. If CNIC is supported it consumes 1 FP-SB thus the max number of
* regular L2 queues is Y=X-1
* b. in MF mode the actual number of L2 queues is Y= (X-1/MF_factor)
* c. If the FCoE L2 queue is supported the actual number of L2 queues
* is Y+1
* d. The number of irqs (MSIX vectors) is either Y+1 (one extra for
* slow-path interrupts) or Y+2 if CNIC is supported (one additional
* FP interrupt context for the CNIC).
* e. The number of HW context (CID count) is always X or X+1 if FCoE
* L2 queue is supported. the cid for the FCoE L2 queue is always X.
*
* So this is quite simple for now as no ULPs are supported yet. :-)
*/
#define BNX2X_NUM_QUEUES(sc) ((sc)->num_queues)
#define BNX2X_NUM_ETH_QUEUES(sc) BNX2X_NUM_QUEUES(sc)
#define BNX2X_NUM_NON_CNIC_QUEUES(sc) BNX2X_NUM_QUEUES(sc)
#define BNX2X_NUM_RX_QUEUES(sc) BNX2X_NUM_QUEUES(sc)
#define FOR_EACH_QUEUE(sc, var) \
for ((var) = 0; (var) < BNX2X_NUM_QUEUES(sc); (var)++)
#define FOR_EACH_NONDEFAULT_QUEUE(sc, var) \
for ((var) = 1; (var) < BNX2X_NUM_QUEUES(sc); (var)++)
#define FOR_EACH_ETH_QUEUE(sc, var) \
for ((var) = 0; (var) < BNX2X_NUM_ETH_QUEUES(sc); (var)++)
#define FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, var) \
for ((var) = 1; (var) < BNX2X_NUM_ETH_QUEUES(sc); (var)++)
#define FOR_EACH_COS_IN_TX_QUEUE(sc, var) \
for ((var) = 0; (var) < (sc)->max_cos; (var)++)
#define FOR_EACH_CNIC_QUEUE(sc, var) \
for ((var) = BNX2X_NUM_ETH_QUEUES(sc); \
(var) < BNX2X_NUM_QUEUES(sc); \
(var)++)
enum {
OOO_IDX_OFFSET,
FCOE_IDX_OFFSET,
FWD_IDX_OFFSET,
};
#define FCOE_IDX(sc) (BNX2X_NUM_NON_CNIC_QUEUES(sc) + FCOE_IDX_OFFSET)
#define bnx2x_fcoe_fp(sc) (&sc->fp[FCOE_IDX(sc)])
#define bnx2x_fcoe(sc, var) (bnx2x_fcoe_fp(sc)->var)
#define bnx2x_fcoe_inner_sp_obj(sc) (&sc->sp_objs[FCOE_IDX(sc)])
#define bnx2x_fcoe_sp_obj(sc, var) (bnx2x_fcoe_inner_sp_obj(sc)->var)
#define bnx2x_fcoe_tx(sc, var) (bnx2x_fcoe_fp(sc)->txdata_ptr[FIRST_TX_COS_INDEX]->var)
#define OOO_IDX(sc) (BNX2X_NUM_NON_CNIC_QUEUES(sc) + OOO_IDX_OFFSET)
#define bnx2x_ooo_fp(sc) (&sc->fp[OOO_IDX(sc)])
#define bnx2x_ooo(sc, var) (bnx2x_ooo_fp(sc)->var)
#define bnx2x_ooo_inner_sp_obj(sc) (&sc->sp_objs[OOO_IDX(sc)])
#define bnx2x_ooo_sp_obj(sc, var) (bnx2x_ooo_inner_sp_obj(sc)->var)
#define FWD_IDX(sc) (BNX2X_NUM_NON_CNIC_QUEUES(sc) + FWD_IDX_OFFSET)
#define bnx2x_fwd_fp(sc) (&sc->fp[FWD_IDX(sc)])
#define bnx2x_fwd(sc, var) (bnx2x_fwd_fp(sc)->var)
#define bnx2x_fwd_inner_sp_obj(sc) (&sc->sp_objs[FWD_IDX(sc)])
#define bnx2x_fwd_sp_obj(sc, var) (bnx2x_fwd_inner_sp_obj(sc)->var)
#define bnx2x_fwd_txdata(fp) (fp->txdata_ptr[FIRST_TX_COS_INDEX])
#define IS_ETH_FP(fp) ((fp)->index < BNX2X_NUM_ETH_QUEUES((fp)->sc))
#define IS_FCOE_FP(fp) ((fp)->index == FCOE_IDX((fp)->sc))
#define IS_FCOE_IDX(idx) ((idx) == FCOE_IDX(sc))
#define IS_FWD_FP(fp) ((fp)->index == FWD_IDX((fp)->sc))
#define IS_FWD_IDX(idx) ((idx) == FWD_IDX(sc))
#define IS_OOO_FP(fp) ((fp)->index == OOO_IDX((fp)->sc))
#define IS_OOO_IDX(idx) ((idx) == OOO_IDX(sc))
enum {
BNX2X_PORT_QUERY_IDX,
BNX2X_PF_QUERY_IDX,
BNX2X_FCOE_QUERY_IDX,
BNX2X_FIRST_QUEUE_QUERY_IDX,
};
struct bnx2x_fw_stats_req {
struct stats_query_header hdr;
struct stats_query_entry query[FP_SB_MAX_E1x +
BNX2X_FIRST_QUEUE_QUERY_IDX];
};
struct bnx2x_fw_stats_data {
struct stats_counter storm_counters;
struct per_port_stats port;
struct per_pf_stats pf;
struct per_queue_stats queue_stats[1];
};
/* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */
#define BNX2X_IGU_STAS_MSG_VF_CNT 64
#define BNX2X_IGU_STAS_MSG_PF_CNT 4
#define MAX_DMAE_C 8
/*
* This is the slowpath data structure. It is mapped into non-paged memory
* so that the hardware can access it's contents directly and must be page
* aligned.
*/
struct bnx2x_slowpath {
/* used by the DMAE command executer */
struct dmae_command dmae[MAX_DMAE_C];
/* statistics completion */
uint32_t stats_comp;
/* firmware defined statistics blocks */
union mac_stats mac_stats;
struct nig_stats nig_stats;
struct host_port_stats port_stats;
struct host_func_stats func_stats;
/* DMAE completion value and data source/sink */
uint32_t wb_comp;
uint32_t wb_data[4];
union {
struct mac_configuration_cmd e1x;
struct eth_classify_rules_ramrod_data e2;
} mac_rdata;
union {
struct tstorm_eth_mac_filter_config e1x;
struct eth_filter_rules_ramrod_data e2;
} rx_mode_rdata;
struct eth_rss_update_ramrod_data rss_rdata;
union {
struct mac_configuration_cmd e1;
struct eth_multicast_rules_ramrod_data e2;
} mcast_rdata;
union {
struct function_start_data func_start;
struct flow_control_configuration pfc_config; /* for DCBX ramrod */
} func_rdata;
/* Queue State related ramrods */
union {
struct client_init_ramrod_data init_data;
struct client_update_ramrod_data update_data;
} q_rdata;
/*
* AFEX ramrod can not be a part of func_rdata union because these
* events might arrive in parallel to other events from func_rdata.
* If they were defined in the same union the data can get corrupted.
*/
struct afex_vif_list_ramrod_data func_afex_rdata;
union drv_info_to_mcp drv_info_to_mcp;
}; /* struct bnx2x_slowpath */
/*
* Port specific data structure.
*/
struct bnx2x_port {
/*
* Port Management Function (for 57711E only).
* When this field is set the driver instance is
* responsible for managing port specific
* configurations such as handling link attentions.
*/
uint32_t pmf;
/* Ethernet maximum transmission unit. */
uint16_t ether_mtu;
uint32_t link_config[ELINK_LINK_CONFIG_SIZE];
uint32_t ext_phy_config;
/* Port feature config.*/
uint32_t config;
/* Defines the features supported by the PHY. */
uint32_t supported[ELINK_LINK_CONFIG_SIZE];
/* Defines the features advertised by the PHY. */
uint32_t advertising[ELINK_LINK_CONFIG_SIZE];
#define ADVERTISED_10baseT_Half (1 << 1)
#define ADVERTISED_10baseT_Full (1 << 2)
#define ADVERTISED_100baseT_Half (1 << 3)
#define ADVERTISED_100baseT_Full (1 << 4)
#define ADVERTISED_1000baseT_Half (1 << 5)
#define ADVERTISED_1000baseT_Full (1 << 6)
#define ADVERTISED_TP (1 << 7)
#define ADVERTISED_FIBRE (1 << 8)
#define ADVERTISED_Autoneg (1 << 9)
#define ADVERTISED_Asym_Pause (1 << 10)
#define ADVERTISED_Pause (1 << 11)
#define ADVERTISED_2500baseX_Full (1 << 15)
#define ADVERTISED_10000baseT_Full (1 << 16)
uint32_t phy_addr;
/* Used to synchronize phy accesses. */
rte_spinlock_t phy_mtx;
char phy_mtx_name[32];
#define BNX2X_PHY_LOCK(sc) rte_spinlock_lock(&sc->port.phy_mtx)
#define BNX2X_PHY_UNLOCK(sc) rte_spinlock_unlock(&sc->port.phy_mtx)
/*
* MCP scratchpad address for port specific statistics.
* The device is responsible for writing statistics
* back to the MCP for use with management firmware such
* as UMP/NC-SI.
*/
uint32_t port_stx;
struct nig_stats old_nig_stats;
}; /* struct bnx2x_port */
struct bnx2x_mf_info {
uint32_t mf_config[E1HVN_MAX];
uint32_t vnics_per_port; /* 1, 2 or 4 */
uint32_t multi_vnics_mode; /* can be set even if vnics_per_port = 1 */
uint32_t path_has_ovlan; /* MF mode in the path (can be different than the MF mode of the function */
#define IS_MULTI_VNIC(sc) ((sc)->devinfo.mf_info.multi_vnics_mode)
#define VNICS_PER_PORT(sc) ((sc)->devinfo.mf_info.vnics_per_port)
#define VNICS_PER_PATH(sc) \
((sc)->devinfo.mf_info.vnics_per_port * \
((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 1 ))
uint8_t min_bw[MAX_VNIC_NUM];
uint8_t max_bw[MAX_VNIC_NUM];
uint16_t ext_id; /* vnic outer vlan or VIF ID */
#define VALID_OVLAN(ovlan) ((ovlan) <= 4096)
#define INVALID_VIF_ID 0xFFFF
#define OVLAN(sc) ((sc)->devinfo.mf_info.ext_id)
#define VIF_ID(sc) ((sc)->devinfo.mf_info.ext_id)
uint16_t default_vlan;
#define NIV_DEFAULT_VLAN(sc) ((sc)->devinfo.mf_info.default_vlan)
uint8_t niv_allowed_priorities;
#define NIV_ALLOWED_PRIORITIES(sc) ((sc)->devinfo.mf_info.niv_allowed_priorities)
uint8_t niv_default_cos;
#define NIV_DEFAULT_COS(sc) ((sc)->devinfo.mf_info.niv_default_cos)
uint8_t niv_mba_enabled;
enum mf_cfg_afex_vlan_mode afex_vlan_mode;
#define AFEX_VLAN_MODE(sc) ((sc)->devinfo.mf_info.afex_vlan_mode)
int afex_def_vlan_tag;
uint32_t pending_max;
uint16_t flags;
#define MF_INFO_VALID_MAC 0x0001
uint16_t mf_ov;
uint8_t mf_mode; /* Switch-Dependent or Switch-Independent */
#define IS_MF(sc) \
(IS_MULTI_VNIC(sc) && \
((sc)->devinfo.mf_info.mf_mode != 0))
#define IS_MF_SD(sc) \
(IS_MULTI_VNIC(sc) && \
((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD))
#define IS_MF_SI(sc) \
(IS_MULTI_VNIC(sc) && \
((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI))
#define IS_MF_AFEX(sc) \
(IS_MULTI_VNIC(sc) && \
((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX))
#define IS_MF_SD_MODE(sc) IS_MF_SD(sc)
#define IS_MF_SI_MODE(sc) IS_MF_SI(sc)
#define IS_MF_AFEX_MODE(sc) IS_MF_AFEX(sc)
uint32_t mf_protos_supported;
#define MF_PROTO_SUPPORT_ETHERNET 0x1
#define MF_PROTO_SUPPORT_ISCSI 0x2
#define MF_PROTO_SUPPORT_FCOE 0x4
}; /* struct bnx2x_mf_info */
/* Device information data structure. */
struct bnx2x_devinfo {
#if 1
#define NAME_SIZE 128
char name[NAME_SIZE];
#endif
/* PCIe info */
uint16_t vendor_id;
uint16_t device_id;
uint16_t subvendor_id;
uint16_t subdevice_id;
/*
* chip_id = 0b'CCCCCCCCCCCCCCCCRRRRMMMMMMMMBBBB'
* C = Chip Number (bits 16-31)
* R = Chip Revision (bits 12-15)
* M = Chip Metal (bits 4-11)
* B = Chip Bond ID (bits 0-3)
*/
uint32_t chip_id;
#define CHIP_ID(sc) ((sc)->devinfo.chip_id & 0xffff0000)
#define CHIP_NUM(sc) ((sc)->devinfo.chip_id >> 16)
/* device ids */
#define CHIP_NUM_57710 0x164e
#define CHIP_NUM_57711 0x164f
#define CHIP_NUM_57711E 0x1650
#define CHIP_NUM_57712 0x1662
#define CHIP_NUM_57712_MF 0x1663
#define CHIP_NUM_57712_VF 0x166f
#define CHIP_NUM_57800 0x168a
#define CHIP_NUM_57800_MF 0x16a5
#define CHIP_NUM_57800_VF 0x16a9
#define CHIP_NUM_57810 0x168e
#define CHIP_NUM_57810_MF 0x16ae
#define CHIP_NUM_57810_VF 0x16af
#define CHIP_NUM_57811 0x163d
#define CHIP_NUM_57811_MF 0x163e
#define CHIP_NUM_57811_VF 0x163f
#define CHIP_NUM_57840_OBS 0x168d
#define CHIP_NUM_57840_OBS_MF 0x16ab
#define CHIP_NUM_57840_4_10 0x16a1
#define CHIP_NUM_57840_2_20 0x16a2
#define CHIP_NUM_57840_MF 0x16a4
#define CHIP_NUM_57840_VF 0x16ad
#define CHIP_REV_SHIFT 12
#define CHIP_REV_MASK (0xF << CHIP_REV_SHIFT)
#define CHIP_REV(sc) ((sc)->devinfo.chip_id & CHIP_REV_MASK)
#define CHIP_REV_Ax (0x0 << CHIP_REV_SHIFT)
#define CHIP_REV_Bx (0x1 << CHIP_REV_SHIFT)
#define CHIP_REV_Cx (0x2 << CHIP_REV_SHIFT)
#define CHIP_REV_IS_SLOW(sc) \
(CHIP_REV(sc) > 0x00005000)
#define CHIP_REV_IS_FPGA(sc) \
(CHIP_REV_IS_SLOW(sc) && (CHIP_REV(sc) & 0x00001000))
#define CHIP_REV_IS_EMUL(sc) \
(CHIP_REV_IS_SLOW(sc) && !(CHIP_REV(sc) & 0x00001000))
#define CHIP_REV_IS_ASIC(sc) \
(!CHIP_REV_IS_SLOW(sc))
#define CHIP_METAL(sc) ((sc->devinfo.chip_id) & 0x00000ff0)
#define CHIP_BOND_ID(sc) ((sc->devinfo.chip_id) & 0x0000000f)
#define CHIP_IS_E1(sc) (CHIP_NUM(sc) == CHIP_NUM_57710)
#define CHIP_IS_57710(sc) (CHIP_NUM(sc) == CHIP_NUM_57710)
#define CHIP_IS_57711(sc) (CHIP_NUM(sc) == CHIP_NUM_57711)
#define CHIP_IS_57711E(sc) (CHIP_NUM(sc) == CHIP_NUM_57711E)
#define CHIP_IS_E1H(sc) ((CHIP_IS_57711(sc)) || \
(CHIP_IS_57711E(sc)))
#define CHIP_IS_E1x(sc) CHIP_IS_E1H(sc)
#define CHIP_IS_57712(sc) (CHIP_NUM(sc) == CHIP_NUM_57712)
#define CHIP_IS_57712_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_MF)
#define CHIP_IS_57712_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_VF)
#define CHIP_IS_E2(sc) (CHIP_IS_57712(sc) || \
CHIP_IS_57712_MF(sc))
#define CHIP_IS_57800(sc) (CHIP_NUM(sc) == CHIP_NUM_57800)
#define CHIP_IS_57800_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_MF)
#define CHIP_IS_57800_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_VF)
#define CHIP_IS_57810(sc) (CHIP_NUM(sc) == CHIP_NUM_57810)
#define CHIP_IS_57810_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_MF)
#define CHIP_IS_57810_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_VF)
#define CHIP_IS_57811(sc) (CHIP_NUM(sc) == CHIP_NUM_57811)
#define CHIP_IS_57811_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_MF)
#define CHIP_IS_57811_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_VF)
#define CHIP_IS_57840(sc) ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS) || \
(CHIP_NUM(sc) == CHIP_NUM_57840_4_10) || \
(CHIP_NUM(sc) == CHIP_NUM_57840_2_20))
#define CHIP_IS_57840_MF(sc) ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS_MF) || \
(CHIP_NUM(sc) == CHIP_NUM_57840_MF))
#define CHIP_IS_57840_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57840_VF)
#define CHIP_IS_E3(sc) (CHIP_IS_57800(sc) || \
CHIP_IS_57800_MF(sc) || \
CHIP_IS_57800_VF(sc) || \
CHIP_IS_57810(sc) || \
CHIP_IS_57810_MF(sc) || \
CHIP_IS_57810_VF(sc) || \
CHIP_IS_57811(sc) || \
CHIP_IS_57811_MF(sc) || \
CHIP_IS_57811_VF(sc) || \
CHIP_IS_57840(sc) || \
CHIP_IS_57840_MF(sc) || \
CHIP_IS_57840_VF(sc))
#define CHIP_IS_E3A0(sc) (CHIP_IS_E3(sc) && \
(CHIP_REV(sc) == CHIP_REV_Ax))
#define CHIP_IS_E3B0(sc) (CHIP_IS_E3(sc) && \
(CHIP_REV(sc) == CHIP_REV_Bx))
#define USES_WARPCORE(sc) (CHIP_IS_E3(sc))
#define CHIP_IS_E2E3(sc) (CHIP_IS_E2(sc) || \
CHIP_IS_E3(sc))
#define CHIP_IS_MF_CAP(sc) (CHIP_IS_57711E(sc) || \
CHIP_IS_57712_MF(sc) || \
CHIP_IS_E3(sc))
#define IS_VF(sc) ((sc)->flags & BNX2X_IS_VF_FLAG)
#define IS_PF(sc) (!IS_VF(sc))
/*
* This define is used in two main places:
* 1. In the early stages of nic_load, to know if to configure Parser/Searcher
* to nic-only mode or to offload mode. Offload mode is configured if either
* the chip is E1x (where NIC_MODE register is not applicable), or if cnic
* already registered for this port (which means that the user wants storage
* services).
* 2. During cnic-related load, to know if offload mode is already configured
* in the HW or needs to be configured. Since the transition from nic-mode to
* offload-mode in HW causes traffic corruption, nic-mode is configured only
* in ports on which storage services where never requested.
*/
#define CONFIGURE_NIC_MODE(sc) (!CHIP_IS_E1x(sc) && !CNIC_ENABLED(sc))
uint8_t chip_port_mode;
#define CHIP_4_PORT_MODE 0x0
#define CHIP_2_PORT_MODE 0x1
#define CHIP_PORT_MODE_NONE 0x2
#define CHIP_PORT_MODE(sc) ((sc)->devinfo.chip_port_mode)
#define CHIP_IS_MODE_4_PORT(sc) (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE)
uint8_t int_block;
#define INT_BLOCK_HC 0
#define INT_BLOCK_IGU 1
#define INT_BLOCK_MODE_NORMAL 0
#define INT_BLOCK_MODE_BW_COMP 2
#define CHIP_INT_MODE_IS_NBC(sc) \
(!CHIP_IS_E1x(sc) && \
!((sc)->devinfo.int_block & INT_BLOCK_MODE_BW_COMP))
#define CHIP_INT_MODE_IS_BC(sc) (!CHIP_INT_MODE_IS_NBC(sc))
uint32_t shmem_base;
uint32_t shmem2_base;
uint32_t bc_ver;
char bc_ver_str[32];
uint32_t mf_cfg_base; /* bootcode shmem address in BAR memory */
struct bnx2x_mf_info mf_info;
uint32_t flash_size;
#define NVRAM_1MB_SIZE 0x20000
#define NVRAM_TIMEOUT_COUNT 30000
#define NVRAM_PAGE_SIZE 256
/* PCIe capability information */
uint32_t pcie_cap_flags;
#define BNX2X_PM_CAPABLE_FLAG 0x00000001
#define BNX2X_PCIE_CAPABLE_FLAG 0x00000002
#define BNX2X_MSI_CAPABLE_FLAG 0x00000004
#define BNX2X_MSIX_CAPABLE_FLAG 0x00000008
uint16_t pcie_pm_cap_reg;
uint16_t pcie_link_width;
uint16_t pcie_link_speed;
uint16_t pcie_msi_cap_reg;
uint16_t pcie_msix_cap_reg;
/* device configuration read from bootcode shared memory */
uint32_t hw_config;
uint32_t hw_config2;
}; /* struct bnx2x_devinfo */
struct bnx2x_sp_objs {
struct ecore_vlan_mac_obj mac_obj; /* MACs object */
struct ecore_queue_sp_obj q_obj; /* Queue State object */
}; /* struct bnx2x_sp_objs */
/*
* Data that will be used to create a link report message. We will keep the
* data used for the last link report in order to prevent reporting the same
* link parameters twice.
*/
struct bnx2x_link_report_data {
uint16_t line_speed; /* Effective line speed */
uint32_t link_report_flags; /* BNX2X_LINK_REPORT_XXX flags */
};
enum {
BNX2X_LINK_REPORT_FULL_DUPLEX,
BNX2X_LINK_REPORT_LINK_DOWN,
BNX2X_LINK_REPORT_RX_FC_ON,
BNX2X_LINK_REPORT_TX_FC_ON
};
#define BNX2X_RX_CHAIN_PAGE_SZ BNX2X_PAGE_SIZE
struct bnx2x_pci_cap {
struct bnx2x_pci_cap *next;
uint16_t id;
uint16_t type;
uint16_t addr;
};
struct ecore_ilt;
struct bnx2x_vfdb;
/* Top level device private data structure. */
struct bnx2x_softc {
void **rx_queues;
void **tx_queues;
uint32_t max_tx_queues;
uint32_t max_rx_queues;
const struct rte_pci_device *pci_dev;
uint32_t pci_val;
struct bnx2x_pci_cap *pci_caps;
#define BNX2X_INTRS_POLL_PERIOD 1
void *firmware;
uint64_t fw_len;
/* MAC address operations */
struct bnx2x_mac_ops mac_ops;
/* structures for VF mbox/response/bulletin */
struct bnx2x_vf_mbx_msg *vf2pf_mbox;
struct bnx2x_dma vf2pf_mbox_mapping;
struct vf_acquire_resp_tlv acquire_resp;
struct bnx2x_vf_bulletin *pf2vf_bulletin;
struct bnx2x_dma pf2vf_bulletin_mapping;
struct bnx2x_vf_bulletin old_bulletin;
rte_spinlock_t vf2pf_lock;
int media;
int state; /* device state */
#define BNX2X_STATE_CLOSED 0x0000
#define BNX2X_STATE_OPENING_WAITING_LOAD 0x1000
#define BNX2X_STATE_OPENING_WAITING_PORT 0x2000
#define BNX2X_STATE_OPEN 0x3000
#define BNX2X_STATE_CLOSING_WAITING_HALT 0x4000
#define BNX2X_STATE_CLOSING_WAITING_DELETE 0x5000
#define BNX2X_STATE_CLOSING_WAITING_UNLOAD 0x6000
#define BNX2X_STATE_DISABLED 0xD000
#define BNX2X_STATE_DIAG 0xE000
#define BNX2X_STATE_ERROR 0xF000
int flags;
#define BNX2X_ONE_PORT_FLAG 0x1
#define BNX2X_NO_FCOE_FLAG 0x2
#define BNX2X_NO_WOL_FLAG 0x4
#define BNX2X_NO_MCP_FLAG 0x8
#define BNX2X_NO_ISCSI_OOO_FLAG 0x10
#define BNX2X_NO_ISCSI_FLAG 0x20
#define BNX2X_MF_FUNC_DIS 0x40
#define BNX2X_TX_SWITCHING 0x80
#define BNX2X_IS_VF_FLAG 0x100
#define BNX2X_ONE_PORT(sc) (sc->flags & BNX2X_ONE_PORT_FLAG)
#define BNX2X_NOFCOE(sc) (sc->flags & BNX2X_NO_FCOE_FLAG)
#define BNX2X_NOMCP(sc) (sc->flags & BNX2X_NO_MCP_FLAG)
#define MAX_BARS 5
struct bnx2x_bar bar[MAX_BARS]; /* map BARs 0, 2, 4 */
uint16_t doorbell_size;
/* periodic timer callout */
#define PERIODIC_STOP 0
#define PERIODIC_GO 1
volatile unsigned long periodic_flags;
rte_atomic32_t scan_fp;
struct bnx2x_fastpath fp[MAX_RSS_CHAINS];
struct bnx2x_sp_objs sp_objs[MAX_RSS_CHAINS];
uint8_t unit; /* driver instance number */
int pcie_bus; /* PCIe bus number */
int pcie_device; /* PCIe device/slot number */
int pcie_func; /* PCIe function number */
uint8_t pfunc_rel; /* function relative */
uint8_t pfunc_abs; /* function absolute */
uint8_t path_id; /* function absolute */
#define SC_PATH(sc) (sc->path_id)
#define SC_PORT(sc) (sc->pfunc_rel & 1)
#define SC_FUNC(sc) (sc->pfunc_rel)
#define SC_ABS_FUNC(sc) (sc->pfunc_abs)
#define SC_VN(sc) (sc->pfunc_rel >> 1)
#define SC_L_ID(sc) (SC_VN(sc) << 2)
#define PORT_ID(sc) SC_PORT(sc)
#define PATH_ID(sc) SC_PATH(sc)
#define VNIC_ID(sc) SC_VN(sc)
#define FUNC_ID(sc) SC_FUNC(sc)
#define ABS_FUNC_ID(sc) SC_ABS_FUNC(sc)
#define SC_FW_MB_IDX_VN(sc, vn) \
(SC_PORT(sc) + (vn) * \
((CHIP_IS_E1x(sc) || (CHIP_IS_MODE_4_PORT(sc))) ? 2 : 1))
#define SC_FW_MB_IDX(sc) SC_FW_MB_IDX_VN(sc, SC_VN(sc))
int if_capen; /* enabled interface capabilities */
struct bnx2x_devinfo devinfo;
char fw_ver_str[32];
char mf_mode_str[32];
char pci_link_str[32];
struct iro *iro_array;
int dmae_ready;
#define DMAE_READY(sc) (sc->dmae_ready)
struct ecore_credit_pool_obj vlans_pool;
struct ecore_credit_pool_obj macs_pool;
struct ecore_rx_mode_obj rx_mode_obj;
struct ecore_mcast_obj mcast_obj;
struct ecore_rss_config_obj rss_conf_obj;
struct ecore_func_sp_obj func_obj;
uint16_t fw_seq;
uint16_t fw_drv_pulse_wr_seq;
uint32_t func_stx;
struct elink_params link_params;
struct elink_vars link_vars;
uint32_t link_cnt;
struct bnx2x_link_report_data last_reported_link;
char mac_addr_str[32];
uint32_t tx_ring_size;
uint32_t rx_ring_size;
int wol;
int is_leader;
int recovery_state;
#define BNX2X_RECOVERY_DONE 1
#define BNX2X_RECOVERY_INIT 2
#define BNX2X_RECOVERY_WAIT 3
#define BNX2X_RECOVERY_FAILED 4
#define BNX2X_RECOVERY_NIC_LOADING 5
uint32_t rx_mode;
#define BNX2X_RX_MODE_NONE 0
#define BNX2X_RX_MODE_NORMAL 1
#define BNX2X_RX_MODE_ALLMULTI 2
#define BNX2X_RX_MODE_ALLMULTI_PROMISC 3
#define BNX2X_RX_MODE_PROMISC 4
#define BNX2X_MAX_MULTICAST 64
struct bnx2x_port port;
struct cmng_init cmng;
/* user configs */
uint8_t num_queues;
int hc_rx_ticks;
int hc_tx_ticks;
uint32_t rx_budget;
int interrupt_mode;
#define INTR_MODE_INTX 0
#define INTR_MODE_MSI 1
#define INTR_MODE_MSIX 2
#define INTR_MODE_SINGLE_MSIX 3
int udp_rss;
uint8_t igu_dsb_id;
uint8_t igu_base_sb;
uint8_t igu_sb_cnt;
uint32_t igu_base_addr;
uint8_t base_fw_ndsb;
#define DEF_SB_IGU_ID 16
#define DEF_SB_ID HC_SP_SB_ID
/* default status block */
struct bnx2x_dma def_sb_dma;
struct host_sp_status_block *def_sb;
uint16_t def_idx;
uint16_t def_att_idx;
uint32_t attn_state;
struct attn_route attn_group[MAX_DYNAMIC_ATTN_GRPS];
/* general SP events - stats query, cfc delete, etc */
#define HC_SP_INDEX_ETH_DEF_CONS 3
/* EQ completions */
#define HC_SP_INDEX_EQ_CONS 7
/* FCoE L2 connection completions */
#define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS 6
#define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS 4
/* iSCSI L2 */
#define HC_SP_INDEX_ETH_ISCSI_CQ_CONS 5
#define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS 1
/* event queue */
struct bnx2x_dma eq_dma;
union event_ring_elem *eq;
uint16_t eq_prod;
uint16_t eq_cons;
uint16_t *eq_cons_sb;
#define NUM_EQ_PAGES 1 /* must be a power of 2 */
#define EQ_DESC_CNT_PAGE (BNX2X_PAGE_SIZE / sizeof(union event_ring_elem))
#define EQ_DESC_MAX_PAGE (EQ_DESC_CNT_PAGE - 1)
#define NUM_EQ_DESC (EQ_DESC_CNT_PAGE * NUM_EQ_PAGES)
#define EQ_DESC_MASK (NUM_EQ_DESC - 1)
#define MAX_EQ_AVAIL (EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2)
/* depends on EQ_DESC_CNT_PAGE being a power of 2 */
#define NEXT_EQ_IDX(x) \
((((x) & EQ_DESC_MAX_PAGE) == (EQ_DESC_MAX_PAGE - 1)) ? \
((x) + 2) : ((x) + 1))
/* depends on the above and on NUM_EQ_PAGES being a power of 2 */
#define EQ_DESC(x) ((x) & EQ_DESC_MASK)
/* slow path */
struct bnx2x_dma sp_dma;
struct bnx2x_slowpath *sp;
uint32_t sp_state;
/* slow path queue */
struct bnx2x_dma spq_dma;
struct eth_spe *spq;
#define SP_DESC_CNT (BNX2X_PAGE_SIZE / sizeof(struct eth_spe))
#define MAX_SP_DESC_CNT (SP_DESC_CNT - 1)
#define MAX_SPQ_PENDING 8
uint16_t spq_prod_idx;
struct eth_spe *spq_prod_bd;
struct eth_spe *spq_last_bd;
uint16_t *dsb_sp_prod;
volatile unsigned long eq_spq_left; /* COMMON_xxx ramrod credit */
volatile unsigned long cq_spq_left; /* ETH_xxx ramrod credit */
/* fw decompression buffer */
struct bnx2x_dma gz_buf_dma;
void *gz_buf;
uint32_t gz_outlen;
#define GUNZIP_BUF(sc) (sc->gz_buf)
#define GUNZIP_OUTLEN(sc) (sc->gz_outlen)
#define GUNZIP_PHYS(sc) (rte_iova_t)(sc->gz_buf_dma.paddr)
#define FW_BUF_SIZE 0x40000
struct raw_op *init_ops;
uint16_t *init_ops_offsets; /* init block offsets inside init_ops */
uint32_t *init_data; /* data blob, 32 bit granularity */
uint32_t init_mode_flags;
#define INIT_MODE_FLAGS(sc) (sc->init_mode_flags)
/* PRAM blobs - raw data */
const uint8_t *tsem_int_table_data;
const uint8_t *tsem_pram_data;
const uint8_t *usem_int_table_data;
const uint8_t *usem_pram_data;
const uint8_t *xsem_int_table_data;
const uint8_t *xsem_pram_data;
const uint8_t *csem_int_table_data;
const uint8_t *csem_pram_data;
#define INIT_OPS(sc) (sc->init_ops)
#define INIT_OPS_OFFSETS(sc) (sc->init_ops_offsets)
#define INIT_DATA(sc) (sc->init_data)
#define INIT_TSEM_INT_TABLE_DATA(sc) (sc->tsem_int_table_data)
#define INIT_TSEM_PRAM_DATA(sc) (sc->tsem_pram_data)
#define INIT_USEM_INT_TABLE_DATA(sc) (sc->usem_int_table_data)
#define INIT_USEM_PRAM_DATA(sc) (sc->usem_pram_data)
#define INIT_XSEM_INT_TABLE_DATA(sc) (sc->xsem_int_table_data)
#define INIT_XSEM_PRAM_DATA(sc) (sc->xsem_pram_data)
#define INIT_CSEM_INT_TABLE_DATA(sc) (sc->csem_int_table_data)
#define INIT_CSEM_PRAM_DATA(sc) (sc->csem_pram_data)
#define PHY_FW_VER_LEN 20
char fw_ver[32];
/* ILT
* For max 196 cids (64*3 + non-eth), 32KB ILT page size and 1KB
* context size we need 8 ILT entries.
*/
#define ILT_MAX_L2_LINES 8
struct hw_context context[ILT_MAX_L2_LINES];
struct ecore_ilt *ilt;
#define ILT_MAX_LINES 256
/* max supported number of RSS queues: IGU SBs minus one for CNIC */
#define BNX2X_MAX_RSS_COUNT(sc) ((sc)->igu_sb_cnt - CNIC_SUPPORT(sc))
/* max CID count: Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI */
#define BNX2X_L2_MAX_CID(sc) \
(BNX2X_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc))
#define BNX2X_L2_CID_COUNT(sc) \
(BNX2X_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc))
#define L2_ILT_LINES(sc) \
(DIV_ROUND_UP(BNX2X_L2_CID_COUNT(sc), ILT_PAGE_CIDS))
int qm_cid_count;
uint8_t dropless_fc;
/* total number of FW statistics requests */
uint8_t fw_stats_num;
/*
* This is a memory buffer that will contain both statistics ramrod
* request and data.
*/
struct bnx2x_dma fw_stats_dma;
/*
* FW statistics request shortcut (points at the beginning of fw_stats
* buffer).
*/
int fw_stats_req_size;
struct bnx2x_fw_stats_req *fw_stats_req;
rte_iova_t fw_stats_req_mapping;
/*
* FW statistics data shortcut (points at the beginning of fw_stats
* buffer + fw_stats_req_size).
*/
int fw_stats_data_size;
struct bnx2x_fw_stats_data *fw_stats_data;
rte_iova_t fw_stats_data_mapping;
/* tracking a pending STAT_QUERY ramrod */
uint16_t stats_pending;
/* number of completed statistics ramrods */
uint16_t stats_comp;
uint16_t stats_counter;
uint8_t stats_init;
int stats_state;
struct bnx2x_eth_stats eth_stats;
struct host_func_stats func_stats;
struct bnx2x_eth_stats_old eth_stats_old;
struct bnx2x_net_stats_old net_stats_old;
struct bnx2x_fw_port_stats_old fw_stats_old;
struct dmae_command stats_dmae; /* used by dmae command loader */
int executer_idx;
int mtu;
/* DCB support on/off */
int dcb_state;
#define BNX2X_DCB_STATE_OFF 0
#define BNX2X_DCB_STATE_ON 1
/* DCBX engine mode */
int dcbx_enabled;
#define BNX2X_DCBX_ENABLED_OFF 0
#define BNX2X_DCBX_ENABLED_ON_NEG_OFF 1
#define BNX2X_DCBX_ENABLED_ON_NEG_ON 2
#define BNX2X_DCBX_ENABLED_INVALID -1
uint8_t cnic_support;
uint8_t cnic_enabled;
uint8_t cnic_loaded;
#define CNIC_SUPPORT(sc) 0 /* ((sc)->cnic_support) */
#define CNIC_ENABLED(sc) 0 /* ((sc)->cnic_enabled) */
#define CNIC_LOADED(sc) 0 /* ((sc)->cnic_loaded) */
/* multiple tx classes of service */
uint8_t max_cos;
#define BNX2X_MAX_PRIORITY 8
/* priority to cos mapping */
uint8_t prio_to_cos[BNX2X_MAX_PRIORITY];
int panic;
/* Array of Multicast addrs */
struct rte_ether_addr mc_addrs[VF_MAX_MULTICAST_PER_VF];
/* Multicast mac addresses number */
uint16_t mc_addrs_num;
}; /* struct bnx2x_softc */
/* IOCTL sub-commands for edebug and firmware upgrade */
#define BNX2X_IOC_RD_NVRAM 1
#define BNX2X_IOC_WR_NVRAM 2
#define BNX2X_IOC_STATS_SHOW_NUM 3
#define BNX2X_IOC_STATS_SHOW_STR 4
#define BNX2X_IOC_STATS_SHOW_CNT 5
struct bnx2x_nvram_data {
uint32_t op; /* ioctl sub-command */
uint32_t offset;
uint32_t len;
uint32_t value[1]; /* variable */
};
union bnx2x_stats_show_data {
uint32_t op; /* ioctl sub-command */
struct {
uint32_t num; /* return number of stats */
uint32_t len; /* length of each string item */
} desc;
/* variable length... */
char str[1]; /* holds names of desc.num stats, each desc.len in length */
/* variable length... */
uint64_t stats[1]; /* holds all stats */
};
/* function init flags */
#define FUNC_FLG_RSS 0x0001
#define FUNC_FLG_STATS 0x0002
/* FUNC_FLG_UNMATCHED 0x0004 */
#define FUNC_FLG_SPQ 0x0010
#define FUNC_FLG_LEADING 0x0020 /* PF only */
struct bnx2x_func_init_params {
rte_iova_t fw_stat_map; /* (dma) valid if FUNC_FLG_STATS */
rte_iova_t spq_map; /* (dma) valid if FUNC_FLG_SPQ */
uint16_t func_flgs;
uint16_t func_id; /* abs function id */
uint16_t pf_id;
uint16_t spq_prod; /* valid if FUNC_FLG_SPQ */
};
/* memory resources reside at BARs 0, 2, 4 */
/* Run `pciconf -lb` to see mappings */
#define BAR0 0
#define BAR1 2
#define BAR2 4
static inline void
bnx2x_reg_write8(struct bnx2x_softc *sc, size_t offset, uint8_t val)
{
PMD_DEBUG_PERIODIC_LOG(DEBUG, sc, "offset=0x%08lx val=0x%02x",
(unsigned long)offset, val);
rte_write8(val, ((uint8_t *)sc->bar[BAR0].base_addr + offset));
}
static inline void
bnx2x_reg_write16(struct bnx2x_softc *sc, size_t offset, uint16_t val)
{
#ifdef RTE_LIBRTE_BNX2X_DEBUG_PERIODIC
if ((offset % 2) != 0)
PMD_DRV_LOG(NOTICE, sc, "Unaligned 16-bit write to 0x%08lx",
(unsigned long)offset);
#endif
PMD_DEBUG_PERIODIC_LOG(DEBUG, sc, "offset=0x%08lx val=0x%04x",
(unsigned long)offset, val);
rte_write16(val, ((uint8_t *)sc->bar[BAR0].base_addr + offset));
}
static inline void
bnx2x_reg_write32(struct bnx2x_softc *sc, size_t offset, uint32_t val)
{
#ifdef RTE_LIBRTE_BNX2X_DEBUG_PERIODIC
if ((offset % 4) != 0)
PMD_DRV_LOG(NOTICE, sc, "Unaligned 32-bit write to 0x%08lx",
(unsigned long)offset);
#endif
PMD_DEBUG_PERIODIC_LOG(DEBUG, sc, "offset=0x%08lx val=0x%08x",
(unsigned long)offset, val);
rte_write32(val, ((uint8_t *)sc->bar[BAR0].base_addr + offset));
}
static inline uint8_t
bnx2x_reg_read8(struct bnx2x_softc *sc, size_t offset)
{
uint8_t val;
val = rte_read8((uint8_t *)sc->bar[BAR0].base_addr + offset);
PMD_DEBUG_PERIODIC_LOG(DEBUG, sc, "offset=0x%08lx val=0x%02x",
(unsigned long)offset, val);
return val;
}
static inline uint16_t
bnx2x_reg_read16(struct bnx2x_softc *sc, size_t offset)
{
uint16_t val;
#ifdef RTE_LIBRTE_BNX2X_DEBUG_PERIODIC
if ((offset % 2) != 0)
PMD_DRV_LOG(NOTICE, sc, "Unaligned 16-bit read from 0x%08lx",
(unsigned long)offset);
#endif
val = rte_read16(((uint8_t *)sc->bar[BAR0].base_addr + offset));
PMD_DEBUG_PERIODIC_LOG(DEBUG, sc, "offset=0x%08lx val=0x%08x",
(unsigned long)offset, val);
return val;
}
static inline uint32_t
bnx2x_reg_read32(struct bnx2x_softc *sc, size_t offset)
{
uint32_t val;
#ifdef RTE_LIBRTE_BNX2X_DEBUG_PERIODIC
if ((offset % 4) != 0)
PMD_DRV_LOG(NOTICE, sc, "Unaligned 32-bit read from 0x%08lx",
(unsigned long)offset);
#endif
val = rte_read32(((uint8_t *)sc->bar[BAR0].base_addr + offset));
PMD_DEBUG_PERIODIC_LOG(DEBUG, sc, "offset=0x%08lx val=0x%08x",
(unsigned long)offset, val);
return val;
}
#define REG_ADDR(sc, offset) (((uint64_t)sc->bar[BAR0].base_addr) + (offset))
#define REG_RD8(sc, offset) bnx2x_reg_read8(sc, (offset))
#define REG_RD16(sc, offset) bnx2x_reg_read16(sc, (offset))
#define REG_RD32(sc, offset) bnx2x_reg_read32(sc, (offset))
#define REG_WR8(sc, offset, val) bnx2x_reg_write8(sc, (offset), val)
#define REG_WR16(sc, offset, val) bnx2x_reg_write16(sc, (offset), val)
#define REG_WR32(sc, offset, val) bnx2x_reg_write32(sc, (offset), val)
#define REG_RD(sc, offset) REG_RD32(sc, offset)
#define REG_WR(sc, offset, val) REG_WR32(sc, offset, val)
#define BNX2X_SP(sc, var) (&(sc)->sp->var)
#define BNX2X_SP_MAPPING(sc, var) \
(sc->sp_dma.paddr + offsetof(struct bnx2x_slowpath, var))
#define BNX2X_FP(sc, nr, var) ((sc)->fp[(nr)].var)
#define BNX2X_SP_OBJ(sc, fp) ((sc)->sp_objs[(fp)->index])
#define bnx2x_fp(sc, nr, var) ((sc)->fp[nr].var)
#define REG_RD_DMAE(sc, offset, valp, len32) \
do { \
(void)bnx2x_read_dmae(sc, offset, len32); \
rte_memcpy(valp, BNX2X_SP(sc, wb_data[0]), (len32) * 4); \
} while (0)
#define REG_WR_DMAE(sc, offset, valp, len32) \
do { \
rte_memcpy(BNX2X_SP(sc, wb_data[0]), valp, (len32) * 4); \
(void)bnx2x_write_dmae(sc, BNX2X_SP_MAPPING(sc, wb_data), offset, len32); \
} while (0)
#define REG_WR_DMAE_LEN(sc, offset, valp, len32) \
REG_WR_DMAE(sc, offset, valp, len32)
#define REG_RD_DMAE_LEN(sc, offset, valp, len32) \
REG_RD_DMAE(sc, offset, valp, len32)
#define VIRT_WR_DMAE_LEN(sc, data, addr, len32, le32_swap) \
do { \
/* if (le32_swap) { */ \
/* PMD_PWARN_LOG(sc, "VIRT_WR_DMAE_LEN with le32_swap=1"); */ \
/* } */ \
rte_memcpy(GUNZIP_BUF(sc), data, len32 * 4); \
ecore_write_big_buf_wb(sc, addr, len32); \
} while (0)
#define BNX2X_DB_MIN_SHIFT 3 /* 8 bytes */
#define BNX2X_DB_SHIFT 7 /* 128 bytes */
#if (BNX2X_DB_SHIFT < BNX2X_DB_MIN_SHIFT)
#error "Minimum DB doorbell stride is 8"
#endif
#define DPM_TRIGGER_TYPE 0x40
/* Doorbell macro */
#define BNX2X_DB_WRITE(db_bar, val) rte_write32_relaxed((val), (db_bar))
#define BNX2X_DB_READ(db_bar) rte_read32_relaxed(db_bar)
#define DOORBELL_ADDR(sc, offset) \
(volatile uint32_t *)(((char *)(sc)->bar[BAR1].base_addr + (offset)))
#define DOORBELL(sc, cid, val) \
if (IS_PF(sc)) \
BNX2X_DB_WRITE((DOORBELL_ADDR(sc, sc->doorbell_size * (cid) + DPM_TRIGGER_TYPE)), (val)); \
else \
BNX2X_DB_WRITE((DOORBELL_ADDR(sc, sc->doorbell_size * (cid))), (val)) \
#define SHMEM_ADDR(sc, field) \
(sc->devinfo.shmem_base + offsetof(struct shmem_region, field))
#define SHMEM_RD(sc, field) REG_RD(sc, SHMEM_ADDR(sc, field))
#define SHMEM_RD16(sc, field) REG_RD16(sc, SHMEM_ADDR(sc, field))
#define SHMEM_WR(sc, field, val) REG_WR(sc, SHMEM_ADDR(sc, field), val)
#define SHMEM2_ADDR(sc, field) \
(sc->devinfo.shmem2_base + offsetof(struct shmem2_region, field))
#define SHMEM2_HAS(sc, field) \
(sc->devinfo.shmem2_base && (REG_RD(sc, SHMEM2_ADDR(sc, size)) > \
offsetof(struct shmem2_region, field)))
#define SHMEM2_RD(sc, field) REG_RD(sc, SHMEM2_ADDR(sc, field))
#define SHMEM2_WR(sc, field, val) REG_WR(sc, SHMEM2_ADDR(sc, field), val)
#define MFCFG_ADDR(sc, field) \
(sc->devinfo.mf_cfg_base + offsetof(struct mf_cfg, field))
#define MFCFG_RD(sc, field) REG_RD(sc, MFCFG_ADDR(sc, field))
#define MFCFG_RD16(sc, field) REG_RD16(sc, MFCFG_ADDR(sc, field))
#define MFCFG_WR(sc, field, val) REG_WR(sc, MFCFG_ADDR(sc, field), val)
/* DMAE command defines */
#define DMAE_TIMEOUT -1
#define DMAE_PCI_ERROR -2 /* E2 and onward */
#define DMAE_NOT_RDY -3
#define DMAE_PCI_ERR_FLAG 0x80000000
#define DMAE_SRC_PCI 0
#define DMAE_SRC_GRC 1
#define DMAE_DST_NONE 0
#define DMAE_DST_PCI 1
#define DMAE_DST_GRC 2
#define DMAE_COMP_PCI 0
#define DMAE_COMP_GRC 1
#define DMAE_COMP_REGULAR 0
#define DMAE_COM_SET_ERR 1
#define DMAE_CMD_SRC_PCI (DMAE_SRC_PCI << DMAE_COMMAND_SRC_SHIFT)
#define DMAE_CMD_SRC_GRC (DMAE_SRC_GRC << DMAE_COMMAND_SRC_SHIFT)
#define DMAE_CMD_DST_PCI (DMAE_DST_PCI << DMAE_COMMAND_DST_SHIFT)
#define DMAE_CMD_DST_GRC (DMAE_DST_GRC << DMAE_COMMAND_DST_SHIFT)
#define DMAE_CMD_C_DST_PCI (DMAE_COMP_PCI << DMAE_COMMAND_C_DST_SHIFT)
#define DMAE_CMD_C_DST_GRC (DMAE_COMP_GRC << DMAE_COMMAND_C_DST_SHIFT)
#define DMAE_CMD_ENDIANITY_NO_SWAP (0 << DMAE_COMMAND_ENDIANITY_SHIFT)
#define DMAE_CMD_ENDIANITY_B_SWAP (1 << DMAE_COMMAND_ENDIANITY_SHIFT)
#define DMAE_CMD_ENDIANITY_DW_SWAP (2 << DMAE_COMMAND_ENDIANITY_SHIFT)
#define DMAE_CMD_ENDIANITY_B_DW_SWAP (3 << DMAE_COMMAND_ENDIANITY_SHIFT)
#define DMAE_CMD_PORT_0 0
#define DMAE_CMD_PORT_1 DMAE_COMMAND_PORT
#define DMAE_SRC_PF 0
#define DMAE_SRC_VF 1
#define DMAE_DST_PF 0
#define DMAE_DST_VF 1
#define DMAE_C_SRC 0
#define DMAE_C_DST 1
#define DMAE_LEN32_RD_MAX 0x80
#define DMAE_LEN32_WR_MAX(sc) 0x2000
#define DMAE_COMP_VAL 0x60d0d0ae /* E2 and beyond, upper bit indicates error */
#define MAX_DMAE_C_PER_PORT 8
#define INIT_DMAE_C(sc) ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + SC_VN(sc))
#define PMF_DMAE_C(sc) ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + E1HVN_MAX)
static const uint32_t dmae_reg_go_c[] = {
DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
};
#define ATTN_NIG_FOR_FUNC (1L << 8)
#define ATTN_SW_TIMER_4_FUNC (1L << 9)
#define GPIO_2_FUNC (1L << 10)
#define GPIO_3_FUNC (1L << 11)
#define GPIO_4_FUNC (1L << 12)
#define ATTN_GENERAL_ATTN_1 (1L << 13)
#define ATTN_GENERAL_ATTN_2 (1L << 14)
#define ATTN_GENERAL_ATTN_3 (1L << 15)
#define ATTN_GENERAL_ATTN_4 (1L << 13)
#define ATTN_GENERAL_ATTN_5 (1L << 14)
#define ATTN_GENERAL_ATTN_6 (1L << 15)
#define ATTN_HARD_WIRED_MASK 0xff00
#define ATTENTION_ID 4
#define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \
AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR
#define MAX_IGU_ATTN_ACK_TO 100
#define STORM_ASSERT_ARRAY_SIZE 50
#define BNX2X_PMF_LINK_ASSERT(sc) \
GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + SC_FUNC(sc))
#define BNX2X_MC_ASSERT_BITS \
(GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \
GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT))
#define BNX2X_MCP_ASSERT \
GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT)
#define BNX2X_GRC_TIMEOUT GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC)
#define BNX2X_GRC_RSV (GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \
GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \
GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \
GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \
GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \
GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC))
#define HW_INTERRUT_ASSERT_SET_0 \
(AEU_INPUTS_ATTN_BITS_TSDM_HW_INTERRUPT | \
AEU_INPUTS_ATTN_BITS_TCM_HW_INTERRUPT | \
AEU_INPUTS_ATTN_BITS_TSEMI_HW_INTERRUPT | \
AEU_INPUTS_ATTN_BITS_BRB_HW_INTERRUPT | \
AEU_INPUTS_ATTN_BITS_PBCLIENT_HW_INTERRUPT)
#define HW_PRTY_ASSERT_SET_0 (AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR | \
AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR | \
AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR | \
AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR |\
AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR |\
AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR |\
AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR)
#define HW_INTERRUT_ASSERT_SET_1 \
(AEU_INPUTS_ATTN_BITS_QM_HW_INTERRUPT | \
AEU_INPUTS_ATTN_BITS_TIMERS_HW_INTERRUPT | \
AEU_INPUTS_ATTN_BITS_XSDM_HW_INTERRUPT | \
AEU_INPUTS_ATTN_BITS_XCM_HW_INTERRUPT | \
AEU_INPUTS_ATTN_BITS_XSEMI_HW_INTERRUPT | \
AEU_INPUTS_ATTN_BITS_USDM_HW_INTERRUPT | \
AEU_INPUTS_ATTN_BITS_UCM_HW_INTERRUPT | \
AEU_INPUTS_ATTN_BITS_USEMI_HW_INTERRUPT | \
AEU_INPUTS_ATTN_BITS_UPB_HW_INTERRUPT | \
AEU_INPUTS_ATTN_BITS_CSDM_HW_INTERRUPT | \
AEU_INPUTS_ATTN_BITS_CCM_HW_INTERRUPT)
#define HW_PRTY_ASSERT_SET_1 (AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR |\
AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR | \
AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR |\
AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR | \
AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR |\
AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR | \
AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR |\
AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR |\
AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR |\
AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR | \
AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR | \
AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR |\
AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR | \
AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR | \
AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR |\
AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR)
#define HW_INTERRUT_ASSERT_SET_2 \
(AEU_INPUTS_ATTN_BITS_CSEMI_HW_INTERRUPT | \
AEU_INPUTS_ATTN_BITS_CDU_HW_INTERRUPT | \
AEU_INPUTS_ATTN_BITS_DMAE_HW_INTERRUPT | \
AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT |\
AEU_INPUTS_ATTN_BITS_MISC_HW_INTERRUPT)
#define HW_PRTY_ASSERT_SET_2 (AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR | \
AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR | \
AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR |\
AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR | \
AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR | \
AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR |\
AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR | \
AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR)
#define HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD \
(AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY)
#define HW_PRTY_ASSERT_SET_3 (HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD | \
AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)
#define HW_PRTY_ASSERT_SET_4 (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | \
AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)
#define MULTI_MASK 0x7f
#define PFS_PER_PORT(sc) \
((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4)
#define SC_MAX_VN_NUM(sc) PFS_PER_PORT(sc)
#define FIRST_ABS_FUNC_IN_PORT(sc) \
((CHIP_PORT_MODE(sc) == CHIP_PORT_MODE_NONE) ? \
PORT_ID(sc) : (PATH_ID(sc) + (2 * PORT_ID(sc))))
#define FOREACH_ABS_FUNC_IN_PORT(sc, i) \
for ((i) = FIRST_ABS_FUNC_IN_PORT(sc); \
(i) < MAX_FUNC_NUM; \
(i) += (MAX_FUNC_NUM / PFS_PER_PORT(sc)))
#define BNX2X_SWCID_SHIFT 17
#define BNX2X_SWCID_MASK ((0x1 << BNX2X_SWCID_SHIFT) - 1)
#define SW_CID(x) (le32toh(x) & BNX2X_SWCID_MASK)
#define CQE_CMD(x) (le32toh(x) >> COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT)
#define CQE_TYPE(cqe_fp_flags) ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE)
#define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG)
#define CQE_TYPE_STOP(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG)
#define CQE_TYPE_SLOW(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD)
#define CQE_TYPE_FAST(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH)
/* must be used on a CID before placing it on a HW ring */
#define HW_CID(sc, x) \
((SC_PORT(sc) << 23) | (SC_VN(sc) << BNX2X_SWCID_SHIFT) | (x))
#define SPEED_10 10
#define SPEED_100 100
#define SPEED_1000 1000
#define SPEED_2500 2500
#define SPEED_10000 10000
#define PCI_PM_D0 1
#define PCI_PM_D3hot 2
int bnx2x_cmpxchg(volatile int *addr, int old, int new);
int bnx2x_dma_alloc(struct bnx2x_softc *sc, size_t size,
struct bnx2x_dma *dma, const char *msg, uint32_t align);
void bnx2x_dma_free(struct bnx2x_dma *dma);
uint32_t bnx2x_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type);
uint32_t bnx2x_dmae_opcode_clr_src_reset(uint32_t opcode);
uint32_t bnx2x_dmae_opcode(struct bnx2x_softc *sc, uint8_t src_type,
uint8_t dst_type, uint8_t with_comp,
uint8_t comp_type);
void bnx2x_post_dmae(struct bnx2x_softc *sc, struct dmae_command *dmae, int idx);
void bnx2x_read_dmae(struct bnx2x_softc *sc, uint32_t src_addr, uint32_t len32);
void bnx2x_write_dmae(struct bnx2x_softc *sc, rte_iova_t dma_addr,
uint32_t dst_addr, uint32_t len32);
void bnx2x_set_ctx_validation(struct bnx2x_softc *sc, struct eth_context *cxt,
uint32_t cid);
void bnx2x_update_coalesce_sb_index(struct bnx2x_softc *sc, uint8_t fw_sb_id,
uint8_t sb_index, uint8_t disable,
uint16_t usec);
int bnx2x_sp_post(struct bnx2x_softc *sc, int command, int cid,
uint32_t data_hi, uint32_t data_lo, int cmd_type);
void ecore_init_e1h_firmware(struct bnx2x_softc *sc);
void ecore_init_e2_firmware(struct bnx2x_softc *sc);
void ecore_storm_memset_struct(struct bnx2x_softc *sc, uint32_t addr,
size_t size, uint32_t *data);
#define CATC_TRIGGER(sc, data) REG_WR((sc), 0x2000, (data));
#define CATC_TRIGGER_START(sc) CATC_TRIGGER((sc), 0xcafecafe)
#define BNX2X_MAC_FMT "%pM"
#define BNX2X_MAC_PRN_LIST(mac) (mac)
/***********/
/* INLINES */
/***********/
static inline uint32_t
reg_poll(struct bnx2x_softc *sc, uint32_t reg, uint32_t expected, int ms, int wait)
{
uint32_t val;
do {
val = REG_RD(sc, reg);
if (val == expected) {
break;
}
ms -= wait;
DELAY(wait * 1000);
} while (ms > 0);
return val;
}
static inline void
bnx2x_update_fp_sb_idx(struct bnx2x_fastpath *fp)
{
mb(); /* status block is written to by the chip */
fp->fp_hc_idx = fp->sb_running_index[SM_RX_ID];
}
static inline void
bnx2x_igu_ack_sb_gen(struct bnx2x_softc *sc, uint8_t segment,
uint16_t index, uint8_t op, uint8_t update, uint32_t igu_addr)
{
struct igu_regular cmd_data = {0};
cmd_data.sb_id_and_flags =
((index << IGU_REGULAR_SB_INDEX_SHIFT) |
(segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
(update << IGU_REGULAR_BUPDATE_SHIFT) |
(op << IGU_REGULAR_ENABLE_INT_SHIFT));
REG_WR(sc, igu_addr, cmd_data.sb_id_and_flags);
/* Make sure that ACK is written */
mb();
}
static inline void
bnx2x_hc_ack_sb(struct bnx2x_softc *sc, uint8_t sb_id, uint8_t storm,
uint16_t index, uint8_t op, uint8_t update)
{
uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc) * 32 +
COMMAND_REG_INT_ACK);
union {
struct igu_ack_register igu_ack;
uint32_t val;
} val;
val.igu_ack.status_block_index = index;
val.igu_ack.sb_id_and_flags =
((sb_id << IGU_ACK_REGISTER_STATUS_BLOCK_ID_SHIFT) |
(storm << IGU_ACK_REGISTER_STORM_ID_SHIFT) |
(update << IGU_ACK_REGISTER_UPDATE_INDEX_SHIFT) |
(op << IGU_ACK_REGISTER_INTERRUPT_MODE_SHIFT));
REG_WR(sc, hc_addr, val.val);
/* Make sure that ACK is written */
mb();
}
static inline uint32_t
bnx2x_hc_ack_int(struct bnx2x_softc *sc)
{
uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc) * 32 +
COMMAND_REG_SIMD_MASK);
uint32_t result = REG_RD(sc, hc_addr);
mb();
return result;
}
static inline uint32_t
bnx2x_igu_ack_int(struct bnx2x_softc *sc)
{
uint32_t igu_addr = (BAR_IGU_INTMEM + IGU_REG_SISR_MDPC_WMASK_LSB_UPPER * 8);
uint32_t result = REG_RD(sc, igu_addr);
/* PMD_PDEBUG_LOG(sc, DBG_INTR, "read 0x%08x from IGU addr 0x%x",
result, igu_addr); */
mb();
return result;
}
static inline uint32_t
bnx2x_ack_int(struct bnx2x_softc *sc)
{
mb();
if (sc->devinfo.int_block == INT_BLOCK_HC) {
return bnx2x_hc_ack_int(sc);
} else {
return bnx2x_igu_ack_int(sc);
}
}
static inline int
func_by_vn(struct bnx2x_softc *sc, int vn)
{
return 2 * vn + SC_PORT(sc);
}
/*
* send notification to other functions.
*/
static inline void
bnx2x_link_sync_notify(struct bnx2x_softc *sc)
{
int func, vn;
/* Set the attention towards other drivers on the same port */
for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
if (vn == SC_VN(sc))
continue;
func = func_by_vn(sc, vn);
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_0 +
(LINK_SYNC_ATTENTION_BIT_FUNC_0 + func) * 4, 1);
}
}
/*
* Statistics ID are global per chip/path, while Client IDs for E1x
* are per port.
*/
static inline uint8_t
bnx2x_stats_id(struct bnx2x_fastpath *fp)
{
struct bnx2x_softc *sc = fp->sc;
if (!CHIP_IS_E1x(sc)) {
return fp->cl_id;
}
return fp->cl_id + SC_PORT(sc) * FP_SB_MAX_E1x;
}
int bnx2x_init(struct bnx2x_softc *sc);
void bnx2x_load_firmware(struct bnx2x_softc *sc);
int bnx2x_attach(struct bnx2x_softc *sc);
int bnx2x_nic_unload(struct bnx2x_softc *sc, uint32_t unload_mode, uint8_t keep_link);
int bnx2x_alloc_hsi_mem(struct bnx2x_softc *sc);
int bnx2x_alloc_ilt_mem(struct bnx2x_softc *sc);
void bnx2x_free_ilt_mem(struct bnx2x_softc *sc);
void bnx2x_dump_tx_chain(struct bnx2x_fastpath * fp, int bd_prod, int count);
int bnx2x_tx_encap(struct bnx2x_tx_queue *txq, struct rte_mbuf *m0);
uint8_t bnx2x_txeof(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp);
void bnx2x_print_adapter_info(struct bnx2x_softc *sc);
void bnx2x_print_device_info(struct bnx2x_softc *sc);
int bnx2x_intr_legacy(struct bnx2x_softc *sc);
void bnx2x_link_status_update(struct bnx2x_softc *sc);
int bnx2x_complete_sp(struct bnx2x_softc *sc);
int bnx2x_set_storm_rx_mode(struct bnx2x_softc *sc);
void bnx2x_periodic_callout(struct bnx2x_softc *sc);
void bnx2x_periodic_stop(void *param);
int bnx2x_vf_get_resources(struct bnx2x_softc *sc, uint8_t tx_count, uint8_t rx_count);
void bnx2x_vf_close(struct bnx2x_softc *sc);
int bnx2x_vf_init(struct bnx2x_softc *sc);
void bnx2x_vf_unload(struct bnx2x_softc *sc);
int bnx2x_vf_setup_queue(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
int leading);
void bnx2x_free_hsi_mem(struct bnx2x_softc *sc);
int bnx2x_vf_set_rx_mode(struct bnx2x_softc *sc);
int bnx2x_check_bull(struct bnx2x_softc *sc);
//#define BNX2X_PULSE
#define BNX2X_PCI_CAP 1
#define BNX2X_PCI_ECAP 2
static inline struct bnx2x_pci_cap*
pci_find_cap(struct bnx2x_softc *sc, uint8_t id, uint8_t type)
{
struct bnx2x_pci_cap *cap = sc->pci_caps;
while (cap) {
if (cap->id == id && cap->type == type)
return cap;
cap = cap->next;
}
return NULL;
}
static inline void
bnx2x_set_rx_mode(struct bnx2x_softc *sc)
{
if (sc->state == BNX2X_STATE_OPEN) {
if (IS_PF(sc)) {
bnx2x_set_storm_rx_mode(sc);
} else {
sc->rx_mode = BNX2X_RX_MODE_PROMISC;
bnx2x_vf_set_rx_mode(sc);
}
} else {
PMD_DRV_LOG(INFO, sc, "Card is not ready to change mode");
}
}
static inline int pci_read(struct bnx2x_softc *sc, size_t addr,
void *val, uint8_t size)
{
if (rte_pci_read_config(sc->pci_dev, val, size, addr) <= 0) {
PMD_DRV_LOG(ERR, sc, "Can't read from PCI config space");
return ENXIO;
}
return 0;
}
static inline int pci_write_word(struct bnx2x_softc *sc, size_t addr, off_t val)
{
uint16_t val16 = val;
if (rte_pci_write_config(sc->pci_dev, &val16,
sizeof(val16), addr) <= 0) {
PMD_DRV_LOG(ERR, sc, "Can't write to PCI config space");
return ENXIO;
}
return 0;
}
static inline int pci_write_long(struct bnx2x_softc *sc, size_t addr, off_t val)
{
uint32_t val32 = val;
if (rte_pci_write_config(sc->pci_dev, &val32,
sizeof(val32), addr) <= 0) {
PMD_DRV_LOG(ERR, sc, "Can't write to PCI config space");
return ENXIO;
}
return 0;
}
#endif /* __BNX2X_H__ */