numam-dpdk/drivers/net/cxgbe/cxgbe_main.c
David Marchand 1acb7f5474 dev: hide driver object
Make rte_driver opaque for non internal users.
This will make extending this object possible without breaking the ABI.

Introduce a new driver header and move rte_driver definition.
Update drivers and library to use the internal header.

Some applications may have been dereferencing rte_driver objects, mark
this object's accessors as stable.

Signed-off-by: David Marchand <david.marchand@redhat.com>
Acked-by: Bruce Richardson <bruce.richardson@intel.com>
Acked-by: Jay Jayatheerthan <jay.jayatheerthan@intel.com>
Acked-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
Acked-by: Akhil Goyal <gakhil@marvell.com>
Acked-by: Abhinandan Gujjar <abhinandan.gujjar@intel.com>
2022-09-23 16:14:34 +02:00

2386 lines
63 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2014-2018 Chelsio Communications.
* All rights reserved.
*/
#include <sys/queue.h>
#include <sys/stat.h>
#include <stdio.h>
#include <errno.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <stdarg.h>
#include <inttypes.h>
#include <fcntl.h>
#include <netinet/in.h>
#include <rte_byteorder.h>
#include <rte_common.h>
#include <rte_cycles.h>
#include <rte_interrupts.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_pci.h>
#include <rte_branch_prediction.h>
#include <rte_memory.h>
#include <rte_tailq.h>
#include <rte_eal.h>
#include <rte_alarm.h>
#include <rte_ether.h>
#include <ethdev_driver.h>
#include <ethdev_pci.h>
#include <rte_random.h>
#include <dev_driver.h>
#include <rte_kvargs.h>
#include "base/common.h"
#include "base/t4_regs.h"
#include "base/t4_msg.h"
#include "cxgbe.h"
#include "cxgbe_pfvf.h"
#include "clip_tbl.h"
#include "l2t.h"
#include "smt.h"
#include "mps_tcam.h"
static const u16 cxgbe_filter_mode_features[] = {
(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE |
F_PROTOCOL | F_PORT),
(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE |
F_PROTOCOL | F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_TOS |
F_PORT),
(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_TOS |
F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_PORT |
F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_TOS |
F_PORT | F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VLAN |
F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VNIC_ID |
F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VLAN |
F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VNIC_ID |
F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_VLAN | F_PORT |
F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_VNIC_ID | F_PORT |
F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_PROTOCOL | F_TOS |
F_PORT | F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VLAN | F_PORT),
(F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VLAN | F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VNIC_ID | F_PORT),
(F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VNIC_ID | F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VLAN | F_PORT),
(F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VLAN | F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VNIC_ID |
F_PORT),
(F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VNIC_ID |
F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_VLAN | F_PORT |
F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_VNIC_ID | F_PORT |
F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_TOS | F_VLAN | F_PORT | F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_TOS | F_VNIC_ID | F_PORT | F_FCOE),
(F_FRAGMENTATION | F_MPSHITTYPE | F_VLAN | F_VNIC_ID | F_FCOE),
(F_FRAGMENTATION | F_MACMATCH | F_ETHERTYPE | F_PROTOCOL | F_PORT |
F_FCOE),
(F_FRAGMENTATION | F_MACMATCH | F_ETHERTYPE | F_TOS | F_PORT | F_FCOE),
(F_FRAGMENTATION | F_MACMATCH | F_PROTOCOL | F_VLAN | F_PORT | F_FCOE),
(F_FRAGMENTATION | F_MACMATCH | F_PROTOCOL | F_VNIC_ID | F_PORT |
F_FCOE),
(F_FRAGMENTATION | F_MACMATCH | F_TOS | F_VLAN | F_PORT | F_FCOE),
(F_FRAGMENTATION | F_MACMATCH | F_TOS | F_VNIC_ID | F_PORT | F_FCOE),
(F_FRAGMENTATION | F_ETHERTYPE | F_VLAN | F_PORT | F_FCOE),
(F_FRAGMENTATION | F_ETHERTYPE | F_VNIC_ID | F_PORT | F_FCOE),
(F_FRAGMENTATION | F_PROTOCOL | F_TOS | F_VLAN | F_FCOE),
(F_FRAGMENTATION | F_PROTOCOL | F_TOS | F_VNIC_ID | F_FCOE),
(F_FRAGMENTATION | F_VLAN | F_VNIC_ID | F_PORT | F_FCOE),
(F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_PROTOCOL | F_PORT |
F_FCOE),
(F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_TOS | F_PORT | F_FCOE),
(F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VLAN | F_PORT),
(F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VNIC_ID | F_PORT),
(F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VLAN | F_PORT),
(F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VNIC_ID | F_PORT),
(F_MPSHITTYPE | F_ETHERTYPE | F_VLAN | F_PORT | F_FCOE),
(F_MPSHITTYPE | F_ETHERTYPE | F_VNIC_ID | F_PORT | F_FCOE),
(F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VLAN | F_PORT | F_FCOE),
(F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VNIC_ID | F_PORT | F_FCOE),
(F_MPSHITTYPE | F_VLAN | F_VNIC_ID | F_PORT),
};
/**
* Allocate a chunk of memory. The allocated memory is cleared.
*/
void *t4_alloc_mem(size_t size)
{
return rte_zmalloc(NULL, size, 0);
}
/**
* Free memory allocated through t4_alloc_mem().
*/
void t4_free_mem(void *addr)
{
rte_free(addr);
}
/*
* Response queue handler for the FW event queue.
*/
static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
__rte_unused const struct pkt_gl *gl)
{
u8 opcode = ((const struct rss_header *)rsp)->opcode;
rsp++; /* skip RSS header */
/*
* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
*/
if (unlikely(opcode == CPL_FW4_MSG &&
((const struct cpl_fw4_msg *)rsp)->type ==
FW_TYPE_RSSCPL)) {
rsp++;
opcode = ((const struct rss_header *)rsp)->opcode;
rsp++;
if (opcode != CPL_SGE_EGR_UPDATE) {
dev_err(q->adapter, "unexpected FW4/CPL %#x on FW event queue\n",
opcode);
goto out;
}
}
if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
/* do nothing */
} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
const struct cpl_fw6_msg *msg = (const void *)rsp;
t4_handle_fw_rpl(q->adapter, msg->data);
} else if (opcode == CPL_ABORT_RPL_RSS) {
const struct cpl_abort_rpl_rss *p = (const void *)rsp;
cxgbe_hash_del_filter_rpl(q->adapter, p);
} else if (opcode == CPL_SET_TCB_RPL) {
const struct cpl_set_tcb_rpl *p = (const void *)rsp;
cxgbe_filter_rpl(q->adapter, p);
} else if (opcode == CPL_ACT_OPEN_RPL) {
const struct cpl_act_open_rpl *p = (const void *)rsp;
cxgbe_hash_filter_rpl(q->adapter, p);
} else if (opcode == CPL_L2T_WRITE_RPL) {
const struct cpl_l2t_write_rpl *p = (const void *)rsp;
cxgbe_do_l2t_write_rpl(q->adapter, p);
} else if (opcode == CPL_SMT_WRITE_RPL) {
const struct cpl_smt_write_rpl *p = (const void *)rsp;
cxgbe_do_smt_write_rpl(q->adapter, p);
} else {
dev_err(adapter, "unexpected CPL %#x on FW event queue\n",
opcode);
}
out:
return 0;
}
/**
* Setup sge control queues to pass control information.
*/
int cxgbe_setup_sge_ctrl_txq(struct adapter *adapter)
{
struct sge *s = &adapter->sge;
int err = 0, i = 0;
for_each_port(adapter, i) {
struct port_info *pi = adap2pinfo(adapter, i);
char name[RTE_ETH_NAME_MAX_LEN];
struct sge_ctrl_txq *q = &s->ctrlq[i];
q->q.size = 1024;
err = t4_sge_alloc_ctrl_txq(adapter, q,
adapter->eth_dev, i,
s->fw_evtq.cntxt_id,
rte_socket_id());
if (err) {
dev_err(adapter, "Failed to alloc ctrl txq. Err: %d",
err);
goto out;
}
snprintf(name, sizeof(name), "%s_ctrl_pool_%d",
pi->eth_dev->device->driver->name,
pi->eth_dev->data->port_id);
q->mb_pool = rte_pktmbuf_pool_create(name, s->ctrlq[i].q.size,
RTE_CACHE_LINE_SIZE,
RTE_MBUF_PRIV_ALIGN,
RTE_MBUF_DEFAULT_BUF_SIZE,
SOCKET_ID_ANY);
if (!q->mb_pool) {
err = -rte_errno;
dev_err(adapter,
"Can't create ctrl pool for port %d. Err: %d\n",
pi->eth_dev->data->port_id, err);
goto out;
}
}
return 0;
out:
t4_free_sge_resources(adapter);
return err;
}
/**
* cxgbe_poll_for_completion: Poll rxq for completion
* @q: rxq to poll
* @ms: milliseconds to delay
* @cnt: number of times to poll
* @c: completion to check for 'done' status
*
* Polls the rxq for reples until completion is done or the count
* expires.
*/
int cxgbe_poll_for_completion(struct sge_rspq *q, unsigned int ms,
unsigned int cnt, struct t4_completion *c)
{
unsigned int i;
unsigned int work_done, budget = 32;
if (!c)
return -EINVAL;
for (i = 0; i < cnt; i++) {
cxgbe_poll(q, NULL, budget, &work_done);
t4_os_lock(&c->lock);
if (c->done) {
t4_os_unlock(&c->lock);
return 0;
}
t4_os_unlock(&c->lock);
rte_delay_ms(ms);
}
return -ETIMEDOUT;
}
int cxgbe_setup_sge_fwevtq(struct adapter *adapter)
{
struct sge *s = &adapter->sge;
int err = 0;
int msi_idx = 0;
err = t4_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->eth_dev,
msi_idx, NULL, fwevtq_handler, -1, NULL, 0,
rte_socket_id());
return err;
}
static int closest_timer(const struct sge *s, int time)
{
unsigned int i, match = 0;
int delta, min_delta = INT_MAX;
for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
delta = time - s->timer_val[i];
if (delta < 0)
delta = -delta;
if (delta < min_delta) {
min_delta = delta;
match = i;
}
}
return match;
}
static int closest_thres(const struct sge *s, int thres)
{
unsigned int i, match = 0;
int delta, min_delta = INT_MAX;
for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
delta = thres - s->counter_val[i];
if (delta < 0)
delta = -delta;
if (delta < min_delta) {
min_delta = delta;
match = i;
}
}
return match;
}
/**
* cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
* @q: the Rx queue
* @us: the hold-off time in us, or 0 to disable timer
* @cnt: the hold-off packet count, or 0 to disable counter
*
* Sets an Rx queue's interrupt hold-off time and packet count. At least
* one of the two needs to be enabled for the queue to generate interrupts.
*/
int cxgb4_set_rspq_intr_params(struct sge_rspq *q, unsigned int us,
unsigned int cnt)
{
struct adapter *adap = q->adapter;
unsigned int timer_val;
if (cnt) {
int err;
u32 v, new_idx;
new_idx = closest_thres(&adap->sge, cnt);
if (q->desc && q->pktcnt_idx != new_idx) {
/* the queue has already been created, update it */
v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
V_FW_PARAMS_PARAM_X(
FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
V_FW_PARAMS_PARAM_YZ(q->cntxt_id);
err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
&v, &new_idx);
if (err)
return err;
}
q->pktcnt_idx = new_idx;
}
timer_val = (us == 0) ? X_TIMERREG_RESTART_COUNTER :
closest_timer(&adap->sge, us);
if ((us | cnt) == 0)
q->intr_params = V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX);
else
q->intr_params = V_QINTR_TIMER_IDX(timer_val) |
V_QINTR_CNT_EN(cnt > 0);
return 0;
}
/**
* Allocate an active-open TID and set it to the supplied value.
*/
int cxgbe_alloc_atid(struct tid_info *t, void *data)
{
int atid = -1;
t4_os_lock(&t->atid_lock);
if (t->afree) {
union aopen_entry *p = t->afree;
atid = p - t->atid_tab;
t->afree = p->next;
p->data = data;
t->atids_in_use++;
}
t4_os_unlock(&t->atid_lock);
return atid;
}
/**
* Release an active-open TID.
*/
void cxgbe_free_atid(struct tid_info *t, unsigned int atid)
{
union aopen_entry *p = &t->atid_tab[atid];
t4_os_lock(&t->atid_lock);
p->next = t->afree;
t->afree = p;
t->atids_in_use--;
t4_os_unlock(&t->atid_lock);
}
/**
* Populate a TID_RELEASE WR. Caller must properly size the skb.
*/
static void mk_tid_release(struct rte_mbuf *mbuf, unsigned int tid)
{
struct cpl_tid_release *req;
req = rte_pktmbuf_mtod(mbuf, struct cpl_tid_release *);
INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
}
/**
* Release a TID and inform HW. If we are unable to allocate the release
* message we defer to a work queue.
*/
void cxgbe_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
unsigned short family)
{
struct rte_mbuf *mbuf;
struct adapter *adap = container_of(t, struct adapter, tids);
WARN_ON(tid >= t->ntids);
if (t->tid_tab[tid]) {
t->tid_tab[tid] = NULL;
__atomic_sub_fetch(&t->conns_in_use, 1, __ATOMIC_RELAXED);
if (t->hash_base && tid >= t->hash_base) {
if (family == FILTER_TYPE_IPV4)
__atomic_sub_fetch(&t->hash_tids_in_use, 1,
__ATOMIC_RELAXED);
} else {
if (family == FILTER_TYPE_IPV4)
__atomic_sub_fetch(&t->tids_in_use, 1,
__ATOMIC_RELAXED);
}
}
mbuf = rte_pktmbuf_alloc((&adap->sge.ctrlq[chan])->mb_pool);
if (mbuf) {
mbuf->data_len = sizeof(struct cpl_tid_release);
mbuf->pkt_len = mbuf->data_len;
mk_tid_release(mbuf, tid);
t4_mgmt_tx(&adap->sge.ctrlq[chan], mbuf);
}
}
/**
* Insert a TID.
*/
void cxgbe_insert_tid(struct tid_info *t, void *data, unsigned int tid,
unsigned short family)
{
t->tid_tab[tid] = data;
if (t->hash_base && tid >= t->hash_base) {
if (family == FILTER_TYPE_IPV4)
__atomic_add_fetch(&t->hash_tids_in_use, 1,
__ATOMIC_RELAXED);
} else {
if (family == FILTER_TYPE_IPV4)
__atomic_add_fetch(&t->tids_in_use, 1,
__ATOMIC_RELAXED);
}
__atomic_add_fetch(&t->conns_in_use, 1, __ATOMIC_RELAXED);
}
/**
* Free TID tables.
*/
static void tid_free(struct tid_info *t)
{
if (t->tid_tab) {
rte_bitmap_free(t->ftid_bmap);
if (t->ftid_bmap_array)
t4_os_free(t->ftid_bmap_array);
t4_os_free(t->tid_tab);
}
memset(t, 0, sizeof(struct tid_info));
}
/**
* Allocate and initialize the TID tables. Returns 0 on success.
*/
static int tid_init(struct tid_info *t)
{
size_t size;
unsigned int ftid_bmap_size;
unsigned int natids = t->natids;
unsigned int max_ftids = t->nftids;
ftid_bmap_size = rte_bitmap_get_memory_footprint(t->nftids);
size = t->ntids * sizeof(*t->tid_tab) +
max_ftids * sizeof(*t->ftid_tab) +
natids * sizeof(*t->atid_tab);
t->tid_tab = t4_os_alloc(size);
if (!t->tid_tab)
return -ENOMEM;
t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
t->ftid_tab = (struct filter_entry *)&t->atid_tab[t->natids];
t->ftid_bmap_array = t4_os_alloc(ftid_bmap_size);
if (!t->ftid_bmap_array) {
tid_free(t);
return -ENOMEM;
}
t4_os_lock_init(&t->atid_lock);
t4_os_lock_init(&t->ftid_lock);
t->afree = NULL;
t->atids_in_use = 0;
t->tids_in_use = 0;
t->conns_in_use = 0;
/* Setup the free list for atid_tab and clear the stid bitmap. */
if (natids) {
while (--natids)
t->atid_tab[natids - 1].next = &t->atid_tab[natids];
t->afree = t->atid_tab;
}
t->ftid_bmap = rte_bitmap_init(t->nftids, t->ftid_bmap_array,
ftid_bmap_size);
if (!t->ftid_bmap) {
tid_free(t);
return -ENOMEM;
}
return 0;
}
static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
unsigned int us, unsigned int cnt,
unsigned int size, unsigned int iqe_size)
{
q->adapter = adap;
cxgb4_set_rspq_intr_params(q, us, cnt);
q->iqe_len = iqe_size;
q->size = size;
}
int cxgbe_cfg_queue_count(struct rte_eth_dev *eth_dev)
{
struct port_info *temp_pi, *pi = eth_dev->data->dev_private;
struct adapter *adap = pi->adapter;
u16 first_txq = 0, first_rxq = 0;
struct sge *s = &adap->sge;
u16 i, max_rxqs, max_txqs;
max_rxqs = s->max_ethqsets;
max_txqs = s->max_ethqsets;
for_each_port(adap, i) {
temp_pi = adap2pinfo(adap, i);
if (i == pi->port_id)
break;
if (max_rxqs <= temp_pi->n_rx_qsets ||
max_txqs <= temp_pi->n_tx_qsets)
return -ENOMEM;
first_rxq += temp_pi->n_rx_qsets;
first_txq += temp_pi->n_tx_qsets;
max_rxqs -= temp_pi->n_rx_qsets;
max_txqs -= temp_pi->n_tx_qsets;
}
if ((eth_dev->data->nb_rx_queues < 1) ||
(eth_dev->data->nb_tx_queues < 1))
return -EINVAL;
if (eth_dev->data->nb_rx_queues > max_rxqs ||
eth_dev->data->nb_tx_queues > max_txqs)
return -EINVAL;
/* We must configure RSS, since config has changed*/
pi->flags &= ~PORT_RSS_DONE;
pi->n_rx_qsets = eth_dev->data->nb_rx_queues;
pi->n_tx_qsets = eth_dev->data->nb_tx_queues;
pi->first_rxqset = first_rxq;
pi->first_txqset = first_txq;
return 0;
}
void cxgbe_cfg_queues_free(struct adapter *adap)
{
if (adap->sge.ethtxq) {
rte_free(adap->sge.ethtxq);
adap->sge.ethtxq = NULL;
}
if (adap->sge.ethrxq) {
rte_free(adap->sge.ethrxq);
adap->sge.ethrxq = NULL;
}
adap->flags &= ~CFG_QUEUES;
}
int cxgbe_cfg_queues(struct rte_eth_dev *eth_dev)
{
struct port_info *pi = eth_dev->data->dev_private;
struct adapter *adap = pi->adapter;
struct sge *s = &adap->sge;
u16 i;
if (!(adap->flags & CFG_QUEUES)) {
s->ethrxq = rte_calloc_socket(NULL, s->max_ethqsets,
sizeof(struct sge_eth_rxq), 0,
rte_socket_id());
if (!s->ethrxq)
return -ENOMEM;
s->ethtxq = rte_calloc_socket(NULL, s->max_ethqsets,
sizeof(struct sge_eth_txq), 0,
rte_socket_id());
if (!s->ethtxq) {
rte_free(s->ethrxq);
s->ethrxq = NULL;
return -ENOMEM;
}
for (i = 0; i < s->max_ethqsets; i++) {
struct sge_eth_rxq *r = &s->ethrxq[i];
struct sge_eth_txq *t = &s->ethtxq[i];
init_rspq(adap, &r->rspq, 5, 32, 1024, 64);
r->fl.size = 1024;
t->q.size = 1024;
}
init_rspq(adap, &adap->sge.fw_evtq, 0, 0, 1024, 64);
adap->flags |= CFG_QUEUES;
}
return 0;
}
void cxgbe_stats_get(struct port_info *pi, struct port_stats *stats)
{
t4_get_port_stats_offset(pi->adapter, pi->tx_chan, stats,
&pi->stats_base);
}
void cxgbe_stats_reset(struct port_info *pi)
{
t4_clr_port_stats(pi->adapter, pi->tx_chan);
}
static void setup_memwin(struct adapter *adap)
{
u32 mem_win0_base;
/* For T5, only relative offset inside the PCIe BAR is passed */
mem_win0_base = MEMWIN0_BASE;
/*
* Set up memory window for accessing adapter memory ranges. (Read
* back MA register to ensure that changes propagate before we attempt
* to use the new values.)
*/
t4_write_reg(adap,
PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
MEMWIN_NIC),
mem_win0_base | V_BIR(0) |
V_WINDOW(ilog2(MEMWIN0_APERTURE) - X_WINDOW_SHIFT));
t4_read_reg(adap,
PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
MEMWIN_NIC));
}
int cxgbe_init_rss(struct adapter *adap)
{
unsigned int i;
if (is_pf4(adap)) {
int err;
err = t4_init_rss_mode(adap, adap->mbox);
if (err)
return err;
}
for_each_port(adap, i) {
struct port_info *pi = adap2pinfo(adap, i);
pi->rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
if (!pi->rss)
return -ENOMEM;
pi->rss_hf = CXGBE_RSS_HF_ALL;
}
return 0;
}
/**
* Dump basic information about the adapter.
*/
void cxgbe_print_adapter_info(struct adapter *adap)
{
/**
* Hardware/Firmware/etc. Version/Revision IDs.
*/
t4_dump_version_info(adap);
}
void cxgbe_print_port_info(struct adapter *adap)
{
int i;
char buf[80];
struct rte_pci_addr *loc = &adap->pdev->addr;
for_each_port(adap, i) {
const struct port_info *pi = adap2pinfo(adap, i);
char *bufp = buf;
if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
bufp += sprintf(bufp, "100M/");
if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
bufp += sprintf(bufp, "1G/");
if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
bufp += sprintf(bufp, "10G/");
if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
bufp += sprintf(bufp, "25G/");
if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
bufp += sprintf(bufp, "40G/");
if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
bufp += sprintf(bufp, "50G/");
if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
bufp += sprintf(bufp, "100G/");
if (bufp != buf)
--bufp;
sprintf(bufp, "BASE-%s",
t4_get_port_type_description(
(enum fw_port_type)pi->link_cfg.port_type));
dev_info(adap,
" " PCI_PRI_FMT " Chelsio rev %d %s %s\n",
loc->domain, loc->bus, loc->devid, loc->function,
CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
(adap->flags & USING_MSIX) ? " MSI-X" :
(adap->flags & USING_MSI) ? " MSI" : "");
}
}
static int check_devargs_handler(const char *key, const char *value, void *p)
{
if (!strncmp(key, CXGBE_DEVARG_CMN_KEEP_OVLAN, strlen(key)) ||
!strncmp(key, CXGBE_DEVARG_CMN_TX_MODE_LATENCY, strlen(key)) ||
!strncmp(key, CXGBE_DEVARG_VF_FORCE_LINK_UP, strlen(key))) {
if (!strncmp(value, "1", 1)) {
bool *dst_val = (bool *)p;
*dst_val = true;
}
}
if (!strncmp(key, CXGBE_DEVARG_PF_FILTER_MODE, strlen(key)) ||
!strncmp(key, CXGBE_DEVARG_PF_FILTER_MASK, strlen(key))) {
u32 *dst_val = (u32 *)p;
char *endptr = NULL;
u32 arg_val;
arg_val = strtoul(value, &endptr, 16);
if (errno || endptr == value)
return -EINVAL;
*dst_val = arg_val;
}
return 0;
}
static int cxgbe_get_devargs(struct rte_devargs *devargs, const char *key,
void *p)
{
struct rte_kvargs *kvlist;
int ret = 0;
if (!devargs)
return 0;
kvlist = rte_kvargs_parse(devargs->args, NULL);
if (!kvlist)
return 0;
if (!rte_kvargs_count(kvlist, key))
goto out;
ret = rte_kvargs_process(kvlist, key, check_devargs_handler, p);
out:
rte_kvargs_free(kvlist);
return ret;
}
static void cxgbe_get_devargs_int(struct adapter *adap, bool *dst,
const char *key, bool default_value)
{
struct rte_pci_device *pdev = adap->pdev;
int ret;
bool devarg_value = default_value;
*dst = default_value;
if (!pdev)
return;
ret = cxgbe_get_devargs(pdev->device.devargs, key, &devarg_value);
if (ret)
return;
*dst = devarg_value;
}
static void cxgbe_get_devargs_u32(struct adapter *adap, u32 *dst,
const char *key, u32 default_value)
{
struct rte_pci_device *pdev = adap->pdev;
u32 devarg_value = default_value;
int ret;
*dst = default_value;
if (!pdev)
return;
ret = cxgbe_get_devargs(pdev->device.devargs, key, &devarg_value);
if (ret)
return;
*dst = devarg_value;
}
void cxgbe_process_devargs(struct adapter *adap)
{
cxgbe_get_devargs_int(adap, &adap->devargs.keep_ovlan,
CXGBE_DEVARG_CMN_KEEP_OVLAN, false);
cxgbe_get_devargs_int(adap, &adap->devargs.tx_mode_latency,
CXGBE_DEVARG_CMN_TX_MODE_LATENCY, false);
cxgbe_get_devargs_int(adap, &adap->devargs.force_link_up,
CXGBE_DEVARG_VF_FORCE_LINK_UP, false);
cxgbe_get_devargs_u32(adap, &adap->devargs.filtermode,
CXGBE_DEVARG_PF_FILTER_MODE, 0);
cxgbe_get_devargs_u32(adap, &adap->devargs.filtermask,
CXGBE_DEVARG_PF_FILTER_MASK, 0);
}
static void configure_vlan_types(struct adapter *adapter)
{
int i;
for_each_port(adapter, i) {
/* OVLAN Type 0x88a8 */
t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN0),
V_OVLAN_MASK(M_OVLAN_MASK) |
V_OVLAN_ETYPE(M_OVLAN_ETYPE),
V_OVLAN_MASK(M_OVLAN_MASK) |
V_OVLAN_ETYPE(0x88a8));
/* OVLAN Type 0x9100 */
t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN1),
V_OVLAN_MASK(M_OVLAN_MASK) |
V_OVLAN_ETYPE(M_OVLAN_ETYPE),
V_OVLAN_MASK(M_OVLAN_MASK) |
V_OVLAN_ETYPE(0x9100));
/* IVLAN 0X8100 */
t4_set_reg_field(adapter, MPS_PORT_RX_IVLAN(i),
V_IVLAN_ETYPE(M_IVLAN_ETYPE),
V_IVLAN_ETYPE(0x8100));
t4_set_reg_field(adapter, MPS_PORT_RX_CTL(i),
F_OVLAN_EN0 | F_OVLAN_EN1 |
F_IVLAN_EN,
F_OVLAN_EN0 | F_OVLAN_EN1 |
F_IVLAN_EN);
}
t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG, V_RM_OVLAN(1),
V_RM_OVLAN(!adapter->devargs.keep_ovlan));
}
static int cxgbe_get_filter_vnic_mode_from_devargs(u32 val)
{
u32 vnic_mode;
vnic_mode = val & (CXGBE_DEVARGS_FILTER_MODE_PF_VF |
CXGBE_DEVARGS_FILTER_MODE_VLAN_OUTER);
if (vnic_mode) {
switch (vnic_mode) {
case CXGBE_DEVARGS_FILTER_MODE_VLAN_OUTER:
return CXGBE_FILTER_VNIC_MODE_OVLAN;
case CXGBE_DEVARGS_FILTER_MODE_PF_VF:
return CXGBE_FILTER_VNIC_MODE_PFVF;
default:
return -EINVAL;
}
}
return CXGBE_FILTER_VNIC_MODE_NONE;
}
static int cxgbe_get_filter_mode_from_devargs(u32 val, bool closest_match)
{
int vnic_mode, fmode = 0;
bool found = false;
u8 i;
if (val >= CXGBE_DEVARGS_FILTER_MODE_MAX) {
pr_err("Unsupported flags set in filter mode. Must be < 0x%x\n",
CXGBE_DEVARGS_FILTER_MODE_MAX);
return -ERANGE;
}
vnic_mode = cxgbe_get_filter_vnic_mode_from_devargs(val);
if (vnic_mode < 0) {
pr_err("Unsupported Vnic-mode, more than 1 Vnic-mode selected\n");
return vnic_mode;
}
if (vnic_mode)
fmode |= F_VNIC_ID;
if (val & CXGBE_DEVARGS_FILTER_MODE_PHYSICAL_PORT)
fmode |= F_PORT;
if (val & CXGBE_DEVARGS_FILTER_MODE_ETHERNET_DSTMAC)
fmode |= F_MACMATCH;
if (val & CXGBE_DEVARGS_FILTER_MODE_ETHERNET_ETHTYPE)
fmode |= F_ETHERTYPE;
if (val & CXGBE_DEVARGS_FILTER_MODE_VLAN_INNER)
fmode |= F_VLAN;
if (val & CXGBE_DEVARGS_FILTER_MODE_IP_TOS)
fmode |= F_TOS;
if (val & CXGBE_DEVARGS_FILTER_MODE_IP_PROTOCOL)
fmode |= F_PROTOCOL;
for (i = 0; i < ARRAY_SIZE(cxgbe_filter_mode_features); i++) {
if ((cxgbe_filter_mode_features[i] & fmode) == fmode) {
found = true;
break;
}
}
if (!found)
return -EINVAL;
return closest_match ? cxgbe_filter_mode_features[i] : fmode;
}
static int configure_filter_mode_mask(struct adapter *adap)
{
u32 params[2], val[2], nparams = 0;
int ret;
if (!adap->devargs.filtermode && !adap->devargs.filtermask)
return 0;
if (!adap->devargs.filtermode || !adap->devargs.filtermask) {
pr_err("Unsupported, Provide both filtermode and filtermask devargs\n");
return -EINVAL;
}
if (adap->devargs.filtermask & ~adap->devargs.filtermode) {
pr_err("Unsupported, filtermask (0x%x) must be subset of filtermode (0x%x)\n",
adap->devargs.filtermask, adap->devargs.filtermode);
return -EINVAL;
}
params[0] = CXGBE_FW_PARAM_DEV(FILTER) |
V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK);
ret = cxgbe_get_filter_mode_from_devargs(adap->devargs.filtermode,
true);
if (ret < 0) {
pr_err("Unsupported filtermode devargs combination:0x%x\n",
adap->devargs.filtermode);
return ret;
}
val[0] = V_FW_PARAMS_PARAM_FILTER_MODE(ret);
ret = cxgbe_get_filter_mode_from_devargs(adap->devargs.filtermask,
false);
if (ret < 0) {
pr_err("Unsupported filtermask devargs combination:0x%x\n",
adap->devargs.filtermask);
return ret;
}
val[0] |= V_FW_PARAMS_PARAM_FILTER_MASK(ret);
nparams++;
ret = cxgbe_get_filter_vnic_mode_from_devargs(adap->devargs.filtermode);
if (ret < 0)
return ret;
if (ret) {
params[1] = CXGBE_FW_PARAM_DEV(FILTER) |
V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_VNIC_MODE);
val[1] = ret - 1;
nparams++;
}
return t4_set_params(adap, adap->mbox, adap->pf, 0, nparams,
params, val);
}
#define CXGBE_FW_CONFIG_PATH_T5 "/lib/firmware/cxgb4/t5-config.txt"
#define CXGBE_FW_CONFIG_PATH_T6 "/lib/firmware/cxgb4/t6-config.txt"
/*
* Load firmware configuration from file in /lib/firmware/cxgb4/ path,
* if it is present.
*/
static int cxgbe_load_fw_config_from_filesystem(struct adapter *adap,
const char **config_name,
u32 *mem_type, u32 *mem_addr)
{
u32 param, val, mtype, maddr;
const char *fw_cfg_path;
char *fw_cfg = NULL;
struct stat st;
int ret, fd;
switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
case CHELSIO_T5:
fw_cfg_path = CXGBE_FW_CONFIG_PATH_T5;
break;
case CHELSIO_T6:
fw_cfg_path = CXGBE_FW_CONFIG_PATH_T6;
break;
default:
return -ENOENT;
}
ret = open(fw_cfg_path, O_RDONLY);
if (ret < 0) {
dev_debug(adap, "Couldn't open FW config file\n");
return ret;
}
fd = ret;
ret = fstat(fd, &st);
if (ret < 0) {
dev_debug(adap, "Couldn't get FW config file size\n");
goto out_err;
}
if (st.st_size >= FLASH_CFG_MAX_SIZE) {
dev_debug(adap, "FW config file size >= max(%u)\n",
FLASH_CFG_MAX_SIZE);
ret = -ENOMEM;
goto out_err;
}
fw_cfg = rte_zmalloc(NULL, st.st_size, 0);
if (fw_cfg == NULL) {
ret = -ENOMEM;
goto out_err;
}
if (read(fd, fw_cfg, st.st_size) != st.st_size) {
dev_debug(adap, "Couldn't read FW config file data\n");
ret = -EIO;
goto out_err;
}
close(fd);
/* Send it to FW to verify and update to new configuration */
param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
if (ret < 0) {
dev_debug(adap, "FW config param query failed: %d\n", ret);
goto out_free;
}
mtype = val >> 8;
maddr = (val & 0xff) << 16;
t4_os_lock(&adap->win0_lock);
ret = t4_memory_rw(adap, MEMWIN_NIC, mtype, maddr, st.st_size,
fw_cfg, T4_MEMORY_WRITE);
t4_os_unlock(&adap->win0_lock);
if (ret < 0) {
dev_debug(adap, "FW config file update failed: %d\n", ret);
goto out_free;
}
rte_free(fw_cfg);
*mem_type = mtype;
*mem_addr = maddr;
*config_name = fw_cfg_path;
return 0;
out_err:
close(fd);
out_free:
rte_free(fw_cfg);
return ret;
}
static int cxgbe_load_fw_config(struct adapter *adap)
{
struct fw_caps_config_cmd caps_cmd = { 0 };
u32 finiver, finicsum, cfcsum, param, val;
const char *config_name = NULL;
u32 mtype = 0, maddr = 0;
int ret;
ret = cxgbe_load_fw_config_from_filesystem(adap, &config_name,
&mtype, &maddr);
if (ret < 0) {
config_name = "On Flash";
ret = t4_flash_cfg_addr(adap);
if (ret < 0) {
dev_warn(adap,
"Finding address for FW config file in flash failed: %d\n",
ret);
goto out_default_config;
}
mtype = FW_MEMTYPE_CF_FLASH;
maddr = ret;
}
/* Enable HASH filter region when support is available. */
val = 1;
param = CXGBE_FW_PARAM_DEV(HASHFILTER_WITH_OFLD);
t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
/*
* Issue a Capability Configuration command to the firmware to get it
* to parse the Configuration File.
*/
caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_READ);
caps_cmd.cfvalid_to_len16 =
cpu_to_be32(F_FW_CAPS_CONFIG_CMD_CFVALID |
V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
FW_LEN16(caps_cmd));
ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
&caps_cmd);
out_default_config:
/*
* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
* Configuration File in filesystem or FLASH), our last gasp
* effort is to use the Firmware Configuration File which is
* embedded in the firmware.
*/
if (ret == -ENOENT) {
config_name = "Firmware Default";
memset(&caps_cmd, 0, sizeof(caps_cmd));
caps_cmd.op_to_write =
cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_READ);
caps_cmd.cfvalid_to_len16 = cpu_to_be32(FW_LEN16(caps_cmd));
ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
&caps_cmd);
}
if (ret < 0) {
dev_info(adap,
"Failed to configure using %s Firmware Configuration file: %d\n",
config_name, ret);
return ret;
}
finiver = be32_to_cpu(caps_cmd.finiver);
finicsum = be32_to_cpu(caps_cmd.finicsum);
cfcsum = be32_to_cpu(caps_cmd.cfcsum);
if (finicsum != cfcsum)
dev_warn(adap,
"Configuration File checksum mismatch: [fini] csum=0x%x, computed csum=0x%x\n",
finicsum, cfcsum);
/*
* If we're a pure NIC driver then disable all offloading facilities.
* This will allow the firmware to optimize aspects of the hardware
* configuration which will result in improved performance.
*/
caps_cmd.niccaps &= cpu_to_be16(~FW_CAPS_CONFIG_NIC_ETHOFLD);
caps_cmd.toecaps = 0;
caps_cmd.iscsicaps = 0;
caps_cmd.rdmacaps = 0;
caps_cmd.fcoecaps = 0;
caps_cmd.cryptocaps = 0;
/*
* And now tell the firmware to use the configuration we just loaded.
*/
caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
NULL);
if (ret < 0) {
dev_warn(adap, "Unable to finalize Firmware Capabilities %d\n",
ret);
return ret;
}
/*
* Return successfully and note that we're operating with parameters
* not supplied by the driver, rather than from hard-wired
* initialization constants buried in the driver.
*/
dev_info(adap,
"Successfully configured using Firmware Configuration File \"%s\", version: 0x%x, computed csum: 0x%x\n",
config_name, finiver, cfcsum);
return 0;
}
static void configure_pcie_ext_tag(struct adapter *adapter)
{
u16 v;
int pos = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
if (!pos)
return;
if (pos > 0) {
t4_os_pci_read_cfg2(adapter, pos + PCI_EXP_DEVCTL, &v);
v |= PCI_EXP_DEVCTL_EXT_TAG;
t4_os_pci_write_cfg2(adapter, pos + PCI_EXP_DEVCTL, v);
if (is_t6(adapter->params.chip)) {
t4_set_reg_field(adapter, A_PCIE_CFG2,
V_T6_TOTMAXTAG(M_T6_TOTMAXTAG),
V_T6_TOTMAXTAG(7));
t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
V_T6_MINTAG(M_T6_MINTAG),
V_T6_MINTAG(8));
} else {
t4_set_reg_field(adapter, A_PCIE_CFG2,
V_TOTMAXTAG(M_TOTMAXTAG),
V_TOTMAXTAG(3));
t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
V_MINTAG(M_MINTAG),
V_MINTAG(8));
}
}
}
/* Figure out how many Queue Sets we can support */
void cxgbe_configure_max_ethqsets(struct adapter *adapter)
{
unsigned int ethqsets, reserved;
/* We need to reserve an Ingress Queue for the Asynchronous Firmware
* Event Queue and 1 Control Queue per port.
*
* For each Queue Set, we'll need the ability to allocate two Egress
* Contexts -- one for the Ingress Queue Free List and one for the TX
* Ethernet Queue.
*/
reserved = max(adapter->params.nports, 1);
if (is_pf4(adapter)) {
struct pf_resources *pfres = &adapter->params.pfres;
ethqsets = min(pfres->niqflint, pfres->nethctrl);
if (ethqsets > (pfres->neq / 2))
ethqsets = pfres->neq / 2;
} else {
struct vf_resources *vfres = &adapter->params.vfres;
ethqsets = min(vfres->niqflint, vfres->nethctrl);
if (ethqsets > (vfres->neq / 2))
ethqsets = vfres->neq / 2;
}
ethqsets -= reserved;
adapter->sge.max_ethqsets = ethqsets;
}
/*
* Tweak configuration based on system architecture, etc. Most of these have
* defaults assigned to them by Firmware Configuration Files (if we're using
* them) but need to be explicitly set if we're using hard-coded
* initialization. So these are essentially common tweaks/settings for
* Configuration Files and hard-coded initialization ...
*/
static int adap_init0_tweaks(struct adapter *adapter)
{
u8 rx_dma_offset;
/*
* Fix up various Host-Dependent Parameters like Page Size, Cache
* Line Size, etc. The firmware default is for a 4KB Page Size and
* 64B Cache Line Size ...
*/
t4_fixup_host_params_compat(adapter, CXGBE_PAGE_SIZE, L1_CACHE_BYTES,
T5_LAST_REV);
/*
* Keep the chip default offset to deliver Ingress packets into our
* DMA buffers to zero
*/
rx_dma_offset = 0;
t4_set_reg_field(adapter, A_SGE_CONTROL, V_PKTSHIFT(M_PKTSHIFT),
V_PKTSHIFT(rx_dma_offset));
t4_set_reg_field(adapter, A_SGE_FLM_CFG,
V_CREDITCNT(M_CREDITCNT) | M_CREDITCNTPACKING,
V_CREDITCNT(3) | V_CREDITCNTPACKING(1));
t4_set_reg_field(adapter, A_SGE_INGRESS_RX_THRESHOLD,
V_THRESHOLD_3(M_THRESHOLD_3), V_THRESHOLD_3(32U));
t4_set_reg_field(adapter, A_SGE_CONTROL2, V_IDMAARBROUNDROBIN(1U),
V_IDMAARBROUNDROBIN(1U));
/*
* Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
* adds the pseudo header itself.
*/
t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG,
F_CSUM_HAS_PSEUDO_HDR, 0);
return 0;
}
/*
* Attempt to initialize the adapter via a Firmware Configuration File.
*/
static int adap_init0_config(struct adapter *adapter, int reset)
{
int ret;
/*
* Reset device if necessary.
*/
if (reset) {
ret = t4_fw_reset(adapter, adapter->mbox,
F_PIORSTMODE | F_PIORST);
if (ret < 0) {
dev_warn(adapter, "Firmware reset failed, error %d\n",
-ret);
goto bye;
}
}
ret = cxgbe_load_fw_config(adapter);
if (ret < 0)
goto bye;
/*
* Tweak configuration based on system architecture, etc.
*/
ret = adap_init0_tweaks(adapter);
if (ret < 0) {
dev_warn(adapter, "Unable to do init0-tweaks %d\n", -ret);
goto bye;
}
/*
* And finally tell the firmware to initialize itself using the
* parameters from the Configuration File.
*/
ret = t4_fw_initialize(adapter, adapter->mbox);
if (ret < 0) {
dev_warn(adapter, "Initializing Firmware failed, error %d\n",
-ret);
goto bye;
}
return 0;
bye:
dev_debug(adapter, "%s: returning ret = %d ..\n", __func__, ret);
return ret;
}
static int adap_init0(struct adapter *adap)
{
struct fw_caps_config_cmd caps_cmd;
int ret = 0;
u32 v, port_vec;
enum dev_state state;
u32 params[7], val[7];
int reset = 1;
int mbox = adap->mbox;
/*
* Contact FW, advertising Master capability.
*/
ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
if (ret < 0) {
dev_err(adap, "%s: could not connect to FW, error %d\n",
__func__, -ret);
goto bye;
}
CXGBE_DEBUG_MBOX(adap, "%s: adap->mbox = %d; ret = %d\n", __func__,
adap->mbox, ret);
if (ret == mbox)
adap->flags |= MASTER_PF;
if (state == DEV_STATE_INIT) {
/*
* Force halt and reset FW because a previous instance may have
* exited abnormally without properly shutting down
*/
ret = t4_fw_halt(adap, adap->mbox, reset);
if (ret < 0) {
dev_err(adap, "Failed to halt. Exit.\n");
goto bye;
}
ret = t4_fw_restart(adap, adap->mbox, reset);
if (ret < 0) {
dev_err(adap, "Failed to restart. Exit.\n");
goto bye;
}
state = (enum dev_state)((unsigned)state & ~DEV_STATE_INIT);
}
t4_get_version_info(adap);
ret = t4_get_core_clock(adap, &adap->params.vpd);
if (ret < 0) {
dev_err(adap, "%s: could not get core clock, error %d\n",
__func__, -ret);
goto bye;
}
/*
* If the firmware is initialized already (and we're not forcing a
* master initialization), note that we're living with existing
* adapter parameters. Otherwise, it's time to try initializing the
* adapter ...
*/
if (state == DEV_STATE_INIT) {
dev_info(adap, "Coming up as %s: Adapter already initialized\n",
adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
} else {
dev_info(adap, "Coming up as MASTER: Initializing adapter\n");
ret = adap_init0_config(adap, reset);
if (ret == -ENOENT) {
dev_err(adap,
"No Configuration File present on adapter. Using hard-wired configuration parameters.\n");
goto bye;
}
}
if (ret < 0) {
dev_err(adap, "could not initialize adapter, error %d\n", -ret);
goto bye;
}
/* Now that we've successfully configured and initialized the adapter
* (or found it already initialized), we can ask the Firmware what
* resources it has provisioned for us.
*/
ret = t4_get_pfres(adap);
if (ret) {
dev_err(adap->pdev_dev,
"Unable to retrieve resource provisioning info\n");
goto bye;
}
/* Find out what ports are available to us. */
v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
if (ret < 0) {
dev_err(adap, "%s: failure in t4_query_params; error = %d\n",
__func__, ret);
goto bye;
}
adap->params.nports = hweight32(port_vec);
adap->params.portvec = port_vec;
dev_debug(adap, "%s: adap->params.nports = %u\n", __func__,
adap->params.nports);
/*
* Give the SGE code a chance to pull in anything that it needs ...
* Note that this must be called after we retrieve our VPD parameters
* in order to know how to convert core ticks to seconds, etc.
*/
ret = t4_sge_init(adap);
if (ret < 0) {
dev_err(adap, "t4_sge_init failed with error %d\n",
-ret);
goto bye;
}
/*
* Grab some of our basic fundamental operating parameters.
*/
params[0] = CXGBE_FW_PARAM_PFVF(L2T_START);
params[1] = CXGBE_FW_PARAM_PFVF(L2T_END);
params[2] = CXGBE_FW_PARAM_PFVF(FILTER_START);
params[3] = CXGBE_FW_PARAM_PFVF(FILTER_END);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4, params, val);
if (ret < 0)
goto bye;
adap->l2t_start = val[0];
adap->l2t_end = val[1];
adap->tids.ftid_base = val[2];
adap->tids.nftids = val[3] - val[2] + 1;
params[0] = CXGBE_FW_PARAM_PFVF(CLIP_START);
params[1] = CXGBE_FW_PARAM_PFVF(CLIP_END);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
if (ret < 0)
goto bye;
adap->clipt_start = val[0];
adap->clipt_end = val[1];
/*
* Get device capabilities so we can determine what resources we need
* to manage.
*/
memset(&caps_cmd, 0, sizeof(caps_cmd));
caps_cmd.op_to_write = htonl(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_READ);
caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
&caps_cmd);
if (ret < 0)
goto bye;
if ((caps_cmd.niccaps & cpu_to_be16(FW_CAPS_CONFIG_NIC_HASHFILTER)) &&
is_t6(adap->params.chip)) {
if (cxgbe_init_hash_filter(adap) < 0)
goto bye;
}
/* See if FW supports FW_FILTER2 work request */
if (is_t4(adap->params.chip)) {
adap->params.filter2_wr_support = 0;
} else {
params[0] = CXGBE_FW_PARAM_DEV(FILTER2_WR);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1, params, val);
adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
}
/* Check if FW supports returning vin.
* If this is not supported, driver will interpret
* these values from viid.
*/
params[0] = CXGBE_FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1, params, val);
adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
/* query tid-related parameters */
params[0] = CXGBE_FW_PARAM_DEV(NTID);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
params, val);
if (ret < 0)
goto bye;
adap->tids.ntids = val[0];
adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
/* If we're running on newer firmware, let it know that we're
* prepared to deal with encapsulated CPL messages. Older
* firmware won't understand this and we'll just get
* unencapsulated messages ...
*/
params[0] = CXGBE_FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
val[0] = 1;
(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
/*
* Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
* capability. Earlier versions of the firmware didn't have the
* ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
* permission to use ULPTX MEMWRITE DSGL.
*/
if (is_t4(adap->params.chip)) {
adap->params.ulptx_memwrite_dsgl = false;
} else {
params[0] = CXGBE_FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1, params, val);
adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
}
/* Query for max number of packets that can be coalesced for Tx */
params[0] = CXGBE_FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
if (!ret && val[0] > 0)
adap->params.max_tx_coalesce_num = val[0];
else
adap->params.max_tx_coalesce_num = ETH_COALESCE_PKT_NUM;
params[0] = CXGBE_FW_PARAM_DEV(VI_ENABLE_INGRESS_AFTER_LINKUP);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
adap->params.vi_enable_rx = (ret == 0 && val[0] != 0);
/* Read the RAW MPS entries. In T6, the last 2 TCAM entries
* are reserved for RAW MAC addresses (rawf = 2, one per port).
*/
if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
params[0] = CXGBE_FW_PARAM_PFVF(RAWF_START);
params[1] = CXGBE_FW_PARAM_PFVF(RAWF_END);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
params, val);
if (ret == 0) {
adap->params.rawf_start = val[0];
adap->params.rawf_size = val[1] - val[0] + 1;
}
}
/*
* The MTU/MSS Table is initialized by now, so load their values. If
* we're initializing the adapter, then we'll make any modifications
* we want to the MTU/MSS Table and also initialize the congestion
* parameters.
*/
t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
if (state != DEV_STATE_INIT) {
int i;
/*
* The default MTU Table contains values 1492 and 1500.
* However, for TCP, it's better to have two values which are
* a multiple of 8 +/- 4 bytes apart near this popular MTU.
* This allows us to have a TCP Data Payload which is a
* multiple of 8 regardless of what combination of TCP Options
* are in use (always a multiple of 4 bytes) which is
* important for performance reasons. For instance, if no
* options are in use, then we have a 20-byte IP header and a
* 20-byte TCP header. In this case, a 1500-byte MSS would
* result in a TCP Data Payload of 1500 - 40 == 1460 bytes
* which is not a multiple of 8. So using an MSS of 1488 in
* this case results in a TCP Data Payload of 1448 bytes which
* is a multiple of 8. On the other hand, if 12-byte TCP Time
* Stamps have been negotiated, then an MTU of 1500 bytes
* results in a TCP Data Payload of 1448 bytes which, as
* above, is a multiple of 8 bytes ...
*/
for (i = 0; i < NMTUS; i++)
if (adap->params.mtus[i] == 1492) {
adap->params.mtus[i] = 1488;
break;
}
t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
adap->params.b_wnd);
}
t4_init_sge_params(adap);
ret = configure_filter_mode_mask(adap);
if (ret < 0)
goto bye;
t4_init_tp_params(adap);
configure_pcie_ext_tag(adap);
configure_vlan_types(adap);
cxgbe_configure_max_ethqsets(adap);
adap->params.drv_memwin = MEMWIN_NIC;
adap->flags |= FW_OK;
dev_debug(adap, "%s: returning zero..\n", __func__);
return 0;
/*
* Something bad happened. If a command timed out or failed with EIO
* FW does not operate within its spec or something catastrophic
* happened to HW/FW, stop issuing commands.
*/
bye:
if (ret != -ETIMEDOUT && ret != -EIO)
t4_fw_bye(adap, adap->mbox);
return ret;
}
/**
* t4_os_portmod_changed - handle port module changes
* @adap: the adapter associated with the module change
* @port_id: the port index whose module status has changed
*
* This is the OS-dependent handler for port module changes. It is
* invoked when a port module is removed or inserted for any OS-specific
* processing.
*/
void t4_os_portmod_changed(const struct adapter *adap, int port_id)
{
static const char * const mod_str[] = {
NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
};
const struct port_info *pi = adap2pinfo(adap, port_id);
if (pi->link_cfg.mod_type == FW_PORT_MOD_TYPE_NONE)
dev_info(adap, "Port%d: port module unplugged\n", pi->port_id);
else if (pi->link_cfg.mod_type < ARRAY_SIZE(mod_str))
dev_info(adap, "Port%d: %s port module inserted\n", pi->port_id,
mod_str[pi->link_cfg.mod_type]);
else if (pi->link_cfg.mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
dev_info(adap, "Port%d: unsupported port module inserted\n",
pi->port_id);
else if (pi->link_cfg.mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
dev_info(adap, "Port%d: unknown port module inserted\n",
pi->port_id);
else if (pi->link_cfg.mod_type == FW_PORT_MOD_TYPE_ERROR)
dev_info(adap, "Port%d: transceiver module error\n",
pi->port_id);
else
dev_info(adap, "Port%d: unknown module type %d inserted\n",
pi->port_id, pi->link_cfg.mod_type);
}
void t4_os_link_changed(struct adapter *adap, int port_id)
{
struct port_info *pi = adap2pinfo(adap, port_id);
/* If link status has not changed or if firmware doesn't
* support enabling/disabling VI's Rx path during runtime,
* then return.
*/
if (adap->params.vi_enable_rx == 0 ||
pi->vi_en_rx == pi->link_cfg.link_ok)
return;
/* Don't enable VI Rx path, if link has been administratively
* turned off.
*/
if (pi->vi_en_tx == 0 && pi->vi_en_rx == 0)
return;
/* When link goes down, disable the port's Rx path to drop
* Rx traffic closer to the wire, instead of processing it
* further in the Rx pipeline. The Rx path will be re-enabled
* once the link up message comes in firmware event queue.
*/
pi->vi_en_rx = pi->link_cfg.link_ok;
t4_enable_vi(adap, adap->mbox, pi->viid, pi->vi_en_rx, pi->vi_en_tx);
}
bool cxgbe_force_linkup(struct adapter *adap)
{
if (is_pf4(adap))
return false; /* force_linkup not required for pf driver */
return adap->devargs.force_link_up;
}
/**
* link_start - enable a port
* @dev: the port to enable
*
* Performs the MAC and PHY actions needed to enable a port.
*/
int cxgbe_link_start(struct port_info *pi)
{
struct adapter *adapter = pi->adapter;
u64 conf_offloads;
unsigned int mtu;
int ret;
mtu = pi->eth_dev->data->mtu;
conf_offloads = pi->eth_dev->data->dev_conf.rxmode.offloads;
/*
* We do not set address filters and promiscuity here, the stack does
* that step explicitly.
*/
ret = t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, -1, -1, -1,
!!(conf_offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP),
true);
if (ret == 0) {
ret = cxgbe_mpstcam_modify(pi, (int)pi->xact_addr_filt,
(u8 *)&pi->eth_dev->data->mac_addrs[0]);
if (ret >= 0) {
pi->xact_addr_filt = ret;
ret = 0;
}
}
if (ret == 0 && is_pf4(adapter))
ret = t4_link_l1cfg(pi, pi->link_cfg.admin_caps);
if (ret == 0) {
/* Disable VI Rx until link up message is received in
* firmware event queue, if firmware supports enabling/
* disabling VI Rx at runtime.
*/
pi->vi_en_rx = adapter->params.vi_enable_rx ? 0 : 1;
pi->vi_en_tx = 1;
ret = t4_enable_vi_params(adapter, adapter->mbox, pi->viid,
pi->vi_en_rx, pi->vi_en_tx, false);
}
if (ret == 0 && cxgbe_force_linkup(adapter))
pi->eth_dev->data->dev_link.link_status = RTE_ETH_LINK_UP;
return ret;
}
/**
* cxgbe_write_rss_conf - flash the RSS configuration for a given port
* @pi: the port
* @rss_hf: Hash configuration to apply
*/
int cxgbe_write_rss_conf(const struct port_info *pi, uint64_t rss_hf)
{
struct adapter *adapter = pi->adapter;
const struct sge_eth_rxq *rxq;
u64 flags = 0;
u16 rss;
int err;
/* Should never be called before setting up sge eth rx queues */
if (!(adapter->flags & FULL_INIT_DONE)) {
dev_err(adap, "%s No RXQs available on port %d\n",
__func__, pi->port_id);
return -EINVAL;
}
/* Don't allow unsupported hash functions */
if (rss_hf & ~CXGBE_RSS_HF_ALL)
return -EINVAL;
if (rss_hf & CXGBE_RSS_HF_IPV4_MASK)
flags |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_TCP)
flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_UDP)
flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
F_FW_RSS_VI_CONFIG_CMD_UDPEN;
if (rss_hf & CXGBE_RSS_HF_IPV6_MASK)
flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
if (rss_hf & CXGBE_RSS_HF_TCP_IPV6_MASK)
flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
if (rss_hf & CXGBE_RSS_HF_UDP_IPV6_MASK)
flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
F_FW_RSS_VI_CONFIG_CMD_UDPEN;
rxq = &adapter->sge.ethrxq[pi->first_rxqset];
rss = rxq[0].rspq.abs_id;
/* If Tunnel All Lookup isn't specified in the global RSS
* Configuration, then we need to specify a default Ingress
* Queue for any ingress packets which aren't hashed. We'll
* use our first ingress queue ...
*/
err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
flags, rss);
return err;
}
/**
* cxgbe_write_rss - write the RSS table for a given port
* @pi: the port
* @queues: array of queue indices for RSS
*
* Sets up the portion of the HW RSS table for the port's VI to distribute
* packets to the Rx queues in @queues.
*/
int cxgbe_write_rss(const struct port_info *pi, const u16 *queues)
{
u16 *rss;
int i, err;
struct adapter *adapter = pi->adapter;
const struct sge_eth_rxq *rxq;
/* Should never be called before setting up sge eth rx queues */
BUG_ON(!(adapter->flags & FULL_INIT_DONE));
rxq = &adapter->sge.ethrxq[pi->first_rxqset];
rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
if (!rss)
return -ENOMEM;
/* map the queue indices to queue ids */
for (i = 0; i < pi->rss_size; i++, queues++)
rss[i] = rxq[*queues].rspq.abs_id;
err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
pi->rss_size, rss, pi->rss_size);
rte_free(rss);
return err;
}
/**
* setup_rss - configure RSS
* @adapter: the adapter
*
* Sets up RSS to distribute packets to multiple receive queues. We
* configure the RSS CPU lookup table to distribute to the number of HW
* receive queues, and the response queue lookup table to narrow that
* down to the response queues actually configured for each port.
* We always configure the RSS mapping for all ports since the mapping
* table has plenty of entries.
*/
int cxgbe_setup_rss(struct port_info *pi)
{
int j, err;
struct adapter *adapter = pi->adapter;
dev_debug(adapter, "%s: pi->rss_size = %u; pi->n_rx_qsets = %u\n",
__func__, pi->rss_size, pi->n_rx_qsets);
if (!(pi->flags & PORT_RSS_DONE)) {
if (adapter->flags & FULL_INIT_DONE) {
/* Fill default values with equal distribution */
for (j = 0; j < pi->rss_size; j++)
pi->rss[j] = j % pi->n_rx_qsets;
err = cxgbe_write_rss(pi, pi->rss);
if (err)
return err;
err = cxgbe_write_rss_conf(pi, pi->rss_hf);
if (err)
return err;
pi->flags |= PORT_RSS_DONE;
}
}
return 0;
}
/*
* Enable NAPI scheduling and interrupt generation for all Rx queues.
*/
static void enable_rx(struct adapter *adap, struct sge_rspq *q)
{
/* 0-increment GTS to start the timer and enable interrupts */
t4_write_reg(adap, is_pf4(adap) ? MYPF_REG(A_SGE_PF_GTS) :
T4VF_SGE_BASE_ADDR + A_SGE_VF_GTS,
V_SEINTARM(q->intr_params) |
V_INGRESSQID(q->cntxt_id));
}
void cxgbe_enable_rx_queues(struct port_info *pi)
{
struct adapter *adap = pi->adapter;
struct sge *s = &adap->sge;
unsigned int i;
for (i = 0; i < pi->n_rx_qsets; i++)
enable_rx(adap, &s->ethrxq[pi->first_rxqset + i].rspq);
}
/**
* fw_caps_to_speed_caps - translate Firmware Port Caps to Speed Caps.
* @port_type: Firmware Port Type
* @fw_caps: Firmware Port Capabilities
* @speed_caps: Device Info Speed Capabilities
*
* Translate a Firmware Port Capabilities specification to Device Info
* Speed Capabilities.
*/
static void fw_caps_to_speed_caps(enum fw_port_type port_type,
unsigned int fw_caps,
u32 *speed_caps)
{
#define SET_SPEED(__speed_name) \
do { \
*speed_caps |= RTE_ETH_LINK_ ## __speed_name; \
} while (0)
#define FW_CAPS_TO_SPEED(__fw_name) \
do { \
if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
SET_SPEED(__fw_name); \
} while (0)
switch (port_type) {
case FW_PORT_TYPE_BT_SGMII:
case FW_PORT_TYPE_BT_XFI:
case FW_PORT_TYPE_BT_XAUI:
FW_CAPS_TO_SPEED(SPEED_100M);
FW_CAPS_TO_SPEED(SPEED_1G);
FW_CAPS_TO_SPEED(SPEED_10G);
break;
case FW_PORT_TYPE_KX4:
case FW_PORT_TYPE_KX:
case FW_PORT_TYPE_FIBER_XFI:
case FW_PORT_TYPE_FIBER_XAUI:
case FW_PORT_TYPE_SFP:
case FW_PORT_TYPE_QSFP_10G:
case FW_PORT_TYPE_QSA:
FW_CAPS_TO_SPEED(SPEED_1G);
FW_CAPS_TO_SPEED(SPEED_10G);
break;
case FW_PORT_TYPE_KR:
SET_SPEED(SPEED_10G);
break;
case FW_PORT_TYPE_BP_AP:
case FW_PORT_TYPE_BP4_AP:
SET_SPEED(SPEED_1G);
SET_SPEED(SPEED_10G);
break;
case FW_PORT_TYPE_BP40_BA:
case FW_PORT_TYPE_QSFP:
SET_SPEED(SPEED_40G);
break;
case FW_PORT_TYPE_CR_QSFP:
case FW_PORT_TYPE_SFP28:
case FW_PORT_TYPE_KR_SFP28:
FW_CAPS_TO_SPEED(SPEED_1G);
FW_CAPS_TO_SPEED(SPEED_10G);
FW_CAPS_TO_SPEED(SPEED_25G);
break;
case FW_PORT_TYPE_CR2_QSFP:
SET_SPEED(SPEED_50G);
break;
case FW_PORT_TYPE_KR4_100G:
case FW_PORT_TYPE_CR4_QSFP:
FW_CAPS_TO_SPEED(SPEED_25G);
FW_CAPS_TO_SPEED(SPEED_40G);
FW_CAPS_TO_SPEED(SPEED_50G);
FW_CAPS_TO_SPEED(SPEED_100G);
break;
default:
break;
}
#undef FW_CAPS_TO_SPEED
#undef SET_SPEED
}
/**
* cxgbe_get_speed_caps - Fetch supported speed capabilities
* @pi: Underlying port's info
* @speed_caps: Device Info speed capabilities
*
* Fetch supported speed capabilities of the underlying port.
*/
void cxgbe_get_speed_caps(struct port_info *pi, u32 *speed_caps)
{
*speed_caps = 0;
fw_caps_to_speed_caps(pi->link_cfg.port_type, pi->link_cfg.pcaps,
speed_caps);
if (!(pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG))
*speed_caps |= RTE_ETH_LINK_SPEED_FIXED;
}
/**
* cxgbe_set_link_status - Set device link up or down.
* @pi: Underlying port's info
* @status: 0 - down, 1 - up
*
* Set the device link up or down.
*/
int cxgbe_set_link_status(struct port_info *pi, bool status)
{
struct adapter *adapter = pi->adapter;
int err = 0;
/* Wait for link up message from firmware to enable Rx path,
* if firmware supports enabling/disabling VI Rx at runtime.
*/
pi->vi_en_rx = adapter->params.vi_enable_rx ? 0 : status;
pi->vi_en_tx = status;
err = t4_enable_vi(adapter, adapter->mbox, pi->viid, pi->vi_en_rx,
pi->vi_en_tx);
if (err) {
dev_err(adapter, "%s: disable_vi failed: %d\n", __func__, err);
return err;
}
if (!status)
t4_reset_link_config(adapter, pi->pidx);
return 0;
}
/**
* cxgb_up - enable the adapter
* @adap: adapter being enabled
*
* Called when the first port is enabled, this function performs the
* actions necessary to make an adapter operational, such as completing
* the initialization of HW modules, and enabling interrupts.
*/
int cxgbe_up(struct adapter *adap)
{
enable_rx(adap, &adap->sge.fw_evtq);
t4_sge_tx_monitor_start(adap);
if (is_pf4(adap))
t4_intr_enable(adap);
adap->flags |= FULL_INIT_DONE;
/* TODO: deadman watchdog ?? */
return 0;
}
/*
* Close the port
*/
int cxgbe_down(struct port_info *pi)
{
return cxgbe_set_link_status(pi, false);
}
/*
* Release resources when all the ports have been stopped.
*/
void cxgbe_close(struct adapter *adapter)
{
if (adapter->flags & FULL_INIT_DONE) {
tid_free(&adapter->tids);
t4_cleanup_mpstcam(adapter);
t4_cleanup_clip_tbl(adapter);
t4_cleanup_l2t(adapter);
t4_cleanup_smt(adapter);
if (is_pf4(adapter))
t4_intr_disable(adapter);
t4_sge_tx_monitor_stop(adapter);
t4_free_sge_resources(adapter);
adapter->flags &= ~FULL_INIT_DONE;
}
cxgbe_cfg_queues_free(adapter);
if (is_pf4(adapter) && (adapter->flags & FW_OK))
t4_fw_bye(adapter, adapter->mbox);
}
static void adap_smt_index(struct adapter *adapter, u32 *smt_start_idx,
u32 *smt_size)
{
u32 params[2], smt_val[2];
int ret;
params[0] = CXGBE_FW_PARAM_PFVF(GET_SMT_START);
params[1] = CXGBE_FW_PARAM_PFVF(GET_SMT_SIZE);
ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2, params, smt_val);
/* if FW doesn't recognize this command then set it to default setting
* which is start index as 0 and size as 256.
*/
if (ret < 0) {
*smt_start_idx = 0;
*smt_size = SMT_SIZE;
} else {
*smt_start_idx = smt_val[0];
/* smt size can be zero, if nsmt is not yet configured in
* the config file or set as zero, then configure all the
* remaining entries to this PF itself.
*/
if (!smt_val[1])
*smt_size = SMT_SIZE - *smt_start_idx;
else
*smt_size = smt_val[1];
}
}
int cxgbe_probe(struct adapter *adapter)
{
u32 smt_start_idx, smt_size;
struct port_info *pi;
int func, i;
int err = 0;
u32 whoami;
int chip;
whoami = t4_read_reg(adapter, A_PL_WHOAMI);
chip = t4_get_chip_type(adapter,
CHELSIO_PCI_ID_VER(adapter->pdev->id.device_id));
if (chip < 0)
return chip;
func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
adapter->mbox = func;
adapter->pf = func;
t4_os_lock_init(&adapter->mbox_lock);
TAILQ_INIT(&adapter->mbox_list);
t4_os_lock_init(&adapter->win0_lock);
err = t4_prep_adapter(adapter);
if (err)
return err;
setup_memwin(adapter);
err = adap_init0(adapter);
if (err) {
dev_err(adapter, "%s: Adapter initialization failed, error %d\n",
__func__, err);
goto out_free;
}
if (!is_t4(adapter->params.chip)) {
/*
* The userspace doorbell BAR is split evenly into doorbell
* regions, each associated with an egress queue. If this
* per-queue region is large enough (at least UDBS_SEG_SIZE)
* then it can be used to submit a tx work request with an
* implied doorbell. Enable write combining on the BAR if
* there is room for such work requests.
*/
int s_qpp, qpp, num_seg;
s_qpp = (S_QUEUESPERPAGEPF0 +
(S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) *
adapter->pf);
qpp = 1 << ((t4_read_reg(adapter,
A_SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp)
& M_QUEUESPERPAGEPF0);
num_seg = CXGBE_PAGE_SIZE / UDBS_SEG_SIZE;
if (qpp > num_seg)
dev_warn(adapter, "Incorrect SGE EGRESS QUEUES_PER_PAGE configuration, continuing in debug mode\n");
adapter->bar2 = (void *)adapter->pdev->mem_resource[2].addr;
if (!adapter->bar2) {
dev_err(adapter, "cannot map device bar2 region\n");
err = -ENOMEM;
goto out_free;
}
t4_write_reg(adapter, A_SGE_STAT_CFG, V_STATSOURCE_T5(7) |
V_STATMODE(0));
}
for_each_port(adapter, i) {
const unsigned int numa_node = rte_socket_id();
char name[RTE_ETH_NAME_MAX_LEN];
struct rte_eth_dev *eth_dev;
snprintf(name, sizeof(name), "%s_%d",
adapter->pdev->device.name, i);
if (i == 0) {
/* First port is already allocated by DPDK */
eth_dev = adapter->eth_dev;
goto allocate_mac;
}
/*
* now do all data allocation - for eth_dev structure,
* and internal (private) data for the remaining ports
*/
/* reserve an ethdev entry */
eth_dev = rte_eth_dev_allocate(name);
if (!eth_dev)
goto out_free;
eth_dev->data->dev_private =
rte_zmalloc_socket(name, sizeof(struct port_info),
RTE_CACHE_LINE_SIZE, numa_node);
if (!eth_dev->data->dev_private)
goto out_free;
allocate_mac:
pi = eth_dev->data->dev_private;
adapter->port[i] = pi;
pi->eth_dev = eth_dev;
pi->adapter = adapter;
pi->xact_addr_filt = -1;
pi->port_id = i;
pi->pidx = i;
pi->eth_dev->device = &adapter->pdev->device;
pi->eth_dev->dev_ops = adapter->eth_dev->dev_ops;
pi->eth_dev->tx_pkt_burst = adapter->eth_dev->tx_pkt_burst;
pi->eth_dev->rx_pkt_burst = adapter->eth_dev->rx_pkt_burst;
rte_eth_copy_pci_info(pi->eth_dev, adapter->pdev);
pi->eth_dev->data->mac_addrs = rte_zmalloc(name,
RTE_ETHER_ADDR_LEN, 0);
if (!pi->eth_dev->data->mac_addrs) {
dev_err(adapter, "%s: Mem allocation failed for storing mac addr, aborting\n",
__func__);
err = -1;
goto out_free;
}
if (i > 0) {
/* First port will be notified by upper layer */
rte_eth_dev_probing_finish(eth_dev);
}
}
if (adapter->flags & FW_OK) {
err = t4_port_init(adapter, adapter->mbox, adapter->pf, 0);
if (err) {
dev_err(adapter, "%s: t4_port_init failed with err %d\n",
__func__, err);
goto out_free;
}
}
err = cxgbe_cfg_queues(adapter->eth_dev);
if (err)
goto out_free;
cxgbe_print_adapter_info(adapter);
cxgbe_print_port_info(adapter);
adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
adapter->clipt_end);
if (!adapter->clipt) {
/* We tolerate a lack of clip_table, giving up some
* functionality
*/
dev_warn(adapter, "could not allocate CLIP. Continuing\n");
}
adap_smt_index(adapter, &smt_start_idx, &smt_size);
adapter->smt = t4_init_smt(smt_start_idx, smt_size);
if (!adapter->smt)
dev_warn(adapter, "could not allocate SMT, continuing\n");
adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
if (!adapter->l2t) {
/* We tolerate a lack of L2T, giving up some functionality */
dev_warn(adapter, "could not allocate L2T. Continuing\n");
}
if (tid_init(&adapter->tids) < 0) {
/* Disable filtering support */
dev_warn(adapter, "could not allocate TID table, "
"filter support disabled. Continuing\n");
}
t4_os_lock_init(&adapter->flow_lock);
adapter->mpstcam = t4_init_mpstcam(adapter);
if (!adapter->mpstcam)
dev_warn(adapter, "could not allocate mps tcam table."
" Continuing\n");
if (is_hashfilter(adapter)) {
if (t4_read_reg(adapter, A_LE_DB_CONFIG) & F_HASHEN) {
u32 hash_base, hash_reg;
hash_reg = A_LE_DB_TID_HASHBASE;
hash_base = t4_read_reg(adapter, hash_reg);
adapter->tids.hash_base = hash_base / 4;
}
} else {
/* Disable hash filtering support */
dev_warn(adapter,
"Maskless filter support disabled. Continuing\n");
}
err = cxgbe_init_rss(adapter);
if (err)
goto out_free;
return 0;
out_free:
cxgbe_cfg_queues_free(adapter);
for_each_port(adapter, i) {
pi = adap2pinfo(adapter, i);
if (pi->viid != 0)
t4_free_vi(adapter, adapter->mbox, adapter->pf,
0, pi->viid);
rte_eth_dev_release_port(pi->eth_dev);
}
if (adapter->flags & FW_OK)
t4_fw_bye(adapter, adapter->mbox);
return -err;
}