bc05f34e95
Modify the copyright of the file header. Signed-off-by: Guinan Sun <guinanx.sun@intel.com> Reviewed-by: Wei Zhao <wei.zhao1@intel.com>
1365 lines
34 KiB
C
1365 lines
34 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2001-2020 Intel Corporation
|
|
*/
|
|
|
|
#include "e1000_api.h"
|
|
|
|
STATIC void e1000_reload_nvm_generic(struct e1000_hw *hw);
|
|
|
|
/**
|
|
* e1000_init_nvm_ops_generic - Initialize NVM function pointers
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Setups up the function pointers to no-op functions
|
|
**/
|
|
void e1000_init_nvm_ops_generic(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
DEBUGFUNC("e1000_init_nvm_ops_generic");
|
|
|
|
/* Initialize function pointers */
|
|
nvm->ops.init_params = e1000_null_ops_generic;
|
|
nvm->ops.acquire = e1000_null_ops_generic;
|
|
nvm->ops.read = e1000_null_read_nvm;
|
|
nvm->ops.release = e1000_null_nvm_generic;
|
|
nvm->ops.reload = e1000_reload_nvm_generic;
|
|
nvm->ops.update = e1000_null_ops_generic;
|
|
nvm->ops.valid_led_default = e1000_null_led_default;
|
|
nvm->ops.validate = e1000_null_ops_generic;
|
|
nvm->ops.write = e1000_null_write_nvm;
|
|
}
|
|
|
|
/**
|
|
* e1000_null_nvm_read - No-op function, return 0
|
|
* @hw: pointer to the HW structure
|
|
* @a: dummy variable
|
|
* @b: dummy variable
|
|
* @c: dummy variable
|
|
**/
|
|
s32 e1000_null_read_nvm(struct e1000_hw E1000_UNUSEDARG *hw,
|
|
u16 E1000_UNUSEDARG a, u16 E1000_UNUSEDARG b,
|
|
u16 E1000_UNUSEDARG *c)
|
|
{
|
|
DEBUGFUNC("e1000_null_read_nvm");
|
|
UNREFERENCED_4PARAMETER(hw, a, b, c);
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_null_nvm_generic - No-op function, return void
|
|
* @hw: pointer to the HW structure
|
|
**/
|
|
void e1000_null_nvm_generic(struct e1000_hw E1000_UNUSEDARG *hw)
|
|
{
|
|
DEBUGFUNC("e1000_null_nvm_generic");
|
|
UNREFERENCED_1PARAMETER(hw);
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* e1000_null_led_default - No-op function, return 0
|
|
* @hw: pointer to the HW structure
|
|
* @data: dummy variable
|
|
**/
|
|
s32 e1000_null_led_default(struct e1000_hw E1000_UNUSEDARG *hw,
|
|
u16 E1000_UNUSEDARG *data)
|
|
{
|
|
DEBUGFUNC("e1000_null_led_default");
|
|
UNREFERENCED_2PARAMETER(hw, data);
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_null_write_nvm - No-op function, return 0
|
|
* @hw: pointer to the HW structure
|
|
* @a: dummy variable
|
|
* @b: dummy variable
|
|
* @c: dummy variable
|
|
**/
|
|
s32 e1000_null_write_nvm(struct e1000_hw E1000_UNUSEDARG *hw,
|
|
u16 E1000_UNUSEDARG a, u16 E1000_UNUSEDARG b,
|
|
u16 E1000_UNUSEDARG *c)
|
|
{
|
|
DEBUGFUNC("e1000_null_write_nvm");
|
|
UNREFERENCED_4PARAMETER(hw, a, b, c);
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_raise_eec_clk - Raise EEPROM clock
|
|
* @hw: pointer to the HW structure
|
|
* @eecd: pointer to the EEPROM
|
|
*
|
|
* Enable/Raise the EEPROM clock bit.
|
|
**/
|
|
STATIC void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
|
|
{
|
|
*eecd = *eecd | E1000_EECD_SK;
|
|
E1000_WRITE_REG(hw, E1000_EECD, *eecd);
|
|
E1000_WRITE_FLUSH(hw);
|
|
usec_delay(hw->nvm.delay_usec);
|
|
}
|
|
|
|
/**
|
|
* e1000_lower_eec_clk - Lower EEPROM clock
|
|
* @hw: pointer to the HW structure
|
|
* @eecd: pointer to the EEPROM
|
|
*
|
|
* Clear/Lower the EEPROM clock bit.
|
|
**/
|
|
STATIC void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
|
|
{
|
|
*eecd = *eecd & ~E1000_EECD_SK;
|
|
E1000_WRITE_REG(hw, E1000_EECD, *eecd);
|
|
E1000_WRITE_FLUSH(hw);
|
|
usec_delay(hw->nvm.delay_usec);
|
|
}
|
|
|
|
/**
|
|
* e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
|
|
* @hw: pointer to the HW structure
|
|
* @data: data to send to the EEPROM
|
|
* @count: number of bits to shift out
|
|
*
|
|
* We need to shift 'count' bits out to the EEPROM. So, the value in the
|
|
* "data" parameter will be shifted out to the EEPROM one bit at a time.
|
|
* In order to do this, "data" must be broken down into bits.
|
|
**/
|
|
STATIC void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
|
|
{
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
u32 eecd = E1000_READ_REG(hw, E1000_EECD);
|
|
u32 mask;
|
|
|
|
DEBUGFUNC("e1000_shift_out_eec_bits");
|
|
|
|
mask = 0x01 << (count - 1);
|
|
if (nvm->type == e1000_nvm_eeprom_microwire)
|
|
eecd &= ~E1000_EECD_DO;
|
|
else
|
|
if (nvm->type == e1000_nvm_eeprom_spi)
|
|
eecd |= E1000_EECD_DO;
|
|
|
|
do {
|
|
eecd &= ~E1000_EECD_DI;
|
|
|
|
if (data & mask)
|
|
eecd |= E1000_EECD_DI;
|
|
|
|
E1000_WRITE_REG(hw, E1000_EECD, eecd);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
usec_delay(nvm->delay_usec);
|
|
|
|
e1000_raise_eec_clk(hw, &eecd);
|
|
e1000_lower_eec_clk(hw, &eecd);
|
|
|
|
mask >>= 1;
|
|
} while (mask);
|
|
|
|
eecd &= ~E1000_EECD_DI;
|
|
E1000_WRITE_REG(hw, E1000_EECD, eecd);
|
|
}
|
|
|
|
/**
|
|
* e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
|
|
* @hw: pointer to the HW structure
|
|
* @count: number of bits to shift in
|
|
*
|
|
* In order to read a register from the EEPROM, we need to shift 'count' bits
|
|
* in from the EEPROM. Bits are "shifted in" by raising the clock input to
|
|
* the EEPROM (setting the SK bit), and then reading the value of the data out
|
|
* "DO" bit. During this "shifting in" process the data in "DI" bit should
|
|
* always be clear.
|
|
**/
|
|
STATIC u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
|
|
{
|
|
u32 eecd;
|
|
u32 i;
|
|
u16 data;
|
|
|
|
DEBUGFUNC("e1000_shift_in_eec_bits");
|
|
|
|
eecd = E1000_READ_REG(hw, E1000_EECD);
|
|
|
|
eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
|
|
data = 0;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
data <<= 1;
|
|
e1000_raise_eec_clk(hw, &eecd);
|
|
|
|
eecd = E1000_READ_REG(hw, E1000_EECD);
|
|
|
|
eecd &= ~E1000_EECD_DI;
|
|
if (eecd & E1000_EECD_DO)
|
|
data |= 1;
|
|
|
|
e1000_lower_eec_clk(hw, &eecd);
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
/**
|
|
* e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion
|
|
* @hw: pointer to the HW structure
|
|
* @ee_reg: EEPROM flag for polling
|
|
*
|
|
* Polls the EEPROM status bit for either read or write completion based
|
|
* upon the value of 'ee_reg'.
|
|
**/
|
|
s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
|
|
{
|
|
u32 attempts = 100000;
|
|
u32 i, reg = 0;
|
|
|
|
DEBUGFUNC("e1000_poll_eerd_eewr_done");
|
|
|
|
for (i = 0; i < attempts; i++) {
|
|
if (ee_reg == E1000_NVM_POLL_READ)
|
|
reg = E1000_READ_REG(hw, E1000_EERD);
|
|
else
|
|
reg = E1000_READ_REG(hw, E1000_EEWR);
|
|
|
|
if (reg & E1000_NVM_RW_REG_DONE)
|
|
return E1000_SUCCESS;
|
|
|
|
usec_delay(5);
|
|
}
|
|
|
|
return -E1000_ERR_NVM;
|
|
}
|
|
|
|
/**
|
|
* e1000_acquire_nvm_generic - Generic request for access to EEPROM
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Set the EEPROM access request bit and wait for EEPROM access grant bit.
|
|
* Return successful if access grant bit set, else clear the request for
|
|
* EEPROM access and return -E1000_ERR_NVM (-1).
|
|
**/
|
|
s32 e1000_acquire_nvm_generic(struct e1000_hw *hw)
|
|
{
|
|
u32 eecd = E1000_READ_REG(hw, E1000_EECD);
|
|
s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
|
|
|
|
DEBUGFUNC("e1000_acquire_nvm_generic");
|
|
|
|
E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_REQ);
|
|
eecd = E1000_READ_REG(hw, E1000_EECD);
|
|
|
|
while (timeout) {
|
|
if (eecd & E1000_EECD_GNT)
|
|
break;
|
|
usec_delay(5);
|
|
eecd = E1000_READ_REG(hw, E1000_EECD);
|
|
timeout--;
|
|
}
|
|
|
|
if (!timeout) {
|
|
eecd &= ~E1000_EECD_REQ;
|
|
E1000_WRITE_REG(hw, E1000_EECD, eecd);
|
|
DEBUGOUT("Could not acquire NVM grant\n");
|
|
return -E1000_ERR_NVM;
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_standby_nvm - Return EEPROM to standby state
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Return the EEPROM to a standby state.
|
|
**/
|
|
STATIC void e1000_standby_nvm(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
u32 eecd = E1000_READ_REG(hw, E1000_EECD);
|
|
|
|
DEBUGFUNC("e1000_standby_nvm");
|
|
|
|
if (nvm->type == e1000_nvm_eeprom_microwire) {
|
|
eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
|
|
E1000_WRITE_REG(hw, E1000_EECD, eecd);
|
|
E1000_WRITE_FLUSH(hw);
|
|
usec_delay(nvm->delay_usec);
|
|
|
|
e1000_raise_eec_clk(hw, &eecd);
|
|
|
|
/* Select EEPROM */
|
|
eecd |= E1000_EECD_CS;
|
|
E1000_WRITE_REG(hw, E1000_EECD, eecd);
|
|
E1000_WRITE_FLUSH(hw);
|
|
usec_delay(nvm->delay_usec);
|
|
|
|
e1000_lower_eec_clk(hw, &eecd);
|
|
} else if (nvm->type == e1000_nvm_eeprom_spi) {
|
|
/* Toggle CS to flush commands */
|
|
eecd |= E1000_EECD_CS;
|
|
E1000_WRITE_REG(hw, E1000_EECD, eecd);
|
|
E1000_WRITE_FLUSH(hw);
|
|
usec_delay(nvm->delay_usec);
|
|
eecd &= ~E1000_EECD_CS;
|
|
E1000_WRITE_REG(hw, E1000_EECD, eecd);
|
|
E1000_WRITE_FLUSH(hw);
|
|
usec_delay(nvm->delay_usec);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* e1000_stop_nvm - Terminate EEPROM command
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Terminates the current command by inverting the EEPROM's chip select pin.
|
|
**/
|
|
void e1000_stop_nvm(struct e1000_hw *hw)
|
|
{
|
|
u32 eecd;
|
|
|
|
DEBUGFUNC("e1000_stop_nvm");
|
|
|
|
eecd = E1000_READ_REG(hw, E1000_EECD);
|
|
if (hw->nvm.type == e1000_nvm_eeprom_spi) {
|
|
/* Pull CS high */
|
|
eecd |= E1000_EECD_CS;
|
|
e1000_lower_eec_clk(hw, &eecd);
|
|
} else if (hw->nvm.type == e1000_nvm_eeprom_microwire) {
|
|
/* CS on Microwire is active-high */
|
|
eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
|
|
E1000_WRITE_REG(hw, E1000_EECD, eecd);
|
|
e1000_raise_eec_clk(hw, &eecd);
|
|
e1000_lower_eec_clk(hw, &eecd);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* e1000_release_nvm_generic - Release exclusive access to EEPROM
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Stop any current commands to the EEPROM and clear the EEPROM request bit.
|
|
**/
|
|
void e1000_release_nvm_generic(struct e1000_hw *hw)
|
|
{
|
|
u32 eecd;
|
|
|
|
DEBUGFUNC("e1000_release_nvm_generic");
|
|
|
|
e1000_stop_nvm(hw);
|
|
|
|
eecd = E1000_READ_REG(hw, E1000_EECD);
|
|
eecd &= ~E1000_EECD_REQ;
|
|
E1000_WRITE_REG(hw, E1000_EECD, eecd);
|
|
}
|
|
|
|
/**
|
|
* e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Setups the EEPROM for reading and writing.
|
|
**/
|
|
STATIC s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
u32 eecd = E1000_READ_REG(hw, E1000_EECD);
|
|
u8 spi_stat_reg;
|
|
|
|
DEBUGFUNC("e1000_ready_nvm_eeprom");
|
|
|
|
if (nvm->type == e1000_nvm_eeprom_microwire) {
|
|
/* Clear SK and DI */
|
|
eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
|
|
E1000_WRITE_REG(hw, E1000_EECD, eecd);
|
|
/* Set CS */
|
|
eecd |= E1000_EECD_CS;
|
|
E1000_WRITE_REG(hw, E1000_EECD, eecd);
|
|
} else if (nvm->type == e1000_nvm_eeprom_spi) {
|
|
u16 timeout = NVM_MAX_RETRY_SPI;
|
|
|
|
/* Clear SK and CS */
|
|
eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
|
|
E1000_WRITE_REG(hw, E1000_EECD, eecd);
|
|
E1000_WRITE_FLUSH(hw);
|
|
usec_delay(1);
|
|
|
|
/* Read "Status Register" repeatedly until the LSB is cleared.
|
|
* The EEPROM will signal that the command has been completed
|
|
* by clearing bit 0 of the internal status register. If it's
|
|
* not cleared within 'timeout', then error out.
|
|
*/
|
|
while (timeout) {
|
|
e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
|
|
hw->nvm.opcode_bits);
|
|
spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
|
|
if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
|
|
break;
|
|
|
|
usec_delay(5);
|
|
e1000_standby_nvm(hw);
|
|
timeout--;
|
|
}
|
|
|
|
if (!timeout) {
|
|
DEBUGOUT("SPI NVM Status error\n");
|
|
return -E1000_ERR_NVM;
|
|
}
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_read_nvm_spi - Read EEPROM's using SPI
|
|
* @hw: pointer to the HW structure
|
|
* @offset: offset of word in the EEPROM to read
|
|
* @words: number of words to read
|
|
* @data: word read from the EEPROM
|
|
*
|
|
* Reads a 16 bit word from the EEPROM.
|
|
**/
|
|
s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
|
|
{
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
u32 i = 0;
|
|
s32 ret_val;
|
|
u16 word_in;
|
|
u8 read_opcode = NVM_READ_OPCODE_SPI;
|
|
|
|
DEBUGFUNC("e1000_read_nvm_spi");
|
|
|
|
/* A check for invalid values: offset too large, too many words,
|
|
* and not enough words.
|
|
*/
|
|
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
|
|
(words == 0)) {
|
|
DEBUGOUT("nvm parameter(s) out of bounds\n");
|
|
return -E1000_ERR_NVM;
|
|
}
|
|
|
|
ret_val = nvm->ops.acquire(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
ret_val = e1000_ready_nvm_eeprom(hw);
|
|
if (ret_val)
|
|
goto release;
|
|
|
|
e1000_standby_nvm(hw);
|
|
|
|
if ((nvm->address_bits == 8) && (offset >= 128))
|
|
read_opcode |= NVM_A8_OPCODE_SPI;
|
|
|
|
/* Send the READ command (opcode + addr) */
|
|
e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
|
|
e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
|
|
|
|
/* Read the data. SPI NVMs increment the address with each byte
|
|
* read and will roll over if reading beyond the end. This allows
|
|
* us to read the whole NVM from any offset
|
|
*/
|
|
for (i = 0; i < words; i++) {
|
|
word_in = e1000_shift_in_eec_bits(hw, 16);
|
|
data[i] = (word_in >> 8) | (word_in << 8);
|
|
}
|
|
|
|
release:
|
|
nvm->ops.release(hw);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_read_nvm_microwire - Reads EEPROM's using microwire
|
|
* @hw: pointer to the HW structure
|
|
* @offset: offset of word in the EEPROM to read
|
|
* @words: number of words to read
|
|
* @data: word read from the EEPROM
|
|
*
|
|
* Reads a 16 bit word from the EEPROM.
|
|
**/
|
|
s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
|
|
u16 *data)
|
|
{
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
u32 i = 0;
|
|
s32 ret_val;
|
|
u8 read_opcode = NVM_READ_OPCODE_MICROWIRE;
|
|
|
|
DEBUGFUNC("e1000_read_nvm_microwire");
|
|
|
|
/* A check for invalid values: offset too large, too many words,
|
|
* and not enough words.
|
|
*/
|
|
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
|
|
(words == 0)) {
|
|
DEBUGOUT("nvm parameter(s) out of bounds\n");
|
|
return -E1000_ERR_NVM;
|
|
}
|
|
|
|
ret_val = nvm->ops.acquire(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
ret_val = e1000_ready_nvm_eeprom(hw);
|
|
if (ret_val)
|
|
goto release;
|
|
|
|
for (i = 0; i < words; i++) {
|
|
/* Send the READ command (opcode + addr) */
|
|
e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
|
|
e1000_shift_out_eec_bits(hw, (u16)(offset + i),
|
|
nvm->address_bits);
|
|
|
|
/* Read the data. For microwire, each word requires the
|
|
* overhead of setup and tear-down.
|
|
*/
|
|
data[i] = e1000_shift_in_eec_bits(hw, 16);
|
|
e1000_standby_nvm(hw);
|
|
}
|
|
|
|
release:
|
|
nvm->ops.release(hw);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_read_nvm_eerd - Reads EEPROM using EERD register
|
|
* @hw: pointer to the HW structure
|
|
* @offset: offset of word in the EEPROM to read
|
|
* @words: number of words to read
|
|
* @data: word read from the EEPROM
|
|
*
|
|
* Reads a 16 bit word from the EEPROM using the EERD register.
|
|
**/
|
|
s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
|
|
{
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
u32 i, eerd = 0;
|
|
s32 ret_val = E1000_SUCCESS;
|
|
|
|
DEBUGFUNC("e1000_read_nvm_eerd");
|
|
|
|
/* A check for invalid values: offset too large, too many words,
|
|
* too many words for the offset, and not enough words.
|
|
*/
|
|
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
|
|
(words == 0)) {
|
|
DEBUGOUT("nvm parameter(s) out of bounds\n");
|
|
return -E1000_ERR_NVM;
|
|
}
|
|
|
|
for (i = 0; i < words; i++) {
|
|
eerd = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) +
|
|
E1000_NVM_RW_REG_START;
|
|
|
|
E1000_WRITE_REG(hw, E1000_EERD, eerd);
|
|
ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
|
|
if (ret_val)
|
|
break;
|
|
|
|
data[i] = (E1000_READ_REG(hw, E1000_EERD) >>
|
|
E1000_NVM_RW_REG_DATA);
|
|
}
|
|
|
|
if (ret_val)
|
|
DEBUGOUT1("NVM read error: %d\n", ret_val);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_write_nvm_spi - Write to EEPROM using SPI
|
|
* @hw: pointer to the HW structure
|
|
* @offset: offset within the EEPROM to be written to
|
|
* @words: number of words to write
|
|
* @data: 16 bit word(s) to be written to the EEPROM
|
|
*
|
|
* Writes data to EEPROM at offset using SPI interface.
|
|
*
|
|
* If e1000_update_nvm_checksum is not called after this function , the
|
|
* EEPROM will most likely contain an invalid checksum.
|
|
**/
|
|
s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
|
|
{
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
s32 ret_val = -E1000_ERR_NVM;
|
|
u16 widx = 0;
|
|
|
|
DEBUGFUNC("e1000_write_nvm_spi");
|
|
|
|
/* A check for invalid values: offset too large, too many words,
|
|
* and not enough words.
|
|
*/
|
|
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
|
|
(words == 0)) {
|
|
DEBUGOUT("nvm parameter(s) out of bounds\n");
|
|
return -E1000_ERR_NVM;
|
|
}
|
|
|
|
while (widx < words) {
|
|
u8 write_opcode = NVM_WRITE_OPCODE_SPI;
|
|
|
|
ret_val = nvm->ops.acquire(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
ret_val = e1000_ready_nvm_eeprom(hw);
|
|
if (ret_val) {
|
|
nvm->ops.release(hw);
|
|
return ret_val;
|
|
}
|
|
|
|
e1000_standby_nvm(hw);
|
|
|
|
/* Send the WRITE ENABLE command (8 bit opcode) */
|
|
e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
|
|
nvm->opcode_bits);
|
|
|
|
e1000_standby_nvm(hw);
|
|
|
|
/* Some SPI eeproms use the 8th address bit embedded in the
|
|
* opcode
|
|
*/
|
|
if ((nvm->address_bits == 8) && (offset >= 128))
|
|
write_opcode |= NVM_A8_OPCODE_SPI;
|
|
|
|
/* Send the Write command (8-bit opcode + addr) */
|
|
e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
|
|
e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
|
|
nvm->address_bits);
|
|
|
|
/* Loop to allow for up to whole page write of eeprom */
|
|
while (widx < words) {
|
|
u16 word_out = data[widx];
|
|
word_out = (word_out >> 8) | (word_out << 8);
|
|
e1000_shift_out_eec_bits(hw, word_out, 16);
|
|
widx++;
|
|
|
|
if ((((offset + widx) * 2) % nvm->page_size) == 0) {
|
|
e1000_standby_nvm(hw);
|
|
break;
|
|
}
|
|
}
|
|
msec_delay(10);
|
|
nvm->ops.release(hw);
|
|
}
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_write_nvm_microwire - Writes EEPROM using microwire
|
|
* @hw: pointer to the HW structure
|
|
* @offset: offset within the EEPROM to be written to
|
|
* @words: number of words to write
|
|
* @data: 16 bit word(s) to be written to the EEPROM
|
|
*
|
|
* Writes data to EEPROM at offset using microwire interface.
|
|
*
|
|
* If e1000_update_nvm_checksum is not called after this function , the
|
|
* EEPROM will most likely contain an invalid checksum.
|
|
**/
|
|
s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
|
|
u16 *data)
|
|
{
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
s32 ret_val;
|
|
u32 eecd;
|
|
u16 words_written = 0;
|
|
u16 widx = 0;
|
|
|
|
DEBUGFUNC("e1000_write_nvm_microwire");
|
|
|
|
/* A check for invalid values: offset too large, too many words,
|
|
* and not enough words.
|
|
*/
|
|
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
|
|
(words == 0)) {
|
|
DEBUGOUT("nvm parameter(s) out of bounds\n");
|
|
return -E1000_ERR_NVM;
|
|
}
|
|
|
|
ret_val = nvm->ops.acquire(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
ret_val = e1000_ready_nvm_eeprom(hw);
|
|
if (ret_val)
|
|
goto release;
|
|
|
|
e1000_shift_out_eec_bits(hw, NVM_EWEN_OPCODE_MICROWIRE,
|
|
(u16)(nvm->opcode_bits + 2));
|
|
|
|
e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
|
|
|
|
e1000_standby_nvm(hw);
|
|
|
|
while (words_written < words) {
|
|
e1000_shift_out_eec_bits(hw, NVM_WRITE_OPCODE_MICROWIRE,
|
|
nvm->opcode_bits);
|
|
|
|
e1000_shift_out_eec_bits(hw, (u16)(offset + words_written),
|
|
nvm->address_bits);
|
|
|
|
e1000_shift_out_eec_bits(hw, data[words_written], 16);
|
|
|
|
e1000_standby_nvm(hw);
|
|
|
|
for (widx = 0; widx < 200; widx++) {
|
|
eecd = E1000_READ_REG(hw, E1000_EECD);
|
|
if (eecd & E1000_EECD_DO)
|
|
break;
|
|
usec_delay(50);
|
|
}
|
|
|
|
if (widx == 200) {
|
|
DEBUGOUT("NVM Write did not complete\n");
|
|
ret_val = -E1000_ERR_NVM;
|
|
goto release;
|
|
}
|
|
|
|
e1000_standby_nvm(hw);
|
|
|
|
words_written++;
|
|
}
|
|
|
|
e1000_shift_out_eec_bits(hw, NVM_EWDS_OPCODE_MICROWIRE,
|
|
(u16)(nvm->opcode_bits + 2));
|
|
|
|
e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
|
|
|
|
release:
|
|
nvm->ops.release(hw);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_read_pba_string_generic - Read device part number
|
|
* @hw: pointer to the HW structure
|
|
* @pba_num: pointer to device part number
|
|
* @pba_num_size: size of part number buffer
|
|
*
|
|
* Reads the product board assembly (PBA) number from the EEPROM and stores
|
|
* the value in pba_num.
|
|
**/
|
|
s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
|
|
u32 pba_num_size)
|
|
{
|
|
s32 ret_val;
|
|
u16 nvm_data;
|
|
u16 pba_ptr;
|
|
u16 offset;
|
|
u16 length;
|
|
|
|
DEBUGFUNC("e1000_read_pba_string_generic");
|
|
|
|
if ((hw->mac.type == e1000_i210 ||
|
|
hw->mac.type == e1000_i211) &&
|
|
!e1000_get_flash_presence_i210(hw)) {
|
|
DEBUGOUT("Flashless no PBA string\n");
|
|
return -E1000_ERR_NVM_PBA_SECTION;
|
|
}
|
|
|
|
if (pba_num == NULL) {
|
|
DEBUGOUT("PBA string buffer was null\n");
|
|
return -E1000_ERR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
|
|
if (ret_val) {
|
|
DEBUGOUT("NVM Read Error\n");
|
|
return ret_val;
|
|
}
|
|
|
|
ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
|
|
if (ret_val) {
|
|
DEBUGOUT("NVM Read Error\n");
|
|
return ret_val;
|
|
}
|
|
|
|
/* if nvm_data is not ptr guard the PBA must be in legacy format which
|
|
* means pba_ptr is actually our second data word for the PBA number
|
|
* and we can decode it into an ascii string
|
|
*/
|
|
if (nvm_data != NVM_PBA_PTR_GUARD) {
|
|
DEBUGOUT("NVM PBA number is not stored as string\n");
|
|
|
|
/* make sure callers buffer is big enough to store the PBA */
|
|
if (pba_num_size < E1000_PBANUM_LENGTH) {
|
|
DEBUGOUT("PBA string buffer too small\n");
|
|
return E1000_ERR_NO_SPACE;
|
|
}
|
|
|
|
/* extract hex string from data and pba_ptr */
|
|
pba_num[0] = (nvm_data >> 12) & 0xF;
|
|
pba_num[1] = (nvm_data >> 8) & 0xF;
|
|
pba_num[2] = (nvm_data >> 4) & 0xF;
|
|
pba_num[3] = nvm_data & 0xF;
|
|
pba_num[4] = (pba_ptr >> 12) & 0xF;
|
|
pba_num[5] = (pba_ptr >> 8) & 0xF;
|
|
pba_num[6] = '-';
|
|
pba_num[7] = 0;
|
|
pba_num[8] = (pba_ptr >> 4) & 0xF;
|
|
pba_num[9] = pba_ptr & 0xF;
|
|
|
|
/* put a null character on the end of our string */
|
|
pba_num[10] = '\0';
|
|
|
|
/* switch all the data but the '-' to hex char */
|
|
for (offset = 0; offset < 10; offset++) {
|
|
if (pba_num[offset] < 0xA)
|
|
pba_num[offset] += '0';
|
|
else if (pba_num[offset] < 0x10)
|
|
pba_num[offset] += 'A' - 0xA;
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
|
|
if (ret_val) {
|
|
DEBUGOUT("NVM Read Error\n");
|
|
return ret_val;
|
|
}
|
|
|
|
if (length == 0xFFFF || length == 0) {
|
|
DEBUGOUT("NVM PBA number section invalid length\n");
|
|
return -E1000_ERR_NVM_PBA_SECTION;
|
|
}
|
|
/* check if pba_num buffer is big enough */
|
|
if (pba_num_size < (((u32)length * 2) - 1)) {
|
|
DEBUGOUT("PBA string buffer too small\n");
|
|
return -E1000_ERR_NO_SPACE;
|
|
}
|
|
|
|
/* trim pba length from start of string */
|
|
pba_ptr++;
|
|
length--;
|
|
|
|
for (offset = 0; offset < length; offset++) {
|
|
ret_val = hw->nvm.ops.read(hw, pba_ptr + offset, 1, &nvm_data);
|
|
if (ret_val) {
|
|
DEBUGOUT("NVM Read Error\n");
|
|
return ret_val;
|
|
}
|
|
pba_num[offset * 2] = (u8)(nvm_data >> 8);
|
|
pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
|
|
}
|
|
pba_num[offset * 2] = '\0';
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_read_pba_length_generic - Read device part number length
|
|
* @hw: pointer to the HW structure
|
|
* @pba_num_size: size of part number buffer
|
|
*
|
|
* Reads the product board assembly (PBA) number length from the EEPROM and
|
|
* stores the value in pba_num_size.
|
|
**/
|
|
s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size)
|
|
{
|
|
s32 ret_val;
|
|
u16 nvm_data;
|
|
u16 pba_ptr;
|
|
u16 length;
|
|
|
|
DEBUGFUNC("e1000_read_pba_length_generic");
|
|
|
|
if (pba_num_size == NULL) {
|
|
DEBUGOUT("PBA buffer size was null\n");
|
|
return -E1000_ERR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
|
|
if (ret_val) {
|
|
DEBUGOUT("NVM Read Error\n");
|
|
return ret_val;
|
|
}
|
|
|
|
ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
|
|
if (ret_val) {
|
|
DEBUGOUT("NVM Read Error\n");
|
|
return ret_val;
|
|
}
|
|
|
|
/* if data is not ptr guard the PBA must be in legacy format */
|
|
if (nvm_data != NVM_PBA_PTR_GUARD) {
|
|
*pba_num_size = E1000_PBANUM_LENGTH;
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
|
|
if (ret_val) {
|
|
DEBUGOUT("NVM Read Error\n");
|
|
return ret_val;
|
|
}
|
|
|
|
if (length == 0xFFFF || length == 0) {
|
|
DEBUGOUT("NVM PBA number section invalid length\n");
|
|
return -E1000_ERR_NVM_PBA_SECTION;
|
|
}
|
|
|
|
/* Convert from length in u16 values to u8 chars, add 1 for NULL,
|
|
* and subtract 2 because length field is included in length.
|
|
*/
|
|
*pba_num_size = ((u32)length * 2) - 1;
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_read_pba_num_generic - Read device part number
|
|
* @hw: pointer to the HW structure
|
|
* @pba_num: pointer to device part number
|
|
*
|
|
* Reads the product board assembly (PBA) number from the EEPROM and stores
|
|
* the value in pba_num.
|
|
**/
|
|
s32 e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num)
|
|
{
|
|
s32 ret_val;
|
|
u16 nvm_data;
|
|
|
|
DEBUGFUNC("e1000_read_pba_num_generic");
|
|
|
|
ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
|
|
if (ret_val) {
|
|
DEBUGOUT("NVM Read Error\n");
|
|
return ret_val;
|
|
} else if (nvm_data == NVM_PBA_PTR_GUARD) {
|
|
DEBUGOUT("NVM Not Supported\n");
|
|
return -E1000_NOT_IMPLEMENTED;
|
|
}
|
|
*pba_num = (u32)(nvm_data << 16);
|
|
|
|
ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
|
|
if (ret_val) {
|
|
DEBUGOUT("NVM Read Error\n");
|
|
return ret_val;
|
|
}
|
|
*pba_num |= nvm_data;
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
* e1000_read_pba_raw
|
|
* @hw: pointer to the HW structure
|
|
* @eeprom_buf: optional pointer to EEPROM image
|
|
* @eeprom_buf_size: size of EEPROM image in words
|
|
* @max_pba_block_size: PBA block size limit
|
|
* @pba: pointer to output PBA structure
|
|
*
|
|
* Reads PBA from EEPROM image when eeprom_buf is not NULL.
|
|
* Reads PBA from physical EEPROM device when eeprom_buf is NULL.
|
|
*
|
|
**/
|
|
s32 e1000_read_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf,
|
|
u32 eeprom_buf_size, u16 max_pba_block_size,
|
|
struct e1000_pba *pba)
|
|
{
|
|
s32 ret_val;
|
|
u16 pba_block_size;
|
|
|
|
if (pba == NULL)
|
|
return -E1000_ERR_PARAM;
|
|
|
|
if (eeprom_buf == NULL) {
|
|
ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 2,
|
|
&pba->word[0]);
|
|
if (ret_val)
|
|
return ret_val;
|
|
} else {
|
|
if (eeprom_buf_size > NVM_PBA_OFFSET_1) {
|
|
pba->word[0] = eeprom_buf[NVM_PBA_OFFSET_0];
|
|
pba->word[1] = eeprom_buf[NVM_PBA_OFFSET_1];
|
|
} else {
|
|
return -E1000_ERR_PARAM;
|
|
}
|
|
}
|
|
|
|
if (pba->word[0] == NVM_PBA_PTR_GUARD) {
|
|
if (pba->pba_block == NULL)
|
|
return -E1000_ERR_PARAM;
|
|
|
|
ret_val = e1000_get_pba_block_size(hw, eeprom_buf,
|
|
eeprom_buf_size,
|
|
&pba_block_size);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
if (pba_block_size > max_pba_block_size)
|
|
return -E1000_ERR_PARAM;
|
|
|
|
if (eeprom_buf == NULL) {
|
|
ret_val = e1000_read_nvm(hw, pba->word[1],
|
|
pba_block_size,
|
|
pba->pba_block);
|
|
if (ret_val)
|
|
return ret_val;
|
|
} else {
|
|
if (eeprom_buf_size > (u32)(pba->word[1] +
|
|
pba_block_size)) {
|
|
memcpy(pba->pba_block,
|
|
&eeprom_buf[pba->word[1]],
|
|
pba_block_size * sizeof(u16));
|
|
} else {
|
|
return -E1000_ERR_PARAM;
|
|
}
|
|
}
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_write_pba_raw
|
|
* @hw: pointer to the HW structure
|
|
* @eeprom_buf: optional pointer to EEPROM image
|
|
* @eeprom_buf_size: size of EEPROM image in words
|
|
* @pba: pointer to PBA structure
|
|
*
|
|
* Writes PBA to EEPROM image when eeprom_buf is not NULL.
|
|
* Writes PBA to physical EEPROM device when eeprom_buf is NULL.
|
|
*
|
|
**/
|
|
s32 e1000_write_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf,
|
|
u32 eeprom_buf_size, struct e1000_pba *pba)
|
|
{
|
|
s32 ret_val;
|
|
|
|
if (pba == NULL)
|
|
return -E1000_ERR_PARAM;
|
|
|
|
if (eeprom_buf == NULL) {
|
|
ret_val = e1000_write_nvm(hw, NVM_PBA_OFFSET_0, 2,
|
|
&pba->word[0]);
|
|
if (ret_val)
|
|
return ret_val;
|
|
} else {
|
|
if (eeprom_buf_size > NVM_PBA_OFFSET_1) {
|
|
eeprom_buf[NVM_PBA_OFFSET_0] = pba->word[0];
|
|
eeprom_buf[NVM_PBA_OFFSET_1] = pba->word[1];
|
|
} else {
|
|
return -E1000_ERR_PARAM;
|
|
}
|
|
}
|
|
|
|
if (pba->word[0] == NVM_PBA_PTR_GUARD) {
|
|
if (pba->pba_block == NULL)
|
|
return -E1000_ERR_PARAM;
|
|
|
|
if (eeprom_buf == NULL) {
|
|
ret_val = e1000_write_nvm(hw, pba->word[1],
|
|
pba->pba_block[0],
|
|
pba->pba_block);
|
|
if (ret_val)
|
|
return ret_val;
|
|
} else {
|
|
if (eeprom_buf_size > (u32)(pba->word[1] +
|
|
pba->pba_block[0])) {
|
|
memcpy(&eeprom_buf[pba->word[1]],
|
|
pba->pba_block,
|
|
pba->pba_block[0] * sizeof(u16));
|
|
} else {
|
|
return -E1000_ERR_PARAM;
|
|
}
|
|
}
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_get_pba_block_size
|
|
* @hw: pointer to the HW structure
|
|
* @eeprom_buf: optional pointer to EEPROM image
|
|
* @eeprom_buf_size: size of EEPROM image in words
|
|
* @pba_data_size: pointer to output variable
|
|
*
|
|
* Returns the size of the PBA block in words. Function operates on EEPROM
|
|
* image if the eeprom_buf pointer is not NULL otherwise it accesses physical
|
|
* EEPROM device.
|
|
*
|
|
**/
|
|
s32 e1000_get_pba_block_size(struct e1000_hw *hw, u16 *eeprom_buf,
|
|
u32 eeprom_buf_size, u16 *pba_block_size)
|
|
{
|
|
s32 ret_val;
|
|
u16 pba_word[2];
|
|
u16 length;
|
|
|
|
DEBUGFUNC("e1000_get_pba_block_size");
|
|
|
|
if (eeprom_buf == NULL) {
|
|
ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 2, &pba_word[0]);
|
|
if (ret_val)
|
|
return ret_val;
|
|
} else {
|
|
if (eeprom_buf_size > NVM_PBA_OFFSET_1) {
|
|
pba_word[0] = eeprom_buf[NVM_PBA_OFFSET_0];
|
|
pba_word[1] = eeprom_buf[NVM_PBA_OFFSET_1];
|
|
} else {
|
|
return -E1000_ERR_PARAM;
|
|
}
|
|
}
|
|
|
|
if (pba_word[0] == NVM_PBA_PTR_GUARD) {
|
|
if (eeprom_buf == NULL) {
|
|
ret_val = e1000_read_nvm(hw, pba_word[1] + 0, 1,
|
|
&length);
|
|
if (ret_val)
|
|
return ret_val;
|
|
} else {
|
|
if (eeprom_buf_size > pba_word[1])
|
|
length = eeprom_buf[pba_word[1] + 0];
|
|
else
|
|
return -E1000_ERR_PARAM;
|
|
}
|
|
|
|
if (length == 0xFFFF || length == 0)
|
|
return -E1000_ERR_NVM_PBA_SECTION;
|
|
} else {
|
|
/* PBA number in legacy format, there is no PBA Block. */
|
|
length = 0;
|
|
}
|
|
|
|
if (pba_block_size != NULL)
|
|
*pba_block_size = length;
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_read_mac_addr_generic - Read device MAC address
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Reads the device MAC address from the EEPROM and stores the value.
|
|
* Since devices with two ports use the same EEPROM, we increment the
|
|
* last bit in the MAC address for the second port.
|
|
**/
|
|
s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
|
|
{
|
|
u32 rar_high;
|
|
u32 rar_low;
|
|
u16 i;
|
|
|
|
rar_high = E1000_READ_REG(hw, E1000_RAH(0));
|
|
rar_low = E1000_READ_REG(hw, E1000_RAL(0));
|
|
|
|
for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
|
|
hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
|
|
|
|
for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
|
|
hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
|
|
|
|
for (i = 0; i < ETH_ADDR_LEN; i++)
|
|
hw->mac.addr[i] = hw->mac.perm_addr[i];
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_validate_nvm_checksum_generic - Validate EEPROM checksum
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Calculates the EEPROM checksum by reading/adding each word of the EEPROM
|
|
* and then verifies that the sum of the EEPROM is equal to 0xBABA.
|
|
**/
|
|
s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val;
|
|
u16 checksum = 0;
|
|
u16 i, nvm_data;
|
|
|
|
DEBUGFUNC("e1000_validate_nvm_checksum_generic");
|
|
|
|
for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
|
|
ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
|
|
if (ret_val) {
|
|
DEBUGOUT("NVM Read Error\n");
|
|
return ret_val;
|
|
}
|
|
checksum += nvm_data;
|
|
}
|
|
|
|
if (checksum != (u16) NVM_SUM) {
|
|
DEBUGOUT("NVM Checksum Invalid\n");
|
|
return -E1000_ERR_NVM;
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_update_nvm_checksum_generic - Update EEPROM checksum
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Updates the EEPROM checksum by reading/adding each word of the EEPROM
|
|
* up to the checksum. Then calculates the EEPROM checksum and writes the
|
|
* value to the EEPROM.
|
|
**/
|
|
s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val;
|
|
u16 checksum = 0;
|
|
u16 i, nvm_data;
|
|
|
|
DEBUGFUNC("e1000_update_nvm_checksum");
|
|
|
|
for (i = 0; i < NVM_CHECKSUM_REG; i++) {
|
|
ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
|
|
if (ret_val) {
|
|
DEBUGOUT("NVM Read Error while updating checksum.\n");
|
|
return ret_val;
|
|
}
|
|
checksum += nvm_data;
|
|
}
|
|
checksum = (u16) NVM_SUM - checksum;
|
|
ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
|
|
if (ret_val)
|
|
DEBUGOUT("NVM Write Error while updating checksum.\n");
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_reload_nvm_generic - Reloads EEPROM
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
|
|
* extended control register.
|
|
**/
|
|
STATIC void e1000_reload_nvm_generic(struct e1000_hw *hw)
|
|
{
|
|
u32 ctrl_ext;
|
|
|
|
DEBUGFUNC("e1000_reload_nvm_generic");
|
|
|
|
usec_delay(10);
|
|
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
ctrl_ext |= E1000_CTRL_EXT_EE_RST;
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
|
|
E1000_WRITE_FLUSH(hw);
|
|
}
|
|
|
|
/**
|
|
* e1000_get_fw_version - Get firmware version information
|
|
* @hw: pointer to the HW structure
|
|
* @fw_vers: pointer to output version structure
|
|
*
|
|
* unsupported/not present features return 0 in version structure
|
|
**/
|
|
void e1000_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers)
|
|
{
|
|
u16 eeprom_verh, eeprom_verl, etrack_test, fw_version;
|
|
u8 q, hval, rem, result;
|
|
u16 comb_verh, comb_verl, comb_offset;
|
|
|
|
memset(fw_vers, 0, sizeof(struct e1000_fw_version));
|
|
|
|
/* basic eeprom version numbers, bits used vary by part and by tool
|
|
* used to create the nvm images */
|
|
/* Check which data format we have */
|
|
switch (hw->mac.type) {
|
|
case e1000_i211:
|
|
e1000_read_invm_version(hw, fw_vers);
|
|
return;
|
|
case e1000_82575:
|
|
case e1000_82576:
|
|
case e1000_82580:
|
|
case e1000_i354:
|
|
hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
|
|
/* Use this format, unless EETRACK ID exists,
|
|
* then use alternate format
|
|
*/
|
|
if ((etrack_test & NVM_MAJOR_MASK) != NVM_ETRACK_VALID) {
|
|
hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
|
|
fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
|
|
>> NVM_MAJOR_SHIFT;
|
|
fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK)
|
|
>> NVM_MINOR_SHIFT;
|
|
fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK);
|
|
goto etrack_id;
|
|
}
|
|
break;
|
|
case e1000_i210:
|
|
if (!(e1000_get_flash_presence_i210(hw))) {
|
|
e1000_read_invm_version(hw, fw_vers);
|
|
return;
|
|
}
|
|
/* fall through */
|
|
case e1000_i350:
|
|
hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
|
|
/* find combo image version */
|
|
hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
|
|
if ((comb_offset != 0x0) &&
|
|
(comb_offset != NVM_VER_INVALID)) {
|
|
|
|
hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
|
|
+ 1), 1, &comb_verh);
|
|
hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
|
|
1, &comb_verl);
|
|
|
|
/* get Option Rom version if it exists and is valid */
|
|
if ((comb_verh && comb_verl) &&
|
|
((comb_verh != NVM_VER_INVALID) &&
|
|
(comb_verl != NVM_VER_INVALID))) {
|
|
|
|
fw_vers->or_valid = true;
|
|
fw_vers->or_major =
|
|
comb_verl >> NVM_COMB_VER_SHFT;
|
|
fw_vers->or_build =
|
|
(comb_verl << NVM_COMB_VER_SHFT)
|
|
| (comb_verh >> NVM_COMB_VER_SHFT);
|
|
fw_vers->or_patch =
|
|
comb_verh & NVM_COMB_VER_MASK;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
|
|
return;
|
|
}
|
|
hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
|
|
fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
|
|
>> NVM_MAJOR_SHIFT;
|
|
|
|
/* check for old style version format in newer images*/
|
|
if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) {
|
|
eeprom_verl = (fw_version & NVM_COMB_VER_MASK);
|
|
} else {
|
|
eeprom_verl = (fw_version & NVM_MINOR_MASK)
|
|
>> NVM_MINOR_SHIFT;
|
|
}
|
|
/* Convert minor value to hex before assigning to output struct
|
|
* Val to be converted will not be higher than 99, per tool output
|
|
*/
|
|
q = eeprom_verl / NVM_HEX_CONV;
|
|
hval = q * NVM_HEX_TENS;
|
|
rem = eeprom_verl % NVM_HEX_CONV;
|
|
result = hval + rem;
|
|
fw_vers->eep_minor = result;
|
|
|
|
etrack_id:
|
|
if ((etrack_test & NVM_MAJOR_MASK) == NVM_ETRACK_VALID) {
|
|
hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl);
|
|
hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh);
|
|
fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT)
|
|
| eeprom_verl;
|
|
} else if ((etrack_test & NVM_ETRACK_VALID) == 0) {
|
|
hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verh);
|
|
hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verl);
|
|
fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT) |
|
|
eeprom_verl;
|
|
}
|
|
}
|
|
|
|
|