numam-dpdk/drivers/net/enetc/enetc_rxtx.c
Olivier Matz daa02b5cdd mbuf: add namespace to offload flags
Fix the mbuf offload flags namespace by adding an RTE_ prefix to the
name. The old flags remain usable, but a deprecation warning is issued
at compilation.

Signed-off-by: Olivier Matz <olivier.matz@6wind.com>
Acked-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
Acked-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
Acked-by: Somnath Kotur <somnath.kotur@broadcom.com>
2021-10-24 13:37:43 +02:00

402 lines
11 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2018-2020 NXP
*/
#include <stdbool.h>
#include <stdint.h>
#include <unistd.h>
#include "rte_ethdev.h"
#include "rte_malloc.h"
#include "rte_memzone.h"
#include "base/enetc_hw.h"
#include "enetc.h"
#include "enetc_logs.h"
#define ENETC_CACHE_LINE_RXBDS (RTE_CACHE_LINE_SIZE / \
sizeof(union enetc_rx_bd))
#define ENETC_RXBD_BUNDLE 16 /* Number of buffers to allocate at once */
static int
enetc_clean_tx_ring(struct enetc_bdr *tx_ring)
{
int tx_frm_cnt = 0;
struct enetc_swbd *tx_swbd, *tx_swbd_base;
int i, hwci, bd_count;
struct rte_mbuf *m[ENETC_RXBD_BUNDLE];
/* we don't need barriers here, we just want a relatively current value
* from HW.
*/
hwci = (int)(rte_read32_relaxed(tx_ring->tcisr) &
ENETC_TBCISR_IDX_MASK);
tx_swbd_base = tx_ring->q_swbd;
bd_count = tx_ring->bd_count;
i = tx_ring->next_to_clean;
tx_swbd = &tx_swbd_base[i];
/* we're only reading the CI index once here, which means HW may update
* it while we're doing clean-up. We could read the register in a loop
* but for now I assume it's OK to leave a few Tx frames for next call.
* The issue with reading the register in a loop is that we're stalling
* here trying to catch up with HW which keeps sending traffic as long
* as it has traffic to send, so in effect we could be waiting here for
* the Tx ring to be drained by HW, instead of us doing Rx in that
* meantime.
*/
while (i != hwci) {
/* It seems calling rte_pktmbuf_free is wasting a lot of cycles,
* make a list and call _free when it's done.
*/
if (tx_frm_cnt == ENETC_RXBD_BUNDLE) {
rte_pktmbuf_free_bulk(m, tx_frm_cnt);
tx_frm_cnt = 0;
}
m[tx_frm_cnt] = tx_swbd->buffer_addr;
tx_swbd->buffer_addr = NULL;
i++;
tx_swbd++;
if (unlikely(i == bd_count)) {
i = 0;
tx_swbd = tx_swbd_base;
}
tx_frm_cnt++;
}
if (tx_frm_cnt)
rte_pktmbuf_free_bulk(m, tx_frm_cnt);
tx_ring->next_to_clean = i;
return 0;
}
uint16_t
enetc_xmit_pkts(void *tx_queue,
struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct enetc_swbd *tx_swbd;
int i, start, bds_to_use;
struct enetc_tx_bd *txbd;
struct enetc_bdr *tx_ring = (struct enetc_bdr *)tx_queue;
i = tx_ring->next_to_use;
bds_to_use = enetc_bd_unused(tx_ring);
if (bds_to_use < nb_pkts)
nb_pkts = bds_to_use;
start = 0;
while (nb_pkts--) {
tx_ring->q_swbd[i].buffer_addr = tx_pkts[start];
txbd = ENETC_TXBD(*tx_ring, i);
tx_swbd = &tx_ring->q_swbd[i];
txbd->frm_len = tx_pkts[start]->pkt_len;
txbd->buf_len = txbd->frm_len;
txbd->flags = rte_cpu_to_le_16(ENETC_TXBD_FLAGS_F);
txbd->addr = (uint64_t)(uintptr_t)
rte_cpu_to_le_64((size_t)tx_swbd->buffer_addr->buf_iova +
tx_swbd->buffer_addr->data_off);
i++;
start++;
if (unlikely(i == tx_ring->bd_count))
i = 0;
}
/* we're only cleaning up the Tx ring here, on the assumption that
* software is slower than hardware and hardware completed sending
* older frames out by now.
* We're also cleaning up the ring before kicking off Tx for the new
* batch to minimize chances of contention on the Tx ring
*/
enetc_clean_tx_ring(tx_ring);
tx_ring->next_to_use = i;
enetc_wr_reg(tx_ring->tcir, i);
return start;
}
int
enetc_refill_rx_ring(struct enetc_bdr *rx_ring, const int buff_cnt)
{
struct enetc_swbd *rx_swbd;
union enetc_rx_bd *rxbd;
int i, j, k = ENETC_RXBD_BUNDLE;
struct rte_mbuf *m[ENETC_RXBD_BUNDLE];
struct rte_mempool *mb_pool;
i = rx_ring->next_to_use;
mb_pool = rx_ring->mb_pool;
rx_swbd = &rx_ring->q_swbd[i];
rxbd = ENETC_RXBD(*rx_ring, i);
for (j = 0; j < buff_cnt; j++) {
/* bulk alloc for the next up to 8 BDs */
if (k == ENETC_RXBD_BUNDLE) {
k = 0;
int m_cnt = RTE_MIN(buff_cnt - j, ENETC_RXBD_BUNDLE);
if (rte_pktmbuf_alloc_bulk(mb_pool, m, m_cnt))
return -1;
}
rx_swbd->buffer_addr = m[k];
rxbd->w.addr = (uint64_t)(uintptr_t)
rx_swbd->buffer_addr->buf_iova +
rx_swbd->buffer_addr->data_off;
/* clear 'R" as well */
rxbd->r.lstatus = 0;
rx_swbd++;
rxbd++;
i++;
k++;
if (unlikely(i == rx_ring->bd_count)) {
i = 0;
rxbd = ENETC_RXBD(*rx_ring, 0);
rx_swbd = &rx_ring->q_swbd[i];
}
}
if (likely(j)) {
rx_ring->next_to_alloc = i;
rx_ring->next_to_use = i;
enetc_wr_reg(rx_ring->rcir, i);
}
return j;
}
static inline void enetc_slow_parsing(struct rte_mbuf *m,
uint64_t parse_results)
{
m->ol_flags &= ~(RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD);
switch (parse_results) {
case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV4:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4;
m->ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
return;
case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV6:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6;
m->ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
return;
case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV4_TCP:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 |
RTE_PTYPE_L4_TCP;
m->ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD |
RTE_MBUF_F_RX_L4_CKSUM_BAD;
return;
case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV6_TCP:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6 |
RTE_PTYPE_L4_TCP;
m->ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD |
RTE_MBUF_F_RX_L4_CKSUM_BAD;
return;
case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV4_UDP:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 |
RTE_PTYPE_L4_UDP;
m->ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD |
RTE_MBUF_F_RX_L4_CKSUM_BAD;
return;
case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV6_UDP:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6 |
RTE_PTYPE_L4_UDP;
m->ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD |
RTE_MBUF_F_RX_L4_CKSUM_BAD;
return;
case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV4_SCTP:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 |
RTE_PTYPE_L4_SCTP;
m->ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD |
RTE_MBUF_F_RX_L4_CKSUM_BAD;
return;
case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV6_SCTP:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6 |
RTE_PTYPE_L4_SCTP;
m->ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD |
RTE_MBUF_F_RX_L4_CKSUM_BAD;
return;
case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV4_ICMP:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 |
RTE_PTYPE_L4_ICMP;
m->ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD |
RTE_MBUF_F_RX_L4_CKSUM_BAD;
return;
case ENETC_PARSE_ERROR | ENETC_PKT_TYPE_IPV6_ICMP:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6 |
RTE_PTYPE_L4_ICMP;
m->ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD |
RTE_MBUF_F_RX_L4_CKSUM_BAD;
return;
/* More switch cases can be added */
default:
m->packet_type = RTE_PTYPE_UNKNOWN;
m->ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_UNKNOWN |
RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
}
}
static inline void __rte_hot
enetc_dev_rx_parse(struct rte_mbuf *m, uint16_t parse_results)
{
ENETC_PMD_DP_DEBUG("parse summary = 0x%x ", parse_results);
m->ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD;
switch (parse_results) {
case ENETC_PKT_TYPE_ETHER:
m->packet_type = RTE_PTYPE_L2_ETHER;
return;
case ENETC_PKT_TYPE_IPV4:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4;
return;
case ENETC_PKT_TYPE_IPV6:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6;
return;
case ENETC_PKT_TYPE_IPV4_TCP:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 |
RTE_PTYPE_L4_TCP;
return;
case ENETC_PKT_TYPE_IPV6_TCP:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6 |
RTE_PTYPE_L4_TCP;
return;
case ENETC_PKT_TYPE_IPV4_UDP:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 |
RTE_PTYPE_L4_UDP;
return;
case ENETC_PKT_TYPE_IPV6_UDP:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6 |
RTE_PTYPE_L4_UDP;
return;
case ENETC_PKT_TYPE_IPV4_SCTP:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 |
RTE_PTYPE_L4_SCTP;
return;
case ENETC_PKT_TYPE_IPV6_SCTP:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6 |
RTE_PTYPE_L4_SCTP;
return;
case ENETC_PKT_TYPE_IPV4_ICMP:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 |
RTE_PTYPE_L4_ICMP;
return;
case ENETC_PKT_TYPE_IPV6_ICMP:
m->packet_type = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6 |
RTE_PTYPE_L4_ICMP;
return;
/* More switch cases can be added */
default:
enetc_slow_parsing(m, parse_results);
}
}
static int
enetc_clean_rx_ring(struct enetc_bdr *rx_ring,
struct rte_mbuf **rx_pkts,
int work_limit)
{
int rx_frm_cnt = 0;
int cleaned_cnt, i, bd_count;
struct enetc_swbd *rx_swbd;
union enetc_rx_bd *rxbd;
/* next descriptor to process */
i = rx_ring->next_to_clean;
/* next descriptor to process */
rxbd = ENETC_RXBD(*rx_ring, i);
rte_prefetch0(rxbd);
bd_count = rx_ring->bd_count;
/* LS1028A does not have platform cache so any software access following
* a hardware write will go directly to DDR. Latency of such a read is
* in excess of 100 core cycles, so try to prefetch more in advance to
* mitigate this.
* How much is worth prefetching really depends on traffic conditions.
* With congested Rx this could go up to 4 cache lines or so. But if
* software keeps up with hardware and follows behind Rx PI by a cache
* line or less then it's harmful in terms of performance to cache more.
* We would only prefetch BDs that have yet to be written by ENETC,
* which will have to be evicted again anyway.
*/
rte_prefetch0(ENETC_RXBD(*rx_ring,
(i + ENETC_CACHE_LINE_RXBDS) % bd_count));
rte_prefetch0(ENETC_RXBD(*rx_ring,
(i + ENETC_CACHE_LINE_RXBDS * 2) % bd_count));
cleaned_cnt = enetc_bd_unused(rx_ring);
rx_swbd = &rx_ring->q_swbd[i];
while (likely(rx_frm_cnt < work_limit)) {
uint32_t bd_status;
bd_status = rte_le_to_cpu_32(rxbd->r.lstatus);
if (!bd_status)
break;
rx_swbd->buffer_addr->pkt_len = rxbd->r.buf_len -
rx_ring->crc_len;
rx_swbd->buffer_addr->data_len = rxbd->r.buf_len -
rx_ring->crc_len;
rx_swbd->buffer_addr->hash.rss = rxbd->r.rss_hash;
rx_swbd->buffer_addr->ol_flags = 0;
enetc_dev_rx_parse(rx_swbd->buffer_addr,
rxbd->r.parse_summary);
rx_pkts[rx_frm_cnt] = rx_swbd->buffer_addr;
cleaned_cnt++;
rx_swbd++;
i++;
if (unlikely(i == rx_ring->bd_count)) {
i = 0;
rx_swbd = &rx_ring->q_swbd[i];
}
rxbd = ENETC_RXBD(*rx_ring, i);
rte_prefetch0(ENETC_RXBD(*rx_ring,
(i + ENETC_CACHE_LINE_RXBDS) %
bd_count));
rte_prefetch0(ENETC_RXBD(*rx_ring,
(i + ENETC_CACHE_LINE_RXBDS * 2) %
bd_count));
rx_frm_cnt++;
}
rx_ring->next_to_clean = i;
enetc_refill_rx_ring(rx_ring, cleaned_cnt);
return rx_frm_cnt;
}
uint16_t
enetc_recv_pkts(void *rxq, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct enetc_bdr *rx_ring = (struct enetc_bdr *)rxq;
return enetc_clean_rx_ring(rx_ring, rx_pkts, nb_pkts);
}