numam-dpdk/drivers/net/fm10k/fm10k_rxtx.c
Olivier Matz daa02b5cdd mbuf: add namespace to offload flags
Fix the mbuf offload flags namespace by adding an RTE_ prefix to the
name. The old flags remain usable, but a deprecation warning is issued
at compilation.

Signed-off-by: Olivier Matz <olivier.matz@6wind.com>
Acked-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
Acked-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
Acked-by: Somnath Kotur <somnath.kotur@broadcom.com>
2021-10-24 13:37:43 +02:00

703 lines
19 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2013-2016 Intel Corporation
*/
#include <inttypes.h>
#include <ethdev_driver.h>
#include <rte_common.h>
#include <rte_net.h>
#include "fm10k.h"
#include "base/fm10k_type.h"
#ifdef RTE_PMD_PACKET_PREFETCH
#define rte_packet_prefetch(p) rte_prefetch1(p)
#else
#define rte_packet_prefetch(p) do {} while (0)
#endif
#ifdef RTE_ETHDEV_DEBUG_RX
static inline void dump_rxd(union fm10k_rx_desc *rxd)
{
PMD_RX_LOG(DEBUG, "+----------------|----------------+");
PMD_RX_LOG(DEBUG, "| GLORT | PKT HDR & TYPE |");
PMD_RX_LOG(DEBUG, "| 0x%08x | 0x%08x |", rxd->d.glort,
rxd->d.data);
PMD_RX_LOG(DEBUG, "+----------------|----------------+");
PMD_RX_LOG(DEBUG, "| VLAN & LEN | STATUS |");
PMD_RX_LOG(DEBUG, "| 0x%08x | 0x%08x |", rxd->d.vlan_len,
rxd->d.staterr);
PMD_RX_LOG(DEBUG, "+----------------|----------------+");
PMD_RX_LOG(DEBUG, "| RESERVED | RSS_HASH |");
PMD_RX_LOG(DEBUG, "| 0x%08x | 0x%08x |", 0, rxd->d.rss);
PMD_RX_LOG(DEBUG, "+----------------|----------------+");
PMD_RX_LOG(DEBUG, "| TIME TAG |");
PMD_RX_LOG(DEBUG, "| 0x%016"PRIx64" |", rxd->q.timestamp);
PMD_RX_LOG(DEBUG, "+----------------|----------------+");
}
#endif
#define FM10K_TX_OFFLOAD_MASK (RTE_MBUF_F_TX_VLAN | \
RTE_MBUF_F_TX_IPV6 | \
RTE_MBUF_F_TX_IPV4 | \
RTE_MBUF_F_TX_IP_CKSUM | \
RTE_MBUF_F_TX_L4_MASK | \
RTE_MBUF_F_TX_TCP_SEG)
#define FM10K_TX_OFFLOAD_NOTSUP_MASK \
(RTE_MBUF_F_TX_OFFLOAD_MASK ^ FM10K_TX_OFFLOAD_MASK)
/* @note: When this function is changed, make corresponding change to
* fm10k_dev_supported_ptypes_get()
*/
static inline void
rx_desc_to_ol_flags(struct rte_mbuf *m, const union fm10k_rx_desc *d)
{
static const uint32_t
ptype_table[FM10K_RXD_PKTTYPE_MASK >> FM10K_RXD_PKTTYPE_SHIFT]
__rte_cache_aligned = {
[FM10K_PKTTYPE_OTHER] = RTE_PTYPE_L2_ETHER,
[FM10K_PKTTYPE_IPV4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4,
[FM10K_PKTTYPE_IPV4_EX] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT,
[FM10K_PKTTYPE_IPV6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6,
[FM10K_PKTTYPE_IPV6_EX] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6_EXT,
[FM10K_PKTTYPE_IPV4 | FM10K_PKTTYPE_TCP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
[FM10K_PKTTYPE_IPV6 | FM10K_PKTTYPE_TCP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
[FM10K_PKTTYPE_IPV4 | FM10K_PKTTYPE_UDP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
[FM10K_PKTTYPE_IPV6 | FM10K_PKTTYPE_UDP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
};
m->packet_type = ptype_table[(d->w.pkt_info & FM10K_RXD_PKTTYPE_MASK)
>> FM10K_RXD_PKTTYPE_SHIFT];
if (d->w.pkt_info & FM10K_RXD_RSSTYPE_MASK)
m->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
if (unlikely((d->d.staterr &
(FM10K_RXD_STATUS_IPCS | FM10K_RXD_STATUS_IPE)) ==
(FM10K_RXD_STATUS_IPCS | FM10K_RXD_STATUS_IPE)))
m->ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
else
m->ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
if (unlikely((d->d.staterr &
(FM10K_RXD_STATUS_L4CS | FM10K_RXD_STATUS_L4E)) ==
(FM10K_RXD_STATUS_L4CS | FM10K_RXD_STATUS_L4E)))
m->ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
else
m->ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
}
uint16_t
fm10k_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct rte_mbuf *mbuf;
union fm10k_rx_desc desc;
struct fm10k_rx_queue *q = rx_queue;
uint16_t count = 0;
int alloc = 0;
uint16_t next_dd;
int ret;
next_dd = q->next_dd;
nb_pkts = RTE_MIN(nb_pkts, q->alloc_thresh);
for (count = 0; count < nb_pkts; ++count) {
if (!(q->hw_ring[next_dd].d.staterr & FM10K_RXD_STATUS_DD))
break;
mbuf = q->sw_ring[next_dd];
desc = q->hw_ring[next_dd];
#ifdef RTE_ETHDEV_DEBUG_RX
dump_rxd(&desc);
#endif
rte_pktmbuf_pkt_len(mbuf) = desc.w.length;
rte_pktmbuf_data_len(mbuf) = desc.w.length;
mbuf->ol_flags = 0;
#ifdef RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE
rx_desc_to_ol_flags(mbuf, &desc);
#endif
mbuf->hash.rss = desc.d.rss;
/**
* Packets in fm10k device always carry at least one VLAN tag.
* For those packets coming in without VLAN tag,
* the port default VLAN tag will be used.
* So, always RTE_MBUF_F_RX_VLAN flag is set and vlan_tci
* is valid for each RX packet's mbuf.
*/
mbuf->ol_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED;
mbuf->vlan_tci = desc.w.vlan;
/**
* mbuf->vlan_tci_outer is an idle field in fm10k driver,
* so it can be selected to store sglort value.
*/
if (q->rx_ftag_en)
mbuf->vlan_tci_outer = rte_le_to_cpu_16(desc.w.sglort);
rx_pkts[count] = mbuf;
if (++next_dd == q->nb_desc) {
next_dd = 0;
alloc = 1;
}
/* Prefetch next mbuf while processing current one. */
rte_prefetch0(q->sw_ring[next_dd]);
/*
* When next RX descriptor is on a cache-line boundary,
* prefetch the next 4 RX descriptors and the next 8 pointers
* to mbufs.
*/
if ((next_dd & 0x3) == 0) {
rte_prefetch0(&q->hw_ring[next_dd]);
rte_prefetch0(&q->sw_ring[next_dd]);
}
}
q->next_dd = next_dd;
if ((q->next_dd > q->next_trigger) || (alloc == 1)) {
ret = rte_mempool_get_bulk(q->mp,
(void **)&q->sw_ring[q->next_alloc],
q->alloc_thresh);
if (unlikely(ret != 0)) {
uint16_t port = q->port_id;
PMD_RX_LOG(ERR, "Failed to alloc mbuf");
/*
* Need to restore next_dd if we cannot allocate new
* buffers to replenish the old ones.
*/
q->next_dd = (q->next_dd + q->nb_desc - count) %
q->nb_desc;
rte_eth_devices[port].data->rx_mbuf_alloc_failed++;
return 0;
}
for (; q->next_alloc <= q->next_trigger; ++q->next_alloc) {
mbuf = q->sw_ring[q->next_alloc];
/* setup static mbuf fields */
fm10k_pktmbuf_reset(mbuf, q->port_id);
/* write descriptor */
desc.q.pkt_addr = MBUF_DMA_ADDR_DEFAULT(mbuf);
desc.q.hdr_addr = MBUF_DMA_ADDR_DEFAULT(mbuf);
q->hw_ring[q->next_alloc] = desc;
}
FM10K_PCI_REG_WRITE(q->tail_ptr, q->next_trigger);
q->next_trigger += q->alloc_thresh;
if (q->next_trigger >= q->nb_desc) {
q->next_trigger = q->alloc_thresh - 1;
q->next_alloc = 0;
}
}
return count;
}
uint16_t
fm10k_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct rte_mbuf *mbuf;
union fm10k_rx_desc desc;
struct fm10k_rx_queue *q = rx_queue;
uint16_t count = 0;
uint16_t nb_rcv, nb_seg;
int alloc = 0;
uint16_t next_dd;
struct rte_mbuf *first_seg = q->pkt_first_seg;
struct rte_mbuf *last_seg = q->pkt_last_seg;
int ret;
next_dd = q->next_dd;
nb_rcv = 0;
nb_seg = RTE_MIN(nb_pkts, q->alloc_thresh);
for (count = 0; count < nb_seg; count++) {
if (!(q->hw_ring[next_dd].d.staterr & FM10K_RXD_STATUS_DD))
break;
mbuf = q->sw_ring[next_dd];
desc = q->hw_ring[next_dd];
#ifdef RTE_ETHDEV_DEBUG_RX
dump_rxd(&desc);
#endif
if (++next_dd == q->nb_desc) {
next_dd = 0;
alloc = 1;
}
/* Prefetch next mbuf while processing current one. */
rte_prefetch0(q->sw_ring[next_dd]);
/*
* When next RX descriptor is on a cache-line boundary,
* prefetch the next 4 RX descriptors and the next 8 pointers
* to mbufs.
*/
if ((next_dd & 0x3) == 0) {
rte_prefetch0(&q->hw_ring[next_dd]);
rte_prefetch0(&q->sw_ring[next_dd]);
}
/* Fill data length */
rte_pktmbuf_data_len(mbuf) = desc.w.length;
/*
* If this is the first buffer of the received packet,
* set the pointer to the first mbuf of the packet and
* initialize its context.
* Otherwise, update the total length and the number of segments
* of the current scattered packet, and update the pointer to
* the last mbuf of the current packet.
*/
if (!first_seg) {
first_seg = mbuf;
first_seg->pkt_len = desc.w.length;
} else {
first_seg->pkt_len =
(uint16_t)(first_seg->pkt_len +
rte_pktmbuf_data_len(mbuf));
first_seg->nb_segs++;
last_seg->next = mbuf;
}
/*
* If this is not the last buffer of the received packet,
* update the pointer to the last mbuf of the current scattered
* packet and continue to parse the RX ring.
*/
if (!(desc.d.staterr & FM10K_RXD_STATUS_EOP)) {
last_seg = mbuf;
continue;
}
first_seg->ol_flags = 0;
#ifdef RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE
rx_desc_to_ol_flags(first_seg, &desc);
#endif
first_seg->hash.rss = desc.d.rss;
/**
* Packets in fm10k device always carry at least one VLAN tag.
* For those packets coming in without VLAN tag,
* the port default VLAN tag will be used.
* So, always RTE_MBUF_F_RX_VLAN flag is set and vlan_tci
* is valid for each RX packet's mbuf.
*/
first_seg->ol_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED;
first_seg->vlan_tci = desc.w.vlan;
/**
* mbuf->vlan_tci_outer is an idle field in fm10k driver,
* so it can be selected to store sglort value.
*/
if (q->rx_ftag_en)
first_seg->vlan_tci_outer =
rte_le_to_cpu_16(desc.w.sglort);
/* Prefetch data of first segment, if configured to do so. */
rte_packet_prefetch((char *)first_seg->buf_addr +
first_seg->data_off);
/*
* Store the mbuf address into the next entry of the array
* of returned packets.
*/
rx_pkts[nb_rcv++] = first_seg;
/*
* Setup receipt context for a new packet.
*/
first_seg = NULL;
}
q->next_dd = next_dd;
if ((q->next_dd > q->next_trigger) || (alloc == 1)) {
ret = rte_mempool_get_bulk(q->mp,
(void **)&q->sw_ring[q->next_alloc],
q->alloc_thresh);
if (unlikely(ret != 0)) {
uint16_t port = q->port_id;
PMD_RX_LOG(ERR, "Failed to alloc mbuf");
/*
* Need to restore next_dd if we cannot allocate new
* buffers to replenish the old ones.
*/
q->next_dd = (q->next_dd + q->nb_desc - count) %
q->nb_desc;
rte_eth_devices[port].data->rx_mbuf_alloc_failed++;
return 0;
}
for (; q->next_alloc <= q->next_trigger; ++q->next_alloc) {
mbuf = q->sw_ring[q->next_alloc];
/* setup static mbuf fields */
fm10k_pktmbuf_reset(mbuf, q->port_id);
/* write descriptor */
desc.q.pkt_addr = MBUF_DMA_ADDR_DEFAULT(mbuf);
desc.q.hdr_addr = MBUF_DMA_ADDR_DEFAULT(mbuf);
q->hw_ring[q->next_alloc] = desc;
}
FM10K_PCI_REG_WRITE(q->tail_ptr, q->next_trigger);
q->next_trigger += q->alloc_thresh;
if (q->next_trigger >= q->nb_desc) {
q->next_trigger = q->alloc_thresh - 1;
q->next_alloc = 0;
}
}
q->pkt_first_seg = first_seg;
q->pkt_last_seg = last_seg;
return nb_rcv;
}
uint32_t
fm10k_dev_rx_queue_count(void *rx_queue)
{
#define FM10K_RXQ_SCAN_INTERVAL 4
volatile union fm10k_rx_desc *rxdp;
struct fm10k_rx_queue *rxq;
uint16_t desc = 0;
rxq = rx_queue;
rxdp = &rxq->hw_ring[rxq->next_dd];
while ((desc < rxq->nb_desc) &&
rxdp->w.status & rte_cpu_to_le_16(FM10K_RXD_STATUS_DD)) {
/**
* Check the DD bit of a rx descriptor of each group of 4 desc,
* to avoid checking too frequently and downgrading performance
* too much.
*/
desc += FM10K_RXQ_SCAN_INTERVAL;
rxdp += FM10K_RXQ_SCAN_INTERVAL;
if (rxq->next_dd + desc >= rxq->nb_desc)
rxdp = &rxq->hw_ring[rxq->next_dd + desc -
rxq->nb_desc];
}
return desc;
}
int
fm10k_dev_rx_descriptor_status(void *rx_queue, uint16_t offset)
{
volatile union fm10k_rx_desc *rxdp;
struct fm10k_rx_queue *rxq = rx_queue;
uint16_t nb_hold, trigger_last;
uint16_t desc;
int ret;
if (unlikely(offset >= rxq->nb_desc)) {
PMD_DRV_LOG(ERR, "Invalid RX descriptor offset %u", offset);
return 0;
}
if (rxq->next_trigger < rxq->alloc_thresh)
trigger_last = rxq->next_trigger +
rxq->nb_desc - rxq->alloc_thresh;
else
trigger_last = rxq->next_trigger - rxq->alloc_thresh;
if (rxq->next_dd < trigger_last)
nb_hold = rxq->next_dd + rxq->nb_desc - trigger_last;
else
nb_hold = rxq->next_dd - trigger_last;
if (offset >= rxq->nb_desc - nb_hold)
return RTE_ETH_RX_DESC_UNAVAIL;
desc = rxq->next_dd + offset;
if (desc >= rxq->nb_desc)
desc -= rxq->nb_desc;
rxdp = &rxq->hw_ring[desc];
ret = !!(rxdp->w.status &
rte_cpu_to_le_16(FM10K_RXD_STATUS_DD));
return ret;
}
int
fm10k_dev_tx_descriptor_status(void *tx_queue, uint16_t offset)
{
volatile struct fm10k_tx_desc *txdp;
struct fm10k_tx_queue *txq = tx_queue;
uint16_t desc;
uint16_t next_rs = txq->nb_desc;
struct fifo rs_tracker = txq->rs_tracker;
struct fifo *r = &rs_tracker;
if (unlikely(offset >= txq->nb_desc))
return -EINVAL;
desc = txq->next_free + offset;
/* go to next desc that has the RS bit */
desc = (desc / txq->rs_thresh + 1) *
txq->rs_thresh - 1;
if (desc >= txq->nb_desc) {
desc -= txq->nb_desc;
if (desc >= txq->nb_desc)
desc -= txq->nb_desc;
}
r->head = r->list;
for ( ; r->head != r->endp; ) {
if (*r->head >= desc && *r->head < next_rs)
next_rs = *r->head;
++r->head;
}
txdp = &txq->hw_ring[next_rs];
if (txdp->flags & FM10K_TXD_FLAG_DONE)
return RTE_ETH_TX_DESC_DONE;
return RTE_ETH_TX_DESC_FULL;
}
/*
* Free multiple TX mbuf at a time if they are in the same pool
*
* @txep: software desc ring index that starts to free
* @num: number of descs to free
*
*/
static inline void tx_free_bulk_mbuf(struct rte_mbuf **txep, int num)
{
struct rte_mbuf *m, *free[RTE_FM10K_TX_MAX_FREE_BUF_SZ];
int i;
int nb_free = 0;
if (unlikely(num == 0))
return;
m = rte_pktmbuf_prefree_seg(txep[0]);
if (likely(m != NULL)) {
free[0] = m;
nb_free = 1;
for (i = 1; i < num; i++) {
m = rte_pktmbuf_prefree_seg(txep[i]);
if (likely(m != NULL)) {
if (likely(m->pool == free[0]->pool))
free[nb_free++] = m;
else {
rte_mempool_put_bulk(free[0]->pool,
(void *)free, nb_free);
free[0] = m;
nb_free = 1;
}
}
txep[i] = NULL;
}
rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
} else {
for (i = 1; i < num; i++) {
m = rte_pktmbuf_prefree_seg(txep[i]);
if (m != NULL)
rte_mempool_put(m->pool, m);
txep[i] = NULL;
}
}
}
static inline void tx_free_descriptors(struct fm10k_tx_queue *q)
{
uint16_t next_rs, count = 0;
next_rs = fifo_peek(&q->rs_tracker);
if (!(q->hw_ring[next_rs].flags & FM10K_TXD_FLAG_DONE))
return;
/* the DONE flag is set on this descriptor so remove the ID
* from the RS bit tracker and free the buffers */
fifo_remove(&q->rs_tracker);
/* wrap around? if so, free buffers from last_free up to but NOT
* including nb_desc */
if (q->last_free > next_rs) {
count = q->nb_desc - q->last_free;
tx_free_bulk_mbuf(&q->sw_ring[q->last_free], count);
q->last_free = 0;
}
/* adjust free descriptor count before the next loop */
q->nb_free += count + (next_rs + 1 - q->last_free);
/* free buffers from last_free, up to and including next_rs */
if (q->last_free <= next_rs) {
count = next_rs - q->last_free + 1;
tx_free_bulk_mbuf(&q->sw_ring[q->last_free], count);
q->last_free += count;
}
if (q->last_free == q->nb_desc)
q->last_free = 0;
}
static inline void tx_xmit_pkt(struct fm10k_tx_queue *q, struct rte_mbuf *mb)
{
uint16_t last_id;
uint8_t flags, hdrlen;
/* always set the LAST flag on the last descriptor used to
* transmit the packet */
flags = FM10K_TXD_FLAG_LAST;
last_id = q->next_free + mb->nb_segs - 1;
if (last_id >= q->nb_desc)
last_id = last_id - q->nb_desc;
/* but only set the RS flag on the last descriptor if rs_thresh
* descriptors will be used since the RS flag was last set */
if ((q->nb_used + mb->nb_segs) >= q->rs_thresh) {
flags |= FM10K_TXD_FLAG_RS;
fifo_insert(&q->rs_tracker, last_id);
q->nb_used = 0;
} else {
q->nb_used = q->nb_used + mb->nb_segs;
}
q->nb_free -= mb->nb_segs;
q->hw_ring[q->next_free].flags = 0;
if (q->tx_ftag_en)
q->hw_ring[q->next_free].flags |= FM10K_TXD_FLAG_FTAG;
/* set checksum flags on first descriptor of packet. SCTP checksum
* offload is not supported, but we do not explicitly check for this
* case in favor of greatly simplified processing. */
if (mb->ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_L4_MASK | RTE_MBUF_F_TX_TCP_SEG))
q->hw_ring[q->next_free].flags |= FM10K_TXD_FLAG_CSUM;
/* set vlan if requested */
if (mb->ol_flags & RTE_MBUF_F_TX_VLAN)
q->hw_ring[q->next_free].vlan = mb->vlan_tci;
else
q->hw_ring[q->next_free].vlan = 0;
q->sw_ring[q->next_free] = mb;
q->hw_ring[q->next_free].buffer_addr =
rte_cpu_to_le_64(MBUF_DMA_ADDR(mb));
q->hw_ring[q->next_free].buflen =
rte_cpu_to_le_16(rte_pktmbuf_data_len(mb));
if (mb->ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
hdrlen = mb->l2_len + mb->l3_len + mb->l4_len;
hdrlen += (mb->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) ?
mb->outer_l2_len + mb->outer_l3_len : 0;
if (q->hw_ring[q->next_free].flags & FM10K_TXD_FLAG_FTAG)
hdrlen += sizeof(struct fm10k_ftag);
if (likely((hdrlen >= FM10K_TSO_MIN_HEADERLEN) &&
(hdrlen <= FM10K_TSO_MAX_HEADERLEN) &&
(mb->tso_segsz >= FM10K_TSO_MINMSS))) {
q->hw_ring[q->next_free].mss = mb->tso_segsz;
q->hw_ring[q->next_free].hdrlen = hdrlen;
}
}
if (++q->next_free == q->nb_desc)
q->next_free = 0;
/* fill up the rings */
for (mb = mb->next; mb != NULL; mb = mb->next) {
q->sw_ring[q->next_free] = mb;
q->hw_ring[q->next_free].buffer_addr =
rte_cpu_to_le_64(MBUF_DMA_ADDR(mb));
q->hw_ring[q->next_free].buflen =
rte_cpu_to_le_16(rte_pktmbuf_data_len(mb));
q->hw_ring[q->next_free].flags = 0;
if (++q->next_free == q->nb_desc)
q->next_free = 0;
}
q->hw_ring[last_id].flags |= flags;
}
uint16_t
fm10k_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct fm10k_tx_queue *q = tx_queue;
struct rte_mbuf *mb;
uint16_t count;
for (count = 0; count < nb_pkts; ++count) {
mb = tx_pkts[count];
/* running low on descriptors? try to free some... */
if (q->nb_free < q->free_thresh)
tx_free_descriptors(q);
/* make sure there are enough free descriptors to transmit the
* entire packet before doing anything */
if (q->nb_free < mb->nb_segs)
break;
/* sanity check to make sure the mbuf is valid */
if ((mb->nb_segs == 0) ||
((mb->nb_segs > 1) && (mb->next == NULL)))
break;
/* process the packet */
tx_xmit_pkt(q, mb);
}
/* update the tail pointer if any packets were processed */
if (likely(count > 0))
FM10K_PCI_REG_WRITE(q->tail_ptr, q->next_free);
return count;
}
uint16_t
fm10k_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
int i, ret;
struct rte_mbuf *m;
for (i = 0; i < nb_pkts; i++) {
m = tx_pkts[i];
if ((m->ol_flags & RTE_MBUF_F_TX_TCP_SEG) &&
(m->tso_segsz < FM10K_TSO_MINMSS)) {
rte_errno = EINVAL;
return i;
}
if (m->ol_flags & FM10K_TX_OFFLOAD_NOTSUP_MASK) {
rte_errno = ENOTSUP;
return i;
}
#ifdef RTE_ETHDEV_DEBUG_TX
ret = rte_validate_tx_offload(m);
if (ret != 0) {
rte_errno = -ret;
return i;
}
#endif
ret = rte_net_intel_cksum_prepare(m);
if (ret != 0) {
rte_errno = -ret;
return i;
}
}
return i;
}