860ed8516a
The 'hns3_restore_filter' is used to restore flow rules from
rte_flow API during the reset process. This patch moves the
recovery of flow direction rule to this function to improve
code maintainability.
Fixes: fcba820d9b
("net/hns3: support flow director")
Cc: stable@dpdk.org
Signed-off-by: Huisong Li <lihuisong@huawei.com>
Signed-off-by: Dongdong Liu <liudongdong3@huawei.com>
1127 lines
30 KiB
C
1127 lines
30 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2018-2021 HiSilicon Limited.
|
|
*/
|
|
|
|
#include <ethdev_driver.h>
|
|
#include <rte_hash.h>
|
|
#include <rte_hash_crc.h>
|
|
#include <rte_io.h>
|
|
#include <rte_malloc.h>
|
|
|
|
#include "hns3_ethdev.h"
|
|
#include "hns3_logs.h"
|
|
|
|
#define HNS3_VLAN_TAG_TYPE_NONE 0
|
|
#define HNS3_VLAN_TAG_TYPE_TAG2 1
|
|
#define HNS3_VLAN_TAG_TYPE_TAG1 2
|
|
#define HNS3_VLAN_TAG_TYPE_TAG1_2 3
|
|
|
|
#define HNS3_PF_ID_S 0
|
|
#define HNS3_PF_ID_M GENMASK(2, 0)
|
|
#define HNS3_VF_ID_S 3
|
|
#define HNS3_VF_ID_M GENMASK(10, 3)
|
|
#define HNS3_PORT_TYPE_B 11
|
|
#define HNS3_NETWORK_PORT_ID_S 0
|
|
#define HNS3_NETWORK_PORT_ID_M GENMASK(3, 0)
|
|
|
|
#define HNS3_FD_EPORT_SW_EN_B 0
|
|
|
|
#define HNS3_FD_AD_DATA_S 32
|
|
#define HNS3_FD_AD_DROP_B 0
|
|
#define HNS3_FD_AD_DIRECT_QID_B 1
|
|
#define HNS3_FD_AD_QID_S 2
|
|
#define HNS3_FD_AD_QID_M GENMASK(11, 2)
|
|
#define HNS3_FD_AD_USE_COUNTER_B 12
|
|
#define HNS3_FD_AD_COUNTER_NUM_S 13
|
|
#define HNS3_FD_AD_COUNTER_NUM_M GENMASK(19, 13)
|
|
#define HNS3_FD_AD_NXT_STEP_B 20
|
|
#define HNS3_FD_AD_NXT_KEY_S 21
|
|
#define HNS3_FD_AD_NXT_KEY_M GENMASK(25, 21)
|
|
#define HNS3_FD_AD_WR_RULE_ID_B 0
|
|
#define HNS3_FD_AD_RULE_ID_S 1
|
|
#define HNS3_FD_AD_RULE_ID_M GENMASK(12, 1)
|
|
#define HNS3_FD_AD_QUEUE_REGION_EN_B 16
|
|
#define HNS3_FD_AD_QUEUE_REGION_SIZE_S 17
|
|
#define HNS3_FD_AD_QUEUE_REGION_SIZE_M GENMASK(20, 17)
|
|
#define HNS3_FD_AD_COUNTER_HIGH_BIT 7
|
|
#define HNS3_FD_AD_COUNTER_HIGH_BIT_B 26
|
|
#define HNS3_FD_AD_QUEUE_ID_HIGH_BIT 10
|
|
#define HNS3_FD_AD_QUEUE_ID_HIGH_BIT_B 21
|
|
|
|
enum HNS3_PORT_TYPE {
|
|
HOST_PORT,
|
|
NETWORK_PORT
|
|
};
|
|
|
|
enum HNS3_FD_MODE {
|
|
HNS3_FD_MODE_DEPTH_2K_WIDTH_400B_STAGE_1,
|
|
HNS3_FD_MODE_DEPTH_1K_WIDTH_400B_STAGE_2,
|
|
HNS3_FD_MODE_DEPTH_4K_WIDTH_200B_STAGE_1,
|
|
HNS3_FD_MODE_DEPTH_2K_WIDTH_200B_STAGE_2,
|
|
};
|
|
|
|
enum HNS3_FD_KEY_TYPE {
|
|
HNS3_FD_KEY_BASE_ON_PTYPE,
|
|
HNS3_FD_KEY_BASE_ON_TUPLE,
|
|
};
|
|
|
|
enum HNS3_FD_META_DATA {
|
|
PACKET_TYPE_ID,
|
|
IP_FRAGEMENT,
|
|
ROCE_TYPE,
|
|
NEXT_KEY,
|
|
VLAN_NUMBER,
|
|
SRC_VPORT,
|
|
DST_VPORT,
|
|
TUNNEL_PACKET,
|
|
MAX_META_DATA,
|
|
};
|
|
|
|
struct key_info {
|
|
uint8_t key_type;
|
|
uint8_t key_length;
|
|
};
|
|
|
|
static const struct key_info meta_data_key_info[] = {
|
|
{PACKET_TYPE_ID, 6},
|
|
{IP_FRAGEMENT, 1},
|
|
{ROCE_TYPE, 1},
|
|
{NEXT_KEY, 5},
|
|
{VLAN_NUMBER, 2},
|
|
{SRC_VPORT, 12},
|
|
{DST_VPORT, 12},
|
|
{TUNNEL_PACKET, 1},
|
|
};
|
|
|
|
static const struct key_info tuple_key_info[] = {
|
|
{OUTER_DST_MAC, 48},
|
|
{OUTER_SRC_MAC, 48},
|
|
{OUTER_VLAN_TAG_FST, 16},
|
|
{OUTER_VLAN_TAG_SEC, 16},
|
|
{OUTER_ETH_TYPE, 16},
|
|
{OUTER_L2_RSV, 16},
|
|
{OUTER_IP_TOS, 8},
|
|
{OUTER_IP_PROTO, 8},
|
|
{OUTER_SRC_IP, 32},
|
|
{OUTER_DST_IP, 32},
|
|
{OUTER_L3_RSV, 16},
|
|
{OUTER_SRC_PORT, 16},
|
|
{OUTER_DST_PORT, 16},
|
|
{OUTER_L4_RSV, 32},
|
|
{OUTER_TUN_VNI, 24},
|
|
{OUTER_TUN_FLOW_ID, 8},
|
|
{INNER_DST_MAC, 48},
|
|
{INNER_SRC_MAC, 48},
|
|
{INNER_VLAN_TAG1, 16},
|
|
{INNER_VLAN_TAG2, 16},
|
|
{INNER_ETH_TYPE, 16},
|
|
{INNER_L2_RSV, 16},
|
|
{INNER_IP_TOS, 8},
|
|
{INNER_IP_PROTO, 8},
|
|
{INNER_SRC_IP, 32},
|
|
{INNER_DST_IP, 32},
|
|
{INNER_L3_RSV, 16},
|
|
{INNER_SRC_PORT, 16},
|
|
{INNER_DST_PORT, 16},
|
|
{INNER_SCTP_TAG, 32},
|
|
};
|
|
|
|
#define MAX_KEY_LENGTH 400
|
|
#define MAX_200B_KEY_LENGTH 200
|
|
#define MAX_META_DATA_LENGTH 16
|
|
#define MAX_KEY_DWORDS DIV_ROUND_UP(MAX_KEY_LENGTH / HNS3_BITS_PER_BYTE, 4)
|
|
#define MAX_KEY_BYTES (MAX_KEY_DWORDS * 4)
|
|
|
|
enum HNS3_FD_PACKET_TYPE {
|
|
NIC_PACKET,
|
|
ROCE_PACKET,
|
|
};
|
|
|
|
/* For each bit of TCAM entry, it uses a pair of 'x' and
|
|
* 'y' to indicate which value to match, like below:
|
|
* ----------------------------------
|
|
* | bit x | bit y | search value |
|
|
* ----------------------------------
|
|
* | 0 | 0 | always hit |
|
|
* ----------------------------------
|
|
* | 1 | 0 | match '0' |
|
|
* ----------------------------------
|
|
* | 0 | 1 | match '1' |
|
|
* ----------------------------------
|
|
* | 1 | 1 | invalid |
|
|
* ----------------------------------
|
|
* Then for input key(k) and mask(v), we can calculate the value by
|
|
* the formulae:
|
|
* x = (~k) & v
|
|
* y = k & v
|
|
*/
|
|
#define calc_x(x, k, v) ((x) = (~(k) & (v)))
|
|
#define calc_y(y, k, v) ((y) = ((k) & (v)))
|
|
|
|
struct hns3_fd_tcam_config_1_cmd {
|
|
uint8_t stage;
|
|
uint8_t xy_sel;
|
|
uint8_t port_info;
|
|
uint8_t rsv1[1];
|
|
rte_le32_t index;
|
|
uint8_t entry_vld;
|
|
uint8_t rsv2[7];
|
|
uint8_t tcam_data[8];
|
|
};
|
|
|
|
struct hns3_fd_tcam_config_2_cmd {
|
|
uint8_t tcam_data[24];
|
|
};
|
|
|
|
struct hns3_fd_tcam_config_3_cmd {
|
|
uint8_t tcam_data[20];
|
|
uint8_t rsv[4];
|
|
};
|
|
|
|
struct hns3_get_fd_mode_cmd {
|
|
uint8_t mode;
|
|
uint8_t enable;
|
|
uint8_t rsv[22];
|
|
};
|
|
|
|
struct hns3_get_fd_allocation_cmd {
|
|
rte_le32_t stage1_entry_num;
|
|
rte_le32_t stage2_entry_num;
|
|
rte_le16_t stage1_counter_num;
|
|
rte_le16_t stage2_counter_num;
|
|
uint8_t rsv[12];
|
|
};
|
|
|
|
struct hns3_set_fd_key_config_cmd {
|
|
uint8_t stage;
|
|
uint8_t key_select;
|
|
uint8_t inner_sipv6_word_en;
|
|
uint8_t inner_dipv6_word_en;
|
|
uint8_t outer_sipv6_word_en;
|
|
uint8_t outer_dipv6_word_en;
|
|
uint8_t rsv1[2];
|
|
rte_le32_t tuple_mask;
|
|
rte_le32_t meta_data_mask;
|
|
uint8_t rsv2[8];
|
|
};
|
|
|
|
struct hns3_fd_ad_config_cmd {
|
|
uint8_t stage;
|
|
uint8_t rsv1[3];
|
|
rte_le32_t index;
|
|
rte_le64_t ad_data;
|
|
uint8_t rsv2[8];
|
|
};
|
|
|
|
struct hns3_fd_get_cnt_cmd {
|
|
uint8_t stage;
|
|
uint8_t rsv1[3];
|
|
rte_le16_t index;
|
|
uint8_t rsv2[2];
|
|
rte_le64_t value;
|
|
uint8_t rsv3[8];
|
|
};
|
|
|
|
static int hns3_get_fd_mode(struct hns3_hw *hw, uint8_t *fd_mode)
|
|
{
|
|
struct hns3_get_fd_mode_cmd *req;
|
|
struct hns3_cmd_desc desc;
|
|
int ret;
|
|
|
|
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_FD_MODE_CTRL, true);
|
|
|
|
req = (struct hns3_get_fd_mode_cmd *)desc.data;
|
|
|
|
ret = hns3_cmd_send(hw, &desc, 1);
|
|
if (ret) {
|
|
hns3_err(hw, "Get fd mode fail, ret=%d", ret);
|
|
return ret;
|
|
}
|
|
|
|
*fd_mode = req->mode;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int hns3_get_fd_allocation(struct hns3_hw *hw,
|
|
uint32_t *stage1_entry_num,
|
|
uint32_t *stage2_entry_num,
|
|
uint16_t *stage1_counter_num,
|
|
uint16_t *stage2_counter_num)
|
|
{
|
|
struct hns3_get_fd_allocation_cmd *req;
|
|
struct hns3_cmd_desc desc;
|
|
int ret;
|
|
|
|
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_FD_GET_ALLOCATION, true);
|
|
|
|
req = (struct hns3_get_fd_allocation_cmd *)desc.data;
|
|
|
|
ret = hns3_cmd_send(hw, &desc, 1);
|
|
if (ret) {
|
|
hns3_err(hw, "Query fd allocation fail, ret=%d", ret);
|
|
return ret;
|
|
}
|
|
|
|
*stage1_entry_num = rte_le_to_cpu_32(req->stage1_entry_num);
|
|
*stage2_entry_num = rte_le_to_cpu_32(req->stage2_entry_num);
|
|
*stage1_counter_num = rte_le_to_cpu_16(req->stage1_counter_num);
|
|
*stage2_counter_num = rte_le_to_cpu_16(req->stage2_counter_num);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int hns3_set_fd_key_config(struct hns3_adapter *hns)
|
|
{
|
|
struct hns3_set_fd_key_config_cmd *req;
|
|
struct hns3_fd_key_cfg *key_cfg;
|
|
struct hns3_pf *pf = &hns->pf;
|
|
struct hns3_hw *hw = &hns->hw;
|
|
struct hns3_cmd_desc desc;
|
|
int ret;
|
|
|
|
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_FD_KEY_CONFIG, false);
|
|
|
|
req = (struct hns3_set_fd_key_config_cmd *)desc.data;
|
|
key_cfg = &pf->fdir.fd_cfg.key_cfg[HNS3_FD_STAGE_1];
|
|
req->stage = HNS3_FD_STAGE_1;
|
|
req->key_select = key_cfg->key_sel;
|
|
req->inner_sipv6_word_en = key_cfg->inner_sipv6_word_en;
|
|
req->inner_dipv6_word_en = key_cfg->inner_dipv6_word_en;
|
|
req->outer_sipv6_word_en = key_cfg->outer_sipv6_word_en;
|
|
req->outer_dipv6_word_en = key_cfg->outer_dipv6_word_en;
|
|
req->tuple_mask = rte_cpu_to_le_32(~key_cfg->tuple_active);
|
|
req->meta_data_mask = rte_cpu_to_le_32(~key_cfg->meta_data_active);
|
|
|
|
ret = hns3_cmd_send(hw, &desc, 1);
|
|
if (ret)
|
|
hns3_err(hw, "Set fd key fail, ret=%d", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int hns3_init_fd_config(struct hns3_adapter *hns)
|
|
{
|
|
struct hns3_pf *pf = &hns->pf;
|
|
struct hns3_hw *hw = &hns->hw;
|
|
struct hns3_fd_key_cfg *key_cfg;
|
|
int ret;
|
|
|
|
ret = hns3_get_fd_mode(hw, &pf->fdir.fd_cfg.fd_mode);
|
|
if (ret)
|
|
return ret;
|
|
|
|
switch (pf->fdir.fd_cfg.fd_mode) {
|
|
case HNS3_FD_MODE_DEPTH_2K_WIDTH_400B_STAGE_1:
|
|
pf->fdir.fd_cfg.max_key_length = MAX_KEY_LENGTH;
|
|
break;
|
|
case HNS3_FD_MODE_DEPTH_4K_WIDTH_200B_STAGE_1:
|
|
pf->fdir.fd_cfg.max_key_length = MAX_200B_KEY_LENGTH;
|
|
hns3_warn(hw, "Unsupported tunnel filter in 4K*200Bit");
|
|
break;
|
|
default:
|
|
hns3_err(hw, "Unsupported flow director mode %u",
|
|
pf->fdir.fd_cfg.fd_mode);
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
key_cfg = &pf->fdir.fd_cfg.key_cfg[HNS3_FD_STAGE_1];
|
|
key_cfg->key_sel = HNS3_FD_KEY_BASE_ON_TUPLE;
|
|
key_cfg->inner_sipv6_word_en = IPV6_ADDR_WORD_MASK;
|
|
key_cfg->inner_dipv6_word_en = IPV6_ADDR_WORD_MASK;
|
|
key_cfg->outer_sipv6_word_en = 0;
|
|
key_cfg->outer_dipv6_word_en = 0;
|
|
|
|
key_cfg->tuple_active = BIT(INNER_VLAN_TAG1) | BIT(INNER_ETH_TYPE) |
|
|
BIT(INNER_IP_PROTO) | BIT(INNER_IP_TOS) |
|
|
BIT(INNER_SRC_IP) | BIT(INNER_DST_IP) |
|
|
BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT);
|
|
hns3_dbg(hw, "fdir tuple: inner<vlan_tag1 eth_type ip_src ip_dst "
|
|
"ip_proto ip_tos l4_src_port l4_dst_port>");
|
|
|
|
/* If use max 400bit key, we can support tuples for ether type */
|
|
if (pf->fdir.fd_cfg.max_key_length == MAX_KEY_LENGTH) {
|
|
key_cfg->tuple_active |=
|
|
BIT(INNER_DST_MAC) | BIT(INNER_SRC_MAC) |
|
|
BIT(OUTER_SRC_PORT) | BIT(INNER_SCTP_TAG) |
|
|
BIT(OUTER_DST_PORT) | BIT(INNER_VLAN_TAG2) |
|
|
BIT(OUTER_TUN_VNI) | BIT(OUTER_TUN_FLOW_ID) |
|
|
BIT(OUTER_ETH_TYPE) | BIT(OUTER_IP_PROTO);
|
|
hns3_dbg(hw, "fdir tuple more: inner<dst_mac src_mac "
|
|
"vlan_tag2 sctp_tag> outer<eth_type ip_proto "
|
|
"l4_src_port l4_dst_port tun_vni tun_flow_id>");
|
|
}
|
|
|
|
/* roce_type is used to filter roce frames
|
|
* dst_vport is used to specify the rule
|
|
*/
|
|
key_cfg->meta_data_active = BIT(DST_VPORT) | BIT(TUNNEL_PACKET) |
|
|
BIT(VLAN_NUMBER);
|
|
hns3_dbg(hw, "fdir meta data: dst_vport tunnel_packet vlan_number");
|
|
|
|
ret = hns3_get_fd_allocation(hw,
|
|
&pf->fdir.fd_cfg.rule_num[HNS3_FD_STAGE_1],
|
|
&pf->fdir.fd_cfg.rule_num[HNS3_FD_STAGE_2],
|
|
&pf->fdir.fd_cfg.cnt_num[HNS3_FD_STAGE_1],
|
|
&pf->fdir.fd_cfg.cnt_num[HNS3_FD_STAGE_2]);
|
|
if (ret)
|
|
return ret;
|
|
|
|
hns3_dbg(hw, "fdir: stage1<rules-%u counters-%u> stage2<rules-%u counters=%u>",
|
|
pf->fdir.fd_cfg.rule_num[HNS3_FD_STAGE_1],
|
|
pf->fdir.fd_cfg.cnt_num[HNS3_FD_STAGE_1],
|
|
pf->fdir.fd_cfg.rule_num[HNS3_FD_STAGE_2],
|
|
pf->fdir.fd_cfg.cnt_num[HNS3_FD_STAGE_2]);
|
|
|
|
return hns3_set_fd_key_config(hns);
|
|
}
|
|
|
|
static int hns3_fd_tcam_config(struct hns3_hw *hw, bool sel_x, int loc,
|
|
uint8_t *key, bool is_add)
|
|
{
|
|
#define FD_TCAM_CMD_NUM 3
|
|
struct hns3_fd_tcam_config_1_cmd *req1;
|
|
struct hns3_fd_tcam_config_2_cmd *req2;
|
|
struct hns3_fd_tcam_config_3_cmd *req3;
|
|
struct hns3_cmd_desc desc[FD_TCAM_CMD_NUM];
|
|
int len;
|
|
int ret;
|
|
|
|
hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_FD_TCAM_OP, false);
|
|
desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
|
|
hns3_cmd_setup_basic_desc(&desc[1], HNS3_OPC_FD_TCAM_OP, false);
|
|
desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
|
|
hns3_cmd_setup_basic_desc(&desc[2], HNS3_OPC_FD_TCAM_OP, false);
|
|
|
|
req1 = (struct hns3_fd_tcam_config_1_cmd *)desc[0].data;
|
|
req2 = (struct hns3_fd_tcam_config_2_cmd *)desc[1].data;
|
|
req3 = (struct hns3_fd_tcam_config_3_cmd *)desc[2].data;
|
|
|
|
req1->stage = HNS3_FD_STAGE_1;
|
|
req1->xy_sel = sel_x ? 1 : 0;
|
|
hns3_set_bit(req1->port_info, HNS3_FD_EPORT_SW_EN_B, 0);
|
|
req1->index = rte_cpu_to_le_32(loc);
|
|
req1->entry_vld = sel_x ? is_add : 0;
|
|
|
|
if (key) {
|
|
len = sizeof(req1->tcam_data);
|
|
memcpy(req1->tcam_data, key, len);
|
|
key += len;
|
|
|
|
len = sizeof(req2->tcam_data);
|
|
memcpy(req2->tcam_data, key, len);
|
|
key += len;
|
|
|
|
len = sizeof(req3->tcam_data);
|
|
memcpy(req3->tcam_data, key, len);
|
|
}
|
|
|
|
ret = hns3_cmd_send(hw, desc, FD_TCAM_CMD_NUM);
|
|
if (ret)
|
|
hns3_err(hw, "Config tcam key fail, ret=%d loc=%d add=%d",
|
|
ret, loc, is_add);
|
|
return ret;
|
|
}
|
|
|
|
static int hns3_fd_ad_config(struct hns3_hw *hw, int loc,
|
|
struct hns3_fd_ad_data *action)
|
|
{
|
|
struct hns3_fd_ad_config_cmd *req;
|
|
struct hns3_cmd_desc desc;
|
|
uint64_t ad_data = 0;
|
|
int ret;
|
|
|
|
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_FD_AD_OP, false);
|
|
|
|
req = (struct hns3_fd_ad_config_cmd *)desc.data;
|
|
req->index = rte_cpu_to_le_32(loc);
|
|
req->stage = HNS3_FD_STAGE_1;
|
|
|
|
hns3_set_bit(ad_data, HNS3_FD_AD_WR_RULE_ID_B,
|
|
action->write_rule_id_to_bd);
|
|
hns3_set_field(ad_data, HNS3_FD_AD_RULE_ID_M, HNS3_FD_AD_RULE_ID_S,
|
|
action->rule_id);
|
|
if (action->nb_queues > 1) {
|
|
hns3_set_bit(ad_data, HNS3_FD_AD_QUEUE_REGION_EN_B, 1);
|
|
hns3_set_field(ad_data, HNS3_FD_AD_QUEUE_REGION_SIZE_M,
|
|
HNS3_FD_AD_QUEUE_REGION_SIZE_S,
|
|
rte_log2_u32(action->nb_queues));
|
|
}
|
|
/* set extend bit if counter_id is in [128 ~ 255] */
|
|
if (action->counter_id & BIT(HNS3_FD_AD_COUNTER_HIGH_BIT))
|
|
hns3_set_bit(ad_data, HNS3_FD_AD_COUNTER_HIGH_BIT_B, 1);
|
|
/* set extend bit if queue id > 1024 */
|
|
if (action->queue_id & BIT(HNS3_FD_AD_QUEUE_ID_HIGH_BIT))
|
|
hns3_set_bit(ad_data, HNS3_FD_AD_QUEUE_ID_HIGH_BIT_B, 1);
|
|
ad_data <<= HNS3_FD_AD_DATA_S;
|
|
hns3_set_bit(ad_data, HNS3_FD_AD_DROP_B, action->drop_packet);
|
|
if (action->nb_queues == 1)
|
|
hns3_set_bit(ad_data, HNS3_FD_AD_DIRECT_QID_B, 1);
|
|
hns3_set_field(ad_data, HNS3_FD_AD_QID_M, HNS3_FD_AD_QID_S,
|
|
action->queue_id);
|
|
hns3_set_bit(ad_data, HNS3_FD_AD_USE_COUNTER_B, action->use_counter);
|
|
hns3_set_field(ad_data, HNS3_FD_AD_COUNTER_NUM_M,
|
|
HNS3_FD_AD_COUNTER_NUM_S, action->counter_id);
|
|
hns3_set_bit(ad_data, HNS3_FD_AD_NXT_STEP_B, action->use_next_stage);
|
|
hns3_set_field(ad_data, HNS3_FD_AD_NXT_KEY_M, HNS3_FD_AD_NXT_KEY_S,
|
|
action->next_input_key);
|
|
|
|
req->ad_data = rte_cpu_to_le_64(ad_data);
|
|
ret = hns3_cmd_send(hw, &desc, 1);
|
|
if (ret)
|
|
hns3_err(hw, "Config fd ad fail, ret=%d loc=%d", ret, loc);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline void hns3_fd_convert_mac(uint8_t *key, uint8_t *mask,
|
|
uint8_t *mac_x, uint8_t *mac_y)
|
|
{
|
|
uint8_t tmp;
|
|
int i;
|
|
|
|
for (i = 0; i < RTE_ETHER_ADDR_LEN; i++) {
|
|
tmp = RTE_ETHER_ADDR_LEN - 1 - i;
|
|
calc_x(mac_x[tmp], key[i], mask[i]);
|
|
calc_y(mac_y[tmp], key[i], mask[i]);
|
|
}
|
|
}
|
|
|
|
static void hns3_fd_convert_int16(uint32_t tuple, struct hns3_fdir_rule *rule,
|
|
uint8_t *val_x, uint8_t *val_y)
|
|
{
|
|
uint16_t tmp_x_s;
|
|
uint16_t tmp_y_s;
|
|
uint16_t mask;
|
|
uint16_t key;
|
|
|
|
switch (tuple) {
|
|
case OUTER_SRC_PORT:
|
|
key = rule->key_conf.spec.outer_src_port;
|
|
mask = rule->key_conf.mask.outer_src_port;
|
|
break;
|
|
case OUTER_DST_PORT:
|
|
key = rule->key_conf.spec.tunnel_type;
|
|
mask = rule->key_conf.mask.tunnel_type;
|
|
break;
|
|
case OUTER_ETH_TYPE:
|
|
key = rule->key_conf.spec.outer_ether_type;
|
|
mask = rule->key_conf.mask.outer_ether_type;
|
|
break;
|
|
case INNER_SRC_PORT:
|
|
key = rule->key_conf.spec.src_port;
|
|
mask = rule->key_conf.mask.src_port;
|
|
break;
|
|
case INNER_DST_PORT:
|
|
key = rule->key_conf.spec.dst_port;
|
|
mask = rule->key_conf.mask.dst_port;
|
|
break;
|
|
case INNER_VLAN_TAG1:
|
|
key = rule->key_conf.spec.vlan_tag1;
|
|
mask = rule->key_conf.mask.vlan_tag1;
|
|
break;
|
|
case INNER_VLAN_TAG2:
|
|
key = rule->key_conf.spec.vlan_tag2;
|
|
mask = rule->key_conf.mask.vlan_tag2;
|
|
break;
|
|
default:
|
|
/* INNER_ETH_TYPE: */
|
|
key = rule->key_conf.spec.ether_type;
|
|
mask = rule->key_conf.mask.ether_type;
|
|
break;
|
|
}
|
|
calc_x(tmp_x_s, key, mask);
|
|
calc_y(tmp_y_s, key, mask);
|
|
val_x[0] = rte_cpu_to_le_16(tmp_x_s) & 0xFF;
|
|
val_x[1] = rte_cpu_to_le_16(tmp_x_s) >> HNS3_BITS_PER_BYTE;
|
|
val_y[0] = rte_cpu_to_le_16(tmp_y_s) & 0xFF;
|
|
val_y[1] = rte_cpu_to_le_16(tmp_y_s) >> HNS3_BITS_PER_BYTE;
|
|
}
|
|
|
|
static inline void hns3_fd_convert_int32(uint32_t key, uint32_t mask,
|
|
uint8_t *val_x, uint8_t *val_y)
|
|
{
|
|
uint32_t tmp_x_l;
|
|
uint32_t tmp_y_l;
|
|
|
|
calc_x(tmp_x_l, key, mask);
|
|
calc_y(tmp_y_l, key, mask);
|
|
memcpy(val_x, &tmp_x_l, sizeof(tmp_x_l));
|
|
memcpy(val_y, &tmp_y_l, sizeof(tmp_y_l));
|
|
}
|
|
|
|
static bool hns3_fd_convert_tuple(struct hns3_hw *hw,
|
|
uint32_t tuple, uint8_t *key_x,
|
|
uint8_t *key_y, struct hns3_fdir_rule *rule)
|
|
{
|
|
struct hns3_fdir_key_conf *key_conf;
|
|
int tmp;
|
|
int i;
|
|
|
|
if ((rule->input_set & BIT(tuple)) == 0)
|
|
return true;
|
|
|
|
key_conf = &rule->key_conf;
|
|
switch (tuple) {
|
|
case INNER_DST_MAC:
|
|
hns3_fd_convert_mac(key_conf->spec.dst_mac,
|
|
key_conf->mask.dst_mac, key_x, key_y);
|
|
break;
|
|
case INNER_SRC_MAC:
|
|
hns3_fd_convert_mac(key_conf->spec.src_mac,
|
|
key_conf->mask.src_mac, key_x, key_y);
|
|
break;
|
|
case OUTER_SRC_PORT:
|
|
case OUTER_DST_PORT:
|
|
case OUTER_ETH_TYPE:
|
|
case INNER_SRC_PORT:
|
|
case INNER_DST_PORT:
|
|
case INNER_VLAN_TAG1:
|
|
case INNER_VLAN_TAG2:
|
|
case INNER_ETH_TYPE:
|
|
hns3_fd_convert_int16(tuple, rule, key_x, key_y);
|
|
break;
|
|
case INNER_SRC_IP:
|
|
hns3_fd_convert_int32(key_conf->spec.src_ip[IP_ADDR_KEY_ID],
|
|
key_conf->mask.src_ip[IP_ADDR_KEY_ID],
|
|
key_x, key_y);
|
|
break;
|
|
case INNER_DST_IP:
|
|
hns3_fd_convert_int32(key_conf->spec.dst_ip[IP_ADDR_KEY_ID],
|
|
key_conf->mask.dst_ip[IP_ADDR_KEY_ID],
|
|
key_x, key_y);
|
|
break;
|
|
case INNER_SCTP_TAG:
|
|
hns3_fd_convert_int32(key_conf->spec.sctp_tag,
|
|
key_conf->mask.sctp_tag, key_x, key_y);
|
|
break;
|
|
case OUTER_TUN_VNI:
|
|
for (i = 0; i < VNI_OR_TNI_LEN; i++) {
|
|
tmp = VNI_OR_TNI_LEN - 1 - i;
|
|
calc_x(key_x[tmp],
|
|
key_conf->spec.outer_tun_vni[i],
|
|
key_conf->mask.outer_tun_vni[i]);
|
|
calc_y(key_y[tmp],
|
|
key_conf->spec.outer_tun_vni[i],
|
|
key_conf->mask.outer_tun_vni[i]);
|
|
}
|
|
break;
|
|
case OUTER_TUN_FLOW_ID:
|
|
calc_x(*key_x, key_conf->spec.outer_tun_flow_id,
|
|
key_conf->mask.outer_tun_flow_id);
|
|
calc_y(*key_y, key_conf->spec.outer_tun_flow_id,
|
|
key_conf->mask.outer_tun_flow_id);
|
|
break;
|
|
case INNER_IP_TOS:
|
|
calc_x(*key_x, key_conf->spec.ip_tos, key_conf->mask.ip_tos);
|
|
calc_y(*key_y, key_conf->spec.ip_tos, key_conf->mask.ip_tos);
|
|
break;
|
|
case OUTER_IP_PROTO:
|
|
calc_x(*key_x, key_conf->spec.outer_proto,
|
|
key_conf->mask.outer_proto);
|
|
calc_y(*key_y, key_conf->spec.outer_proto,
|
|
key_conf->mask.outer_proto);
|
|
break;
|
|
case INNER_IP_PROTO:
|
|
calc_x(*key_x, key_conf->spec.ip_proto,
|
|
key_conf->mask.ip_proto);
|
|
calc_y(*key_y, key_conf->spec.ip_proto,
|
|
key_conf->mask.ip_proto);
|
|
break;
|
|
default:
|
|
hns3_warn(hw, "not support tuple of (%u)", tuple);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static uint32_t hns3_get_port_number(uint8_t pf_id, uint8_t vf_id)
|
|
{
|
|
uint32_t port_number = 0;
|
|
|
|
hns3_set_field(port_number, HNS3_PF_ID_M, HNS3_PF_ID_S, pf_id);
|
|
hns3_set_field(port_number, HNS3_VF_ID_M, HNS3_VF_ID_S, vf_id);
|
|
hns3_set_bit(port_number, HNS3_PORT_TYPE_B, HOST_PORT);
|
|
|
|
return port_number;
|
|
}
|
|
|
|
static void hns3_fd_convert_meta_data(struct hns3_fd_key_cfg *cfg,
|
|
uint8_t vf_id,
|
|
struct hns3_fdir_rule *rule,
|
|
uint8_t *key_x, uint8_t *key_y)
|
|
{
|
|
uint16_t meta_data = 0;
|
|
uint32_t port_number;
|
|
uint8_t cur_pos = 0;
|
|
uint8_t tuple_size;
|
|
uint8_t shift_bits;
|
|
uint32_t tmp_x;
|
|
uint32_t tmp_y;
|
|
uint8_t i;
|
|
|
|
for (i = 0; i < MAX_META_DATA; i++) {
|
|
if ((cfg->meta_data_active & BIT(i)) == 0)
|
|
continue;
|
|
|
|
tuple_size = meta_data_key_info[i].key_length;
|
|
if (i == TUNNEL_PACKET) {
|
|
hns3_set_bit(meta_data, cur_pos,
|
|
rule->key_conf.spec.tunnel_type ? 1 : 0);
|
|
cur_pos += tuple_size;
|
|
} else if (i == VLAN_NUMBER) {
|
|
uint32_t vlan_tag;
|
|
uint8_t vlan_num;
|
|
|
|
if (rule->key_conf.spec.tunnel_type == 0)
|
|
vlan_num = rule->key_conf.vlan_num;
|
|
else
|
|
vlan_num = rule->key_conf.outer_vlan_num;
|
|
if (vlan_num == 1)
|
|
vlan_tag = HNS3_VLAN_TAG_TYPE_TAG1;
|
|
else if (vlan_num == VLAN_TAG_NUM_MAX)
|
|
vlan_tag = HNS3_VLAN_TAG_TYPE_TAG1_2;
|
|
else
|
|
vlan_tag = HNS3_VLAN_TAG_TYPE_NONE;
|
|
hns3_set_field(meta_data,
|
|
GENMASK(cur_pos + tuple_size,
|
|
cur_pos), cur_pos, vlan_tag);
|
|
cur_pos += tuple_size;
|
|
} else if (i == DST_VPORT) {
|
|
port_number = hns3_get_port_number(0, vf_id);
|
|
hns3_set_field(meta_data,
|
|
GENMASK(cur_pos + tuple_size, cur_pos),
|
|
cur_pos, port_number);
|
|
cur_pos += tuple_size;
|
|
}
|
|
}
|
|
|
|
calc_x(tmp_x, meta_data, 0xFFFF);
|
|
calc_y(tmp_y, meta_data, 0xFFFF);
|
|
shift_bits = sizeof(meta_data) * HNS3_BITS_PER_BYTE - cur_pos;
|
|
|
|
tmp_x = rte_cpu_to_le_32(tmp_x << shift_bits);
|
|
tmp_y = rte_cpu_to_le_32(tmp_y << shift_bits);
|
|
key_x[0] = tmp_x & 0xFF;
|
|
key_x[1] = (tmp_x >> HNS3_BITS_PER_BYTE) & 0xFF;
|
|
key_y[0] = tmp_y & 0xFF;
|
|
key_y[1] = (tmp_y >> HNS3_BITS_PER_BYTE) & 0xFF;
|
|
}
|
|
|
|
/* A complete key is combined with meta data key and tuple key.
|
|
* Meta data key is stored at the MSB region, and tuple key is stored at
|
|
* the LSB region, unused bits will be filled 0.
|
|
*/
|
|
static int hns3_config_key(struct hns3_adapter *hns,
|
|
struct hns3_fdir_rule *rule)
|
|
{
|
|
struct hns3_pf *pf = &hns->pf;
|
|
struct hns3_hw *hw = &hns->hw;
|
|
struct hns3_fd_key_cfg *key_cfg;
|
|
uint8_t *cur_key_x;
|
|
uint8_t *cur_key_y;
|
|
uint8_t key_x[MAX_KEY_BYTES] __rte_aligned(4);
|
|
uint8_t key_y[MAX_KEY_BYTES] __rte_aligned(4);
|
|
uint8_t vf_id = rule->vf_id;
|
|
uint8_t meta_data_region;
|
|
uint8_t tuple_size;
|
|
uint8_t i;
|
|
int ret;
|
|
|
|
memset(key_x, 0, sizeof(key_x));
|
|
memset(key_y, 0, sizeof(key_y));
|
|
cur_key_x = key_x;
|
|
cur_key_y = key_y;
|
|
|
|
key_cfg = &pf->fdir.fd_cfg.key_cfg[HNS3_FD_STAGE_1];
|
|
for (i = 0; i < MAX_TUPLE; i++) {
|
|
bool tuple_valid;
|
|
|
|
tuple_size = tuple_key_info[i].key_length / HNS3_BITS_PER_BYTE;
|
|
if (key_cfg->tuple_active & BIT(i)) {
|
|
tuple_valid = hns3_fd_convert_tuple(hw, i, cur_key_x,
|
|
cur_key_y, rule);
|
|
if (tuple_valid) {
|
|
cur_key_x += tuple_size;
|
|
cur_key_y += tuple_size;
|
|
}
|
|
}
|
|
}
|
|
|
|
meta_data_region = pf->fdir.fd_cfg.max_key_length / HNS3_BITS_PER_BYTE -
|
|
MAX_META_DATA_LENGTH / HNS3_BITS_PER_BYTE;
|
|
|
|
hns3_fd_convert_meta_data(key_cfg, vf_id, rule,
|
|
key_x + meta_data_region,
|
|
key_y + meta_data_region);
|
|
|
|
ret = hns3_fd_tcam_config(hw, false, rule->location, key_y, true);
|
|
if (ret) {
|
|
hns3_err(hw, "Config fd key_y fail, loc=%u, ret=%d",
|
|
rule->queue_id, ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = hns3_fd_tcam_config(hw, true, rule->location, key_x, true);
|
|
if (ret)
|
|
hns3_err(hw, "Config fd key_x fail, loc=%u, ret=%d",
|
|
rule->queue_id, ret);
|
|
return ret;
|
|
}
|
|
|
|
static int hns3_config_action(struct hns3_hw *hw, struct hns3_fdir_rule *rule)
|
|
{
|
|
struct hns3_fd_ad_data ad_data;
|
|
|
|
ad_data.ad_id = rule->location;
|
|
|
|
if (rule->action == HNS3_FD_ACTION_DROP_PACKET) {
|
|
ad_data.drop_packet = true;
|
|
ad_data.queue_id = 0;
|
|
ad_data.nb_queues = 0;
|
|
} else {
|
|
ad_data.drop_packet = false;
|
|
ad_data.queue_id = rule->queue_id;
|
|
ad_data.nb_queues = rule->nb_queues;
|
|
}
|
|
|
|
if (unlikely(rule->flags & HNS3_RULE_FLAG_COUNTER)) {
|
|
ad_data.use_counter = true;
|
|
ad_data.counter_id = rule->act_cnt.id;
|
|
} else {
|
|
ad_data.use_counter = false;
|
|
ad_data.counter_id = 0;
|
|
}
|
|
|
|
if (unlikely(rule->flags & HNS3_RULE_FLAG_FDID))
|
|
ad_data.rule_id = rule->fd_id;
|
|
else
|
|
ad_data.rule_id = rule->location;
|
|
|
|
ad_data.use_next_stage = false;
|
|
ad_data.next_input_key = 0;
|
|
|
|
ad_data.write_rule_id_to_bd = true;
|
|
|
|
return hns3_fd_ad_config(hw, ad_data.ad_id, &ad_data);
|
|
}
|
|
|
|
static int hns3_fd_clear_all_rules(struct hns3_hw *hw, uint32_t rule_num)
|
|
{
|
|
uint32_t i;
|
|
int ret;
|
|
|
|
for (i = 0; i < rule_num; i++) {
|
|
ret = hns3_fd_tcam_config(hw, true, i, NULL, false);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int hns3_fdir_filter_init(struct hns3_adapter *hns)
|
|
{
|
|
struct hns3_pf *pf = &hns->pf;
|
|
struct hns3_fdir_info *fdir_info = &pf->fdir;
|
|
uint32_t rule_num = fdir_info->fd_cfg.rule_num[HNS3_FD_STAGE_1];
|
|
char fdir_hash_name[RTE_HASH_NAMESIZE];
|
|
struct rte_hash_parameters fdir_hash_params = {
|
|
.name = fdir_hash_name,
|
|
.entries = rule_num,
|
|
.key_len = sizeof(struct hns3_fdir_key_conf),
|
|
.hash_func = rte_hash_crc,
|
|
.hash_func_init_val = 0,
|
|
};
|
|
int ret;
|
|
|
|
ret = hns3_fd_clear_all_rules(&hns->hw, rule_num);
|
|
if (ret) {
|
|
PMD_INIT_LOG(ERR, "Clear all fd rules fail! ret = %d", ret);
|
|
return ret;
|
|
}
|
|
|
|
fdir_hash_params.socket_id = rte_socket_id();
|
|
TAILQ_INIT(&fdir_info->fdir_list);
|
|
snprintf(fdir_hash_name, RTE_HASH_NAMESIZE, "%s", hns->hw.data->name);
|
|
fdir_info->hash_handle = rte_hash_create(&fdir_hash_params);
|
|
if (fdir_info->hash_handle == NULL) {
|
|
PMD_INIT_LOG(ERR, "Create FDIR hash handle fail!");
|
|
return -EINVAL;
|
|
}
|
|
fdir_info->hash_map = rte_zmalloc("hns3 FDIR hash",
|
|
rule_num *
|
|
sizeof(struct hns3_fdir_rule_ele *),
|
|
0);
|
|
if (fdir_info->hash_map == NULL) {
|
|
PMD_INIT_LOG(ERR, "Allocate memory for FDIR hash map fail!");
|
|
rte_hash_free(fdir_info->hash_handle);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void hns3_fdir_filter_uninit(struct hns3_adapter *hns)
|
|
{
|
|
struct hns3_pf *pf = &hns->pf;
|
|
struct hns3_fdir_info *fdir_info = &pf->fdir;
|
|
struct hns3_fdir_rule_ele *fdir_filter;
|
|
|
|
if (fdir_info->hash_map) {
|
|
rte_free(fdir_info->hash_map);
|
|
fdir_info->hash_map = NULL;
|
|
}
|
|
if (fdir_info->hash_handle) {
|
|
rte_hash_free(fdir_info->hash_handle);
|
|
fdir_info->hash_handle = NULL;
|
|
}
|
|
|
|
fdir_filter = TAILQ_FIRST(&fdir_info->fdir_list);
|
|
while (fdir_filter) {
|
|
TAILQ_REMOVE(&fdir_info->fdir_list, fdir_filter, entries);
|
|
hns3_fd_tcam_config(&hns->hw, true,
|
|
fdir_filter->fdir_conf.location, NULL,
|
|
false);
|
|
rte_free(fdir_filter);
|
|
fdir_filter = TAILQ_FIRST(&fdir_info->fdir_list);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Find a key in the hash table.
|
|
* @return
|
|
* - Zero and positive values are key location.
|
|
* - -EINVAL if the parameters are invalid.
|
|
* - -ENOENT if the key is not found.
|
|
*/
|
|
static int hns3_fdir_filter_lookup(struct hns3_fdir_info *fdir_info,
|
|
struct hns3_fdir_key_conf *key)
|
|
{
|
|
hash_sig_t sig;
|
|
int ret;
|
|
|
|
sig = rte_hash_crc(key, sizeof(*key), 0);
|
|
ret = rte_hash_lookup_with_hash(fdir_info->hash_handle, key, sig);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int hns3_insert_fdir_filter(struct hns3_hw *hw,
|
|
struct hns3_fdir_info *fdir_info,
|
|
struct hns3_fdir_rule_ele *fdir_filter)
|
|
{
|
|
struct hns3_fdir_key_conf *key;
|
|
hash_sig_t sig;
|
|
int ret;
|
|
|
|
key = &fdir_filter->fdir_conf.key_conf;
|
|
sig = rte_hash_crc(key, sizeof(*key), 0);
|
|
ret = rte_hash_add_key_with_hash(fdir_info->hash_handle, key, sig);
|
|
if (ret < 0) {
|
|
hns3_err(hw, "Hash table full? err:%d!", ret);
|
|
return ret;
|
|
}
|
|
|
|
fdir_info->hash_map[ret] = fdir_filter;
|
|
TAILQ_INSERT_TAIL(&fdir_info->fdir_list, fdir_filter, entries);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int hns3_remove_fdir_filter(struct hns3_hw *hw,
|
|
struct hns3_fdir_info *fdir_info,
|
|
struct hns3_fdir_key_conf *key)
|
|
{
|
|
struct hns3_fdir_rule_ele *fdir_filter;
|
|
hash_sig_t sig;
|
|
int ret;
|
|
|
|
sig = rte_hash_crc(key, sizeof(*key), 0);
|
|
ret = rte_hash_del_key_with_hash(fdir_info->hash_handle, key, sig);
|
|
if (ret < 0) {
|
|
hns3_err(hw, "Delete hash key fail ret=%d", ret);
|
|
return ret;
|
|
}
|
|
|
|
fdir_filter = fdir_info->hash_map[ret];
|
|
fdir_info->hash_map[ret] = NULL;
|
|
TAILQ_REMOVE(&fdir_info->fdir_list, fdir_filter, entries);
|
|
|
|
rte_free(fdir_filter);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int hns3_fdir_filter_program(struct hns3_adapter *hns,
|
|
struct hns3_fdir_rule *rule, bool del)
|
|
{
|
|
struct hns3_pf *pf = &hns->pf;
|
|
struct hns3_fdir_info *fdir_info = &pf->fdir;
|
|
struct hns3_fdir_rule_ele *node;
|
|
struct hns3_hw *hw = &hns->hw;
|
|
int ret;
|
|
|
|
if (del) {
|
|
ret = hns3_fd_tcam_config(hw, true, rule->location, NULL,
|
|
false);
|
|
if (ret)
|
|
hns3_err(hw, "Failed to delete fdir: %u src_ip:%x "
|
|
"dst_ip:%x src_port:%u dst_port:%u ret = %d",
|
|
rule->location,
|
|
rule->key_conf.spec.src_ip[IP_ADDR_KEY_ID],
|
|
rule->key_conf.spec.dst_ip[IP_ADDR_KEY_ID],
|
|
rule->key_conf.spec.src_port,
|
|
rule->key_conf.spec.dst_port, ret);
|
|
else
|
|
hns3_remove_fdir_filter(hw, fdir_info, &rule->key_conf);
|
|
|
|
return ret;
|
|
}
|
|
|
|
ret = hns3_fdir_filter_lookup(fdir_info, &rule->key_conf);
|
|
if (ret >= 0) {
|
|
hns3_err(hw, "Conflict with existing fdir loc: %d", ret);
|
|
return -EINVAL;
|
|
}
|
|
|
|
node = rte_zmalloc("hns3 fdir rule", sizeof(struct hns3_fdir_rule_ele),
|
|
0);
|
|
if (node == NULL) {
|
|
hns3_err(hw, "Failed to allocate fdir_rule memory");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rte_memcpy(&node->fdir_conf, rule, sizeof(struct hns3_fdir_rule));
|
|
ret = hns3_insert_fdir_filter(hw, fdir_info, node);
|
|
if (ret < 0) {
|
|
rte_free(node);
|
|
return ret;
|
|
}
|
|
rule->location = ret;
|
|
node->fdir_conf.location = ret;
|
|
|
|
ret = hns3_config_action(hw, rule);
|
|
if (!ret)
|
|
ret = hns3_config_key(hns, rule);
|
|
if (ret) {
|
|
hns3_err(hw, "Failed to config fdir: %u src_ip:%x dst_ip:%x "
|
|
"src_port:%u dst_port:%u ret = %d",
|
|
rule->location,
|
|
rule->key_conf.spec.src_ip[IP_ADDR_KEY_ID],
|
|
rule->key_conf.spec.dst_ip[IP_ADDR_KEY_ID],
|
|
rule->key_conf.spec.src_port,
|
|
rule->key_conf.spec.dst_port, ret);
|
|
(void)hns3_remove_fdir_filter(hw, fdir_info, &rule->key_conf);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* remove all the flow director filters */
|
|
int hns3_clear_all_fdir_filter(struct hns3_adapter *hns)
|
|
{
|
|
struct hns3_pf *pf = &hns->pf;
|
|
struct hns3_fdir_info *fdir_info = &pf->fdir;
|
|
struct hns3_fdir_rule_ele *fdir_filter;
|
|
struct hns3_hw *hw = &hns->hw;
|
|
int succ_cnt = 0;
|
|
int fail_cnt = 0;
|
|
int ret = 0;
|
|
|
|
/* flush flow director */
|
|
rte_hash_reset(fdir_info->hash_handle);
|
|
|
|
memset(fdir_info->hash_map, 0,
|
|
sizeof(struct hns3_fdir_rule_ele *) *
|
|
fdir_info->fd_cfg.rule_num[HNS3_FD_STAGE_1]);
|
|
|
|
fdir_filter = TAILQ_FIRST(&fdir_info->fdir_list);
|
|
while (fdir_filter) {
|
|
TAILQ_REMOVE(&fdir_info->fdir_list, fdir_filter, entries);
|
|
ret = hns3_fd_tcam_config(hw, true,
|
|
fdir_filter->fdir_conf.location,
|
|
NULL, false);
|
|
if (ret == 0)
|
|
succ_cnt++;
|
|
else
|
|
fail_cnt++;
|
|
rte_free(fdir_filter);
|
|
fdir_filter = TAILQ_FIRST(&fdir_info->fdir_list);
|
|
}
|
|
|
|
if (fail_cnt > 0) {
|
|
hns3_err(hw, "fail to delete all FDIR filter, success num = %d "
|
|
"fail num = %d", succ_cnt, fail_cnt);
|
|
ret = -EIO;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int hns3_restore_all_fdir_filter(struct hns3_adapter *hns)
|
|
{
|
|
struct hns3_pf *pf = &hns->pf;
|
|
struct hns3_fdir_info *fdir_info = &pf->fdir;
|
|
struct hns3_fdir_rule_ele *fdir_filter;
|
|
struct hns3_hw *hw = &hns->hw;
|
|
bool err = false;
|
|
int ret;
|
|
|
|
if (hns->is_vf)
|
|
return 0;
|
|
|
|
/*
|
|
* This API is called in the reset recovery process, the parent function
|
|
* must hold hw->lock.
|
|
* There maybe deadlock if acquire hw->flows_lock directly because rte
|
|
* flow driver ops first acquire hw->flows_lock and then may acquire
|
|
* hw->lock.
|
|
* So here first release the hw->lock and then acquire the
|
|
* hw->flows_lock to avoid deadlock.
|
|
*/
|
|
rte_spinlock_unlock(&hw->lock);
|
|
pthread_mutex_lock(&hw->flows_lock);
|
|
TAILQ_FOREACH(fdir_filter, &fdir_info->fdir_list, entries) {
|
|
ret = hns3_config_action(hw, &fdir_filter->fdir_conf);
|
|
if (!ret)
|
|
ret = hns3_config_key(hns, &fdir_filter->fdir_conf);
|
|
if (ret) {
|
|
err = true;
|
|
if (ret == -EBUSY)
|
|
break;
|
|
}
|
|
}
|
|
pthread_mutex_unlock(&hw->flows_lock);
|
|
rte_spinlock_lock(&hw->lock);
|
|
|
|
if (err) {
|
|
hns3_err(hw, "Fail to restore FDIR filter, ret = %d", ret);
|
|
return -EIO;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int hns3_fd_get_count(struct hns3_hw *hw, uint32_t id, uint64_t *value)
|
|
{
|
|
struct hns3_fd_get_cnt_cmd *req;
|
|
struct hns3_cmd_desc desc;
|
|
int ret;
|
|
|
|
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_FD_COUNTER_OP, true);
|
|
|
|
req = (struct hns3_fd_get_cnt_cmd *)desc.data;
|
|
req->stage = HNS3_FD_STAGE_1;
|
|
req->index = rte_cpu_to_le_32(id);
|
|
|
|
ret = hns3_cmd_send(hw, &desc, 1);
|
|
if (ret) {
|
|
hns3_err(hw, "Read counter fail, ret=%d", ret);
|
|
return ret;
|
|
}
|
|
|
|
*value = req->value;
|
|
|
|
return ret;
|
|
}
|