numam-dpdk/drivers/net/hns3/hns3_rxtx_vec.c
Huisong Li 4ac14c1d96 net/hns3: fix Rx with PTP
The Rx and Tx vector algorithm of hns3 PMD don't support PTP
function. Currently, hns3 driver uses 'pf->ptp_enable' to check
whether PTP is enabled so as to not select Rx and Tx vector
algorithm. And the variable is set when call rte_eth_timesync_enable().
Namely, it may not be set before selecting Rx/Tx function, let's say
the case: set PTP offload in dev_configure(), do dev_start() and then
call rte_eth_timesync_enable(). In this case, all PTP packets can not
be received to application. So this patch fixes the check based on the
RTE_ETH_RX_OFFLOAD_TIMESTAMP flag.

Fixes: 3ca3dcd651 ("net/hns3: fix vector Rx/Tx when PTP enabled")
Cc: stable@dpdk.org

Signed-off-by: Huisong Li <lihuisong@huawei.com>
Signed-off-by: Dongdong Liu <liudongdong3@huawei.com>
2022-10-04 17:47:47 +02:00

252 lines
6.8 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2020-2021 HiSilicon Limited.
*/
#include <rte_io.h>
#include <ethdev_driver.h>
#include "hns3_ethdev.h"
#include "hns3_rxtx.h"
#include "hns3_rxtx_vec.h"
#if defined RTE_ARCH_ARM64
#include "hns3_rxtx_vec_neon.h"
#endif
int
hns3_tx_check_vec_support(struct rte_eth_dev *dev)
{
struct rte_eth_txmode *txmode = &dev->data->dev_conf.txmode;
struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
/* Only support RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE */
if (txmode->offloads != RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE)
return -ENOTSUP;
/*
* PTP function requires the cooperation of Rx and Tx.
* Tx vector isn't supported if RTE_ETH_RX_OFFLOAD_TIMESTAMP is set
* in Rx offloads.
*/
if (rxmode->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP)
return -ENOTSUP;
return 0;
}
uint16_t
hns3_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
struct hns3_tx_queue *txq = (struct hns3_tx_queue *)tx_queue;
uint16_t nb_tx = 0;
while (nb_pkts) {
uint16_t ret, new_burst;
new_burst = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
ret = hns3_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx],
new_burst);
nb_tx += ret;
nb_pkts -= ret;
if (ret < new_burst)
break;
}
return nb_tx;
}
static inline void
hns3_rxq_rearm_mbuf(struct hns3_rx_queue *rxq)
{
#define REARM_LOOP_STEP_NUM 4
struct hns3_entry *rxep = &rxq->sw_ring[rxq->rx_rearm_start];
struct hns3_desc *rxdp = rxq->rx_ring + rxq->rx_rearm_start;
uint64_t dma_addr;
int i;
if (unlikely(rte_mempool_get_bulk(rxq->mb_pool, (void *)rxep,
HNS3_DEFAULT_RXQ_REARM_THRESH) < 0)) {
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
return;
}
for (i = 0; i < HNS3_DEFAULT_RXQ_REARM_THRESH; i += REARM_LOOP_STEP_NUM,
rxep += REARM_LOOP_STEP_NUM, rxdp += REARM_LOOP_STEP_NUM) {
if (likely(i <
HNS3_DEFAULT_RXQ_REARM_THRESH - REARM_LOOP_STEP_NUM)) {
rte_prefetch_non_temporal(rxep[4].mbuf);
rte_prefetch_non_temporal(rxep[5].mbuf);
rte_prefetch_non_temporal(rxep[6].mbuf);
rte_prefetch_non_temporal(rxep[7].mbuf);
}
dma_addr = rte_mbuf_data_iova_default(rxep[0].mbuf);
rxdp[0].addr = rte_cpu_to_le_64(dma_addr);
rxdp[0].rx.bd_base_info = 0;
dma_addr = rte_mbuf_data_iova_default(rxep[1].mbuf);
rxdp[1].addr = rte_cpu_to_le_64(dma_addr);
rxdp[1].rx.bd_base_info = 0;
dma_addr = rte_mbuf_data_iova_default(rxep[2].mbuf);
rxdp[2].addr = rte_cpu_to_le_64(dma_addr);
rxdp[2].rx.bd_base_info = 0;
dma_addr = rte_mbuf_data_iova_default(rxep[3].mbuf);
rxdp[3].addr = rte_cpu_to_le_64(dma_addr);
rxdp[3].rx.bd_base_info = 0;
}
rxq->rx_rearm_start += HNS3_DEFAULT_RXQ_REARM_THRESH;
if (rxq->rx_rearm_start >= rxq->nb_rx_desc)
rxq->rx_rearm_start = 0;
rxq->rx_rearm_nb -= HNS3_DEFAULT_RXQ_REARM_THRESH;
hns3_write_reg_opt(rxq->io_head_reg, HNS3_DEFAULT_RXQ_REARM_THRESH);
}
uint16_t
hns3_recv_pkts_vec(void *__restrict rx_queue,
struct rte_mbuf **__restrict rx_pkts,
uint16_t nb_pkts)
{
struct hns3_rx_queue *rxq = rx_queue;
struct hns3_desc *rxdp = &rxq->rx_ring[rxq->next_to_use];
uint64_t pkt_err_mask; /* bit mask indicate whick pkts is error */
uint16_t nb_rx;
rte_prefetch_non_temporal(rxdp);
nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, HNS3_DEFAULT_DESCS_PER_LOOP);
if (rxq->rx_rearm_nb > HNS3_DEFAULT_RXQ_REARM_THRESH)
hns3_rxq_rearm_mbuf(rxq);
if (unlikely(!(rxdp->rx.bd_base_info &
rte_cpu_to_le_32(1u << HNS3_RXD_VLD_B))))
return 0;
rte_prefetch0(rxq->sw_ring[rxq->next_to_use + 0].mbuf);
rte_prefetch0(rxq->sw_ring[rxq->next_to_use + 1].mbuf);
rte_prefetch0(rxq->sw_ring[rxq->next_to_use + 2].mbuf);
rte_prefetch0(rxq->sw_ring[rxq->next_to_use + 3].mbuf);
if (likely(nb_pkts <= HNS3_DEFAULT_RX_BURST)) {
pkt_err_mask = 0;
nb_rx = hns3_recv_burst_vec(rxq, rx_pkts, nb_pkts,
&pkt_err_mask);
nb_rx = hns3_rx_reassemble_pkts(rx_pkts, nb_rx, pkt_err_mask);
return nb_rx;
}
nb_rx = 0;
while (nb_pkts > 0) {
uint16_t ret, n;
n = RTE_MIN(nb_pkts, HNS3_DEFAULT_RX_BURST);
pkt_err_mask = 0;
ret = hns3_recv_burst_vec(rxq, &rx_pkts[nb_rx], n,
&pkt_err_mask);
nb_pkts -= ret;
nb_rx += hns3_rx_reassemble_pkts(&rx_pkts[nb_rx], ret,
pkt_err_mask);
if (ret < n)
break;
if (rxq->rx_rearm_nb > HNS3_DEFAULT_RXQ_REARM_THRESH)
hns3_rxq_rearm_mbuf(rxq);
}
return nb_rx;
}
static void
hns3_rxq_vec_setup_rearm_data(struct hns3_rx_queue *rxq)
{
uintptr_t p;
struct rte_mbuf mb_def = { .buf_addr = 0 }; /* zeroed mbuf */
mb_def.nb_segs = 1;
mb_def.data_off = RTE_PKTMBUF_HEADROOM;
mb_def.port = rxq->port_id;
rte_mbuf_refcnt_set(&mb_def, 1);
/* compile-time verifies the rearm_data first 8bytes */
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_off) <
offsetof(struct rte_mbuf, rearm_data));
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, refcnt) <
offsetof(struct rte_mbuf, rearm_data));
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, nb_segs) <
offsetof(struct rte_mbuf, rearm_data));
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, port) <
offsetof(struct rte_mbuf, rearm_data));
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_off) -
offsetof(struct rte_mbuf, rearm_data) > 6);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, refcnt) -
offsetof(struct rte_mbuf, rearm_data) > 6);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, nb_segs) -
offsetof(struct rte_mbuf, rearm_data) > 6);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, port) -
offsetof(struct rte_mbuf, rearm_data) > 6);
/* prevent compiler reordering: rearm_data covers previous fields */
rte_compiler_barrier();
p = (uintptr_t)&mb_def.rearm_data;
rxq->mbuf_initializer = *(uint64_t *)p;
}
void
hns3_rxq_vec_setup(struct hns3_rx_queue *rxq)
{
struct hns3_entry *sw_ring = &rxq->sw_ring[rxq->nb_rx_desc];
unsigned int i;
memset(&rxq->rx_ring[rxq->nb_rx_desc], 0,
sizeof(struct hns3_desc) * HNS3_DEFAULT_RX_BURST);
memset(&rxq->fake_mbuf, 0, sizeof(rxq->fake_mbuf));
for (i = 0; i < HNS3_DEFAULT_RX_BURST; i++)
sw_ring[i].mbuf = &rxq->fake_mbuf;
hns3_rxq_vec_setup_rearm_data(rxq);
memset(rxq->offset_table, 0, sizeof(rxq->offset_table));
}
static int
hns3_rxq_vec_check(struct hns3_rx_queue *rxq, void *arg)
{
uint32_t min_vec_bds = HNS3_DEFAULT_RXQ_REARM_THRESH +
HNS3_DEFAULT_RX_BURST;
if (rxq->nb_rx_desc < min_vec_bds)
return -ENOTSUP;
if (rxq->nb_rx_desc % HNS3_DEFAULT_RXQ_REARM_THRESH)
return -ENOTSUP;
RTE_SET_USED(arg);
return 0;
}
int
hns3_rx_check_vec_support(struct rte_eth_dev *dev)
{
struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
uint64_t offloads_mask = RTE_ETH_RX_OFFLOAD_TCP_LRO |
RTE_ETH_RX_OFFLOAD_VLAN |
RTE_ETH_RX_OFFLOAD_TIMESTAMP;
if (dev->data->scattered_rx)
return -ENOTSUP;
if (rxmode->offloads & offloads_mask)
return -ENOTSUP;
if (hns3_rxq_iterate(dev, hns3_rxq_vec_check, NULL) != 0)
return -ENOTSUP;
return 0;
}