numam-dpdk/drivers/net/iavf/iavf_rxtx.c
Zhichao Zeng 1408993082 net/iavf: support VXLAN-GPE tunnel offload
Add support for Vxlan-GPE tunnel packet checksum offloading by adding
the VXLAN_GPE flag during processing of Tx context descriptor.

Signed-off-by: Zhichao Zeng <zhichaox.zeng@intel.com>
Tested-by: Ke Xu <ke1.xu@intel.com>
2022-11-17 13:04:42 +01:00

4063 lines
117 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Intel Corporation
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <stdint.h>
#include <stdarg.h>
#include <unistd.h>
#include <inttypes.h>
#include <sys/queue.h>
#include <rte_string_fns.h>
#include <rte_memzone.h>
#include <rte_mbuf.h>
#include <rte_malloc.h>
#include <rte_ether.h>
#include <ethdev_driver.h>
#include <rte_tcp.h>
#include <rte_sctp.h>
#include <rte_udp.h>
#include <rte_ip.h>
#include <rte_net.h>
#include <rte_vect.h>
#include "iavf.h"
#include "iavf_rxtx.h"
#include "iavf_ipsec_crypto.h"
#include "rte_pmd_iavf.h"
/* Offset of mbuf dynamic field for protocol extraction's metadata */
int rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
/* Mask of mbuf dynamic flags for protocol extraction's type */
uint64_t rte_pmd_ifd_dynflag_proto_xtr_vlan_mask;
uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask;
uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask;
uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask;
uint64_t rte_pmd_ifd_dynflag_proto_xtr_tcp_mask;
uint64_t rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask;
uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipsec_crypto_said_mask;
uint8_t
iavf_proto_xtr_type_to_rxdid(uint8_t flex_type)
{
static uint8_t rxdid_map[] = {
[IAVF_PROTO_XTR_NONE] = IAVF_RXDID_COMMS_OVS_1,
[IAVF_PROTO_XTR_VLAN] = IAVF_RXDID_COMMS_AUX_VLAN,
[IAVF_PROTO_XTR_IPV4] = IAVF_RXDID_COMMS_AUX_IPV4,
[IAVF_PROTO_XTR_IPV6] = IAVF_RXDID_COMMS_AUX_IPV6,
[IAVF_PROTO_XTR_IPV6_FLOW] = IAVF_RXDID_COMMS_AUX_IPV6_FLOW,
[IAVF_PROTO_XTR_TCP] = IAVF_RXDID_COMMS_AUX_TCP,
[IAVF_PROTO_XTR_IP_OFFSET] = IAVF_RXDID_COMMS_AUX_IP_OFFSET,
[IAVF_PROTO_XTR_IPSEC_CRYPTO_SAID] =
IAVF_RXDID_COMMS_IPSEC_CRYPTO,
};
return flex_type < RTE_DIM(rxdid_map) ?
rxdid_map[flex_type] : IAVF_RXDID_COMMS_OVS_1;
}
static int
iavf_monitor_callback(const uint64_t value,
const uint64_t arg[RTE_POWER_MONITOR_OPAQUE_SZ] __rte_unused)
{
const uint64_t m = rte_cpu_to_le_64(1 << IAVF_RX_DESC_STATUS_DD_SHIFT);
/*
* we expect the DD bit to be set to 1 if this descriptor was already
* written to.
*/
return (value & m) == m ? -1 : 0;
}
int
iavf_get_monitor_addr(void *rx_queue, struct rte_power_monitor_cond *pmc)
{
struct iavf_rx_queue *rxq = rx_queue;
volatile union iavf_rx_desc *rxdp;
uint16_t desc;
desc = rxq->rx_tail;
rxdp = &rxq->rx_ring[desc];
/* watch for changes in status bit */
pmc->addr = &rxdp->wb.qword1.status_error_len;
/* comparison callback */
pmc->fn = iavf_monitor_callback;
/* registers are 64-bit */
pmc->size = sizeof(uint64_t);
return 0;
}
static inline int
check_rx_thresh(uint16_t nb_desc, uint16_t thresh)
{
/* The following constraints must be satisfied:
* thresh < rxq->nb_rx_desc
*/
if (thresh >= nb_desc) {
PMD_INIT_LOG(ERR, "rx_free_thresh (%u) must be less than %u",
thresh, nb_desc);
return -EINVAL;
}
return 0;
}
static inline int
check_tx_thresh(uint16_t nb_desc, uint16_t tx_rs_thresh,
uint16_t tx_free_thresh)
{
/* TX descriptors will have their RS bit set after tx_rs_thresh
* descriptors have been used. The TX descriptor ring will be cleaned
* after tx_free_thresh descriptors are used or if the number of
* descriptors required to transmit a packet is greater than the
* number of free TX descriptors.
*
* The following constraints must be satisfied:
* - tx_rs_thresh must be less than the size of the ring minus 2.
* - tx_free_thresh must be less than the size of the ring minus 3.
* - tx_rs_thresh must be less than or equal to tx_free_thresh.
* - tx_rs_thresh must be a divisor of the ring size.
*
* One descriptor in the TX ring is used as a sentinel to avoid a H/W
* race condition, hence the maximum threshold constraints. When set
* to zero use default values.
*/
if (tx_rs_thresh >= (nb_desc - 2)) {
PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than the "
"number of TX descriptors (%u) minus 2",
tx_rs_thresh, nb_desc);
return -EINVAL;
}
if (tx_free_thresh >= (nb_desc - 3)) {
PMD_INIT_LOG(ERR, "tx_free_thresh (%u) must be less than the "
"number of TX descriptors (%u) minus 3.",
tx_free_thresh, nb_desc);
return -EINVAL;
}
if (tx_rs_thresh > tx_free_thresh) {
PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than or "
"equal to tx_free_thresh (%u).",
tx_rs_thresh, tx_free_thresh);
return -EINVAL;
}
if ((nb_desc % tx_rs_thresh) != 0) {
PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be a divisor of the "
"number of TX descriptors (%u).",
tx_rs_thresh, nb_desc);
return -EINVAL;
}
return 0;
}
static inline bool
check_rx_vec_allow(struct iavf_rx_queue *rxq)
{
if (rxq->rx_free_thresh >= IAVF_VPMD_RX_MAX_BURST &&
rxq->nb_rx_desc % rxq->rx_free_thresh == 0) {
PMD_INIT_LOG(DEBUG, "Vector Rx can be enabled on this rxq.");
return true;
}
PMD_INIT_LOG(DEBUG, "Vector Rx cannot be enabled on this rxq.");
return false;
}
static inline bool
check_tx_vec_allow(struct iavf_tx_queue *txq)
{
if (!(txq->offloads & IAVF_TX_NO_VECTOR_FLAGS) &&
txq->rs_thresh >= IAVF_VPMD_TX_MAX_BURST &&
txq->rs_thresh <= IAVF_VPMD_TX_MAX_FREE_BUF) {
PMD_INIT_LOG(DEBUG, "Vector tx can be enabled on this txq.");
return true;
}
PMD_INIT_LOG(DEBUG, "Vector Tx cannot be enabled on this txq.");
return false;
}
static inline bool
check_rx_bulk_allow(struct iavf_rx_queue *rxq)
{
int ret = true;
if (!(rxq->rx_free_thresh >= IAVF_RX_MAX_BURST)) {
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
"rxq->rx_free_thresh=%d, "
"IAVF_RX_MAX_BURST=%d",
rxq->rx_free_thresh, IAVF_RX_MAX_BURST);
ret = false;
} else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
"rxq->nb_rx_desc=%d, "
"rxq->rx_free_thresh=%d",
rxq->nb_rx_desc, rxq->rx_free_thresh);
ret = false;
}
return ret;
}
static inline void
reset_rx_queue(struct iavf_rx_queue *rxq)
{
uint16_t len;
uint32_t i;
if (!rxq)
return;
len = rxq->nb_rx_desc + IAVF_RX_MAX_BURST;
for (i = 0; i < len * sizeof(union iavf_rx_desc); i++)
((volatile char *)rxq->rx_ring)[i] = 0;
memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
for (i = 0; i < IAVF_RX_MAX_BURST; i++)
rxq->sw_ring[rxq->nb_rx_desc + i] = &rxq->fake_mbuf;
/* for rx bulk */
rxq->rx_nb_avail = 0;
rxq->rx_next_avail = 0;
rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
rxq->rx_tail = 0;
rxq->nb_rx_hold = 0;
rte_pktmbuf_free(rxq->pkt_first_seg);
rxq->pkt_first_seg = NULL;
rxq->pkt_last_seg = NULL;
rxq->rxrearm_nb = 0;
rxq->rxrearm_start = 0;
}
static inline void
reset_tx_queue(struct iavf_tx_queue *txq)
{
struct iavf_tx_entry *txe;
uint32_t i, size;
uint16_t prev;
if (!txq) {
PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
return;
}
txe = txq->sw_ring;
size = sizeof(struct iavf_tx_desc) * txq->nb_tx_desc;
for (i = 0; i < size; i++)
((volatile char *)txq->tx_ring)[i] = 0;
prev = (uint16_t)(txq->nb_tx_desc - 1);
for (i = 0; i < txq->nb_tx_desc; i++) {
txq->tx_ring[i].cmd_type_offset_bsz =
rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE);
txe[i].mbuf = NULL;
txe[i].last_id = i;
txe[prev].next_id = i;
prev = i;
}
txq->tx_tail = 0;
txq->nb_used = 0;
txq->last_desc_cleaned = txq->nb_tx_desc - 1;
txq->nb_free = txq->nb_tx_desc - 1;
txq->next_dd = txq->rs_thresh - 1;
txq->next_rs = txq->rs_thresh - 1;
}
static int
alloc_rxq_mbufs(struct iavf_rx_queue *rxq)
{
volatile union iavf_rx_desc *rxd;
struct rte_mbuf *mbuf = NULL;
uint64_t dma_addr;
uint16_t i, j;
for (i = 0; i < rxq->nb_rx_desc; i++) {
mbuf = rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(!mbuf)) {
for (j = 0; j < i; j++) {
rte_pktmbuf_free_seg(rxq->sw_ring[j]);
rxq->sw_ring[j] = NULL;
}
PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
return -ENOMEM;
}
rte_mbuf_refcnt_set(mbuf, 1);
mbuf->next = NULL;
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
mbuf->nb_segs = 1;
mbuf->port = rxq->port_id;
dma_addr =
rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
rxd = &rxq->rx_ring[i];
rxd->read.pkt_addr = dma_addr;
rxd->read.hdr_addr = 0;
#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
rxd->read.rsvd1 = 0;
rxd->read.rsvd2 = 0;
#endif
rxq->sw_ring[i] = mbuf;
}
return 0;
}
static inline void
release_rxq_mbufs(struct iavf_rx_queue *rxq)
{
uint16_t i;
if (!rxq->sw_ring)
return;
for (i = 0; i < rxq->nb_rx_desc; i++) {
if (rxq->sw_ring[i]) {
rte_pktmbuf_free_seg(rxq->sw_ring[i]);
rxq->sw_ring[i] = NULL;
}
}
/* for rx bulk */
if (rxq->rx_nb_avail == 0)
return;
for (i = 0; i < rxq->rx_nb_avail; i++) {
struct rte_mbuf *mbuf;
mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
rte_pktmbuf_free_seg(mbuf);
}
rxq->rx_nb_avail = 0;
}
static inline void
release_txq_mbufs(struct iavf_tx_queue *txq)
{
uint16_t i;
if (!txq || !txq->sw_ring) {
PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
return;
}
for (i = 0; i < txq->nb_tx_desc; i++) {
if (txq->sw_ring[i].mbuf) {
rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
txq->sw_ring[i].mbuf = NULL;
}
}
}
static const
struct iavf_rxq_ops iavf_rxq_release_mbufs_ops[] = {
[IAVF_REL_MBUFS_DEFAULT].release_mbufs = release_rxq_mbufs,
#ifdef RTE_ARCH_X86
[IAVF_REL_MBUFS_SSE_VEC].release_mbufs = iavf_rx_queue_release_mbufs_sse,
#endif
};
static const
struct iavf_txq_ops iavf_txq_release_mbufs_ops[] = {
[IAVF_REL_MBUFS_DEFAULT].release_mbufs = release_txq_mbufs,
#ifdef RTE_ARCH_X86
[IAVF_REL_MBUFS_SSE_VEC].release_mbufs = iavf_tx_queue_release_mbufs_sse,
#ifdef CC_AVX512_SUPPORT
[IAVF_REL_MBUFS_AVX512_VEC].release_mbufs = iavf_tx_queue_release_mbufs_avx512,
#endif
#endif
};
static inline void
iavf_rxd_to_pkt_fields_by_comms_ovs(__rte_unused struct iavf_rx_queue *rxq,
struct rte_mbuf *mb,
volatile union iavf_rx_flex_desc *rxdp)
{
volatile struct iavf_32b_rx_flex_desc_comms_ovs *desc =
(volatile struct iavf_32b_rx_flex_desc_comms_ovs *)rxdp;
#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
uint16_t stat_err;
#endif
if (desc->flow_id != 0xFFFFFFFF) {
mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
}
#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
stat_err = rte_le_to_cpu_16(desc->status_error0);
if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
}
#endif
}
static inline void
iavf_rxd_to_pkt_fields_by_comms_aux_v1(struct iavf_rx_queue *rxq,
struct rte_mbuf *mb,
volatile union iavf_rx_flex_desc *rxdp)
{
volatile struct iavf_32b_rx_flex_desc_comms *desc =
(volatile struct iavf_32b_rx_flex_desc_comms *)rxdp;
uint16_t stat_err;
stat_err = rte_le_to_cpu_16(desc->status_error0);
if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
}
#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
if (desc->flow_id != 0xFFFFFFFF) {
mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
}
if (rxq->xtr_ol_flag) {
uint32_t metadata = 0;
stat_err = rte_le_to_cpu_16(desc->status_error1);
if (stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS1_XTRMD4_VALID_S))
metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
if (stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS1_XTRMD5_VALID_S))
metadata |=
rte_le_to_cpu_16(desc->flex_ts.flex.aux1) << 16;
if (metadata) {
mb->ol_flags |= rxq->xtr_ol_flag;
*RTE_PMD_IFD_DYNF_PROTO_XTR_METADATA(mb) = metadata;
}
}
#endif
}
static inline void
iavf_rxd_to_pkt_fields_by_comms_aux_v2(struct iavf_rx_queue *rxq,
struct rte_mbuf *mb,
volatile union iavf_rx_flex_desc *rxdp)
{
volatile struct iavf_32b_rx_flex_desc_comms *desc =
(volatile struct iavf_32b_rx_flex_desc_comms *)rxdp;
uint16_t stat_err;
stat_err = rte_le_to_cpu_16(desc->status_error0);
if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
}
#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
if (desc->flow_id != 0xFFFFFFFF) {
mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
}
if (rxq->xtr_ol_flag) {
uint32_t metadata = 0;
if (desc->flex_ts.flex.aux0 != 0xFFFF)
metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
else if (desc->flex_ts.flex.aux1 != 0xFFFF)
metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux1);
if (metadata) {
mb->ol_flags |= rxq->xtr_ol_flag;
*RTE_PMD_IFD_DYNF_PROTO_XTR_METADATA(mb) = metadata;
}
}
#endif
}
static const
iavf_rxd_to_pkt_fields_t rxd_to_pkt_fields_ops[IAVF_RXDID_LAST + 1] = {
[IAVF_RXDID_LEGACY_0] = iavf_rxd_to_pkt_fields_by_comms_ovs,
[IAVF_RXDID_LEGACY_1] = iavf_rxd_to_pkt_fields_by_comms_ovs,
[IAVF_RXDID_COMMS_AUX_VLAN] = iavf_rxd_to_pkt_fields_by_comms_aux_v1,
[IAVF_RXDID_COMMS_AUX_IPV4] = iavf_rxd_to_pkt_fields_by_comms_aux_v1,
[IAVF_RXDID_COMMS_AUX_IPV6] = iavf_rxd_to_pkt_fields_by_comms_aux_v1,
[IAVF_RXDID_COMMS_AUX_IPV6_FLOW] =
iavf_rxd_to_pkt_fields_by_comms_aux_v1,
[IAVF_RXDID_COMMS_AUX_TCP] = iavf_rxd_to_pkt_fields_by_comms_aux_v1,
[IAVF_RXDID_COMMS_AUX_IP_OFFSET] =
iavf_rxd_to_pkt_fields_by_comms_aux_v2,
[IAVF_RXDID_COMMS_IPSEC_CRYPTO] =
iavf_rxd_to_pkt_fields_by_comms_aux_v2,
[IAVF_RXDID_COMMS_OVS_1] = iavf_rxd_to_pkt_fields_by_comms_ovs,
};
static void
iavf_select_rxd_to_pkt_fields_handler(struct iavf_rx_queue *rxq, uint32_t rxdid)
{
rxq->rxdid = rxdid;
switch (rxdid) {
case IAVF_RXDID_COMMS_AUX_VLAN:
rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_vlan_mask;
break;
case IAVF_RXDID_COMMS_AUX_IPV4:
rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask;
break;
case IAVF_RXDID_COMMS_AUX_IPV6:
rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask;
break;
case IAVF_RXDID_COMMS_AUX_IPV6_FLOW:
rxq->xtr_ol_flag =
rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask;
break;
case IAVF_RXDID_COMMS_AUX_TCP:
rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_tcp_mask;
break;
case IAVF_RXDID_COMMS_AUX_IP_OFFSET:
rxq->xtr_ol_flag =
rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask;
break;
case IAVF_RXDID_COMMS_IPSEC_CRYPTO:
rxq->xtr_ol_flag =
rte_pmd_ifd_dynflag_proto_xtr_ipsec_crypto_said_mask;
break;
case IAVF_RXDID_COMMS_OVS_1:
case IAVF_RXDID_LEGACY_0:
case IAVF_RXDID_LEGACY_1:
break;
default:
/* update this according to the RXDID for FLEX_DESC_NONE */
rxq->rxdid = IAVF_RXDID_COMMS_OVS_1;
break;
}
if (!rte_pmd_ifd_dynf_proto_xtr_metadata_avail())
rxq->xtr_ol_flag = 0;
}
int
iavf_dev_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
uint16_t nb_desc, unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp)
{
struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct iavf_adapter *ad =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_info *vf =
IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct iavf_vsi *vsi = &vf->vsi;
struct iavf_rx_queue *rxq;
const struct rte_memzone *mz;
uint32_t ring_size;
uint8_t proto_xtr;
uint16_t len;
uint16_t rx_free_thresh;
uint64_t offloads;
PMD_INIT_FUNC_TRACE();
if (ad->closed)
return -EIO;
offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
nb_desc > IAVF_MAX_RING_DESC ||
nb_desc < IAVF_MIN_RING_DESC) {
PMD_INIT_LOG(ERR, "Number (%u) of receive descriptors is "
"invalid", nb_desc);
return -EINVAL;
}
/* Check free threshold */
rx_free_thresh = (rx_conf->rx_free_thresh == 0) ?
IAVF_DEFAULT_RX_FREE_THRESH :
rx_conf->rx_free_thresh;
if (check_rx_thresh(nb_desc, rx_free_thresh) != 0)
return -EINVAL;
/* Free memory if needed */
if (dev->data->rx_queues[queue_idx]) {
iavf_dev_rx_queue_release(dev, queue_idx);
dev->data->rx_queues[queue_idx] = NULL;
}
/* Allocate the rx queue data structure */
rxq = rte_zmalloc_socket("iavf rxq",
sizeof(struct iavf_rx_queue),
RTE_CACHE_LINE_SIZE,
socket_id);
if (!rxq) {
PMD_INIT_LOG(ERR, "Failed to allocate memory for "
"rx queue data structure");
return -ENOMEM;
}
if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
proto_xtr = vf->proto_xtr ? vf->proto_xtr[queue_idx] :
IAVF_PROTO_XTR_NONE;
rxq->rxdid = iavf_proto_xtr_type_to_rxdid(proto_xtr);
rxq->proto_xtr = proto_xtr;
} else {
rxq->rxdid = IAVF_RXDID_LEGACY_1;
rxq->proto_xtr = IAVF_PROTO_XTR_NONE;
}
if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
struct virtchnl_vlan_supported_caps *stripping_support =
&vf->vlan_v2_caps.offloads.stripping_support;
uint32_t stripping_cap;
if (stripping_support->outer)
stripping_cap = stripping_support->outer;
else
stripping_cap = stripping_support->inner;
if (stripping_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
rxq->rx_flags = IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG1;
else if (stripping_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
rxq->rx_flags = IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
} else {
rxq->rx_flags = IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG1;
}
iavf_select_rxd_to_pkt_fields_handler(rxq, rxq->rxdid);
rxq->mp = mp;
rxq->nb_rx_desc = nb_desc;
rxq->rx_free_thresh = rx_free_thresh;
rxq->queue_id = queue_idx;
rxq->port_id = dev->data->port_id;
rxq->rx_deferred_start = rx_conf->rx_deferred_start;
rxq->rx_hdr_len = 0;
rxq->vsi = vsi;
rxq->offloads = offloads;
if (dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
rxq->crc_len = RTE_ETHER_CRC_LEN;
else
rxq->crc_len = 0;
len = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
rxq->rx_buf_len = RTE_ALIGN_FLOOR(len, (1 << IAVF_RXQ_CTX_DBUFF_SHIFT));
/* Allocate the software ring. */
len = nb_desc + IAVF_RX_MAX_BURST;
rxq->sw_ring =
rte_zmalloc_socket("iavf rx sw ring",
sizeof(struct rte_mbuf *) * len,
RTE_CACHE_LINE_SIZE,
socket_id);
if (!rxq->sw_ring) {
PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring");
rte_free(rxq);
return -ENOMEM;
}
/* Allocate the maximum number of RX ring hardware descriptor with
* a little more to support bulk allocate.
*/
len = IAVF_MAX_RING_DESC + IAVF_RX_MAX_BURST;
ring_size = RTE_ALIGN(len * sizeof(union iavf_rx_desc),
IAVF_DMA_MEM_ALIGN);
mz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
ring_size, IAVF_RING_BASE_ALIGN,
socket_id);
if (!mz) {
PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX");
rte_free(rxq->sw_ring);
rte_free(rxq);
return -ENOMEM;
}
/* Zero all the descriptors in the ring. */
memset(mz->addr, 0, ring_size);
rxq->rx_ring_phys_addr = mz->iova;
rxq->rx_ring = (union iavf_rx_desc *)mz->addr;
rxq->mz = mz;
reset_rx_queue(rxq);
rxq->q_set = true;
dev->data->rx_queues[queue_idx] = rxq;
rxq->qrx_tail = hw->hw_addr + IAVF_QRX_TAIL1(rxq->queue_id);
rxq->rel_mbufs_type = IAVF_REL_MBUFS_DEFAULT;
if (check_rx_bulk_allow(rxq) == true) {
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
"satisfied. Rx Burst Bulk Alloc function will be "
"used on port=%d, queue=%d.",
rxq->port_id, rxq->queue_id);
} else {
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
"not satisfied, Scattered Rx is requested "
"on port=%d, queue=%d.",
rxq->port_id, rxq->queue_id);
ad->rx_bulk_alloc_allowed = false;
}
if (check_rx_vec_allow(rxq) == false)
ad->rx_vec_allowed = false;
return 0;
}
int
iavf_dev_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_info *vf =
IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct iavf_tx_queue *txq;
const struct rte_memzone *mz;
uint32_t ring_size;
uint16_t tx_rs_thresh, tx_free_thresh;
uint64_t offloads;
PMD_INIT_FUNC_TRACE();
if (adapter->closed)
return -EIO;
offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
nb_desc > IAVF_MAX_RING_DESC ||
nb_desc < IAVF_MIN_RING_DESC) {
PMD_INIT_LOG(ERR, "Number (%u) of transmit descriptors is "
"invalid", nb_desc);
return -EINVAL;
}
tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
if (check_tx_thresh(nb_desc, tx_rs_thresh, tx_free_thresh) != 0)
return -EINVAL;
/* Free memory if needed. */
if (dev->data->tx_queues[queue_idx]) {
iavf_dev_tx_queue_release(dev, queue_idx);
dev->data->tx_queues[queue_idx] = NULL;
}
/* Allocate the TX queue data structure. */
txq = rte_zmalloc_socket("iavf txq",
sizeof(struct iavf_tx_queue),
RTE_CACHE_LINE_SIZE,
socket_id);
if (!txq) {
PMD_INIT_LOG(ERR, "Failed to allocate memory for "
"tx queue structure");
return -ENOMEM;
}
if (adapter->vf.vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
struct virtchnl_vlan_supported_caps *insertion_support =
&adapter->vf.vlan_v2_caps.offloads.insertion_support;
uint32_t insertion_cap;
if (insertion_support->outer)
insertion_cap = insertion_support->outer;
else
insertion_cap = insertion_support->inner;
if (insertion_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
txq->vlan_flag = IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG1;
else if (insertion_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
txq->vlan_flag = IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG2;
} else {
txq->vlan_flag = IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG1;
}
txq->nb_tx_desc = nb_desc;
txq->rs_thresh = tx_rs_thresh;
txq->free_thresh = tx_free_thresh;
txq->queue_id = queue_idx;
txq->port_id = dev->data->port_id;
txq->offloads = offloads;
txq->tx_deferred_start = tx_conf->tx_deferred_start;
if (iavf_ipsec_crypto_supported(adapter))
txq->ipsec_crypto_pkt_md_offset =
iavf_security_get_pkt_md_offset(adapter);
/* Allocate software ring */
txq->sw_ring =
rte_zmalloc_socket("iavf tx sw ring",
sizeof(struct iavf_tx_entry) * nb_desc,
RTE_CACHE_LINE_SIZE,
socket_id);
if (!txq->sw_ring) {
PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring");
rte_free(txq);
return -ENOMEM;
}
/* Allocate TX hardware ring descriptors. */
ring_size = sizeof(struct iavf_tx_desc) * IAVF_MAX_RING_DESC;
ring_size = RTE_ALIGN(ring_size, IAVF_DMA_MEM_ALIGN);
mz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
ring_size, IAVF_RING_BASE_ALIGN,
socket_id);
if (!mz) {
PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX");
rte_free(txq->sw_ring);
rte_free(txq);
return -ENOMEM;
}
txq->tx_ring_phys_addr = mz->iova;
txq->tx_ring = (struct iavf_tx_desc *)mz->addr;
txq->mz = mz;
reset_tx_queue(txq);
txq->q_set = true;
dev->data->tx_queues[queue_idx] = txq;
txq->qtx_tail = hw->hw_addr + IAVF_QTX_TAIL1(queue_idx);
txq->rel_mbufs_type = IAVF_REL_MBUFS_DEFAULT;
if (check_tx_vec_allow(txq) == false) {
struct iavf_adapter *ad =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
ad->tx_vec_allowed = false;
}
if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS &&
vf->tm_conf.committed) {
int tc;
for (tc = 0; tc < vf->qos_cap->num_elem; tc++) {
if (txq->queue_id >= vf->qtc_map[tc].start_queue_id &&
txq->queue_id < (vf->qtc_map[tc].start_queue_id +
vf->qtc_map[tc].queue_count))
break;
}
if (tc >= vf->qos_cap->num_elem) {
PMD_INIT_LOG(ERR, "Queue TC mapping is not correct");
return -EINVAL;
}
txq->tc = tc;
}
return 0;
}
int
iavf_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct iavf_rx_queue *rxq;
int err = 0;
PMD_DRV_FUNC_TRACE();
if (rx_queue_id >= dev->data->nb_rx_queues)
return -EINVAL;
rxq = dev->data->rx_queues[rx_queue_id];
err = alloc_rxq_mbufs(rxq);
if (err) {
PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
return err;
}
rte_wmb();
/* Init the RX tail register. */
IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
IAVF_WRITE_FLUSH(hw);
/* Ready to switch the queue on */
if (!vf->lv_enabled)
err = iavf_switch_queue(adapter, rx_queue_id, true, true);
else
err = iavf_switch_queue_lv(adapter, rx_queue_id, true, true);
if (err) {
release_rxq_mbufs(rxq);
PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
rx_queue_id);
} else {
dev->data->rx_queue_state[rx_queue_id] =
RTE_ETH_QUEUE_STATE_STARTED;
}
if (dev->data->dev_conf.rxmode.offloads &
RTE_ETH_RX_OFFLOAD_TIMESTAMP) {
if (iavf_get_phc_time(rxq)) {
PMD_DRV_LOG(ERR, "get physical time failed");
return err;
}
rxq->hw_time_update = rte_get_timer_cycles() / (rte_get_timer_hz() / 1000);
}
return err;
}
int
iavf_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct iavf_tx_queue *txq;
int err = 0;
PMD_DRV_FUNC_TRACE();
if (tx_queue_id >= dev->data->nb_tx_queues)
return -EINVAL;
txq = dev->data->tx_queues[tx_queue_id];
/* Init the RX tail register. */
IAVF_PCI_REG_WRITE(txq->qtx_tail, 0);
IAVF_WRITE_FLUSH(hw);
/* Ready to switch the queue on */
if (!vf->lv_enabled)
err = iavf_switch_queue(adapter, tx_queue_id, false, true);
else
err = iavf_switch_queue_lv(adapter, tx_queue_id, false, true);
if (err)
PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
tx_queue_id);
else
dev->data->tx_queue_state[tx_queue_id] =
RTE_ETH_QUEUE_STATE_STARTED;
return err;
}
int
iavf_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct iavf_rx_queue *rxq;
int err;
PMD_DRV_FUNC_TRACE();
if (rx_queue_id >= dev->data->nb_rx_queues)
return -EINVAL;
if (!vf->lv_enabled)
err = iavf_switch_queue(adapter, rx_queue_id, true, false);
else
err = iavf_switch_queue_lv(adapter, rx_queue_id, true, false);
if (err) {
PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
rx_queue_id);
return err;
}
rxq = dev->data->rx_queues[rx_queue_id];
iavf_rxq_release_mbufs_ops[rxq->rel_mbufs_type].release_mbufs(rxq);
reset_rx_queue(rxq);
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
int
iavf_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct iavf_tx_queue *txq;
int err;
PMD_DRV_FUNC_TRACE();
if (tx_queue_id >= dev->data->nb_tx_queues)
return -EINVAL;
if (!vf->lv_enabled)
err = iavf_switch_queue(adapter, tx_queue_id, false, false);
else
err = iavf_switch_queue_lv(adapter, tx_queue_id, false, false);
if (err) {
PMD_DRV_LOG(ERR, "Failed to switch TX queue %u off",
tx_queue_id);
return err;
}
txq = dev->data->tx_queues[tx_queue_id];
iavf_txq_release_mbufs_ops[txq->rel_mbufs_type].release_mbufs(txq);
reset_tx_queue(txq);
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
void
iavf_dev_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
{
struct iavf_rx_queue *q = dev->data->rx_queues[qid];
if (!q)
return;
iavf_rxq_release_mbufs_ops[q->rel_mbufs_type].release_mbufs(q);
rte_free(q->sw_ring);
rte_memzone_free(q->mz);
rte_free(q);
}
void
iavf_dev_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
{
struct iavf_tx_queue *q = dev->data->tx_queues[qid];
if (!q)
return;
iavf_txq_release_mbufs_ops[q->rel_mbufs_type].release_mbufs(q);
rte_free(q->sw_ring);
rte_memzone_free(q->mz);
rte_free(q);
}
void
iavf_stop_queues(struct rte_eth_dev *dev)
{
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct iavf_rx_queue *rxq;
struct iavf_tx_queue *txq;
int ret, i;
/* Stop All queues */
if (!vf->lv_enabled) {
ret = iavf_disable_queues(adapter);
if (ret)
PMD_DRV_LOG(WARNING, "Fail to stop queues");
} else {
ret = iavf_disable_queues_lv(adapter);
if (ret)
PMD_DRV_LOG(WARNING, "Fail to stop queues for large VF");
}
if (ret)
PMD_DRV_LOG(WARNING, "Fail to stop queues");
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev->data->tx_queues[i];
if (!txq)
continue;
iavf_txq_release_mbufs_ops[txq->rel_mbufs_type].release_mbufs(txq);
reset_tx_queue(txq);
dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
if (!rxq)
continue;
iavf_rxq_release_mbufs_ops[rxq->rel_mbufs_type].release_mbufs(rxq);
reset_rx_queue(rxq);
dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
}
}
#define IAVF_RX_FLEX_ERR0_BITS \
((1 << IAVF_RX_FLEX_DESC_STATUS0_HBO_S) | \
(1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) | \
(1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) | \
(1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) | \
(1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) | \
(1 << IAVF_RX_FLEX_DESC_STATUS0_RXE_S))
static inline void
iavf_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union iavf_rx_desc *rxdp)
{
if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
(1 << IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
mb->ol_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED;
mb->vlan_tci =
rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
} else {
mb->vlan_tci = 0;
}
}
static inline void
iavf_flex_rxd_to_vlan_tci(struct rte_mbuf *mb,
volatile union iavf_rx_flex_desc *rxdp)
{
if (rte_le_to_cpu_64(rxdp->wb.status_error0) &
(1 << IAVF_RX_FLEX_DESC_STATUS0_L2TAG1P_S)) {
mb->ol_flags |= RTE_MBUF_F_RX_VLAN |
RTE_MBUF_F_RX_VLAN_STRIPPED;
mb->vlan_tci =
rte_le_to_cpu_16(rxdp->wb.l2tag1);
} else {
mb->vlan_tci = 0;
}
#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
if (rte_le_to_cpu_16(rxdp->wb.status_error1) &
(1 << IAVF_RX_FLEX_DESC_STATUS1_L2TAG2P_S)) {
mb->ol_flags |= RTE_MBUF_F_RX_QINQ_STRIPPED |
RTE_MBUF_F_RX_QINQ |
RTE_MBUF_F_RX_VLAN_STRIPPED |
RTE_MBUF_F_RX_VLAN;
mb->vlan_tci_outer = mb->vlan_tci;
mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd);
PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
rte_le_to_cpu_16(rxdp->wb.l2tag2_1st),
rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd));
} else {
mb->vlan_tci_outer = 0;
}
#endif
}
static inline void
iavf_flex_rxd_to_ipsec_crypto_said_get(struct rte_mbuf *mb,
volatile union iavf_rx_flex_desc *rxdp)
{
volatile struct iavf_32b_rx_flex_desc_comms_ipsec *desc =
(volatile struct iavf_32b_rx_flex_desc_comms_ipsec *)rxdp;
mb->dynfield1[0] = desc->ipsec_said &
IAVF_RX_FLEX_DESC_IPSEC_CRYPTO_SAID_MASK;
}
static inline void
iavf_flex_rxd_to_ipsec_crypto_status(struct rte_mbuf *mb,
volatile union iavf_rx_flex_desc *rxdp,
struct iavf_ipsec_crypto_stats *stats)
{
uint16_t status1 = rte_le_to_cpu_64(rxdp->wb.status_error1);
if (status1 & BIT(IAVF_RX_FLEX_DESC_STATUS1_IPSEC_CRYPTO_PROCESSED)) {
uint16_t ipsec_status;
mb->ol_flags |= RTE_MBUF_F_RX_SEC_OFFLOAD;
ipsec_status = status1 &
IAVF_RX_FLEX_DESC_IPSEC_CRYPTO_STATUS_MASK;
if (unlikely(ipsec_status !=
IAVF_IPSEC_CRYPTO_STATUS_SUCCESS)) {
mb->ol_flags |= RTE_MBUF_F_RX_SEC_OFFLOAD_FAILED;
switch (ipsec_status) {
case IAVF_IPSEC_CRYPTO_STATUS_SAD_MISS:
stats->ierrors.sad_miss++;
break;
case IAVF_IPSEC_CRYPTO_STATUS_NOT_PROCESSED:
stats->ierrors.not_processed++;
break;
case IAVF_IPSEC_CRYPTO_STATUS_ICV_CHECK_FAIL:
stats->ierrors.icv_check++;
break;
case IAVF_IPSEC_CRYPTO_STATUS_LENGTH_ERR:
stats->ierrors.ipsec_length++;
break;
case IAVF_IPSEC_CRYPTO_STATUS_MISC_ERR:
stats->ierrors.misc++;
break;
}
stats->ierrors.count++;
return;
}
stats->icount++;
stats->ibytes += rxdp->wb.pkt_len & 0x3FFF;
if (rxdp->wb.rxdid == IAVF_RXDID_COMMS_IPSEC_CRYPTO &&
ipsec_status !=
IAVF_IPSEC_CRYPTO_STATUS_SAD_MISS)
iavf_flex_rxd_to_ipsec_crypto_said_get(mb, rxdp);
}
}
/* Translate the rx descriptor status and error fields to pkt flags */
static inline uint64_t
iavf_rxd_to_pkt_flags(uint64_t qword)
{
uint64_t flags;
uint64_t error_bits = (qword >> IAVF_RXD_QW1_ERROR_SHIFT);
#define IAVF_RX_ERR_BITS 0x3f
/* Check if RSS_HASH */
flags = (((qword >> IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT) &
IAVF_RX_DESC_FLTSTAT_RSS_HASH) ==
IAVF_RX_DESC_FLTSTAT_RSS_HASH) ? RTE_MBUF_F_RX_RSS_HASH : 0;
/* Check if FDIR Match */
flags |= (qword & (1 << IAVF_RX_DESC_STATUS_FLM_SHIFT) ?
RTE_MBUF_F_RX_FDIR : 0);
if (likely((error_bits & IAVF_RX_ERR_BITS) == 0)) {
flags |= (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD);
return flags;
}
if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_IPE_SHIFT)))
flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
else
flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_L4E_SHIFT)))
flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
else
flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
/* TODO: Oversize error bit is not processed here */
return flags;
}
static inline uint64_t
iavf_rxd_build_fdir(volatile union iavf_rx_desc *rxdp, struct rte_mbuf *mb)
{
uint64_t flags = 0;
#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
uint16_t flexbh;
flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
IAVF_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) &
IAVF_RX_DESC_EXT_STATUS_FLEXBH_MASK;
if (flexbh == IAVF_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) {
mb->hash.fdir.hi =
rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id);
flags |= RTE_MBUF_F_RX_FDIR_ID;
}
#else
mb->hash.fdir.hi =
rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id);
flags |= RTE_MBUF_F_RX_FDIR_ID;
#endif
return flags;
}
#define IAVF_RX_FLEX_ERR0_BITS \
((1 << IAVF_RX_FLEX_DESC_STATUS0_HBO_S) | \
(1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) | \
(1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) | \
(1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) | \
(1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) | \
(1 << IAVF_RX_FLEX_DESC_STATUS0_RXE_S))
/* Rx L3/L4 checksum */
static inline uint64_t
iavf_flex_rxd_error_to_pkt_flags(uint16_t stat_err0)
{
uint64_t flags = 0;
/* check if HW has decoded the packet and checksum */
if (unlikely(!(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_L3L4P_S))))
return 0;
if (likely(!(stat_err0 & IAVF_RX_FLEX_ERR0_BITS))) {
flags |= (RTE_MBUF_F_RX_IP_CKSUM_GOOD |
RTE_MBUF_F_RX_L4_CKSUM_GOOD |
RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD);
return flags;
}
if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S)))
flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
else
flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)))
flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
else
flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))
flags |= RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD;
if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S)))
flags |= RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD;
else
flags |= RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD;
return flags;
}
/* If the number of free RX descriptors is greater than the RX free
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
* register. Update the RDT with the value of the last processed RX
* descriptor minus 1, to guarantee that the RDT register is never
* equal to the RDH register, which creates a "full" ring situation
* from the hardware point of view.
*/
static inline void
iavf_update_rx_tail(struct iavf_rx_queue *rxq, uint16_t nb_hold, uint16_t rx_id)
{
nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
if (nb_hold > rxq->rx_free_thresh) {
PMD_RX_LOG(DEBUG,
"port_id=%u queue_id=%u rx_tail=%u nb_hold=%u",
rxq->port_id, rxq->queue_id, rx_id, nb_hold);
rx_id = (uint16_t)((rx_id == 0) ?
(rxq->nb_rx_desc - 1) : (rx_id - 1));
IAVF_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
nb_hold = 0;
}
rxq->nb_rx_hold = nb_hold;
}
/* implement recv_pkts */
uint16_t
iavf_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
volatile union iavf_rx_desc *rx_ring;
volatile union iavf_rx_desc *rxdp;
struct iavf_rx_queue *rxq;
union iavf_rx_desc rxd;
struct rte_mbuf *rxe;
struct rte_eth_dev *dev;
struct rte_mbuf *rxm;
struct rte_mbuf *nmb;
uint16_t nb_rx;
uint32_t rx_status;
uint64_t qword1;
uint16_t rx_packet_len;
uint16_t rx_id, nb_hold;
uint64_t dma_addr;
uint64_t pkt_flags;
const uint32_t *ptype_tbl;
nb_rx = 0;
nb_hold = 0;
rxq = rx_queue;
rx_id = rxq->rx_tail;
rx_ring = rxq->rx_ring;
ptype_tbl = rxq->vsi->adapter->ptype_tbl;
while (nb_rx < nb_pkts) {
rxdp = &rx_ring[rx_id];
qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
IAVF_RXD_QW1_STATUS_SHIFT;
/* Check the DD bit first */
if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
break;
IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
nmb = rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(!nmb)) {
dev = &rte_eth_devices[rxq->port_id];
dev->data->rx_mbuf_alloc_failed++;
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
"queue_id=%u", rxq->port_id, rxq->queue_id);
break;
}
rxd = *rxdp;
nb_hold++;
rxe = rxq->sw_ring[rx_id];
rxq->sw_ring[rx_id] = nmb;
rx_id++;
if (unlikely(rx_id == rxq->nb_rx_desc))
rx_id = 0;
/* Prefetch next mbuf */
rte_prefetch0(rxq->sw_ring[rx_id]);
/* When next RX descriptor is on a cache line boundary,
* prefetch the next 4 RX descriptors and next 8 pointers
* to mbufs.
*/
if ((rx_id & 0x3) == 0) {
rte_prefetch0(&rx_ring[rx_id]);
rte_prefetch0(rxq->sw_ring[rx_id]);
}
rxm = rxe;
dma_addr =
rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
rxdp->read.hdr_addr = 0;
rxdp->read.pkt_addr = dma_addr;
rx_packet_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
rxm->data_off = RTE_PKTMBUF_HEADROOM;
rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
rxm->nb_segs = 1;
rxm->next = NULL;
rxm->pkt_len = rx_packet_len;
rxm->data_len = rx_packet_len;
rxm->port = rxq->port_id;
rxm->ol_flags = 0;
iavf_rxd_to_vlan_tci(rxm, &rxd);
pkt_flags = iavf_rxd_to_pkt_flags(qword1);
rxm->packet_type =
ptype_tbl[(uint8_t)((qword1 &
IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
if (pkt_flags & RTE_MBUF_F_RX_RSS_HASH)
rxm->hash.rss =
rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
if (pkt_flags & RTE_MBUF_F_RX_FDIR)
pkt_flags |= iavf_rxd_build_fdir(&rxd, rxm);
rxm->ol_flags |= pkt_flags;
rx_pkts[nb_rx++] = rxm;
}
rxq->rx_tail = rx_id;
iavf_update_rx_tail(rxq, nb_hold, rx_id);
return nb_rx;
}
/* implement recv_pkts for flexible Rx descriptor */
uint16_t
iavf_recv_pkts_flex_rxd(void *rx_queue,
struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
volatile union iavf_rx_desc *rx_ring;
volatile union iavf_rx_flex_desc *rxdp;
struct iavf_rx_queue *rxq;
union iavf_rx_flex_desc rxd;
struct rte_mbuf *rxe;
struct rte_eth_dev *dev;
struct rte_mbuf *rxm;
struct rte_mbuf *nmb;
uint16_t nb_rx;
uint16_t rx_stat_err0;
uint16_t rx_packet_len;
uint16_t rx_id, nb_hold;
uint64_t dma_addr;
uint64_t pkt_flags;
const uint32_t *ptype_tbl;
uint64_t ts_ns;
nb_rx = 0;
nb_hold = 0;
rxq = rx_queue;
rx_id = rxq->rx_tail;
rx_ring = rxq->rx_ring;
ptype_tbl = rxq->vsi->adapter->ptype_tbl;
if (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP) {
uint64_t sw_cur_time = rte_get_timer_cycles() / (rte_get_timer_hz() / 1000);
if (sw_cur_time - rxq->hw_time_update > 4) {
if (iavf_get_phc_time(rxq))
PMD_DRV_LOG(ERR, "get physical time failed");
rxq->hw_time_update = sw_cur_time;
}
}
while (nb_rx < nb_pkts) {
rxdp = (volatile union iavf_rx_flex_desc *)&rx_ring[rx_id];
rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
/* Check the DD bit first */
if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
break;
IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
nmb = rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(!nmb)) {
dev = &rte_eth_devices[rxq->port_id];
dev->data->rx_mbuf_alloc_failed++;
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
"queue_id=%u", rxq->port_id, rxq->queue_id);
break;
}
rxd = *rxdp;
nb_hold++;
rxe = rxq->sw_ring[rx_id];
rxq->sw_ring[rx_id] = nmb;
rx_id++;
if (unlikely(rx_id == rxq->nb_rx_desc))
rx_id = 0;
/* Prefetch next mbuf */
rte_prefetch0(rxq->sw_ring[rx_id]);
/* When next RX descriptor is on a cache line boundary,
* prefetch the next 4 RX descriptors and next 8 pointers
* to mbufs.
*/
if ((rx_id & 0x3) == 0) {
rte_prefetch0(&rx_ring[rx_id]);
rte_prefetch0(rxq->sw_ring[rx_id]);
}
rxm = rxe;
dma_addr =
rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
rxdp->read.hdr_addr = 0;
rxdp->read.pkt_addr = dma_addr;
rx_packet_len = (rte_le_to_cpu_16(rxd.wb.pkt_len) &
IAVF_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
rxm->data_off = RTE_PKTMBUF_HEADROOM;
rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
rxm->nb_segs = 1;
rxm->next = NULL;
rxm->pkt_len = rx_packet_len;
rxm->data_len = rx_packet_len;
rxm->port = rxq->port_id;
rxm->ol_flags = 0;
rxm->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
iavf_flex_rxd_to_vlan_tci(rxm, &rxd);
iavf_flex_rxd_to_ipsec_crypto_status(rxm, &rxd,
&rxq->stats.ipsec_crypto);
rxd_to_pkt_fields_ops[rxq->rxdid](rxq, rxm, &rxd);
pkt_flags = iavf_flex_rxd_error_to_pkt_flags(rx_stat_err0);
if (iavf_timestamp_dynflag > 0) {
ts_ns = iavf_tstamp_convert_32b_64b(rxq->phc_time,
rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high));
rxq->phc_time = ts_ns;
rxq->hw_time_update = rte_get_timer_cycles() / (rte_get_timer_hz() / 1000);
*RTE_MBUF_DYNFIELD(rxm,
iavf_timestamp_dynfield_offset,
rte_mbuf_timestamp_t *) = ts_ns;
rxm->ol_flags |= iavf_timestamp_dynflag;
}
rxm->ol_flags |= pkt_flags;
rx_pkts[nb_rx++] = rxm;
}
rxq->rx_tail = rx_id;
iavf_update_rx_tail(rxq, nb_hold, rx_id);
return nb_rx;
}
/* implement recv_scattered_pkts for flexible Rx descriptor */
uint16_t
iavf_recv_scattered_pkts_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct iavf_rx_queue *rxq = rx_queue;
union iavf_rx_flex_desc rxd;
struct rte_mbuf *rxe;
struct rte_mbuf *first_seg = rxq->pkt_first_seg;
struct rte_mbuf *last_seg = rxq->pkt_last_seg;
struct rte_mbuf *nmb, *rxm;
uint16_t rx_id = rxq->rx_tail;
uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
struct rte_eth_dev *dev;
uint16_t rx_stat_err0;
uint64_t dma_addr;
uint64_t pkt_flags;
uint64_t ts_ns;
volatile union iavf_rx_desc *rx_ring = rxq->rx_ring;
volatile union iavf_rx_flex_desc *rxdp;
const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
if (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP) {
uint64_t sw_cur_time = rte_get_timer_cycles() / (rte_get_timer_hz() / 1000);
if (sw_cur_time - rxq->hw_time_update > 4) {
if (iavf_get_phc_time(rxq))
PMD_DRV_LOG(ERR, "get physical time failed");
rxq->hw_time_update = sw_cur_time;
}
}
while (nb_rx < nb_pkts) {
rxdp = (volatile union iavf_rx_flex_desc *)&rx_ring[rx_id];
rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
/* Check the DD bit */
if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
break;
IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
nmb = rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(!nmb)) {
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
"queue_id=%u", rxq->port_id, rxq->queue_id);
dev = &rte_eth_devices[rxq->port_id];
dev->data->rx_mbuf_alloc_failed++;
break;
}
rxd = *rxdp;
nb_hold++;
rxe = rxq->sw_ring[rx_id];
rxq->sw_ring[rx_id] = nmb;
rx_id++;
if (rx_id == rxq->nb_rx_desc)
rx_id = 0;
/* Prefetch next mbuf */
rte_prefetch0(rxq->sw_ring[rx_id]);
/* When next RX descriptor is on a cache line boundary,
* prefetch the next 4 RX descriptors and next 8 pointers
* to mbufs.
*/
if ((rx_id & 0x3) == 0) {
rte_prefetch0(&rx_ring[rx_id]);
rte_prefetch0(rxq->sw_ring[rx_id]);
}
rxm = rxe;
dma_addr =
rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
/* Set data buffer address and data length of the mbuf */
rxdp->read.hdr_addr = 0;
rxdp->read.pkt_addr = dma_addr;
rx_packet_len = rte_le_to_cpu_16(rxd.wb.pkt_len) &
IAVF_RX_FLX_DESC_PKT_LEN_M;
rxm->data_len = rx_packet_len;
rxm->data_off = RTE_PKTMBUF_HEADROOM;
/* If this is the first buffer of the received packet, set the
* pointer to the first mbuf of the packet and initialize its
* context. Otherwise, update the total length and the number
* of segments of the current scattered packet, and update the
* pointer to the last mbuf of the current packet.
*/
if (!first_seg) {
first_seg = rxm;
first_seg->nb_segs = 1;
first_seg->pkt_len = rx_packet_len;
} else {
first_seg->pkt_len =
(uint16_t)(first_seg->pkt_len +
rx_packet_len);
first_seg->nb_segs++;
last_seg->next = rxm;
}
/* If this is not the last buffer of the received packet,
* update the pointer to the last mbuf of the current scattered
* packet and continue to parse the RX ring.
*/
if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_EOF_S))) {
last_seg = rxm;
continue;
}
/* This is the last buffer of the received packet. If the CRC
* is not stripped by the hardware:
* - Subtract the CRC length from the total packet length.
* - If the last buffer only contains the whole CRC or a part
* of it, free the mbuf associated to the last buffer. If part
* of the CRC is also contained in the previous mbuf, subtract
* the length of that CRC part from the data length of the
* previous mbuf.
*/
rxm->next = NULL;
if (unlikely(rxq->crc_len > 0)) {
first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
rte_pktmbuf_free_seg(rxm);
first_seg->nb_segs--;
last_seg->data_len =
(uint16_t)(last_seg->data_len -
(RTE_ETHER_CRC_LEN - rx_packet_len));
last_seg->next = NULL;
} else {
rxm->data_len = (uint16_t)(rx_packet_len -
RTE_ETHER_CRC_LEN);
}
}
first_seg->port = rxq->port_id;
first_seg->ol_flags = 0;
first_seg->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
iavf_flex_rxd_to_vlan_tci(first_seg, &rxd);
iavf_flex_rxd_to_ipsec_crypto_status(first_seg, &rxd,
&rxq->stats.ipsec_crypto);
rxd_to_pkt_fields_ops[rxq->rxdid](rxq, first_seg, &rxd);
pkt_flags = iavf_flex_rxd_error_to_pkt_flags(rx_stat_err0);
if (iavf_timestamp_dynflag > 0) {
ts_ns = iavf_tstamp_convert_32b_64b(rxq->phc_time,
rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high));
rxq->phc_time = ts_ns;
rxq->hw_time_update = rte_get_timer_cycles() / (rte_get_timer_hz() / 1000);
*RTE_MBUF_DYNFIELD(first_seg,
iavf_timestamp_dynfield_offset,
rte_mbuf_timestamp_t *) = ts_ns;
first_seg->ol_flags |= iavf_timestamp_dynflag;
}
first_seg->ol_flags |= pkt_flags;
/* Prefetch data of first segment, if configured to do so. */
rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
first_seg->data_off));
rx_pkts[nb_rx++] = first_seg;
first_seg = NULL;
}
/* Record index of the next RX descriptor to probe. */
rxq->rx_tail = rx_id;
rxq->pkt_first_seg = first_seg;
rxq->pkt_last_seg = last_seg;
iavf_update_rx_tail(rxq, nb_hold, rx_id);
return nb_rx;
}
/* implement recv_scattered_pkts */
uint16_t
iavf_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct iavf_rx_queue *rxq = rx_queue;
union iavf_rx_desc rxd;
struct rte_mbuf *rxe;
struct rte_mbuf *first_seg = rxq->pkt_first_seg;
struct rte_mbuf *last_seg = rxq->pkt_last_seg;
struct rte_mbuf *nmb, *rxm;
uint16_t rx_id = rxq->rx_tail;
uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
struct rte_eth_dev *dev;
uint32_t rx_status;
uint64_t qword1;
uint64_t dma_addr;
uint64_t pkt_flags;
volatile union iavf_rx_desc *rx_ring = rxq->rx_ring;
volatile union iavf_rx_desc *rxdp;
const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
while (nb_rx < nb_pkts) {
rxdp = &rx_ring[rx_id];
qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
IAVF_RXD_QW1_STATUS_SHIFT;
/* Check the DD bit */
if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
break;
IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
nmb = rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(!nmb)) {
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
"queue_id=%u", rxq->port_id, rxq->queue_id);
dev = &rte_eth_devices[rxq->port_id];
dev->data->rx_mbuf_alloc_failed++;
break;
}
rxd = *rxdp;
nb_hold++;
rxe = rxq->sw_ring[rx_id];
rxq->sw_ring[rx_id] = nmb;
rx_id++;
if (rx_id == rxq->nb_rx_desc)
rx_id = 0;
/* Prefetch next mbuf */
rte_prefetch0(rxq->sw_ring[rx_id]);
/* When next RX descriptor is on a cache line boundary,
* prefetch the next 4 RX descriptors and next 8 pointers
* to mbufs.
*/
if ((rx_id & 0x3) == 0) {
rte_prefetch0(&rx_ring[rx_id]);
rte_prefetch0(rxq->sw_ring[rx_id]);
}
rxm = rxe;
dma_addr =
rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
/* Set data buffer address and data length of the mbuf */
rxdp->read.hdr_addr = 0;
rxdp->read.pkt_addr = dma_addr;
rx_packet_len = (qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
IAVF_RXD_QW1_LENGTH_PBUF_SHIFT;
rxm->data_len = rx_packet_len;
rxm->data_off = RTE_PKTMBUF_HEADROOM;
/* If this is the first buffer of the received packet, set the
* pointer to the first mbuf of the packet and initialize its
* context. Otherwise, update the total length and the number
* of segments of the current scattered packet, and update the
* pointer to the last mbuf of the current packet.
*/
if (!first_seg) {
first_seg = rxm;
first_seg->nb_segs = 1;
first_seg->pkt_len = rx_packet_len;
} else {
first_seg->pkt_len =
(uint16_t)(first_seg->pkt_len +
rx_packet_len);
first_seg->nb_segs++;
last_seg->next = rxm;
}
/* If this is not the last buffer of the received packet,
* update the pointer to the last mbuf of the current scattered
* packet and continue to parse the RX ring.
*/
if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_EOF_SHIFT))) {
last_seg = rxm;
continue;
}
/* This is the last buffer of the received packet. If the CRC
* is not stripped by the hardware:
* - Subtract the CRC length from the total packet length.
* - If the last buffer only contains the whole CRC or a part
* of it, free the mbuf associated to the last buffer. If part
* of the CRC is also contained in the previous mbuf, subtract
* the length of that CRC part from the data length of the
* previous mbuf.
*/
rxm->next = NULL;
if (unlikely(rxq->crc_len > 0)) {
first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
rte_pktmbuf_free_seg(rxm);
first_seg->nb_segs--;
last_seg->data_len =
(uint16_t)(last_seg->data_len -
(RTE_ETHER_CRC_LEN - rx_packet_len));
last_seg->next = NULL;
} else
rxm->data_len = (uint16_t)(rx_packet_len -
RTE_ETHER_CRC_LEN);
}
first_seg->port = rxq->port_id;
first_seg->ol_flags = 0;
iavf_rxd_to_vlan_tci(first_seg, &rxd);
pkt_flags = iavf_rxd_to_pkt_flags(qword1);
first_seg->packet_type =
ptype_tbl[(uint8_t)((qword1 &
IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
if (pkt_flags & RTE_MBUF_F_RX_RSS_HASH)
first_seg->hash.rss =
rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
if (pkt_flags & RTE_MBUF_F_RX_FDIR)
pkt_flags |= iavf_rxd_build_fdir(&rxd, first_seg);
first_seg->ol_flags |= pkt_flags;
/* Prefetch data of first segment, if configured to do so. */
rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
first_seg->data_off));
rx_pkts[nb_rx++] = first_seg;
first_seg = NULL;
}
/* Record index of the next RX descriptor to probe. */
rxq->rx_tail = rx_id;
rxq->pkt_first_seg = first_seg;
rxq->pkt_last_seg = last_seg;
iavf_update_rx_tail(rxq, nb_hold, rx_id);
return nb_rx;
}
#define IAVF_LOOK_AHEAD 8
static inline int
iavf_rx_scan_hw_ring_flex_rxd(struct iavf_rx_queue *rxq,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
volatile union iavf_rx_flex_desc *rxdp;
struct rte_mbuf **rxep;
struct rte_mbuf *mb;
uint16_t stat_err0;
uint16_t pkt_len;
int32_t s[IAVF_LOOK_AHEAD], var, nb_dd;
int32_t i, j, nb_rx = 0;
int32_t nb_staged = 0;
uint64_t pkt_flags;
const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
uint64_t ts_ns;
rxdp = (volatile union iavf_rx_flex_desc *)&rxq->rx_ring[rxq->rx_tail];
rxep = &rxq->sw_ring[rxq->rx_tail];
stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
/* Make sure there is at least 1 packet to receive */
if (!(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
return 0;
if (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP) {
uint64_t sw_cur_time = rte_get_timer_cycles() / (rte_get_timer_hz() / 1000);
if (sw_cur_time - rxq->hw_time_update > 4) {
if (iavf_get_phc_time(rxq))
PMD_DRV_LOG(ERR, "get physical time failed");
rxq->hw_time_update = sw_cur_time;
}
}
/* Scan LOOK_AHEAD descriptors at a time to determine which
* descriptors reference packets that are ready to be received.
*/
for (i = 0; i < IAVF_RX_MAX_BURST; i += IAVF_LOOK_AHEAD,
rxdp += IAVF_LOOK_AHEAD, rxep += IAVF_LOOK_AHEAD) {
/* Read desc statuses backwards to avoid race condition */
for (j = IAVF_LOOK_AHEAD - 1; j >= 0; j--)
s[j] = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
/* This barrier is to order loads of different words in the descriptor */
rte_atomic_thread_fence(__ATOMIC_ACQUIRE);
/* Compute how many contiguous DD bits were set */
for (j = 0, nb_dd = 0; j < IAVF_LOOK_AHEAD; j++) {
var = s[j] & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S);
#ifdef RTE_ARCH_ARM
/* For Arm platforms, count only contiguous descriptors
* whose DD bit is set to 1. On Arm platforms, reads of
* descriptors can be reordered. Since the CPU may
* be reading the descriptors as the NIC updates them
* in memory, it is possbile that the DD bit for a
* descriptor earlier in the queue is read as not set
* while the DD bit for a descriptor later in the queue
* is read as set.
*/
if (var)
nb_dd += 1;
else
break;
#else
nb_dd += var;
#endif
}
/* Translate descriptor info to mbuf parameters */
for (j = 0; j < nb_dd; j++) {
IAVF_DUMP_RX_DESC(rxq, &rxdp[j],
rxq->rx_tail +
i * IAVF_LOOK_AHEAD + j);
mb = rxep[j];
pkt_len = (rte_le_to_cpu_16(rxdp[j].wb.pkt_len) &
IAVF_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
mb->data_len = pkt_len;
mb->pkt_len = pkt_len;
mb->ol_flags = 0;
mb->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
rte_le_to_cpu_16(rxdp[j].wb.ptype_flex_flags0)];
iavf_flex_rxd_to_vlan_tci(mb, &rxdp[j]);
iavf_flex_rxd_to_ipsec_crypto_status(mb, &rxdp[j],
&rxq->stats.ipsec_crypto);
rxd_to_pkt_fields_ops[rxq->rxdid](rxq, mb, &rxdp[j]);
stat_err0 = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
pkt_flags = iavf_flex_rxd_error_to_pkt_flags(stat_err0);
if (iavf_timestamp_dynflag > 0) {
ts_ns = iavf_tstamp_convert_32b_64b(rxq->phc_time,
rte_le_to_cpu_32(rxdp[j].wb.flex_ts.ts_high));
rxq->phc_time = ts_ns;
rxq->hw_time_update = rte_get_timer_cycles() /
(rte_get_timer_hz() / 1000);
*RTE_MBUF_DYNFIELD(mb,
iavf_timestamp_dynfield_offset,
rte_mbuf_timestamp_t *) = ts_ns;
mb->ol_flags |= iavf_timestamp_dynflag;
}
mb->ol_flags |= pkt_flags;
/* Put up to nb_pkts directly into buffers */
if ((i + j) < nb_pkts) {
rx_pkts[i + j] = rxep[j];
nb_rx++;
} else {
/* Stage excess pkts received */
rxq->rx_stage[nb_staged] = rxep[j];
nb_staged++;
}
}
if (nb_dd != IAVF_LOOK_AHEAD)
break;
}
/* Update rxq->rx_nb_avail to reflect number of staged pkts */
rxq->rx_nb_avail = nb_staged;
/* Clear software ring entries */
for (i = 0; i < (nb_rx + nb_staged); i++)
rxq->sw_ring[rxq->rx_tail + i] = NULL;
return nb_rx;
}
static inline int
iavf_rx_scan_hw_ring(struct iavf_rx_queue *rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
volatile union iavf_rx_desc *rxdp;
struct rte_mbuf **rxep;
struct rte_mbuf *mb;
uint16_t pkt_len;
uint64_t qword1;
uint32_t rx_status;
int32_t s[IAVF_LOOK_AHEAD], var, nb_dd;
int32_t i, j, nb_rx = 0;
int32_t nb_staged = 0;
uint64_t pkt_flags;
const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
rxdp = &rxq->rx_ring[rxq->rx_tail];
rxep = &rxq->sw_ring[rxq->rx_tail];
qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
IAVF_RXD_QW1_STATUS_SHIFT;
/* Make sure there is at least 1 packet to receive */
if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
return 0;
/* Scan LOOK_AHEAD descriptors at a time to determine which
* descriptors reference packets that are ready to be received.
*/
for (i = 0; i < IAVF_RX_MAX_BURST; i += IAVF_LOOK_AHEAD,
rxdp += IAVF_LOOK_AHEAD, rxep += IAVF_LOOK_AHEAD) {
/* Read desc statuses backwards to avoid race condition */
for (j = IAVF_LOOK_AHEAD - 1; j >= 0; j--) {
qword1 = rte_le_to_cpu_64(
rxdp[j].wb.qword1.status_error_len);
s[j] = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
IAVF_RXD_QW1_STATUS_SHIFT;
}
/* This barrier is to order loads of different words in the descriptor */
rte_atomic_thread_fence(__ATOMIC_ACQUIRE);
/* Compute how many contiguous DD bits were set */
for (j = 0, nb_dd = 0; j < IAVF_LOOK_AHEAD; j++) {
var = s[j] & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT);
#ifdef RTE_ARCH_ARM
/* For Arm platforms, count only contiguous descriptors
* whose DD bit is set to 1. On Arm platforms, reads of
* descriptors can be reordered. Since the CPU may
* be reading the descriptors as the NIC updates them
* in memory, it is possbile that the DD bit for a
* descriptor earlier in the queue is read as not set
* while the DD bit for a descriptor later in the queue
* is read as set.
*/
if (var)
nb_dd += 1;
else
break;
#else
nb_dd += var;
#endif
}
/* Translate descriptor info to mbuf parameters */
for (j = 0; j < nb_dd; j++) {
IAVF_DUMP_RX_DESC(rxq, &rxdp[j],
rxq->rx_tail + i * IAVF_LOOK_AHEAD + j);
mb = rxep[j];
qword1 = rte_le_to_cpu_64
(rxdp[j].wb.qword1.status_error_len);
pkt_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
mb->data_len = pkt_len;
mb->pkt_len = pkt_len;
mb->ol_flags = 0;
iavf_rxd_to_vlan_tci(mb, &rxdp[j]);
pkt_flags = iavf_rxd_to_pkt_flags(qword1);
mb->packet_type =
ptype_tbl[(uint8_t)((qword1 &
IAVF_RXD_QW1_PTYPE_MASK) >>
IAVF_RXD_QW1_PTYPE_SHIFT)];
if (pkt_flags & RTE_MBUF_F_RX_RSS_HASH)
mb->hash.rss = rte_le_to_cpu_32(
rxdp[j].wb.qword0.hi_dword.rss);
if (pkt_flags & RTE_MBUF_F_RX_FDIR)
pkt_flags |= iavf_rxd_build_fdir(&rxdp[j], mb);
mb->ol_flags |= pkt_flags;
/* Put up to nb_pkts directly into buffers */
if ((i + j) < nb_pkts) {
rx_pkts[i + j] = rxep[j];
nb_rx++;
} else { /* Stage excess pkts received */
rxq->rx_stage[nb_staged] = rxep[j];
nb_staged++;
}
}
if (nb_dd != IAVF_LOOK_AHEAD)
break;
}
/* Update rxq->rx_nb_avail to reflect number of staged pkts */
rxq->rx_nb_avail = nb_staged;
/* Clear software ring entries */
for (i = 0; i < (nb_rx + nb_staged); i++)
rxq->sw_ring[rxq->rx_tail + i] = NULL;
return nb_rx;
}
static inline uint16_t
iavf_rx_fill_from_stage(struct iavf_rx_queue *rxq,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
uint16_t i;
struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
for (i = 0; i < nb_pkts; i++)
rx_pkts[i] = stage[i];
rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
return nb_pkts;
}
static inline int
iavf_rx_alloc_bufs(struct iavf_rx_queue *rxq)
{
volatile union iavf_rx_desc *rxdp;
struct rte_mbuf **rxep;
struct rte_mbuf *mb;
uint16_t alloc_idx, i;
uint64_t dma_addr;
int diag;
/* Allocate buffers in bulk */
alloc_idx = (uint16_t)(rxq->rx_free_trigger -
(rxq->rx_free_thresh - 1));
rxep = &rxq->sw_ring[alloc_idx];
diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
rxq->rx_free_thresh);
if (unlikely(diag != 0)) {
PMD_RX_LOG(ERR, "Failed to get mbufs in bulk");
return -ENOMEM;
}
rxdp = &rxq->rx_ring[alloc_idx];
for (i = 0; i < rxq->rx_free_thresh; i++) {
if (likely(i < (rxq->rx_free_thresh - 1)))
/* Prefetch next mbuf */
rte_prefetch0(rxep[i + 1]);
mb = rxep[i];
rte_mbuf_refcnt_set(mb, 1);
mb->next = NULL;
mb->data_off = RTE_PKTMBUF_HEADROOM;
mb->nb_segs = 1;
mb->port = rxq->port_id;
dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
rxdp[i].read.hdr_addr = 0;
rxdp[i].read.pkt_addr = dma_addr;
}
/* Update rx tail register */
rte_wmb();
IAVF_PCI_REG_WC_WRITE_RELAXED(rxq->qrx_tail, rxq->rx_free_trigger);
rxq->rx_free_trigger =
(uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
return 0;
}
static inline uint16_t
rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
struct iavf_rx_queue *rxq = (struct iavf_rx_queue *)rx_queue;
uint16_t nb_rx = 0;
if (!nb_pkts)
return 0;
if (rxq->rx_nb_avail)
return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
if (rxq->rxdid >= IAVF_RXDID_FLEX_NIC && rxq->rxdid <= IAVF_RXDID_LAST)
nb_rx = (uint16_t)iavf_rx_scan_hw_ring_flex_rxd(rxq, rx_pkts, nb_pkts);
else
nb_rx = (uint16_t)iavf_rx_scan_hw_ring(rxq, rx_pkts, nb_pkts);
rxq->rx_next_avail = 0;
rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx + rxq->rx_nb_avail);
if (rxq->rx_tail > rxq->rx_free_trigger) {
if (iavf_rx_alloc_bufs(rxq) != 0) {
uint16_t i, j, nb_staged;
/* TODO: count rx_mbuf_alloc_failed here */
nb_staged = rxq->rx_nb_avail;
rxq->rx_nb_avail = 0;
rxq->rx_tail = (uint16_t)(rxq->rx_tail - (nb_rx + nb_staged));
for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++) {
rxq->sw_ring[j] = rx_pkts[i];
rx_pkts[i] = NULL;
}
for (i = 0, j = rxq->rx_tail + nb_rx; i < nb_staged; i++, j++) {
rxq->sw_ring[j] = rxq->rx_stage[i];
rx_pkts[i] = NULL;
}
return 0;
}
}
if (rxq->rx_tail >= rxq->nb_rx_desc)
rxq->rx_tail = 0;
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u, nb_rx=%u",
rxq->port_id, rxq->queue_id,
rxq->rx_tail, nb_rx);
return nb_rx;
}
static uint16_t
iavf_recv_pkts_bulk_alloc(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
uint16_t nb_rx = 0, n, count;
if (unlikely(nb_pkts == 0))
return 0;
if (likely(nb_pkts <= IAVF_RX_MAX_BURST))
return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
while (nb_pkts) {
n = RTE_MIN(nb_pkts, IAVF_RX_MAX_BURST);
count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
nb_rx = (uint16_t)(nb_rx + count);
nb_pkts = (uint16_t)(nb_pkts - count);
if (count < n)
break;
}
return nb_rx;
}
static inline int
iavf_xmit_cleanup(struct iavf_tx_queue *txq)
{
struct iavf_tx_entry *sw_ring = txq->sw_ring;
uint16_t last_desc_cleaned = txq->last_desc_cleaned;
uint16_t nb_tx_desc = txq->nb_tx_desc;
uint16_t desc_to_clean_to;
uint16_t nb_tx_to_clean;
volatile struct iavf_tx_desc *txd = txq->tx_ring;
desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->rs_thresh);
if (desc_to_clean_to >= nb_tx_desc)
desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
rte_cpu_to_le_64(IAVF_TXD_QW1_DTYPE_MASK)) !=
rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE)) {
PMD_TX_LOG(DEBUG, "TX descriptor %4u is not done "
"(port=%d queue=%d)", desc_to_clean_to,
txq->port_id, txq->queue_id);
return -1;
}
if (last_desc_cleaned > desc_to_clean_to)
nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
desc_to_clean_to);
else
nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
last_desc_cleaned);
txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
txq->last_desc_cleaned = desc_to_clean_to;
txq->nb_free = (uint16_t)(txq->nb_free + nb_tx_to_clean);
return 0;
}
/* Check if the context descriptor is needed for TX offloading */
static inline uint16_t
iavf_calc_context_desc(uint64_t flags, uint8_t vlan_flag)
{
if (flags & (RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG |
RTE_MBUF_F_TX_TUNNEL_MASK | RTE_MBUF_F_TX_OUTER_IP_CKSUM |
RTE_MBUF_F_TX_OUTER_UDP_CKSUM))
return 1;
if (flags & RTE_MBUF_F_TX_VLAN &&
vlan_flag & IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG2)
return 1;
return 0;
}
static inline void
iavf_fill_ctx_desc_cmd_field(volatile uint64_t *field, struct rte_mbuf *m,
uint8_t vlan_flag)
{
uint64_t cmd = 0;
/* TSO enabled */
if (m->ol_flags & (RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG))
cmd = IAVF_TX_CTX_DESC_TSO << IAVF_TXD_CTX_QW1_CMD_SHIFT;
if (m->ol_flags & RTE_MBUF_F_TX_VLAN &&
vlan_flag & IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG2) {
cmd |= IAVF_TX_CTX_DESC_IL2TAG2
<< IAVF_TXD_CTX_QW1_CMD_SHIFT;
}
*field |= cmd;
}
static inline void
iavf_fill_ctx_desc_ipsec_field(volatile uint64_t *field,
struct iavf_ipsec_crypto_pkt_metadata *ipsec_md)
{
uint64_t ipsec_field =
(uint64_t)ipsec_md->ctx_desc_ipsec_params <<
IAVF_TXD_CTX_QW1_IPSEC_PARAMS_CIPHERBLK_SHIFT;
*field |= ipsec_field;
}
static inline void
iavf_fill_ctx_desc_tunnelling_field(volatile uint64_t *qw0,
const struct rte_mbuf *m)
{
uint64_t eip_typ = IAVF_TX_CTX_DESC_EIPT_NONE;
uint64_t eip_len = 0;
uint64_t eip_noinc = 0;
/* Default - IP_ID is increment in each segment of LSO */
switch (m->ol_flags & (RTE_MBUF_F_TX_OUTER_IPV4 |
RTE_MBUF_F_TX_OUTER_IPV6 |
RTE_MBUF_F_TX_OUTER_IP_CKSUM)) {
case RTE_MBUF_F_TX_OUTER_IPV4:
eip_typ = IAVF_TX_CTX_DESC_EIPT_IPV4_NO_CHECKSUM_OFFLOAD;
eip_len = m->outer_l3_len >> 2;
break;
case RTE_MBUF_F_TX_OUTER_IPV4 | RTE_MBUF_F_TX_OUTER_IP_CKSUM:
eip_typ = IAVF_TX_CTX_DESC_EIPT_IPV4_CHECKSUM_OFFLOAD;
eip_len = m->outer_l3_len >> 2;
break;
case RTE_MBUF_F_TX_OUTER_IPV6:
eip_typ = IAVF_TX_CTX_DESC_EIPT_IPV6;
eip_len = m->outer_l3_len >> 2;
break;
}
if (!(m->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD)) {
/* L4TUNT: L4 Tunneling Type */
switch (m->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) {
case RTE_MBUF_F_TX_TUNNEL_IPIP:
/* for non UDP / GRE tunneling, set to 00b */
break;
case RTE_MBUF_F_TX_TUNNEL_VXLAN:
case RTE_MBUF_F_TX_TUNNEL_VXLAN_GPE:
case RTE_MBUF_F_TX_TUNNEL_GTP:
case RTE_MBUF_F_TX_TUNNEL_GENEVE:
eip_typ |= IAVF_TXD_CTX_UDP_TUNNELING;
break;
case RTE_MBUF_F_TX_TUNNEL_GRE:
eip_typ |= IAVF_TXD_CTX_GRE_TUNNELING;
break;
default:
PMD_TX_LOG(ERR, "Tunnel type not supported");
return;
}
/* L4TUNLEN: L4 Tunneling Length, in Words
*
* We depend on app to set rte_mbuf.l2_len correctly.
* For IP in GRE it should be set to the length of the GRE
* header;
* For MAC in GRE or MAC in UDP it should be set to the length
* of the GRE or UDP headers plus the inner MAC up to including
* its last Ethertype.
* If MPLS labels exists, it should include them as well.
*/
eip_typ |= (m->l2_len >> 1) << IAVF_TXD_CTX_QW0_NATLEN_SHIFT;
/**
* Calculate the tunneling UDP checksum.
* Shall be set only if L4TUNT = 01b and EIPT is not zero
*/
if (!(eip_typ & IAVF_TX_CTX_EXT_IP_NONE) &&
(eip_typ & IAVF_TXD_CTX_UDP_TUNNELING))
eip_typ |= IAVF_TXD_CTX_QW0_L4T_CS_MASK;
}
*qw0 = eip_typ << IAVF_TXD_CTX_QW0_TUN_PARAMS_EIPT_SHIFT |
eip_len << IAVF_TXD_CTX_QW0_TUN_PARAMS_EIPLEN_SHIFT |
eip_noinc << IAVF_TXD_CTX_QW0_TUN_PARAMS_EIP_NOINC_SHIFT;
}
static inline uint16_t
iavf_fill_ctx_desc_segmentation_field(volatile uint64_t *field,
struct rte_mbuf *m, struct iavf_ipsec_crypto_pkt_metadata *ipsec_md)
{
uint64_t segmentation_field = 0;
uint64_t total_length = 0;
if (m->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD) {
total_length = ipsec_md->l4_payload_len;
} else {
total_length = m->pkt_len - (m->l2_len + m->l3_len + m->l4_len);
if (m->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK)
total_length -= m->outer_l3_len + m->outer_l2_len;
}
#ifdef RTE_LIBRTE_IAVF_DEBUG_TX
if (!m->l4_len || !m->tso_segsz)
PMD_TX_LOG(DEBUG, "L4 length %d, LSO Segment size %d",
m->l4_len, m->tso_segsz);
if (m->tso_segsz < 88)
PMD_TX_LOG(DEBUG, "LSO Segment size %d is less than minimum %d",
m->tso_segsz, 88);
#endif
segmentation_field =
(((uint64_t)total_length << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) &
IAVF_TXD_CTX_QW1_TSO_LEN_MASK) |
(((uint64_t)m->tso_segsz << IAVF_TXD_CTX_QW1_MSS_SHIFT) &
IAVF_TXD_CTX_QW1_MSS_MASK);
*field |= segmentation_field;
return total_length;
}
struct iavf_tx_context_desc_qws {
__le64 qw0;
__le64 qw1;
};
static inline void
iavf_fill_context_desc(volatile struct iavf_tx_context_desc *desc,
struct rte_mbuf *m, struct iavf_ipsec_crypto_pkt_metadata *ipsec_md,
uint16_t *tlen, uint8_t vlan_flag)
{
volatile struct iavf_tx_context_desc_qws *desc_qws =
(volatile struct iavf_tx_context_desc_qws *)desc;
/* fill descriptor type field */
desc_qws->qw1 = IAVF_TX_DESC_DTYPE_CONTEXT;
/* fill command field */
iavf_fill_ctx_desc_cmd_field(&desc_qws->qw1, m, vlan_flag);
/* fill segmentation field */
if (m->ol_flags & (RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG)) {
/* fill IPsec field */
if (m->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD)
iavf_fill_ctx_desc_ipsec_field(&desc_qws->qw1,
ipsec_md);
*tlen = iavf_fill_ctx_desc_segmentation_field(&desc_qws->qw1,
m, ipsec_md);
}
/* fill tunnelling field */
if (m->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK)
iavf_fill_ctx_desc_tunnelling_field(&desc_qws->qw0, m);
else
desc_qws->qw0 = 0;
desc_qws->qw0 = rte_cpu_to_le_64(desc_qws->qw0);
desc_qws->qw1 = rte_cpu_to_le_64(desc_qws->qw1);
if (vlan_flag & IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG2)
desc->l2tag2 = m->vlan_tci;
}
static inline void
iavf_fill_ipsec_desc(volatile struct iavf_tx_ipsec_desc *desc,
const struct iavf_ipsec_crypto_pkt_metadata *md, uint16_t *ipsec_len)
{
desc->qw0 = rte_cpu_to_le_64(((uint64_t)md->l4_payload_len <<
IAVF_IPSEC_TX_DESC_QW0_L4PAYLEN_SHIFT) |
((uint64_t)md->esn << IAVF_IPSEC_TX_DESC_QW0_IPSECESN_SHIFT) |
((uint64_t)md->esp_trailer_len <<
IAVF_IPSEC_TX_DESC_QW0_TRAILERLEN_SHIFT));
desc->qw1 = rte_cpu_to_le_64(((uint64_t)md->sa_idx <<
IAVF_IPSEC_TX_DESC_QW1_IPSECSA_SHIFT) |
((uint64_t)md->next_proto <<
IAVF_IPSEC_TX_DESC_QW1_IPSECNH_SHIFT) |
((uint64_t)(md->len_iv & 0x3) <<
IAVF_IPSEC_TX_DESC_QW1_IVLEN_SHIFT) |
((uint64_t)(md->ol_flags & IAVF_IPSEC_CRYPTO_OL_FLAGS_NATT ?
1ULL : 0ULL) <<
IAVF_IPSEC_TX_DESC_QW1_UDP_SHIFT) |
(uint64_t)IAVF_TX_DESC_DTYPE_IPSEC);
/**
* TODO: Pre-calculate this in the Session initialization
*
* Calculate IPsec length required in data descriptor func when TSO
* offload is enabled
*/
*ipsec_len = sizeof(struct rte_esp_hdr) + (md->len_iv >> 2) +
(md->ol_flags & IAVF_IPSEC_CRYPTO_OL_FLAGS_NATT ?
sizeof(struct rte_udp_hdr) : 0);
}
static inline void
iavf_build_data_desc_cmd_offset_fields(volatile uint64_t *qw1,
struct rte_mbuf *m, uint8_t vlan_flag)
{
uint64_t command = 0;
uint64_t offset = 0;
uint64_t l2tag1 = 0;
*qw1 = IAVF_TX_DESC_DTYPE_DATA;
command = (uint64_t)IAVF_TX_DESC_CMD_ICRC;
/* Descriptor based VLAN insertion */
if ((vlan_flag & IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG1) &&
m->ol_flags & RTE_MBUF_F_TX_VLAN) {
command |= (uint64_t)IAVF_TX_DESC_CMD_IL2TAG1;
l2tag1 |= m->vlan_tci;
}
/* Set MACLEN */
if (m->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK &&
!(m->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD))
offset |= (m->outer_l2_len >> 1)
<< IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
else
offset |= (m->l2_len >> 1)
<< IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
/* Enable L3 checksum offloading inner */
if (m->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) {
if (m->ol_flags & RTE_MBUF_F_TX_IPV4) {
command |= IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM;
offset |= (m->l3_len >> 2) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
}
} else if (m->ol_flags & RTE_MBUF_F_TX_IPV4) {
command |= IAVF_TX_DESC_CMD_IIPT_IPV4;
offset |= (m->l3_len >> 2) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
} else if (m->ol_flags & RTE_MBUF_F_TX_IPV6) {
command |= IAVF_TX_DESC_CMD_IIPT_IPV6;
offset |= (m->l3_len >> 2) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
}
if (m->ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
command |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
offset |= (m->l4_len >> 2) <<
IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
}
/* Enable L4 checksum offloads */
switch (m->ol_flags & RTE_MBUF_F_TX_L4_MASK) {
case RTE_MBUF_F_TX_TCP_CKSUM:
command |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
break;
case RTE_MBUF_F_TX_SCTP_CKSUM:
command |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
break;
case RTE_MBUF_F_TX_UDP_CKSUM:
command |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
break;
}
*qw1 = rte_cpu_to_le_64((((uint64_t)command <<
IAVF_TXD_DATA_QW1_CMD_SHIFT) & IAVF_TXD_DATA_QW1_CMD_MASK) |
(((uint64_t)offset << IAVF_TXD_DATA_QW1_OFFSET_SHIFT) &
IAVF_TXD_DATA_QW1_OFFSET_MASK) |
((uint64_t)l2tag1 << IAVF_TXD_DATA_QW1_L2TAG1_SHIFT));
}
/* Calculate the number of TX descriptors needed for each pkt */
static inline uint16_t
iavf_calc_pkt_desc(struct rte_mbuf *tx_pkt)
{
struct rte_mbuf *txd = tx_pkt;
uint16_t count = 0;
while (txd != NULL) {
count += (txd->data_len + IAVF_MAX_DATA_PER_TXD - 1) /
IAVF_MAX_DATA_PER_TXD;
txd = txd->next;
}
return count;
}
static inline void
iavf_fill_data_desc(volatile struct iavf_tx_desc *desc,
uint64_t desc_template, uint16_t buffsz,
uint64_t buffer_addr)
{
/* fill data descriptor qw1 from template */
desc->cmd_type_offset_bsz = desc_template;
/* set data buffer size */
desc->cmd_type_offset_bsz |=
(((uint64_t)buffsz << IAVF_TXD_DATA_QW1_TX_BUF_SZ_SHIFT) &
IAVF_TXD_DATA_QW1_TX_BUF_SZ_MASK);
desc->buffer_addr = rte_cpu_to_le_64(buffer_addr);
desc->cmd_type_offset_bsz = rte_cpu_to_le_64(desc->cmd_type_offset_bsz);
}
static struct iavf_ipsec_crypto_pkt_metadata *
iavf_ipsec_crypto_get_pkt_metadata(const struct iavf_tx_queue *txq,
struct rte_mbuf *m)
{
if (m->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD)
return RTE_MBUF_DYNFIELD(m, txq->ipsec_crypto_pkt_md_offset,
struct iavf_ipsec_crypto_pkt_metadata *);
return NULL;
}
/* TX function */
uint16_t
iavf_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
struct iavf_tx_queue *txq = tx_queue;
volatile struct iavf_tx_desc *txr = txq->tx_ring;
struct iavf_tx_entry *txe_ring = txq->sw_ring;
struct iavf_tx_entry *txe, *txn;
struct rte_mbuf *mb, *mb_seg;
uint64_t buf_dma_addr;
uint16_t desc_idx, desc_idx_last;
uint16_t idx;
uint16_t slen;
/* Check if the descriptor ring needs to be cleaned. */
if (txq->nb_free < txq->free_thresh)
iavf_xmit_cleanup(txq);
desc_idx = txq->tx_tail;
txe = &txe_ring[desc_idx];
for (idx = 0; idx < nb_pkts; idx++) {
volatile struct iavf_tx_desc *ddesc;
struct iavf_ipsec_crypto_pkt_metadata *ipsec_md;
uint16_t nb_desc_ctx, nb_desc_ipsec;
uint16_t nb_desc_data, nb_desc_required;
uint16_t tlen = 0, ipseclen = 0;
uint64_t ddesc_template = 0;
uint64_t ddesc_cmd = 0;
mb = tx_pkts[idx];
RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
/**
* Get metadata for ipsec crypto from mbuf dynamic fields if
* security offload is specified.
*/
ipsec_md = iavf_ipsec_crypto_get_pkt_metadata(txq, mb);
nb_desc_data = mb->nb_segs;
nb_desc_ctx =
iavf_calc_context_desc(mb->ol_flags, txq->vlan_flag);
nb_desc_ipsec = !!(mb->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD);
/**
* The number of descriptors that must be allocated for
* a packet equals to the number of the segments of that
* packet plus the context and ipsec descriptors if needed.
* Recalculate the needed tx descs when TSO enabled in case
* the mbuf data size exceeds max data size that hw allows
* per tx desc.
*/
if (mb->ol_flags & RTE_MBUF_F_TX_TCP_SEG)
nb_desc_required = iavf_calc_pkt_desc(mb) + nb_desc_ctx + nb_desc_ipsec;
else
nb_desc_required = nb_desc_data + nb_desc_ctx + nb_desc_ipsec;
desc_idx_last = (uint16_t)(desc_idx + nb_desc_required - 1);
/* wrap descriptor ring */
if (desc_idx_last >= txq->nb_tx_desc)
desc_idx_last =
(uint16_t)(desc_idx_last - txq->nb_tx_desc);
PMD_TX_LOG(DEBUG,
"port_id=%u queue_id=%u tx_first=%u tx_last=%u",
txq->port_id, txq->queue_id, desc_idx, desc_idx_last);
if (nb_desc_required > txq->nb_free) {
if (iavf_xmit_cleanup(txq)) {
if (idx == 0)
return 0;
goto end_of_tx;
}
if (unlikely(nb_desc_required > txq->rs_thresh)) {
while (nb_desc_required > txq->nb_free) {
if (iavf_xmit_cleanup(txq)) {
if (idx == 0)
return 0;
goto end_of_tx;
}
}
}
}
iavf_build_data_desc_cmd_offset_fields(&ddesc_template, mb,
txq->vlan_flag);
/* Setup TX context descriptor if required */
if (nb_desc_ctx) {
volatile struct iavf_tx_context_desc *ctx_desc =
(volatile struct iavf_tx_context_desc *)
&txr[desc_idx];
/* clear QW0 or the previous writeback value
* may impact next write
*/
*(volatile uint64_t *)ctx_desc = 0;
txn = &txe_ring[txe->next_id];
RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
if (txe->mbuf) {
rte_pktmbuf_free_seg(txe->mbuf);
txe->mbuf = NULL;
}
iavf_fill_context_desc(ctx_desc, mb, ipsec_md, &tlen,
txq->vlan_flag);
IAVF_DUMP_TX_DESC(txq, ctx_desc, desc_idx);
txe->last_id = desc_idx_last;
desc_idx = txe->next_id;
txe = txn;
}
if (nb_desc_ipsec) {
volatile struct iavf_tx_ipsec_desc *ipsec_desc =
(volatile struct iavf_tx_ipsec_desc *)
&txr[desc_idx];
txn = &txe_ring[txe->next_id];
RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
if (txe->mbuf) {
rte_pktmbuf_free_seg(txe->mbuf);
txe->mbuf = NULL;
}
iavf_fill_ipsec_desc(ipsec_desc, ipsec_md, &ipseclen);
IAVF_DUMP_TX_DESC(txq, ipsec_desc, desc_idx);
txe->last_id = desc_idx_last;
desc_idx = txe->next_id;
txe = txn;
}
mb_seg = mb;
do {
ddesc = (volatile struct iavf_tx_desc *)
&txr[desc_idx];
txn = &txe_ring[txe->next_id];
RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
if (txe->mbuf)
rte_pktmbuf_free_seg(txe->mbuf);
txe->mbuf = mb_seg;
if ((mb_seg->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD) &&
(mb_seg->ol_flags &
(RTE_MBUF_F_TX_TCP_SEG |
RTE_MBUF_F_TX_UDP_SEG))) {
slen = tlen + mb_seg->l2_len + mb_seg->l3_len +
mb_seg->outer_l3_len + ipseclen;
if (mb_seg->ol_flags & RTE_MBUF_F_TX_L4_MASK)
slen += mb_seg->l4_len;
} else {
slen = mb_seg->data_len;
}
buf_dma_addr = rte_mbuf_data_iova(mb_seg);
while ((mb_seg->ol_flags & (RTE_MBUF_F_TX_TCP_SEG |
RTE_MBUF_F_TX_UDP_SEG)) &&
unlikely(slen > IAVF_MAX_DATA_PER_TXD)) {
iavf_fill_data_desc(ddesc, ddesc_template,
IAVF_MAX_DATA_PER_TXD, buf_dma_addr);
IAVF_DUMP_TX_DESC(txq, ddesc, desc_idx);
buf_dma_addr += IAVF_MAX_DATA_PER_TXD;
slen -= IAVF_MAX_DATA_PER_TXD;
txe->last_id = desc_idx_last;
desc_idx = txe->next_id;
txe = txn;
ddesc = &txr[desc_idx];
txn = &txe_ring[txe->next_id];
}
iavf_fill_data_desc(ddesc, ddesc_template,
slen, buf_dma_addr);
IAVF_DUMP_TX_DESC(txq, ddesc, desc_idx);
txe->last_id = desc_idx_last;
desc_idx = txe->next_id;
txe = txn;
mb_seg = mb_seg->next;
} while (mb_seg);
/* The last packet data descriptor needs End Of Packet (EOP) */
ddesc_cmd = IAVF_TX_DESC_CMD_EOP;
txq->nb_used = (uint16_t)(txq->nb_used + nb_desc_required);
txq->nb_free = (uint16_t)(txq->nb_free - nb_desc_required);
if (txq->nb_used >= txq->rs_thresh) {
PMD_TX_LOG(DEBUG, "Setting RS bit on TXD id="
"%4u (port=%d queue=%d)",
desc_idx_last, txq->port_id, txq->queue_id);
ddesc_cmd |= IAVF_TX_DESC_CMD_RS;
/* Update txq RS bit counters */
txq->nb_used = 0;
}
ddesc->cmd_type_offset_bsz |= rte_cpu_to_le_64(ddesc_cmd <<
IAVF_TXD_DATA_QW1_CMD_SHIFT);
IAVF_DUMP_TX_DESC(txq, ddesc, desc_idx - 1);
}
end_of_tx:
rte_wmb();
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
txq->port_id, txq->queue_id, desc_idx, idx);
IAVF_PCI_REG_WRITE_RELAXED(txq->qtx_tail, desc_idx);
txq->tx_tail = desc_idx;
return idx;
}
/* Check if the packet with vlan user priority is transmitted in the
* correct queue.
*/
static int
iavf_check_vlan_up2tc(struct iavf_tx_queue *txq, struct rte_mbuf *m)
{
struct rte_eth_dev *dev = &rte_eth_devices[txq->port_id];
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
uint16_t up;
up = m->vlan_tci >> IAVF_VLAN_TAG_PCP_OFFSET;
if (!(vf->qos_cap->cap[txq->tc].tc_prio & BIT(up))) {
PMD_TX_LOG(ERR, "packet with vlan pcp %u cannot transmit in queue %u\n",
up, txq->queue_id);
return -1;
} else {
return 0;
}
}
/* TX prep functions */
uint16_t
iavf_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
int i, ret;
uint64_t ol_flags;
struct rte_mbuf *m;
struct iavf_tx_queue *txq = tx_queue;
struct rte_eth_dev *dev = &rte_eth_devices[txq->port_id];
uint16_t max_frame_size = dev->data->mtu + IAVF_ETH_OVERHEAD;
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct iavf_adapter *adapter = IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
if (adapter->closed)
return 0;
for (i = 0; i < nb_pkts; i++) {
m = tx_pkts[i];
ol_flags = m->ol_flags;
/* Check condition for nb_segs > IAVF_TX_MAX_MTU_SEG. */
if (!(ol_flags & RTE_MBUF_F_TX_TCP_SEG)) {
if (m->nb_segs > IAVF_TX_MAX_MTU_SEG) {
rte_errno = EINVAL;
return i;
}
} else if ((m->tso_segsz < IAVF_MIN_TSO_MSS) ||
(m->tso_segsz > IAVF_MAX_TSO_MSS)) {
/* MSS outside the range are considered malicious */
rte_errno = EINVAL;
return i;
}
if (ol_flags & IAVF_TX_OFFLOAD_NOTSUP_MASK) {
rte_errno = ENOTSUP;
return i;
}
/* check the data_len in mbuf */
if (m->data_len < IAVF_TX_MIN_PKT_LEN ||
m->data_len > max_frame_size) {
rte_errno = EINVAL;
PMD_DRV_LOG(ERR, "INVALID mbuf: bad data_len=[%hu]", m->data_len);
return i;
}
#ifdef RTE_ETHDEV_DEBUG_TX
ret = rte_validate_tx_offload(m);
if (ret != 0) {
rte_errno = -ret;
return i;
}
#endif
ret = rte_net_intel_cksum_prepare(m);
if (ret != 0) {
rte_errno = -ret;
return i;
}
if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS &&
ol_flags & (RTE_MBUF_F_RX_VLAN_STRIPPED | RTE_MBUF_F_RX_VLAN)) {
ret = iavf_check_vlan_up2tc(txq, m);
if (ret != 0) {
rte_errno = -ret;
return i;
}
}
}
return i;
}
/* choose rx function*/
void
iavf_set_rx_function(struct rte_eth_dev *dev)
{
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
int i;
struct iavf_rx_queue *rxq;
bool use_flex = true;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
if (rxq->rxdid <= IAVF_RXDID_LEGACY_1) {
PMD_DRV_LOG(NOTICE, "request RXDID[%d] in Queue[%d] is legacy, "
"set rx_pkt_burst as legacy for all queues", rxq->rxdid, i);
use_flex = false;
} else if (!(vf->supported_rxdid & BIT(rxq->rxdid))) {
PMD_DRV_LOG(NOTICE, "request RXDID[%d] in Queue[%d] is not supported, "
"set rx_pkt_burst as legacy for all queues", rxq->rxdid, i);
use_flex = false;
}
}
#ifdef RTE_ARCH_X86
int check_ret;
bool use_avx2 = false;
bool use_avx512 = false;
check_ret = iavf_rx_vec_dev_check(dev);
if (check_ret >= 0 &&
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
use_avx2 = true;
#ifdef CC_AVX512_SUPPORT
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1 &&
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512)
use_avx512 = true;
#endif
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
(void)iavf_rxq_vec_setup(rxq);
}
if (dev->data->scattered_rx) {
if (!use_avx512) {
PMD_DRV_LOG(DEBUG,
"Using %sVector Scattered Rx (port %d).",
use_avx2 ? "avx2 " : "",
dev->data->port_id);
} else {
if (check_ret == IAVF_VECTOR_PATH)
PMD_DRV_LOG(DEBUG,
"Using AVX512 Vector Scattered Rx (port %d).",
dev->data->port_id);
else
PMD_DRV_LOG(DEBUG,
"Using AVX512 OFFLOAD Vector Scattered Rx (port %d).",
dev->data->port_id);
}
if (use_flex) {
dev->rx_pkt_burst = use_avx2 ?
iavf_recv_scattered_pkts_vec_avx2_flex_rxd :
iavf_recv_scattered_pkts_vec_flex_rxd;
#ifdef CC_AVX512_SUPPORT
if (use_avx512) {
if (check_ret == IAVF_VECTOR_PATH)
dev->rx_pkt_burst =
iavf_recv_scattered_pkts_vec_avx512_flex_rxd;
else
dev->rx_pkt_burst =
iavf_recv_scattered_pkts_vec_avx512_flex_rxd_offload;
}
#endif
} else {
dev->rx_pkt_burst = use_avx2 ?
iavf_recv_scattered_pkts_vec_avx2 :
iavf_recv_scattered_pkts_vec;
#ifdef CC_AVX512_SUPPORT
if (use_avx512) {
if (check_ret == IAVF_VECTOR_PATH)
dev->rx_pkt_burst =
iavf_recv_scattered_pkts_vec_avx512;
else
dev->rx_pkt_burst =
iavf_recv_scattered_pkts_vec_avx512_offload;
}
#endif
}
} else {
if (!use_avx512) {
PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).",
use_avx2 ? "avx2 " : "",
dev->data->port_id);
} else {
if (check_ret == IAVF_VECTOR_PATH)
PMD_DRV_LOG(DEBUG,
"Using AVX512 Vector Rx (port %d).",
dev->data->port_id);
else
PMD_DRV_LOG(DEBUG,
"Using AVX512 OFFLOAD Vector Rx (port %d).",
dev->data->port_id);
}
if (use_flex) {
dev->rx_pkt_burst = use_avx2 ?
iavf_recv_pkts_vec_avx2_flex_rxd :
iavf_recv_pkts_vec_flex_rxd;
#ifdef CC_AVX512_SUPPORT
if (use_avx512) {
if (check_ret == IAVF_VECTOR_PATH)
dev->rx_pkt_burst =
iavf_recv_pkts_vec_avx512_flex_rxd;
else
dev->rx_pkt_burst =
iavf_recv_pkts_vec_avx512_flex_rxd_offload;
}
#endif
} else {
dev->rx_pkt_burst = use_avx2 ?
iavf_recv_pkts_vec_avx2 :
iavf_recv_pkts_vec;
#ifdef CC_AVX512_SUPPORT
if (use_avx512) {
if (check_ret == IAVF_VECTOR_PATH)
dev->rx_pkt_burst =
iavf_recv_pkts_vec_avx512;
else
dev->rx_pkt_burst =
iavf_recv_pkts_vec_avx512_offload;
}
#endif
}
}
return;
}
#elif defined RTE_ARCH_ARM
int check_ret;
check_ret = iavf_rx_vec_dev_check(dev);
if (check_ret >= 0 &&
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
PMD_DRV_LOG(DEBUG, "Using a Vector Rx callback (port=%d).",
dev->data->port_id);
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
(void)iavf_rxq_vec_setup(rxq);
}
dev->rx_pkt_burst = iavf_recv_pkts_vec;
return;
}
#endif
if (dev->data->scattered_rx) {
PMD_DRV_LOG(DEBUG, "Using a Scattered Rx callback (port=%d).",
dev->data->port_id);
if (use_flex)
dev->rx_pkt_burst = iavf_recv_scattered_pkts_flex_rxd;
else
dev->rx_pkt_burst = iavf_recv_scattered_pkts;
} else if (adapter->rx_bulk_alloc_allowed) {
PMD_DRV_LOG(DEBUG, "Using bulk Rx callback (port=%d).",
dev->data->port_id);
dev->rx_pkt_burst = iavf_recv_pkts_bulk_alloc;
} else {
PMD_DRV_LOG(DEBUG, "Using Basic Rx callback (port=%d).",
dev->data->port_id);
if (use_flex)
dev->rx_pkt_burst = iavf_recv_pkts_flex_rxd;
else
dev->rx_pkt_burst = iavf_recv_pkts;
}
}
/* choose tx function*/
void
iavf_set_tx_function(struct rte_eth_dev *dev)
{
#ifdef RTE_ARCH_X86
struct iavf_tx_queue *txq;
int i;
int check_ret;
bool use_sse = false;
bool use_avx2 = false;
bool use_avx512 = false;
check_ret = iavf_tx_vec_dev_check(dev);
if (check_ret >= 0 &&
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
/* SSE and AVX2 not support offload path yet. */
if (check_ret == IAVF_VECTOR_PATH) {
use_sse = true;
if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
use_avx2 = true;
}
#ifdef CC_AVX512_SUPPORT
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1 &&
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512)
use_avx512 = true;
#endif
if (!use_sse && !use_avx2 && !use_avx512)
goto normal;
if (!use_avx512) {
PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
use_avx2 ? "avx2 " : "",
dev->data->port_id);
dev->tx_pkt_burst = use_avx2 ?
iavf_xmit_pkts_vec_avx2 :
iavf_xmit_pkts_vec;
}
dev->tx_pkt_prepare = NULL;
#ifdef CC_AVX512_SUPPORT
if (use_avx512) {
if (check_ret == IAVF_VECTOR_PATH) {
dev->tx_pkt_burst = iavf_xmit_pkts_vec_avx512;
PMD_DRV_LOG(DEBUG, "Using AVX512 Vector Tx (port %d).",
dev->data->port_id);
} else {
dev->tx_pkt_burst = iavf_xmit_pkts_vec_avx512_offload;
dev->tx_pkt_prepare = iavf_prep_pkts;
PMD_DRV_LOG(DEBUG, "Using AVX512 OFFLOAD Vector Tx (port %d).",
dev->data->port_id);
}
}
#endif
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev->data->tx_queues[i];
if (!txq)
continue;
#ifdef CC_AVX512_SUPPORT
if (use_avx512)
iavf_txq_vec_setup_avx512(txq);
else
iavf_txq_vec_setup(txq);
#else
iavf_txq_vec_setup(txq);
#endif
}
return;
}
normal:
#endif
PMD_DRV_LOG(DEBUG, "Using Basic Tx callback (port=%d).",
dev->data->port_id);
dev->tx_pkt_burst = iavf_xmit_pkts;
dev->tx_pkt_prepare = iavf_prep_pkts;
}
static int
iavf_tx_done_cleanup_full(struct iavf_tx_queue *txq,
uint32_t free_cnt)
{
struct iavf_tx_entry *swr_ring = txq->sw_ring;
uint16_t tx_last, tx_id;
uint16_t nb_tx_free_last;
uint16_t nb_tx_to_clean;
uint32_t pkt_cnt = 0;
/* Start free mbuf from tx_tail */
tx_id = txq->tx_tail;
tx_last = tx_id;
if (txq->nb_free == 0 && iavf_xmit_cleanup(txq))
return 0;
nb_tx_to_clean = txq->nb_free;
nb_tx_free_last = txq->nb_free;
if (!free_cnt)
free_cnt = txq->nb_tx_desc;
/* Loop through swr_ring to count the amount of
* freeable mubfs and packets.
*/
while (pkt_cnt < free_cnt) {
do {
if (swr_ring[tx_id].mbuf != NULL) {
rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
swr_ring[tx_id].mbuf = NULL;
/*
* last segment in the packet,
* increment packet count
*/
pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
}
tx_id = swr_ring[tx_id].next_id;
} while (--nb_tx_to_clean && pkt_cnt < free_cnt && tx_id != tx_last);
if (txq->rs_thresh > txq->nb_tx_desc -
txq->nb_free || tx_id == tx_last)
break;
if (pkt_cnt < free_cnt) {
if (iavf_xmit_cleanup(txq))
break;
nb_tx_to_clean = txq->nb_free - nb_tx_free_last;
nb_tx_free_last = txq->nb_free;
}
}
return (int)pkt_cnt;
}
int
iavf_dev_tx_done_cleanup(void *txq, uint32_t free_cnt)
{
struct iavf_tx_queue *q = (struct iavf_tx_queue *)txq;
return iavf_tx_done_cleanup_full(q, free_cnt);
}
void
iavf_dev_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
struct rte_eth_rxq_info *qinfo)
{
struct iavf_rx_queue *rxq;
rxq = dev->data->rx_queues[queue_id];
qinfo->mp = rxq->mp;
qinfo->scattered_rx = dev->data->scattered_rx;
qinfo->nb_desc = rxq->nb_rx_desc;
qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
qinfo->conf.rx_drop_en = true;
qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
}
void
iavf_dev_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
struct rte_eth_txq_info *qinfo)
{
struct iavf_tx_queue *txq;
txq = dev->data->tx_queues[queue_id];
qinfo->nb_desc = txq->nb_tx_desc;
qinfo->conf.tx_free_thresh = txq->free_thresh;
qinfo->conf.tx_rs_thresh = txq->rs_thresh;
qinfo->conf.offloads = txq->offloads;
qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
}
/* Get the number of used descriptors of a rx queue */
uint32_t
iavf_dev_rxq_count(void *rx_queue)
{
#define IAVF_RXQ_SCAN_INTERVAL 4
volatile union iavf_rx_desc *rxdp;
struct iavf_rx_queue *rxq;
uint16_t desc = 0;
rxq = rx_queue;
rxdp = &rxq->rx_ring[rxq->rx_tail];
while ((desc < rxq->nb_rx_desc) &&
((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
IAVF_RXD_QW1_STATUS_MASK) >> IAVF_RXD_QW1_STATUS_SHIFT) &
(1 << IAVF_RX_DESC_STATUS_DD_SHIFT)) {
/* Check the DD bit of a rx descriptor of each 4 in a group,
* to avoid checking too frequently and downgrading performance
* too much.
*/
desc += IAVF_RXQ_SCAN_INTERVAL;
rxdp += IAVF_RXQ_SCAN_INTERVAL;
if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
rxdp = &(rxq->rx_ring[rxq->rx_tail +
desc - rxq->nb_rx_desc]);
}
return desc;
}
int
iavf_dev_rx_desc_status(void *rx_queue, uint16_t offset)
{
struct iavf_rx_queue *rxq = rx_queue;
volatile uint64_t *status;
uint64_t mask;
uint32_t desc;
if (unlikely(offset >= rxq->nb_rx_desc))
return -EINVAL;
if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
return RTE_ETH_RX_DESC_UNAVAIL;
desc = rxq->rx_tail + offset;
if (desc >= rxq->nb_rx_desc)
desc -= rxq->nb_rx_desc;
status = &rxq->rx_ring[desc].wb.qword1.status_error_len;
mask = rte_le_to_cpu_64((1ULL << IAVF_RX_DESC_STATUS_DD_SHIFT)
<< IAVF_RXD_QW1_STATUS_SHIFT);
if (*status & mask)
return RTE_ETH_RX_DESC_DONE;
return RTE_ETH_RX_DESC_AVAIL;
}
int
iavf_dev_tx_desc_status(void *tx_queue, uint16_t offset)
{
struct iavf_tx_queue *txq = tx_queue;
volatile uint64_t *status;
uint64_t mask, expect;
uint32_t desc;
if (unlikely(offset >= txq->nb_tx_desc))
return -EINVAL;
desc = txq->tx_tail + offset;
/* go to next desc that has the RS bit */
desc = ((desc + txq->rs_thresh - 1) / txq->rs_thresh) *
txq->rs_thresh;
if (desc >= txq->nb_tx_desc) {
desc -= txq->nb_tx_desc;
if (desc >= txq->nb_tx_desc)
desc -= txq->nb_tx_desc;
}
status = &txq->tx_ring[desc].cmd_type_offset_bsz;
mask = rte_le_to_cpu_64(IAVF_TXD_QW1_DTYPE_MASK);
expect = rte_cpu_to_le_64(
IAVF_TX_DESC_DTYPE_DESC_DONE << IAVF_TXD_QW1_DTYPE_SHIFT);
if ((*status & mask) == expect)
return RTE_ETH_TX_DESC_DONE;
return RTE_ETH_TX_DESC_FULL;
}
static inline uint32_t
iavf_get_default_ptype(uint16_t ptype)
{
static const uint32_t ptype_tbl[IAVF_MAX_PKT_TYPE]
__rte_cache_aligned = {
/* L2 types */
/* [0] reserved */
[1] = RTE_PTYPE_L2_ETHER,
[2] = RTE_PTYPE_L2_ETHER_TIMESYNC,
/* [3] - [5] reserved */
[6] = RTE_PTYPE_L2_ETHER_LLDP,
/* [7] - [10] reserved */
[11] = RTE_PTYPE_L2_ETHER_ARP,
/* [12] - [21] reserved */
/* Non tunneled IPv4 */
[22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG,
[23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_NONFRAG,
[24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
/* [25] reserved */
[26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP,
[27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_SCTP,
[28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_ICMP,
/* IPv4 --> IPv4 */
[29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
/* [32] reserved */
[33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_SCTP,
[35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_ICMP,
/* IPv4 --> IPv6 */
[36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
/* [39] reserved */
[40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_SCTP,
[42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_ICMP,
/* IPv4 --> GRE/Teredo/VXLAN */
[43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT,
/* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
[44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
/* [47] reserved */
[48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_SCTP,
[50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_ICMP,
/* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
[51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
/* [54] reserved */
[55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_SCTP,
[57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_ICMP,
/* IPv4 --> GRE/Teredo/VXLAN --> MAC */
[58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
/* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
[59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
/* [62] reserved */
[63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_SCTP,
[65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_ICMP,
/* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
[66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
/* [69] reserved */
[70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_SCTP,
[72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_ICMP,
/* [73] - [87] reserved */
/* Non tunneled IPv6 */
[88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG,
[89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_NONFRAG,
[90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
/* [91] reserved */
[92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP,
[93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_SCTP,
[94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_ICMP,
/* IPv6 --> IPv4 */
[95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
/* [98] reserved */
[99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_SCTP,
[101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_ICMP,
/* IPv6 --> IPv6 */
[102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
/* [105] reserved */
[106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_SCTP,
[108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_ICMP,
/* IPv6 --> GRE/Teredo/VXLAN */
[109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT,
/* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
[110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
/* [113] reserved */
[114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_SCTP,
[116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_ICMP,
/* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
[117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
/* [120] reserved */
[121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_SCTP,
[123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_ICMP,
/* IPv6 --> GRE/Teredo/VXLAN --> MAC */
[124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
/* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
[125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
/* [128] reserved */
[129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_SCTP,
[131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_ICMP,
/* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
[132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
/* [135] reserved */
[136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_SCTP,
[138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_ICMP,
/* [139] - [299] reserved */
/* PPPoE */
[300] = RTE_PTYPE_L2_ETHER_PPPOE,
[301] = RTE_PTYPE_L2_ETHER_PPPOE,
/* PPPoE --> IPv4 */
[302] = RTE_PTYPE_L2_ETHER_PPPOE |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG,
[303] = RTE_PTYPE_L2_ETHER_PPPOE |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_NONFRAG,
[304] = RTE_PTYPE_L2_ETHER_PPPOE |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[305] = RTE_PTYPE_L2_ETHER_PPPOE |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP,
[306] = RTE_PTYPE_L2_ETHER_PPPOE |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_SCTP,
[307] = RTE_PTYPE_L2_ETHER_PPPOE |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_ICMP,
/* PPPoE --> IPv6 */
[308] = RTE_PTYPE_L2_ETHER_PPPOE |
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG,
[309] = RTE_PTYPE_L2_ETHER_PPPOE |
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_NONFRAG,
[310] = RTE_PTYPE_L2_ETHER_PPPOE |
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[311] = RTE_PTYPE_L2_ETHER_PPPOE |
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP,
[312] = RTE_PTYPE_L2_ETHER_PPPOE |
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_SCTP,
[313] = RTE_PTYPE_L2_ETHER_PPPOE |
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_ICMP,
/* [314] - [324] reserved */
/* IPv4/IPv6 --> GTPC/GTPU */
[325] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPC,
[326] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPC,
[327] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPC,
[328] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPC,
[329] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU,
[330] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU,
/* IPv4 --> GTPU --> IPv4 */
[331] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[332] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[333] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
[334] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[335] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_ICMP,
/* IPv6 --> GTPU --> IPv4 */
[336] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[337] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[338] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
[339] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[340] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_ICMP,
/* IPv4 --> GTPU --> IPv6 */
[341] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[342] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[343] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
[344] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[345] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_ICMP,
/* IPv6 --> GTPU --> IPv6 */
[346] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[347] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[348] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
[349] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[350] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_ICMP,
/* IPv4 --> UDP ECPRI */
[372] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[373] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[374] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[375] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[376] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[377] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[378] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[379] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[380] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[381] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
/* IPV6 --> UDP ECPRI */
[382] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[383] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[384] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[385] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[386] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[387] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[388] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[389] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[390] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[391] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
/* All others reserved */
};
return ptype_tbl[ptype];
}
void __rte_cold
iavf_set_default_ptype_table(struct rte_eth_dev *dev)
{
struct iavf_adapter *ad =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
int i;
for (i = 0; i < IAVF_MAX_PKT_TYPE; i++)
ad->ptype_tbl[i] = iavf_get_default_ptype(i);
}