numam-dpdk/drivers/net/memif/rte_eth_memif.c
Nathan Skrzypczak c1c8a32ad2 net/memif: increase link speed to 100G
Change the advertised link speed from 10G to 100G as the memory
interfaces can reach higher throughput than 10G with large packets.

Signed-off-by: Nathan Skrzypczak <nathan.skrzypczak@gmail.com>
Acked-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
2022-11-06 11:45:44 +01:00

1918 lines
50 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2018-2019 Cisco Systems, Inc. All rights reserved.
*/
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <linux/if_ether.h>
#include <errno.h>
#include <sys/eventfd.h>
#include <rte_version.h>
#include <rte_mbuf.h>
#include <rte_ether.h>
#include <ethdev_driver.h>
#include <ethdev_vdev.h>
#include <rte_malloc.h>
#include <rte_kvargs.h>
#include <bus_vdev_driver.h>
#include <rte_string_fns.h>
#include <rte_errno.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_eal_memconfig.h>
#include "rte_eth_memif.h"
#include "memif_socket.h"
#define ETH_MEMIF_ID_ARG "id"
#define ETH_MEMIF_ROLE_ARG "role"
#define ETH_MEMIF_PKT_BUFFER_SIZE_ARG "bsize"
#define ETH_MEMIF_RING_SIZE_ARG "rsize"
#define ETH_MEMIF_SOCKET_ARG "socket"
#define ETH_MEMIF_SOCKET_ABSTRACT_ARG "socket-abstract"
#define ETH_MEMIF_MAC_ARG "mac"
#define ETH_MEMIF_ZC_ARG "zero-copy"
#define ETH_MEMIF_SECRET_ARG "secret"
static const char * const valid_arguments[] = {
ETH_MEMIF_ID_ARG,
ETH_MEMIF_ROLE_ARG,
ETH_MEMIF_PKT_BUFFER_SIZE_ARG,
ETH_MEMIF_RING_SIZE_ARG,
ETH_MEMIF_SOCKET_ARG,
ETH_MEMIF_SOCKET_ABSTRACT_ARG,
ETH_MEMIF_MAC_ARG,
ETH_MEMIF_ZC_ARG,
ETH_MEMIF_SECRET_ARG,
NULL
};
static const struct rte_eth_link pmd_link = {
.link_speed = RTE_ETH_SPEED_NUM_100G,
.link_duplex = RTE_ETH_LINK_FULL_DUPLEX,
.link_status = RTE_ETH_LINK_DOWN,
.link_autoneg = RTE_ETH_LINK_AUTONEG
};
#define MEMIF_MP_SEND_REGION "memif_mp_send_region"
static int memif_region_init_zc(const struct rte_memseg_list *msl,
const struct rte_memseg *ms, void *arg);
const char *
memif_version(void)
{
return ("memif-" RTE_STR(MEMIF_VERSION_MAJOR) "." RTE_STR(MEMIF_VERSION_MINOR));
}
/* Message header to synchronize regions */
struct mp_region_msg {
char port_name[RTE_DEV_NAME_MAX_LEN];
memif_region_index_t idx;
memif_region_size_t size;
};
static int
memif_mp_send_region(const struct rte_mp_msg *msg, const void *peer)
{
struct rte_eth_dev *dev;
struct pmd_process_private *proc_private;
const struct mp_region_msg *msg_param = (const struct mp_region_msg *)msg->param;
struct rte_mp_msg reply;
struct mp_region_msg *reply_param = (struct mp_region_msg *)reply.param;
/* Get requested port */
dev = rte_eth_dev_get_by_name(msg_param->port_name);
if (!dev) {
MIF_LOG(ERR, "Failed to get port id for %s",
msg_param->port_name);
return -1;
}
proc_private = dev->process_private;
memset(&reply, 0, sizeof(reply));
strlcpy(reply.name, msg->name, sizeof(reply.name));
reply_param->idx = msg_param->idx;
if (proc_private->regions[msg_param->idx] != NULL) {
reply_param->size = proc_private->regions[msg_param->idx]->region_size;
reply.fds[0] = proc_private->regions[msg_param->idx]->fd;
reply.num_fds = 1;
}
reply.len_param = sizeof(*reply_param);
if (rte_mp_reply(&reply, peer) < 0) {
MIF_LOG(ERR, "Failed to reply to an add region request");
return -1;
}
return 0;
}
/*
* Request regions
* Called by secondary process, when ports link status goes up.
*/
static int
memif_mp_request_regions(struct rte_eth_dev *dev)
{
int ret, i;
struct timespec timeout = {.tv_sec = 5, .tv_nsec = 0};
struct rte_mp_msg msg, *reply;
struct rte_mp_reply replies;
struct mp_region_msg *msg_param = (struct mp_region_msg *)msg.param;
struct mp_region_msg *reply_param;
struct memif_region *r;
struct pmd_process_private *proc_private = dev->process_private;
struct pmd_internals *pmd = dev->data->dev_private;
/* in case of zero-copy client, only request region 0 */
uint16_t max_region_num = (pmd->flags & ETH_MEMIF_FLAG_ZERO_COPY) ?
1 : ETH_MEMIF_MAX_REGION_NUM;
MIF_LOG(DEBUG, "Requesting memory regions");
for (i = 0; i < max_region_num; i++) {
/* Prepare the message */
memset(&msg, 0, sizeof(msg));
strlcpy(msg.name, MEMIF_MP_SEND_REGION, sizeof(msg.name));
strlcpy(msg_param->port_name, dev->data->name,
sizeof(msg_param->port_name));
msg_param->idx = i;
msg.len_param = sizeof(*msg_param);
/* Send message */
ret = rte_mp_request_sync(&msg, &replies, &timeout);
if (ret < 0 || replies.nb_received != 1) {
MIF_LOG(ERR, "Failed to send mp msg: %d",
rte_errno);
return -1;
}
reply = &replies.msgs[0];
reply_param = (struct mp_region_msg *)reply->param;
if (reply_param->size > 0) {
r = rte_zmalloc("region", sizeof(struct memif_region), 0);
if (r == NULL) {
MIF_LOG(ERR, "Failed to alloc memif region.");
free(reply);
return -ENOMEM;
}
r->region_size = reply_param->size;
if (reply->num_fds < 1) {
MIF_LOG(ERR, "Missing file descriptor.");
free(reply);
return -1;
}
r->fd = reply->fds[0];
r->addr = NULL;
proc_private->regions[reply_param->idx] = r;
proc_private->regions_num++;
}
free(reply);
}
if (pmd->flags & ETH_MEMIF_FLAG_ZERO_COPY) {
ret = rte_memseg_walk(memif_region_init_zc, (void *)proc_private);
if (ret < 0)
return ret;
}
return memif_connect(dev);
}
static int
memif_dev_info(struct rte_eth_dev *dev __rte_unused, struct rte_eth_dev_info *dev_info)
{
dev_info->max_mac_addrs = 1;
dev_info->max_rx_pktlen = RTE_ETHER_MAX_LEN;
dev_info->max_rx_queues = ETH_MEMIF_MAX_NUM_Q_PAIRS;
dev_info->max_tx_queues = ETH_MEMIF_MAX_NUM_Q_PAIRS;
dev_info->min_rx_bufsize = 0;
dev_info->tx_offload_capa = RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
return 0;
}
static memif_ring_t *
memif_get_ring(struct pmd_internals *pmd, struct pmd_process_private *proc_private,
memif_ring_type_t type, uint16_t ring_num)
{
/* rings only in region 0 */
void *p = proc_private->regions[0]->addr;
int ring_size = sizeof(memif_ring_t) + sizeof(memif_desc_t) *
(1 << pmd->run.log2_ring_size);
p = (uint8_t *)p + (ring_num + type * pmd->run.num_c2s_rings) * ring_size;
return (memif_ring_t *)p;
}
static memif_region_offset_t
memif_get_ring_offset(struct rte_eth_dev *dev, struct memif_queue *mq,
memif_ring_type_t type, uint16_t num)
{
struct pmd_internals *pmd = dev->data->dev_private;
struct pmd_process_private *proc_private = dev->process_private;
return ((uint8_t *)memif_get_ring(pmd, proc_private, type, num) -
(uint8_t *)proc_private->regions[mq->region]->addr);
}
static memif_ring_t *
memif_get_ring_from_queue(struct pmd_process_private *proc_private,
struct memif_queue *mq)
{
struct memif_region *r;
r = proc_private->regions[mq->region];
if (r == NULL)
return NULL;
return (memif_ring_t *)((uint8_t *)r->addr + mq->ring_offset);
}
static void *
memif_get_buffer(struct pmd_process_private *proc_private, memif_desc_t *d)
{
return ((uint8_t *)proc_private->regions[d->region]->addr + d->offset);
}
/* Free mbufs received by server */
static void
memif_free_stored_mbufs(struct pmd_process_private *proc_private, struct memif_queue *mq)
{
uint16_t cur_tail;
uint16_t mask = (1 << mq->log2_ring_size) - 1;
memif_ring_t *ring = memif_get_ring_from_queue(proc_private, mq);
/* FIXME: improve performance */
/* The ring->tail acts as a guard variable between Tx and Rx
* threads, so using load-acquire pairs with store-release
* in function eth_memif_rx for C2S queues.
*/
cur_tail = __atomic_load_n(&ring->tail, __ATOMIC_ACQUIRE);
while (mq->last_tail != cur_tail) {
RTE_MBUF_PREFETCH_TO_FREE(mq->buffers[(mq->last_tail + 1) & mask]);
/* Decrement refcnt and free mbuf. (current segment) */
rte_mbuf_refcnt_update(mq->buffers[mq->last_tail & mask], -1);
rte_pktmbuf_free_seg(mq->buffers[mq->last_tail & mask]);
mq->last_tail++;
}
}
static int
memif_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *cur_tail,
struct rte_mbuf *tail)
{
/* Check for number-of-segments-overflow */
if (unlikely(head->nb_segs + tail->nb_segs > RTE_MBUF_MAX_NB_SEGS))
return -EOVERFLOW;
/* Chain 'tail' onto the old tail */
cur_tail->next = tail;
/* accumulate number of segments and total length. */
head->nb_segs = (uint16_t)(head->nb_segs + tail->nb_segs);
tail->pkt_len = tail->data_len;
head->pkt_len += tail->pkt_len;
return 0;
}
static uint16_t
eth_memif_rx(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
{
struct memif_queue *mq = queue;
struct pmd_internals *pmd = rte_eth_devices[mq->in_port].data->dev_private;
struct pmd_process_private *proc_private =
rte_eth_devices[mq->in_port].process_private;
memif_ring_t *ring = memif_get_ring_from_queue(proc_private, mq);
uint16_t cur_slot, last_slot, n_slots, ring_size, mask, s0;
uint16_t n_rx_pkts = 0;
uint16_t mbuf_size = rte_pktmbuf_data_room_size(mq->mempool) -
RTE_PKTMBUF_HEADROOM;
uint16_t src_len, src_off, dst_len, dst_off, cp_len;
memif_ring_type_t type = mq->type;
memif_desc_t *d0;
struct rte_mbuf *mbuf, *mbuf_head, *mbuf_tail;
uint64_t b;
ssize_t size __rte_unused;
uint16_t head;
int ret;
struct rte_eth_link link;
if (unlikely((pmd->flags & ETH_MEMIF_FLAG_CONNECTED) == 0))
return 0;
if (unlikely(ring == NULL)) {
/* Secondary process will attempt to request regions. */
ret = rte_eth_link_get(mq->in_port, &link);
if (ret < 0)
MIF_LOG(ERR, "Failed to get port %u link info: %s",
mq->in_port, rte_strerror(-ret));
return 0;
}
/* consume interrupt */
if (((ring->flags & MEMIF_RING_FLAG_MASK_INT) == 0) &&
(rte_intr_fd_get(mq->intr_handle) >= 0))
size = read(rte_intr_fd_get(mq->intr_handle), &b,
sizeof(b));
ring_size = 1 << mq->log2_ring_size;
mask = ring_size - 1;
if (type == MEMIF_RING_C2S) {
cur_slot = mq->last_head;
last_slot = __atomic_load_n(&ring->head, __ATOMIC_ACQUIRE);
} else {
cur_slot = mq->last_tail;
last_slot = __atomic_load_n(&ring->tail, __ATOMIC_ACQUIRE);
}
if (cur_slot == last_slot)
goto refill;
n_slots = last_slot - cur_slot;
while (n_slots && n_rx_pkts < nb_pkts) {
mbuf_head = rte_pktmbuf_alloc(mq->mempool);
if (unlikely(mbuf_head == NULL))
goto no_free_bufs;
mbuf = mbuf_head;
mbuf->port = mq->in_port;
dst_off = 0;
next_slot:
s0 = cur_slot & mask;
d0 = &ring->desc[s0];
src_len = d0->length;
src_off = 0;
do {
dst_len = mbuf_size - dst_off;
if (dst_len == 0) {
dst_off = 0;
dst_len = mbuf_size;
/* store pointer to tail */
mbuf_tail = mbuf;
mbuf = rte_pktmbuf_alloc(mq->mempool);
if (unlikely(mbuf == NULL))
goto no_free_bufs;
mbuf->port = mq->in_port;
ret = memif_pktmbuf_chain(mbuf_head, mbuf_tail, mbuf);
if (unlikely(ret < 0)) {
MIF_LOG(ERR, "number-of-segments-overflow");
rte_pktmbuf_free(mbuf);
goto no_free_bufs;
}
}
cp_len = RTE_MIN(dst_len, src_len);
rte_pktmbuf_data_len(mbuf) += cp_len;
rte_pktmbuf_pkt_len(mbuf) = rte_pktmbuf_data_len(mbuf);
if (mbuf != mbuf_head)
rte_pktmbuf_pkt_len(mbuf_head) += cp_len;
rte_memcpy(rte_pktmbuf_mtod_offset(mbuf, void *,
dst_off),
(uint8_t *)memif_get_buffer(proc_private, d0) +
src_off, cp_len);
src_off += cp_len;
dst_off += cp_len;
src_len -= cp_len;
} while (src_len);
cur_slot++;
n_slots--;
if (d0->flags & MEMIF_DESC_FLAG_NEXT)
goto next_slot;
mq->n_bytes += rte_pktmbuf_pkt_len(mbuf_head);
*bufs++ = mbuf_head;
n_rx_pkts++;
}
no_free_bufs:
if (type == MEMIF_RING_C2S) {
__atomic_store_n(&ring->tail, cur_slot, __ATOMIC_RELEASE);
mq->last_head = cur_slot;
} else {
mq->last_tail = cur_slot;
}
refill:
if (type == MEMIF_RING_S2C) {
/* ring->head is updated by the receiver and this function
* is called in the context of receiver thread. The loads in
* the receiver do not need to synchronize with its own stores.
*/
head = __atomic_load_n(&ring->head, __ATOMIC_RELAXED);
n_slots = ring_size - head + mq->last_tail;
while (n_slots--) {
s0 = head++ & mask;
d0 = &ring->desc[s0];
d0->length = pmd->run.pkt_buffer_size;
}
__atomic_store_n(&ring->head, head, __ATOMIC_RELEASE);
}
mq->n_pkts += n_rx_pkts;
return n_rx_pkts;
}
static uint16_t
eth_memif_rx_zc(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
{
struct memif_queue *mq = queue;
struct pmd_internals *pmd = rte_eth_devices[mq->in_port].data->dev_private;
struct pmd_process_private *proc_private =
rte_eth_devices[mq->in_port].process_private;
memif_ring_t *ring = memif_get_ring_from_queue(proc_private, mq);
uint16_t cur_slot, last_slot, n_slots, ring_size, mask, s0, head;
uint16_t n_rx_pkts = 0;
memif_desc_t *d0;
struct rte_mbuf *mbuf, *mbuf_tail;
struct rte_mbuf *mbuf_head = NULL;
int ret;
struct rte_eth_link link;
if (unlikely((pmd->flags & ETH_MEMIF_FLAG_CONNECTED) == 0))
return 0;
if (unlikely(ring == NULL)) {
/* Secondary process will attempt to request regions. */
rte_eth_link_get(mq->in_port, &link);
return 0;
}
/* consume interrupt */
if ((rte_intr_fd_get(mq->intr_handle) >= 0) &&
((ring->flags & MEMIF_RING_FLAG_MASK_INT) == 0)) {
uint64_t b;
ssize_t size __rte_unused;
size = read(rte_intr_fd_get(mq->intr_handle), &b,
sizeof(b));
}
ring_size = 1 << mq->log2_ring_size;
mask = ring_size - 1;
cur_slot = mq->last_tail;
/* The ring->tail acts as a guard variable between Tx and Rx
* threads, so using load-acquire pairs with store-release
* to synchronize it between threads.
*/
last_slot = __atomic_load_n(&ring->tail, __ATOMIC_ACQUIRE);
if (cur_slot == last_slot)
goto refill;
n_slots = last_slot - cur_slot;
while (n_slots && n_rx_pkts < nb_pkts) {
s0 = cur_slot & mask;
d0 = &ring->desc[s0];
mbuf_head = mq->buffers[s0];
mbuf = mbuf_head;
next_slot:
/* prefetch next descriptor */
if (n_rx_pkts + 1 < nb_pkts)
rte_prefetch0(&ring->desc[(cur_slot + 1) & mask]);
mbuf->port = mq->in_port;
rte_pktmbuf_data_len(mbuf) = d0->length;
rte_pktmbuf_pkt_len(mbuf) = rte_pktmbuf_data_len(mbuf);
mq->n_bytes += rte_pktmbuf_data_len(mbuf);
cur_slot++;
n_slots--;
if (d0->flags & MEMIF_DESC_FLAG_NEXT) {
s0 = cur_slot & mask;
d0 = &ring->desc[s0];
mbuf_tail = mbuf;
mbuf = mq->buffers[s0];
ret = memif_pktmbuf_chain(mbuf_head, mbuf_tail, mbuf);
if (unlikely(ret < 0)) {
MIF_LOG(ERR, "number-of-segments-overflow");
goto refill;
}
goto next_slot;
}
*bufs++ = mbuf_head;
n_rx_pkts++;
}
mq->last_tail = cur_slot;
/* Supply server with new buffers */
refill:
/* ring->head is updated by the receiver and this function
* is called in the context of receiver thread. The loads in
* the receiver do not need to synchronize with its own stores.
*/
head = __atomic_load_n(&ring->head, __ATOMIC_RELAXED);
n_slots = ring_size - head + mq->last_tail;
if (n_slots < 32)
goto no_free_mbufs;
ret = rte_pktmbuf_alloc_bulk(mq->mempool, &mq->buffers[head & mask], n_slots);
if (unlikely(ret < 0))
goto no_free_mbufs;
while (n_slots--) {
s0 = head++ & mask;
if (n_slots > 0)
rte_prefetch0(mq->buffers[head & mask]);
d0 = &ring->desc[s0];
/* store buffer header */
mbuf = mq->buffers[s0];
/* populate descriptor */
d0->length = rte_pktmbuf_data_room_size(mq->mempool) -
RTE_PKTMBUF_HEADROOM;
d0->region = 1;
d0->offset = rte_pktmbuf_mtod(mbuf, uint8_t *) -
(uint8_t *)proc_private->regions[d0->region]->addr;
}
no_free_mbufs:
/* The ring->head acts as a guard variable between Tx and Rx
* threads, so using store-release pairs with load-acquire
* in function eth_memif_tx.
*/
__atomic_store_n(&ring->head, head, __ATOMIC_RELEASE);
mq->n_pkts += n_rx_pkts;
return n_rx_pkts;
}
static uint16_t
eth_memif_tx(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
{
struct memif_queue *mq = queue;
struct pmd_internals *pmd = rte_eth_devices[mq->in_port].data->dev_private;
struct pmd_process_private *proc_private =
rte_eth_devices[mq->in_port].process_private;
memif_ring_t *ring = memif_get_ring_from_queue(proc_private, mq);
uint16_t slot, saved_slot, n_free, ring_size, mask, n_tx_pkts = 0;
uint16_t src_len, src_off, dst_len, dst_off, cp_len, nb_segs;
memif_ring_type_t type = mq->type;
memif_desc_t *d0;
struct rte_mbuf *mbuf;
struct rte_mbuf *mbuf_head;
uint64_t a;
ssize_t size;
struct rte_eth_link link;
if (unlikely((pmd->flags & ETH_MEMIF_FLAG_CONNECTED) == 0))
return 0;
if (unlikely(ring == NULL)) {
int ret;
/* Secondary process will attempt to request regions. */
ret = rte_eth_link_get(mq->in_port, &link);
if (ret < 0)
MIF_LOG(ERR, "Failed to get port %u link info: %s",
mq->in_port, rte_strerror(-ret));
return 0;
}
ring_size = 1 << mq->log2_ring_size;
mask = ring_size - 1;
if (type == MEMIF_RING_C2S) {
/* For C2S queues ring->head is updated by the sender and
* this function is called in the context of sending thread.
* The loads in the sender do not need to synchronize with
* its own stores. Hence, the following load can be a
* relaxed load.
*/
slot = __atomic_load_n(&ring->head, __ATOMIC_RELAXED);
n_free = ring_size - slot +
__atomic_load_n(&ring->tail, __ATOMIC_ACQUIRE);
} else {
/* For S2C queues ring->tail is updated by the sender and
* this function is called in the context of sending thread.
* The loads in the sender do not need to synchronize with
* its own stores. Hence, the following load can be a
* relaxed load.
*/
slot = __atomic_load_n(&ring->tail, __ATOMIC_RELAXED);
n_free = __atomic_load_n(&ring->head, __ATOMIC_ACQUIRE) - slot;
}
while (n_tx_pkts < nb_pkts && n_free) {
mbuf_head = *bufs++;
nb_segs = mbuf_head->nb_segs;
mbuf = mbuf_head;
saved_slot = slot;
d0 = &ring->desc[slot & mask];
dst_off = 0;
dst_len = (type == MEMIF_RING_C2S) ?
pmd->run.pkt_buffer_size : d0->length;
next_in_chain:
src_off = 0;
src_len = rte_pktmbuf_data_len(mbuf);
while (src_len) {
if (dst_len == 0) {
if (n_free) {
slot++;
n_free--;
d0->flags |= MEMIF_DESC_FLAG_NEXT;
d0 = &ring->desc[slot & mask];
dst_off = 0;
dst_len = (type == MEMIF_RING_C2S) ?
pmd->run.pkt_buffer_size : d0->length;
d0->flags = 0;
} else {
slot = saved_slot;
goto no_free_slots;
}
}
cp_len = RTE_MIN(dst_len, src_len);
rte_memcpy((uint8_t *)memif_get_buffer(proc_private,
d0) + dst_off,
rte_pktmbuf_mtod_offset(mbuf, void *, src_off),
cp_len);
mq->n_bytes += cp_len;
src_off += cp_len;
dst_off += cp_len;
src_len -= cp_len;
dst_len -= cp_len;
d0->length = dst_off;
}
if (--nb_segs > 0) {
mbuf = mbuf->next;
goto next_in_chain;
}
n_tx_pkts++;
slot++;
n_free--;
rte_pktmbuf_free(mbuf_head);
}
no_free_slots:
if (type == MEMIF_RING_C2S)
__atomic_store_n(&ring->head, slot, __ATOMIC_RELEASE);
else
__atomic_store_n(&ring->tail, slot, __ATOMIC_RELEASE);
if (((ring->flags & MEMIF_RING_FLAG_MASK_INT) == 0) &&
(rte_intr_fd_get(mq->intr_handle) >= 0)) {
a = 1;
size = write(rte_intr_fd_get(mq->intr_handle), &a,
sizeof(a));
if (unlikely(size < 0)) {
MIF_LOG(WARNING,
"Failed to send interrupt. %s", strerror(errno));
}
}
mq->n_pkts += n_tx_pkts;
return n_tx_pkts;
}
static int
memif_tx_one_zc(struct pmd_process_private *proc_private, struct memif_queue *mq,
memif_ring_t *ring, struct rte_mbuf *mbuf, const uint16_t mask,
uint16_t slot, uint16_t n_free)
{
memif_desc_t *d0;
uint16_t nb_segs = mbuf->nb_segs;
int used_slots = 1;
next_in_chain:
/* store pointer to mbuf to free it later */
mq->buffers[slot & mask] = mbuf;
/* Increment refcnt to make sure the buffer is not freed before server
* receives it. (current segment)
*/
rte_mbuf_refcnt_update(mbuf, 1);
/* populate descriptor */
d0 = &ring->desc[slot & mask];
d0->length = rte_pktmbuf_data_len(mbuf);
mq->n_bytes += rte_pktmbuf_data_len(mbuf);
/* FIXME: get region index */
d0->region = 1;
d0->offset = rte_pktmbuf_mtod(mbuf, uint8_t *) -
(uint8_t *)proc_private->regions[d0->region]->addr;
d0->flags = 0;
/* check if buffer is chained */
if (--nb_segs > 0) {
if (n_free < 2)
return 0;
/* mark buffer as chained */
d0->flags |= MEMIF_DESC_FLAG_NEXT;
/* advance mbuf */
mbuf = mbuf->next;
/* update counters */
used_slots++;
slot++;
n_free--;
goto next_in_chain;
}
return used_slots;
}
static uint16_t
eth_memif_tx_zc(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
{
struct memif_queue *mq = queue;
struct pmd_internals *pmd = rte_eth_devices[mq->in_port].data->dev_private;
struct pmd_process_private *proc_private =
rte_eth_devices[mq->in_port].process_private;
memif_ring_t *ring = memif_get_ring_from_queue(proc_private, mq);
uint16_t slot, n_free, ring_size, mask, n_tx_pkts = 0;
struct rte_eth_link link;
if (unlikely((pmd->flags & ETH_MEMIF_FLAG_CONNECTED) == 0))
return 0;
if (unlikely(ring == NULL)) {
/* Secondary process will attempt to request regions. */
rte_eth_link_get(mq->in_port, &link);
return 0;
}
ring_size = 1 << mq->log2_ring_size;
mask = ring_size - 1;
/* free mbufs received by server */
memif_free_stored_mbufs(proc_private, mq);
/* ring type always MEMIF_RING_C2S */
/* For C2S queues ring->head is updated by the sender and
* this function is called in the context of sending thread.
* The loads in the sender do not need to synchronize with
* its own stores. Hence, the following load can be a
* relaxed load.
*/
slot = __atomic_load_n(&ring->head, __ATOMIC_RELAXED);
n_free = ring_size - slot + mq->last_tail;
int used_slots;
while (n_free && (n_tx_pkts < nb_pkts)) {
while ((n_free > 4) && ((nb_pkts - n_tx_pkts) > 4)) {
if ((nb_pkts - n_tx_pkts) > 8) {
rte_prefetch0(*bufs + 4);
rte_prefetch0(*bufs + 5);
rte_prefetch0(*bufs + 6);
rte_prefetch0(*bufs + 7);
}
used_slots = memif_tx_one_zc(proc_private, mq, ring, *bufs++,
mask, slot, n_free);
if (unlikely(used_slots < 1))
goto no_free_slots;
n_tx_pkts++;
slot += used_slots;
n_free -= used_slots;
used_slots = memif_tx_one_zc(proc_private, mq, ring, *bufs++,
mask, slot, n_free);
if (unlikely(used_slots < 1))
goto no_free_slots;
n_tx_pkts++;
slot += used_slots;
n_free -= used_slots;
used_slots = memif_tx_one_zc(proc_private, mq, ring, *bufs++,
mask, slot, n_free);
if (unlikely(used_slots < 1))
goto no_free_slots;
n_tx_pkts++;
slot += used_slots;
n_free -= used_slots;
used_slots = memif_tx_one_zc(proc_private, mq, ring, *bufs++,
mask, slot, n_free);
if (unlikely(used_slots < 1))
goto no_free_slots;
n_tx_pkts++;
slot += used_slots;
n_free -= used_slots;
}
used_slots = memif_tx_one_zc(proc_private, mq, ring, *bufs++,
mask, slot, n_free);
if (unlikely(used_slots < 1))
goto no_free_slots;
n_tx_pkts++;
slot += used_slots;
n_free -= used_slots;
}
no_free_slots:
/* ring type always MEMIF_RING_C2S */
/* The ring->head acts as a guard variable between Tx and Rx
* threads, so using store-release pairs with load-acquire
* in function eth_memif_rx for C2S rings.
*/
__atomic_store_n(&ring->head, slot, __ATOMIC_RELEASE);
/* Send interrupt, if enabled. */
if ((ring->flags & MEMIF_RING_FLAG_MASK_INT) == 0) {
uint64_t a = 1;
if (rte_intr_fd_get(mq->intr_handle) < 0)
return -1;
ssize_t size = write(rte_intr_fd_get(mq->intr_handle),
&a, sizeof(a));
if (unlikely(size < 0)) {
MIF_LOG(WARNING,
"Failed to send interrupt. %s", strerror(errno));
}
}
/* increment queue counters */
mq->n_pkts += n_tx_pkts;
return n_tx_pkts;
}
void
memif_free_regions(struct rte_eth_dev *dev)
{
struct pmd_process_private *proc_private = dev->process_private;
struct pmd_internals *pmd = dev->data->dev_private;
int i;
struct memif_region *r;
/* regions are allocated contiguously, so it's
* enough to loop until 'proc_private->regions_num'
*/
for (i = 0; i < proc_private->regions_num; i++) {
r = proc_private->regions[i];
if (r != NULL) {
/* This is memzone */
if (i > 0 && (pmd->flags & ETH_MEMIF_FLAG_ZERO_COPY)) {
r->addr = NULL;
if (r->fd > 0)
close(r->fd);
}
if (r->addr != NULL) {
munmap(r->addr, r->region_size);
if (r->fd > 0) {
close(r->fd);
r->fd = -1;
}
}
rte_free(r);
proc_private->regions[i] = NULL;
}
}
proc_private->regions_num = 0;
}
static int
memif_region_init_zc(const struct rte_memseg_list *msl, const struct rte_memseg *ms,
void *arg)
{
struct pmd_process_private *proc_private = (struct pmd_process_private *)arg;
struct memif_region *r;
if (proc_private->regions_num < 1) {
MIF_LOG(ERR, "Missing descriptor region");
return -1;
}
r = proc_private->regions[proc_private->regions_num - 1];
if (r->addr != msl->base_va)
r = proc_private->regions[++proc_private->regions_num - 1];
if (r == NULL) {
r = rte_zmalloc("region", sizeof(struct memif_region), 0);
if (r == NULL) {
MIF_LOG(ERR, "Failed to alloc memif region.");
return -ENOMEM;
}
r->addr = msl->base_va;
r->region_size = ms->len;
r->fd = rte_memseg_get_fd(ms);
if (r->fd < 0)
return -1;
r->pkt_buffer_offset = 0;
proc_private->regions[proc_private->regions_num - 1] = r;
} else {
r->region_size += ms->len;
}
return 0;
}
static int
memif_region_init_shm(struct rte_eth_dev *dev, uint8_t has_buffers)
{
struct pmd_internals *pmd = dev->data->dev_private;
struct pmd_process_private *proc_private = dev->process_private;
char shm_name[ETH_MEMIF_SHM_NAME_SIZE];
int ret = 0;
struct memif_region *r;
if (proc_private->regions_num >= ETH_MEMIF_MAX_REGION_NUM) {
MIF_LOG(ERR, "Too many regions.");
return -1;
}
r = rte_zmalloc("region", sizeof(struct memif_region), 0);
if (r == NULL) {
MIF_LOG(ERR, "Failed to alloc memif region.");
return -ENOMEM;
}
/* calculate buffer offset */
r->pkt_buffer_offset = (pmd->run.num_c2s_rings + pmd->run.num_s2c_rings) *
(sizeof(memif_ring_t) + sizeof(memif_desc_t) *
(1 << pmd->run.log2_ring_size));
r->region_size = r->pkt_buffer_offset;
/* if region has buffers, add buffers size to region_size */
if (has_buffers == 1)
r->region_size += (uint32_t)(pmd->run.pkt_buffer_size *
(1 << pmd->run.log2_ring_size) *
(pmd->run.num_c2s_rings +
pmd->run.num_s2c_rings));
memset(shm_name, 0, sizeof(char) * ETH_MEMIF_SHM_NAME_SIZE);
snprintf(shm_name, ETH_MEMIF_SHM_NAME_SIZE, "memif_region_%d",
proc_private->regions_num);
r->fd = memfd_create(shm_name, MFD_ALLOW_SEALING);
if (r->fd < 0) {
MIF_LOG(ERR, "Failed to create shm file: %s.", strerror(errno));
ret = -1;
goto error;
}
ret = fcntl(r->fd, F_ADD_SEALS, F_SEAL_SHRINK);
if (ret < 0) {
MIF_LOG(ERR, "Failed to add seals to shm file: %s.", strerror(errno));
goto error;
}
ret = ftruncate(r->fd, r->region_size);
if (ret < 0) {
MIF_LOG(ERR, "Failed to truncate shm file: %s.", strerror(errno));
goto error;
}
r->addr = mmap(NULL, r->region_size, PROT_READ |
PROT_WRITE, MAP_SHARED, r->fd, 0);
if (r->addr == MAP_FAILED) {
MIF_LOG(ERR, "Failed to mmap shm region: %s.", strerror(ret));
ret = -1;
goto error;
}
proc_private->regions[proc_private->regions_num] = r;
proc_private->regions_num++;
return ret;
error:
if (r->fd > 0)
close(r->fd);
r->fd = -1;
return ret;
}
static int
memif_regions_init(struct rte_eth_dev *dev)
{
struct pmd_internals *pmd = dev->data->dev_private;
int ret;
/*
* Zero-copy exposes dpdk memory.
* Each memseg list will be represented by memif region.
* Zero-copy regions indexing: memseg list idx + 1,
* as we already have region 0 reserved for descriptors.
*/
if (pmd->flags & ETH_MEMIF_FLAG_ZERO_COPY) {
/* create region idx 0 containing descriptors */
ret = memif_region_init_shm(dev, 0);
if (ret < 0)
return ret;
ret = rte_memseg_walk(memif_region_init_zc, (void *)dev->process_private);
if (ret < 0)
return ret;
} else {
/* create one memory region containing rings and buffers */
ret = memif_region_init_shm(dev, /* has buffers */ 1);
if (ret < 0)
return ret;
}
return 0;
}
static void
memif_init_rings(struct rte_eth_dev *dev)
{
struct pmd_internals *pmd = dev->data->dev_private;
struct pmd_process_private *proc_private = dev->process_private;
memif_ring_t *ring;
int i, j;
uint16_t slot;
for (i = 0; i < pmd->run.num_c2s_rings; i++) {
ring = memif_get_ring(pmd, proc_private, MEMIF_RING_C2S, i);
__atomic_store_n(&ring->head, 0, __ATOMIC_RELAXED);
__atomic_store_n(&ring->tail, 0, __ATOMIC_RELAXED);
ring->cookie = MEMIF_COOKIE;
ring->flags = 0;
if (pmd->flags & ETH_MEMIF_FLAG_ZERO_COPY)
continue;
for (j = 0; j < (1 << pmd->run.log2_ring_size); j++) {
slot = i * (1 << pmd->run.log2_ring_size) + j;
ring->desc[j].region = 0;
ring->desc[j].offset =
proc_private->regions[0]->pkt_buffer_offset +
(uint32_t)(slot * pmd->run.pkt_buffer_size);
ring->desc[j].length = pmd->run.pkt_buffer_size;
}
}
for (i = 0; i < pmd->run.num_s2c_rings; i++) {
ring = memif_get_ring(pmd, proc_private, MEMIF_RING_S2C, i);
__atomic_store_n(&ring->head, 0, __ATOMIC_RELAXED);
__atomic_store_n(&ring->tail, 0, __ATOMIC_RELAXED);
ring->cookie = MEMIF_COOKIE;
ring->flags = 0;
if (pmd->flags & ETH_MEMIF_FLAG_ZERO_COPY)
continue;
for (j = 0; j < (1 << pmd->run.log2_ring_size); j++) {
slot = (i + pmd->run.num_c2s_rings) *
(1 << pmd->run.log2_ring_size) + j;
ring->desc[j].region = 0;
ring->desc[j].offset =
proc_private->regions[0]->pkt_buffer_offset +
(uint32_t)(slot * pmd->run.pkt_buffer_size);
ring->desc[j].length = pmd->run.pkt_buffer_size;
}
}
}
/* called only by client */
static int
memif_init_queues(struct rte_eth_dev *dev)
{
struct pmd_internals *pmd = dev->data->dev_private;
struct memif_queue *mq;
int i;
for (i = 0; i < pmd->run.num_c2s_rings; i++) {
mq = dev->data->tx_queues[i];
mq->log2_ring_size = pmd->run.log2_ring_size;
/* queues located only in region 0 */
mq->region = 0;
mq->ring_offset = memif_get_ring_offset(dev, mq, MEMIF_RING_C2S, i);
mq->last_head = 0;
mq->last_tail = 0;
if (rte_intr_fd_set(mq->intr_handle, eventfd(0, EFD_NONBLOCK)))
return -rte_errno;
if (rte_intr_fd_get(mq->intr_handle) < 0) {
MIF_LOG(WARNING,
"Failed to create eventfd for tx queue %d: %s.", i,
strerror(errno));
}
mq->buffers = NULL;
if (pmd->flags & ETH_MEMIF_FLAG_ZERO_COPY) {
mq->buffers = rte_zmalloc("bufs", sizeof(struct rte_mbuf *) *
(1 << mq->log2_ring_size), 0);
if (mq->buffers == NULL)
return -ENOMEM;
}
}
for (i = 0; i < pmd->run.num_s2c_rings; i++) {
mq = dev->data->rx_queues[i];
mq->log2_ring_size = pmd->run.log2_ring_size;
/* queues located only in region 0 */
mq->region = 0;
mq->ring_offset = memif_get_ring_offset(dev, mq, MEMIF_RING_S2C, i);
mq->last_head = 0;
mq->last_tail = 0;
if (rte_intr_fd_set(mq->intr_handle, eventfd(0, EFD_NONBLOCK)))
return -rte_errno;
if (rte_intr_fd_get(mq->intr_handle) < 0) {
MIF_LOG(WARNING,
"Failed to create eventfd for rx queue %d: %s.", i,
strerror(errno));
}
mq->buffers = NULL;
if (pmd->flags & ETH_MEMIF_FLAG_ZERO_COPY) {
mq->buffers = rte_zmalloc("bufs", sizeof(struct rte_mbuf *) *
(1 << mq->log2_ring_size), 0);
if (mq->buffers == NULL)
return -ENOMEM;
}
}
return 0;
}
int
memif_init_regions_and_queues(struct rte_eth_dev *dev)
{
int ret;
ret = memif_regions_init(dev);
if (ret < 0)
return ret;
memif_init_rings(dev);
ret = memif_init_queues(dev);
if (ret < 0)
return ret;
return 0;
}
int
memif_connect(struct rte_eth_dev *dev)
{
struct pmd_internals *pmd = dev->data->dev_private;
struct pmd_process_private *proc_private = dev->process_private;
struct memif_region *mr;
struct memif_queue *mq;
memif_ring_t *ring;
int i;
for (i = 0; i < proc_private->regions_num; i++) {
mr = proc_private->regions[i];
if (mr != NULL) {
if (mr->addr == NULL) {
if (mr->fd < 0)
return -1;
mr->addr = mmap(NULL, mr->region_size,
PROT_READ | PROT_WRITE,
MAP_SHARED, mr->fd, 0);
if (mr->addr == MAP_FAILED) {
MIF_LOG(ERR, "mmap failed: %s\n",
strerror(errno));
return -1;
}
}
if (i > 0 && (pmd->flags & ETH_MEMIF_FLAG_ZERO_COPY)) {
/* close memseg file */
close(mr->fd);
mr->fd = -1;
}
}
}
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
for (i = 0; i < pmd->run.num_c2s_rings; i++) {
mq = (pmd->role == MEMIF_ROLE_CLIENT) ?
dev->data->tx_queues[i] : dev->data->rx_queues[i];
ring = memif_get_ring_from_queue(proc_private, mq);
if (ring == NULL || ring->cookie != MEMIF_COOKIE) {
MIF_LOG(ERR, "Wrong ring");
return -1;
}
__atomic_store_n(&ring->head, 0, __ATOMIC_RELAXED);
__atomic_store_n(&ring->tail, 0, __ATOMIC_RELAXED);
mq->last_head = 0;
mq->last_tail = 0;
/* enable polling mode */
if (pmd->role == MEMIF_ROLE_SERVER)
ring->flags = MEMIF_RING_FLAG_MASK_INT;
}
for (i = 0; i < pmd->run.num_s2c_rings; i++) {
mq = (pmd->role == MEMIF_ROLE_CLIENT) ?
dev->data->rx_queues[i] : dev->data->tx_queues[i];
ring = memif_get_ring_from_queue(proc_private, mq);
if (ring == NULL || ring->cookie != MEMIF_COOKIE) {
MIF_LOG(ERR, "Wrong ring");
return -1;
}
__atomic_store_n(&ring->head, 0, __ATOMIC_RELAXED);
__atomic_store_n(&ring->tail, 0, __ATOMIC_RELAXED);
mq->last_head = 0;
mq->last_tail = 0;
/* enable polling mode */
if (pmd->role == MEMIF_ROLE_CLIENT)
ring->flags = MEMIF_RING_FLAG_MASK_INT;
}
pmd->flags &= ~ETH_MEMIF_FLAG_CONNECTING;
pmd->flags |= ETH_MEMIF_FLAG_CONNECTED;
dev->data->dev_link.link_status = RTE_ETH_LINK_UP;
}
MIF_LOG(INFO, "Connected.");
return 0;
}
static int
memif_dev_start(struct rte_eth_dev *dev)
{
struct pmd_internals *pmd = dev->data->dev_private;
int ret = 0;
switch (pmd->role) {
case MEMIF_ROLE_CLIENT:
ret = memif_connect_client(dev);
break;
case MEMIF_ROLE_SERVER:
ret = memif_connect_server(dev);
break;
default:
MIF_LOG(ERR, "Unknown role: %d.", pmd->role);
ret = -1;
break;
}
return ret;
}
static int
memif_dev_stop(struct rte_eth_dev *dev)
{
memif_disconnect(dev);
return 0;
}
static int
memif_dev_close(struct rte_eth_dev *dev)
{
struct pmd_internals *pmd = dev->data->dev_private;
int i;
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
memif_msg_enq_disconnect(pmd->cc, "Device closed", 0);
for (i = 0; i < dev->data->nb_rx_queues; i++)
(*dev->dev_ops->rx_queue_release)(dev, i);
for (i = 0; i < dev->data->nb_tx_queues; i++)
(*dev->dev_ops->tx_queue_release)(dev, i);
memif_socket_remove_device(dev);
}
rte_free(dev->process_private);
return 0;
}
static int
memif_dev_configure(struct rte_eth_dev *dev)
{
struct pmd_internals *pmd = dev->data->dev_private;
/*
* CLIENT - TXQ
* SERVER - RXQ
*/
pmd->cfg.num_c2s_rings = (pmd->role == MEMIF_ROLE_CLIENT) ?
dev->data->nb_tx_queues : dev->data->nb_rx_queues;
/*
* CLIENT - RXQ
* SERVER - TXQ
*/
pmd->cfg.num_s2c_rings = (pmd->role == MEMIF_ROLE_CLIENT) ?
dev->data->nb_rx_queues : dev->data->nb_tx_queues;
return 0;
}
static int
memif_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t qid,
uint16_t nb_tx_desc __rte_unused,
unsigned int socket_id __rte_unused,
const struct rte_eth_txconf *tx_conf __rte_unused)
{
struct pmd_internals *pmd = dev->data->dev_private;
struct memif_queue *mq;
mq = rte_zmalloc("tx-queue", sizeof(struct memif_queue), 0);
if (mq == NULL) {
MIF_LOG(ERR, "Failed to allocate tx queue id: %u", qid);
return -ENOMEM;
}
/* Allocate interrupt instance */
mq->intr_handle = rte_intr_instance_alloc(RTE_INTR_INSTANCE_F_SHARED);
if (mq->intr_handle == NULL) {
MIF_LOG(ERR, "Failed to allocate intr handle");
return -ENOMEM;
}
mq->type =
(pmd->role == MEMIF_ROLE_CLIENT) ? MEMIF_RING_C2S : MEMIF_RING_S2C;
mq->n_pkts = 0;
mq->n_bytes = 0;
if (rte_intr_fd_set(mq->intr_handle, -1))
return -rte_errno;
if (rte_intr_type_set(mq->intr_handle, RTE_INTR_HANDLE_EXT))
return -rte_errno;
mq->in_port = dev->data->port_id;
dev->data->tx_queues[qid] = mq;
return 0;
}
static int
memif_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t qid,
uint16_t nb_rx_desc __rte_unused,
unsigned int socket_id __rte_unused,
const struct rte_eth_rxconf *rx_conf __rte_unused,
struct rte_mempool *mb_pool)
{
struct pmd_internals *pmd = dev->data->dev_private;
struct memif_queue *mq;
mq = rte_zmalloc("rx-queue", sizeof(struct memif_queue), 0);
if (mq == NULL) {
MIF_LOG(ERR, "Failed to allocate rx queue id: %u", qid);
return -ENOMEM;
}
/* Allocate interrupt instance */
mq->intr_handle = rte_intr_instance_alloc(RTE_INTR_INSTANCE_F_SHARED);
if (mq->intr_handle == NULL) {
MIF_LOG(ERR, "Failed to allocate intr handle");
return -ENOMEM;
}
mq->type = (pmd->role == MEMIF_ROLE_CLIENT) ? MEMIF_RING_S2C : MEMIF_RING_C2S;
mq->n_pkts = 0;
mq->n_bytes = 0;
if (rte_intr_fd_set(mq->intr_handle, -1))
return -rte_errno;
if (rte_intr_type_set(mq->intr_handle, RTE_INTR_HANDLE_EXT))
return -rte_errno;
mq->mempool = mb_pool;
mq->in_port = dev->data->port_id;
dev->data->rx_queues[qid] = mq;
return 0;
}
static void
memif_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
{
struct memif_queue *mq = dev->data->rx_queues[qid];
if (!mq)
return;
rte_intr_instance_free(mq->intr_handle);
rte_free(mq);
}
static void
memif_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
{
struct memif_queue *mq = dev->data->tx_queues[qid];
if (!mq)
return;
rte_free(mq);
}
static int
memif_link_update(struct rte_eth_dev *dev,
int wait_to_complete __rte_unused)
{
struct pmd_process_private *proc_private;
if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
proc_private = dev->process_private;
if (dev->data->dev_link.link_status == RTE_ETH_LINK_UP &&
proc_private->regions_num == 0) {
memif_mp_request_regions(dev);
} else if (dev->data->dev_link.link_status == RTE_ETH_LINK_DOWN &&
proc_private->regions_num > 0) {
memif_free_regions(dev);
}
}
return 0;
}
static int
memif_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
{
struct pmd_internals *pmd = dev->data->dev_private;
struct memif_queue *mq;
int i;
uint8_t tmp, nq;
stats->ipackets = 0;
stats->ibytes = 0;
stats->opackets = 0;
stats->obytes = 0;
tmp = (pmd->role == MEMIF_ROLE_CLIENT) ? pmd->run.num_s2c_rings :
pmd->run.num_c2s_rings;
nq = (tmp < RTE_ETHDEV_QUEUE_STAT_CNTRS) ? tmp :
RTE_ETHDEV_QUEUE_STAT_CNTRS;
/* RX stats */
for (i = 0; i < nq; i++) {
mq = dev->data->rx_queues[i];
stats->q_ipackets[i] = mq->n_pkts;
stats->q_ibytes[i] = mq->n_bytes;
stats->ipackets += mq->n_pkts;
stats->ibytes += mq->n_bytes;
}
tmp = (pmd->role == MEMIF_ROLE_CLIENT) ? pmd->run.num_c2s_rings :
pmd->run.num_s2c_rings;
nq = (tmp < RTE_ETHDEV_QUEUE_STAT_CNTRS) ? tmp :
RTE_ETHDEV_QUEUE_STAT_CNTRS;
/* TX stats */
for (i = 0; i < nq; i++) {
mq = dev->data->tx_queues[i];
stats->q_opackets[i] = mq->n_pkts;
stats->q_obytes[i] = mq->n_bytes;
stats->opackets += mq->n_pkts;
stats->obytes += mq->n_bytes;
}
return 0;
}
static int
memif_stats_reset(struct rte_eth_dev *dev)
{
struct pmd_internals *pmd = dev->data->dev_private;
int i;
struct memif_queue *mq;
for (i = 0; i < pmd->run.num_c2s_rings; i++) {
mq = (pmd->role == MEMIF_ROLE_CLIENT) ? dev->data->tx_queues[i] :
dev->data->rx_queues[i];
mq->n_pkts = 0;
mq->n_bytes = 0;
}
for (i = 0; i < pmd->run.num_s2c_rings; i++) {
mq = (pmd->role == MEMIF_ROLE_CLIENT) ? dev->data->rx_queues[i] :
dev->data->tx_queues[i];
mq->n_pkts = 0;
mq->n_bytes = 0;
}
return 0;
}
static const struct eth_dev_ops ops = {
.dev_start = memif_dev_start,
.dev_stop = memif_dev_stop,
.dev_close = memif_dev_close,
.dev_infos_get = memif_dev_info,
.dev_configure = memif_dev_configure,
.tx_queue_setup = memif_tx_queue_setup,
.rx_queue_setup = memif_rx_queue_setup,
.rx_queue_release = memif_rx_queue_release,
.tx_queue_release = memif_tx_queue_release,
.link_update = memif_link_update,
.stats_get = memif_stats_get,
.stats_reset = memif_stats_reset,
};
static int
memif_create(struct rte_vdev_device *vdev, enum memif_role_t role,
memif_interface_id_t id, uint32_t flags,
const char *socket_filename,
memif_log2_ring_size_t log2_ring_size,
uint16_t pkt_buffer_size, const char *secret,
struct rte_ether_addr *ether_addr)
{
int ret = 0;
struct rte_eth_dev *eth_dev;
struct rte_eth_dev_data *data;
struct pmd_internals *pmd;
struct pmd_process_private *process_private;
const unsigned int numa_node = vdev->device.numa_node;
const char *name = rte_vdev_device_name(vdev);
eth_dev = rte_eth_vdev_allocate(vdev, sizeof(*pmd));
if (eth_dev == NULL) {
MIF_LOG(ERR, "%s: Unable to allocate device struct.", name);
return -1;
}
process_private = (struct pmd_process_private *)
rte_zmalloc(name, sizeof(struct pmd_process_private),
RTE_CACHE_LINE_SIZE);
if (process_private == NULL) {
MIF_LOG(ERR, "Failed to alloc memory for process private");
return -1;
}
eth_dev->process_private = process_private;
pmd = eth_dev->data->dev_private;
memset(pmd, 0, sizeof(*pmd));
pmd->id = id;
pmd->flags = flags;
pmd->flags |= ETH_MEMIF_FLAG_DISABLED;
pmd->role = role;
/* Zero-copy flag irelevant to server. */
if (pmd->role == MEMIF_ROLE_SERVER)
pmd->flags &= ~ETH_MEMIF_FLAG_ZERO_COPY;
ret = memif_socket_init(eth_dev, socket_filename);
if (ret < 0)
return ret;
memset(pmd->secret, 0, sizeof(char) * ETH_MEMIF_SECRET_SIZE);
if (secret != NULL)
strlcpy(pmd->secret, secret, sizeof(pmd->secret));
pmd->cfg.log2_ring_size = log2_ring_size;
/* set in .dev_configure() */
pmd->cfg.num_c2s_rings = 0;
pmd->cfg.num_s2c_rings = 0;
pmd->cfg.pkt_buffer_size = pkt_buffer_size;
rte_spinlock_init(&pmd->cc_lock);
data = eth_dev->data;
data->dev_private = pmd;
data->numa_node = numa_node;
data->dev_link = pmd_link;
data->mac_addrs = ether_addr;
data->promiscuous = 1;
data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
eth_dev->dev_ops = &ops;
eth_dev->device = &vdev->device;
if (pmd->flags & ETH_MEMIF_FLAG_ZERO_COPY) {
eth_dev->rx_pkt_burst = eth_memif_rx_zc;
eth_dev->tx_pkt_burst = eth_memif_tx_zc;
} else {
eth_dev->rx_pkt_burst = eth_memif_rx;
eth_dev->tx_pkt_burst = eth_memif_tx;
}
rte_eth_dev_probing_finish(eth_dev);
return 0;
}
static int
memif_set_role(const char *key __rte_unused, const char *value,
void *extra_args)
{
enum memif_role_t *role = (enum memif_role_t *)extra_args;
if (strstr(value, "server") != NULL) {
*role = MEMIF_ROLE_SERVER;
} else if (strstr(value, "client") != NULL) {
*role = MEMIF_ROLE_CLIENT;
} else if (strstr(value, "master") != NULL) {
MIF_LOG(NOTICE, "Role argument \"master\" is deprecated, use \"server\"");
*role = MEMIF_ROLE_SERVER;
} else if (strstr(value, "slave") != NULL) {
MIF_LOG(NOTICE, "Role argument \"slave\" is deprecated, use \"client\"");
*role = MEMIF_ROLE_CLIENT;
} else {
MIF_LOG(ERR, "Unknown role: %s.", value);
return -EINVAL;
}
return 0;
}
static int
memif_set_zc(const char *key __rte_unused, const char *value, void *extra_args)
{
uint32_t *flags = (uint32_t *)extra_args;
if (strstr(value, "yes") != NULL) {
if (!rte_mcfg_get_single_file_segments()) {
MIF_LOG(ERR, "Zero-copy doesn't support multi-file segments.");
return -ENOTSUP;
}
*flags |= ETH_MEMIF_FLAG_ZERO_COPY;
} else if (strstr(value, "no") != NULL) {
*flags &= ~ETH_MEMIF_FLAG_ZERO_COPY;
} else {
MIF_LOG(ERR, "Failed to parse zero-copy param: %s.", value);
return -EINVAL;
}
return 0;
}
static int
memif_set_id(const char *key __rte_unused, const char *value, void *extra_args)
{
memif_interface_id_t *id = (memif_interface_id_t *)extra_args;
/* even if parsing fails, 0 is a valid id */
*id = strtoul(value, NULL, 10);
return 0;
}
static int
memif_set_bs(const char *key __rte_unused, const char *value, void *extra_args)
{
unsigned long tmp;
uint16_t *pkt_buffer_size = (uint16_t *)extra_args;
tmp = strtoul(value, NULL, 10);
if (tmp == 0 || tmp > 0xFFFF) {
MIF_LOG(ERR, "Invalid buffer size: %s.", value);
return -EINVAL;
}
*pkt_buffer_size = tmp;
return 0;
}
static int
memif_set_rs(const char *key __rte_unused, const char *value, void *extra_args)
{
unsigned long tmp;
memif_log2_ring_size_t *log2_ring_size =
(memif_log2_ring_size_t *)extra_args;
tmp = strtoul(value, NULL, 10);
if (tmp == 0 || tmp > ETH_MEMIF_MAX_LOG2_RING_SIZE) {
MIF_LOG(ERR, "Invalid ring size: %s (max %u).",
value, ETH_MEMIF_MAX_LOG2_RING_SIZE);
return -EINVAL;
}
*log2_ring_size = tmp;
return 0;
}
/* check if directory exists and if we have permission to read/write */
static int
memif_check_socket_filename(const char *filename)
{
char *dir = NULL, *tmp;
uint32_t idx;
int ret = 0;
if (strlen(filename) >= MEMIF_SOCKET_UN_SIZE) {
MIF_LOG(ERR, "Unix socket address too long (max 108).");
return -1;
}
tmp = strrchr(filename, '/');
if (tmp != NULL) {
idx = tmp - filename;
dir = rte_zmalloc("memif_tmp", sizeof(char) * (idx + 1), 0);
if (dir == NULL) {
MIF_LOG(ERR, "Failed to allocate memory.");
return -1;
}
strlcpy(dir, filename, sizeof(char) * (idx + 1));
}
if (dir == NULL || (faccessat(-1, dir, F_OK | R_OK |
W_OK, AT_EACCESS) < 0)) {
MIF_LOG(ERR, "Invalid socket directory.");
ret = -EINVAL;
}
rte_free(dir);
return ret;
}
static int
memif_set_socket_filename(const char *key __rte_unused, const char *value,
void *extra_args)
{
const char **socket_filename = (const char **)extra_args;
*socket_filename = value;
return 0;
}
static int
memif_set_is_socket_abstract(const char *key __rte_unused, const char *value, void *extra_args)
{
uint32_t *flags = (uint32_t *)extra_args;
if (strstr(value, "yes") != NULL) {
*flags |= ETH_MEMIF_FLAG_SOCKET_ABSTRACT;
} else if (strstr(value, "no") != NULL) {
*flags &= ~ETH_MEMIF_FLAG_SOCKET_ABSTRACT;
} else {
MIF_LOG(ERR, "Failed to parse socket-abstract param: %s.", value);
return -EINVAL;
}
return 0;
}
static int
memif_set_mac(const char *key __rte_unused, const char *value, void *extra_args)
{
struct rte_ether_addr *ether_addr = (struct rte_ether_addr *)extra_args;
if (rte_ether_unformat_addr(value, ether_addr) < 0)
MIF_LOG(WARNING, "Failed to parse mac '%s'.", value);
return 0;
}
static int
memif_set_secret(const char *key __rte_unused, const char *value, void *extra_args)
{
const char **secret = (const char **)extra_args;
*secret = value;
return 0;
}
static int
rte_pmd_memif_probe(struct rte_vdev_device *vdev)
{
RTE_BUILD_BUG_ON(sizeof(memif_msg_t) != 128);
RTE_BUILD_BUG_ON(sizeof(memif_desc_t) != 16);
int ret = 0;
struct rte_kvargs *kvlist;
const char *name = rte_vdev_device_name(vdev);
enum memif_role_t role = MEMIF_ROLE_CLIENT;
memif_interface_id_t id = 0;
uint16_t pkt_buffer_size = ETH_MEMIF_DEFAULT_PKT_BUFFER_SIZE;
memif_log2_ring_size_t log2_ring_size = ETH_MEMIF_DEFAULT_RING_SIZE;
const char *socket_filename = ETH_MEMIF_DEFAULT_SOCKET_FILENAME;
uint32_t flags = 0;
const char *secret = NULL;
struct rte_ether_addr *ether_addr = rte_zmalloc("",
sizeof(struct rte_ether_addr), 0);
struct rte_eth_dev *eth_dev;
rte_eth_random_addr(ether_addr->addr_bytes);
MIF_LOG(INFO, "Initialize MEMIF: %s.", name);
if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
eth_dev = rte_eth_dev_attach_secondary(name);
if (!eth_dev) {
MIF_LOG(ERR, "Failed to probe %s", name);
return -1;
}
eth_dev->dev_ops = &ops;
eth_dev->device = &vdev->device;
eth_dev->rx_pkt_burst = eth_memif_rx;
eth_dev->tx_pkt_burst = eth_memif_tx;
if (!rte_eal_primary_proc_alive(NULL)) {
MIF_LOG(ERR, "Primary process is missing");
return -1;
}
eth_dev->process_private = (struct pmd_process_private *)
rte_zmalloc(name,
sizeof(struct pmd_process_private),
RTE_CACHE_LINE_SIZE);
if (eth_dev->process_private == NULL) {
MIF_LOG(ERR,
"Failed to alloc memory for process private");
return -1;
}
rte_eth_dev_probing_finish(eth_dev);
return 0;
}
ret = rte_mp_action_register(MEMIF_MP_SEND_REGION, memif_mp_send_region);
/*
* Primary process can continue probing, but secondary process won't
* be able to get memory regions information
*/
if (ret < 0 && rte_errno != EEXIST)
MIF_LOG(WARNING, "Failed to register mp action callback: %s",
strerror(rte_errno));
/* use abstract address by default */
flags |= ETH_MEMIF_FLAG_SOCKET_ABSTRACT;
kvlist = rte_kvargs_parse(rte_vdev_device_args(vdev), valid_arguments);
/* parse parameters */
if (kvlist != NULL) {
ret = rte_kvargs_process(kvlist, ETH_MEMIF_ROLE_ARG,
&memif_set_role, &role);
if (ret < 0)
goto exit;
ret = rte_kvargs_process(kvlist, ETH_MEMIF_ID_ARG,
&memif_set_id, &id);
if (ret < 0)
goto exit;
ret = rte_kvargs_process(kvlist, ETH_MEMIF_PKT_BUFFER_SIZE_ARG,
&memif_set_bs, &pkt_buffer_size);
if (ret < 0)
goto exit;
ret = rte_kvargs_process(kvlist, ETH_MEMIF_RING_SIZE_ARG,
&memif_set_rs, &log2_ring_size);
if (ret < 0)
goto exit;
ret = rte_kvargs_process(kvlist, ETH_MEMIF_SOCKET_ARG,
&memif_set_socket_filename,
(void *)(&socket_filename));
if (ret < 0)
goto exit;
ret = rte_kvargs_process(kvlist, ETH_MEMIF_SOCKET_ABSTRACT_ARG,
&memif_set_is_socket_abstract, &flags);
if (ret < 0)
goto exit;
ret = rte_kvargs_process(kvlist, ETH_MEMIF_MAC_ARG,
&memif_set_mac, ether_addr);
if (ret < 0)
goto exit;
ret = rte_kvargs_process(kvlist, ETH_MEMIF_ZC_ARG,
&memif_set_zc, &flags);
if (ret < 0)
goto exit;
ret = rte_kvargs_process(kvlist, ETH_MEMIF_SECRET_ARG,
&memif_set_secret, (void *)(&secret));
if (ret < 0)
goto exit;
}
if (!(flags & ETH_MEMIF_FLAG_SOCKET_ABSTRACT)) {
ret = memif_check_socket_filename(socket_filename);
if (ret < 0)
goto exit;
}
/* create interface */
ret = memif_create(vdev, role, id, flags, socket_filename,
log2_ring_size, pkt_buffer_size, secret, ether_addr);
exit:
rte_kvargs_free(kvlist);
return ret;
}
static int
rte_pmd_memif_remove(struct rte_vdev_device *vdev)
{
struct rte_eth_dev *eth_dev;
eth_dev = rte_eth_dev_allocated(rte_vdev_device_name(vdev));
if (eth_dev == NULL)
return 0;
return rte_eth_dev_close(eth_dev->data->port_id);
}
static struct rte_vdev_driver pmd_memif_drv = {
.probe = rte_pmd_memif_probe,
.remove = rte_pmd_memif_remove,
};
RTE_PMD_REGISTER_VDEV(net_memif, pmd_memif_drv);
RTE_PMD_REGISTER_PARAM_STRING(net_memif,
ETH_MEMIF_ID_ARG "=<int>"
ETH_MEMIF_ROLE_ARG "=server|client"
ETH_MEMIF_PKT_BUFFER_SIZE_ARG "=<int>"
ETH_MEMIF_RING_SIZE_ARG "=<int>"
ETH_MEMIF_SOCKET_ARG "=<string>"
ETH_MEMIF_SOCKET_ABSTRACT_ARG "=yes|no"
ETH_MEMIF_MAC_ARG "=xx:xx:xx:xx:xx:xx"
ETH_MEMIF_ZC_ARG "=yes|no"
ETH_MEMIF_SECRET_ARG "=<string>");
RTE_LOG_REGISTER_DEFAULT(memif_logtype, NOTICE);