numam-dpdk/drivers/net/mlx5/mlx5_txq.c
Dariusz Sosnowski 26e1eaf2da net/mlx5: support device control for E-Switch default rule
This patch adds support for fdb_def_rule_en device argument to HW
Steering, which controls:

- the creation of the default FDB jump flow rule.
- the ability of the user to create transfer flow rules in the root
table.

Signed-off-by: Dariusz Sosnowski <dsosnowski@nvidia.com>
Signed-off-by: Xueming Li <xuemingl@nvidia.com>
Acked-by: Viacheslav Ovsiienko <viacheslavo@nvidia.com>
2022-10-26 13:33:43 +02:00

1368 lines
37 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2015 6WIND S.A.
* Copyright 2015 Mellanox Technologies, Ltd
*/
#include <stddef.h>
#include <errno.h>
#include <string.h>
#include <stdint.h>
#include <unistd.h>
#include <inttypes.h>
#include <rte_mbuf.h>
#include <rte_malloc.h>
#include <ethdev_driver.h>
#include <bus_pci_driver.h>
#include <rte_common.h>
#include <rte_eal_paging.h>
#include <mlx5_common.h>
#include <mlx5_common_mr.h>
#include <mlx5_malloc.h>
#include "mlx5_defs.h"
#include "mlx5_utils.h"
#include "mlx5.h"
#include "mlx5_tx.h"
#include "mlx5_rxtx.h"
#include "mlx5_autoconf.h"
#include "rte_pmd_mlx5.h"
#include "mlx5_flow.h"
/**
* Allocate TX queue elements.
*
* @param txq_ctrl
* Pointer to TX queue structure.
*/
void
txq_alloc_elts(struct mlx5_txq_ctrl *txq_ctrl)
{
const unsigned int elts_n = 1 << txq_ctrl->txq.elts_n;
unsigned int i;
for (i = 0; (i != elts_n); ++i)
txq_ctrl->txq.elts[i] = NULL;
DRV_LOG(DEBUG, "port %u Tx queue %u allocated and configured %u WRs",
PORT_ID(txq_ctrl->priv), txq_ctrl->txq.idx, elts_n);
txq_ctrl->txq.elts_head = 0;
txq_ctrl->txq.elts_tail = 0;
txq_ctrl->txq.elts_comp = 0;
}
/**
* Free TX queue elements.
*
* @param txq_ctrl
* Pointer to TX queue structure.
*/
void
txq_free_elts(struct mlx5_txq_ctrl *txq_ctrl)
{
const uint16_t elts_n = 1 << txq_ctrl->txq.elts_n;
const uint16_t elts_m = elts_n - 1;
uint16_t elts_head = txq_ctrl->txq.elts_head;
uint16_t elts_tail = txq_ctrl->txq.elts_tail;
struct rte_mbuf *(*elts)[elts_n] = &txq_ctrl->txq.elts;
DRV_LOG(DEBUG, "port %u Tx queue %u freeing WRs",
PORT_ID(txq_ctrl->priv), txq_ctrl->txq.idx);
txq_ctrl->txq.elts_head = 0;
txq_ctrl->txq.elts_tail = 0;
txq_ctrl->txq.elts_comp = 0;
while (elts_tail != elts_head) {
struct rte_mbuf *elt = (*elts)[elts_tail & elts_m];
MLX5_ASSERT(elt != NULL);
rte_pktmbuf_free_seg(elt);
#ifdef RTE_LIBRTE_MLX5_DEBUG
/* Poisoning. */
memset(&(*elts)[elts_tail & elts_m],
0x77,
sizeof((*elts)[elts_tail & elts_m]));
#endif
++elts_tail;
}
}
/**
* Returns the per-port supported offloads.
*
* @param dev
* Pointer to Ethernet device.
*
* @return
* Supported Tx offloads.
*/
uint64_t
mlx5_get_tx_port_offloads(struct rte_eth_dev *dev)
{
struct mlx5_priv *priv = dev->data->dev_private;
uint64_t offloads = (RTE_ETH_TX_OFFLOAD_MULTI_SEGS |
RTE_ETH_TX_OFFLOAD_VLAN_INSERT);
struct mlx5_port_config *config = &priv->config;
struct mlx5_dev_cap *dev_cap = &priv->sh->dev_cap;
if (dev_cap->hw_csum)
offloads |= (RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |
RTE_ETH_TX_OFFLOAD_UDP_CKSUM |
RTE_ETH_TX_OFFLOAD_TCP_CKSUM);
if (dev_cap->tso)
offloads |= RTE_ETH_TX_OFFLOAD_TCP_TSO;
if (priv->sh->config.tx_pp ||
priv->sh->cdev->config.hca_attr.wait_on_time)
offloads |= RTE_ETH_TX_OFFLOAD_SEND_ON_TIMESTAMP;
if (dev_cap->swp) {
if (dev_cap->swp & MLX5_SW_PARSING_CSUM_CAP)
offloads |= RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM;
if (dev_cap->swp & MLX5_SW_PARSING_TSO_CAP)
offloads |= (RTE_ETH_TX_OFFLOAD_IP_TNL_TSO |
RTE_ETH_TX_OFFLOAD_UDP_TNL_TSO);
}
if (dev_cap->tunnel_en) {
if (dev_cap->hw_csum)
offloads |= RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM;
if (dev_cap->tso) {
if (dev_cap->tunnel_en &
MLX5_TUNNELED_OFFLOADS_VXLAN_CAP)
offloads |= RTE_ETH_TX_OFFLOAD_VXLAN_TNL_TSO;
if (dev_cap->tunnel_en &
MLX5_TUNNELED_OFFLOADS_GRE_CAP)
offloads |= RTE_ETH_TX_OFFLOAD_GRE_TNL_TSO;
if (dev_cap->tunnel_en &
MLX5_TUNNELED_OFFLOADS_GENEVE_CAP)
offloads |= RTE_ETH_TX_OFFLOAD_GENEVE_TNL_TSO;
}
}
if (!config->mprq.enabled)
offloads |= RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
return offloads;
}
/* Fetches and drops all SW-owned and error CQEs to synchronize CQ. */
static void
txq_sync_cq(struct mlx5_txq_data *txq)
{
volatile struct mlx5_cqe *cqe;
int ret, i;
i = txq->cqe_s;
do {
cqe = &txq->cqes[txq->cq_ci & txq->cqe_m];
ret = check_cqe(cqe, txq->cqe_s, txq->cq_ci);
if (unlikely(ret != MLX5_CQE_STATUS_SW_OWN)) {
if (likely(ret != MLX5_CQE_STATUS_ERR)) {
/* No new CQEs in completion queue. */
MLX5_ASSERT(ret == MLX5_CQE_STATUS_HW_OWN);
break;
}
}
++txq->cq_ci;
} while (--i);
/* Move all CQEs to HW ownership. */
for (i = 0; i < txq->cqe_s; i++) {
cqe = &txq->cqes[i];
cqe->op_own = MLX5_CQE_INVALIDATE;
}
/* Resync CQE and WQE (WQ in reset state). */
rte_io_wmb();
*txq->cq_db = rte_cpu_to_be_32(txq->cq_ci);
txq->cq_pi = txq->cq_ci;
rte_io_wmb();
}
/**
* Tx queue stop. Device queue goes to the idle state,
* all involved mbufs are freed from elts/WQ.
*
* @param dev
* Pointer to Ethernet device structure.
* @param idx
* Tx queue index.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_tx_queue_stop_primary(struct rte_eth_dev *dev, uint16_t idx)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_txq_data *txq = (*priv->txqs)[idx];
struct mlx5_txq_ctrl *txq_ctrl =
container_of(txq, struct mlx5_txq_ctrl, txq);
int ret;
MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY);
/* Move QP to RESET state. */
ret = priv->obj_ops.txq_obj_modify(txq_ctrl->obj, MLX5_TXQ_MOD_RDY2RST,
(uint8_t)priv->dev_port);
if (ret)
return ret;
/* Handle all send completions. */
txq_sync_cq(txq);
/* Free elts stored in the SQ. */
txq_free_elts(txq_ctrl);
/* Prevent writing new pkts to SQ by setting no free WQE.*/
txq->wqe_ci = txq->wqe_s;
txq->wqe_pi = 0;
txq->elts_comp = 0;
/* Set the actual queue state. */
dev->data->tx_queue_state[idx] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
/**
* Tx queue stop. Device queue goes to the idle state,
* all involved mbufs are freed from elts/WQ.
*
* @param dev
* Pointer to Ethernet device structure.
* @param idx
* Tx queue index.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_tx_queue_stop(struct rte_eth_dev *dev, uint16_t idx)
{
int ret;
if (rte_eth_dev_is_tx_hairpin_queue(dev, idx)) {
DRV_LOG(ERR, "Hairpin queue can't be stopped");
rte_errno = EINVAL;
return -EINVAL;
}
if (dev->data->tx_queue_state[idx] == RTE_ETH_QUEUE_STATE_STOPPED)
return 0;
if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
ret = mlx5_mp_os_req_queue_control(dev, idx,
MLX5_MP_REQ_QUEUE_TX_STOP);
} else {
ret = mlx5_tx_queue_stop_primary(dev, idx);
}
return ret;
}
/**
* Rx queue start. Device queue goes to the ready state,
* all required mbufs are allocated and WQ is replenished.
*
* @param dev
* Pointer to Ethernet device structure.
* @param idx
* RX queue index.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_tx_queue_start_primary(struct rte_eth_dev *dev, uint16_t idx)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_txq_data *txq = (*priv->txqs)[idx];
struct mlx5_txq_ctrl *txq_ctrl =
container_of(txq, struct mlx5_txq_ctrl, txq);
int ret;
MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY);
ret = priv->obj_ops.txq_obj_modify(txq_ctrl->obj,
MLX5_TXQ_MOD_RST2RDY,
(uint8_t)priv->dev_port);
if (ret)
return ret;
txq_ctrl->txq.wqe_ci = 0;
txq_ctrl->txq.wqe_pi = 0;
txq_ctrl->txq.elts_comp = 0;
/* Set the actual queue state. */
dev->data->tx_queue_state[idx] = RTE_ETH_QUEUE_STATE_STARTED;
return 0;
}
/**
* Rx queue start. Device queue goes to the ready state,
* all required mbufs are allocated and WQ is replenished.
*
* @param dev
* Pointer to Ethernet device structure.
* @param idx
* RX queue index.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_tx_queue_start(struct rte_eth_dev *dev, uint16_t idx)
{
int ret;
if (rte_eth_dev_is_tx_hairpin_queue(dev, idx)) {
DRV_LOG(ERR, "Hairpin queue can't be started");
rte_errno = EINVAL;
return -EINVAL;
}
if (dev->data->tx_queue_state[idx] == RTE_ETH_QUEUE_STATE_STARTED)
return 0;
if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
ret = mlx5_mp_os_req_queue_control(dev, idx,
MLX5_MP_REQ_QUEUE_TX_START);
} else {
ret = mlx5_tx_queue_start_primary(dev, idx);
}
return ret;
}
/**
* Tx queue presetup checks.
*
* @param dev
* Pointer to Ethernet device structure.
* @param idx
* Tx queue index.
* @param desc
* Number of descriptors to configure in queue.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
mlx5_tx_queue_pre_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t *desc)
{
struct mlx5_priv *priv = dev->data->dev_private;
if (*desc <= MLX5_TX_COMP_THRESH) {
DRV_LOG(WARNING,
"port %u number of descriptors requested for Tx queue"
" %u must be higher than MLX5_TX_COMP_THRESH, using %u"
" instead of %u", dev->data->port_id, idx,
MLX5_TX_COMP_THRESH + 1, *desc);
*desc = MLX5_TX_COMP_THRESH + 1;
}
if (!rte_is_power_of_2(*desc)) {
*desc = 1 << log2above(*desc);
DRV_LOG(WARNING,
"port %u increased number of descriptors in Tx queue"
" %u to the next power of two (%d)",
dev->data->port_id, idx, *desc);
}
DRV_LOG(DEBUG, "port %u configuring queue %u for %u descriptors",
dev->data->port_id, idx, *desc);
if (idx >= priv->txqs_n) {
DRV_LOG(ERR, "port %u Tx queue index out of range (%u >= %u)",
dev->data->port_id, idx, priv->txqs_n);
rte_errno = EOVERFLOW;
return -rte_errno;
}
if (!mlx5_txq_releasable(dev, idx)) {
rte_errno = EBUSY;
DRV_LOG(ERR, "port %u unable to release queue index %u",
dev->data->port_id, idx);
return -rte_errno;
}
mlx5_txq_release(dev, idx);
return 0;
}
/**
* DPDK callback to configure a TX queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param idx
* TX queue index.
* @param desc
* Number of descriptors to configure in queue.
* @param socket
* NUMA socket on which memory must be allocated.
* @param[in] conf
* Thresholds parameters.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc,
unsigned int socket, const struct rte_eth_txconf *conf)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_txq_data *txq = (*priv->txqs)[idx];
struct mlx5_txq_ctrl *txq_ctrl =
container_of(txq, struct mlx5_txq_ctrl, txq);
int res;
res = mlx5_tx_queue_pre_setup(dev, idx, &desc);
if (res)
return res;
txq_ctrl = mlx5_txq_new(dev, idx, desc, socket, conf);
if (!txq_ctrl) {
DRV_LOG(ERR, "port %u unable to allocate queue index %u",
dev->data->port_id, idx);
return -rte_errno;
}
DRV_LOG(DEBUG, "port %u adding Tx queue %u to list",
dev->data->port_id, idx);
(*priv->txqs)[idx] = &txq_ctrl->txq;
return 0;
}
/**
* DPDK callback to configure a TX hairpin queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param idx
* TX queue index.
* @param desc
* Number of descriptors to configure in queue.
* @param[in] hairpin_conf
* The hairpin binding configuration.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_tx_hairpin_queue_setup(struct rte_eth_dev *dev, uint16_t idx,
uint16_t desc,
const struct rte_eth_hairpin_conf *hairpin_conf)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_txq_data *txq = (*priv->txqs)[idx];
struct mlx5_txq_ctrl *txq_ctrl =
container_of(txq, struct mlx5_txq_ctrl, txq);
int res;
res = mlx5_tx_queue_pre_setup(dev, idx, &desc);
if (res)
return res;
if (hairpin_conf->peer_count != 1) {
rte_errno = EINVAL;
DRV_LOG(ERR, "port %u unable to setup Tx hairpin queue index %u"
" peer count is %u", dev->data->port_id,
idx, hairpin_conf->peer_count);
return -rte_errno;
}
if (hairpin_conf->peers[0].port == dev->data->port_id) {
if (hairpin_conf->peers[0].queue >= priv->rxqs_n) {
rte_errno = EINVAL;
DRV_LOG(ERR, "port %u unable to setup Tx hairpin queue"
" index %u, Rx %u is larger than %u",
dev->data->port_id, idx,
hairpin_conf->peers[0].queue, priv->txqs_n);
return -rte_errno;
}
} else {
if (hairpin_conf->manual_bind == 0 ||
hairpin_conf->tx_explicit == 0) {
rte_errno = EINVAL;
DRV_LOG(ERR, "port %u unable to setup Tx hairpin queue"
" index %u peer port %u with attributes %u %u",
dev->data->port_id, idx,
hairpin_conf->peers[0].port,
hairpin_conf->manual_bind,
hairpin_conf->tx_explicit);
return -rte_errno;
}
}
txq_ctrl = mlx5_txq_hairpin_new(dev, idx, desc, hairpin_conf);
if (!txq_ctrl) {
DRV_LOG(ERR, "port %u unable to allocate queue index %u",
dev->data->port_id, idx);
return -rte_errno;
}
DRV_LOG(DEBUG, "port %u adding Tx queue %u to list",
dev->data->port_id, idx);
(*priv->txqs)[idx] = &txq_ctrl->txq;
dev->data->tx_queue_state[idx] = RTE_ETH_QUEUE_STATE_HAIRPIN;
return 0;
}
/**
* DPDK callback to release a TX queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param qid
* Transmit queue index.
*/
void
mlx5_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
{
struct mlx5_txq_data *txq = dev->data->tx_queues[qid];
if (txq == NULL)
return;
DRV_LOG(DEBUG, "port %u removing Tx queue %u from list",
dev->data->port_id, qid);
mlx5_txq_release(dev, qid);
}
/**
* Remap UAR register of a Tx queue for secondary process.
*
* Remapped address is stored at the table in the process private structure of
* the device, indexed by queue index.
*
* @param txq_ctrl
* Pointer to Tx queue control structure.
* @param fd
* Verbs file descriptor to map UAR pages.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
txq_uar_init_secondary(struct mlx5_txq_ctrl *txq_ctrl, int fd)
{
struct mlx5_priv *priv = txq_ctrl->priv;
struct mlx5_proc_priv *ppriv = MLX5_PROC_PRIV(PORT_ID(priv));
struct mlx5_proc_priv *primary_ppriv = priv->sh->pppriv;
struct mlx5_txq_data *txq = &txq_ctrl->txq;
void *addr;
uintptr_t uar_va;
uintptr_t offset;
const size_t page_size = rte_mem_page_size();
if (page_size == (size_t)-1) {
DRV_LOG(ERR, "Failed to get mem page size");
rte_errno = ENOMEM;
return -rte_errno;
}
if (txq_ctrl->is_hairpin)
return 0;
MLX5_ASSERT(ppriv);
/*
* As rdma-core, UARs are mapped in size of OS page
* size. Ref to libmlx5 function: mlx5_init_context()
*/
uar_va = (uintptr_t)primary_ppriv->uar_table[txq->idx].db;
offset = uar_va & (page_size - 1); /* Offset in page. */
addr = rte_mem_map(NULL, page_size, RTE_PROT_WRITE, RTE_MAP_SHARED,
fd, txq_ctrl->uar_mmap_offset);
if (!addr) {
DRV_LOG(ERR, "Port %u mmap failed for BF reg of txq %u.",
txq->port_id, txq->idx);
rte_errno = ENXIO;
return -rte_errno;
}
addr = RTE_PTR_ADD(addr, offset);
ppriv->uar_table[txq->idx].db = addr;
#ifndef RTE_ARCH_64
ppriv->uar_table[txq->idx].sl_p =
primary_ppriv->uar_table[txq->idx].sl_p;
#endif
return 0;
}
/**
* Unmap UAR register of a Tx queue for secondary process.
*
* @param txq_ctrl
* Pointer to Tx queue control structure.
*/
static void
txq_uar_uninit_secondary(struct mlx5_txq_ctrl *txq_ctrl)
{
struct mlx5_proc_priv *ppriv = MLX5_PROC_PRIV(PORT_ID(txq_ctrl->priv));
void *addr;
const size_t page_size = rte_mem_page_size();
if (page_size == (size_t)-1) {
DRV_LOG(ERR, "Failed to get mem page size");
rte_errno = ENOMEM;
}
if (txq_ctrl->is_hairpin)
return;
addr = ppriv->uar_table[txq_ctrl->txq.idx].db;
rte_mem_unmap(RTE_PTR_ALIGN_FLOOR(addr, page_size), page_size);
}
/**
* Deinitialize Tx UAR registers for secondary process.
*
* @param dev
* Pointer to Ethernet device.
*/
void
mlx5_tx_uar_uninit_secondary(struct rte_eth_dev *dev)
{
struct mlx5_proc_priv *ppriv = (struct mlx5_proc_priv *)
dev->process_private;
const size_t page_size = rte_mem_page_size();
void *addr;
unsigned int i;
if (page_size == (size_t)-1) {
DRV_LOG(ERR, "Failed to get mem page size");
return;
}
MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_SECONDARY);
for (i = 0; i != ppriv->uar_table_sz; ++i) {
if (!ppriv->uar_table[i].db)
continue;
addr = ppriv->uar_table[i].db;
rte_mem_unmap(RTE_PTR_ALIGN_FLOOR(addr, page_size), page_size);
}
}
/**
* Initialize Tx UAR registers for secondary process.
*
* @param dev
* Pointer to Ethernet device.
* @param fd
* Verbs file descriptor to map UAR pages.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_tx_uar_init_secondary(struct rte_eth_dev *dev, int fd)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_txq_data *txq;
struct mlx5_txq_ctrl *txq_ctrl;
unsigned int i;
int ret;
MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_SECONDARY);
for (i = 0; i != priv->txqs_n; ++i) {
if (!(*priv->txqs)[i])
continue;
txq = (*priv->txqs)[i];
txq_ctrl = container_of(txq, struct mlx5_txq_ctrl, txq);
if (txq_ctrl->is_hairpin)
continue;
MLX5_ASSERT(txq->idx == (uint16_t)i);
ret = txq_uar_init_secondary(txq_ctrl, fd);
if (ret)
goto error;
}
return 0;
error:
/* Rollback. */
do {
if (!(*priv->txqs)[i])
continue;
txq = (*priv->txqs)[i];
txq_ctrl = container_of(txq, struct mlx5_txq_ctrl, txq);
txq_uar_uninit_secondary(txq_ctrl);
} while (i--);
return -rte_errno;
}
/**
* Verify the Verbs Tx queue list is empty
*
* @param dev
* Pointer to Ethernet device.
*
* @return
* The number of object not released.
*/
int
mlx5_txq_obj_verify(struct rte_eth_dev *dev)
{
struct mlx5_priv *priv = dev->data->dev_private;
int ret = 0;
struct mlx5_txq_obj *txq_obj;
LIST_FOREACH(txq_obj, &priv->txqsobj, next) {
DRV_LOG(DEBUG, "port %u Verbs Tx queue %u still referenced",
dev->data->port_id, txq_obj->txq_ctrl->txq.idx);
++ret;
}
return ret;
}
/**
* Calculate the total number of WQEBB for Tx queue.
*
* Simplified version of calc_sq_size() in rdma-core.
*
* @param txq_ctrl
* Pointer to Tx queue control structure.
*
* @return
* The number of WQEBB.
*/
static int
txq_calc_wqebb_cnt(struct mlx5_txq_ctrl *txq_ctrl)
{
unsigned int wqe_size;
const unsigned int desc = 1 << txq_ctrl->txq.elts_n;
wqe_size = MLX5_WQE_CSEG_SIZE +
MLX5_WQE_ESEG_SIZE +
MLX5_WSEG_SIZE -
MLX5_ESEG_MIN_INLINE_SIZE +
txq_ctrl->max_inline_data;
return rte_align32pow2(wqe_size * desc) / MLX5_WQE_SIZE;
}
/**
* Calculate the maximal inline data size for Tx queue.
*
* @param txq_ctrl
* Pointer to Tx queue control structure.
*
* @return
* The maximal inline data size.
*/
static unsigned int
txq_calc_inline_max(struct mlx5_txq_ctrl *txq_ctrl)
{
const unsigned int desc = 1 << txq_ctrl->txq.elts_n;
struct mlx5_priv *priv = txq_ctrl->priv;
unsigned int wqe_size;
wqe_size = priv->sh->dev_cap.max_qp_wr / desc;
if (!wqe_size)
return 0;
/*
* This calculation is derived from tthe source of
* mlx5_calc_send_wqe() in rdma_core library.
*/
wqe_size = wqe_size * MLX5_WQE_SIZE -
MLX5_WQE_CSEG_SIZE -
MLX5_WQE_ESEG_SIZE -
MLX5_WSEG_SIZE -
MLX5_WSEG_SIZE +
MLX5_DSEG_MIN_INLINE_SIZE;
return wqe_size;
}
/**
* Set Tx queue parameters from device configuration.
*
* @param txq_ctrl
* Pointer to Tx queue control structure.
*/
static void
txq_set_params(struct mlx5_txq_ctrl *txq_ctrl)
{
struct mlx5_priv *priv = txq_ctrl->priv;
struct mlx5_port_config *config = &priv->config;
struct mlx5_dev_cap *dev_cap = &priv->sh->dev_cap;
unsigned int inlen_send; /* Inline data for ordinary SEND.*/
unsigned int inlen_empw; /* Inline data for enhanced MPW. */
unsigned int inlen_mode; /* Minimal required Inline data. */
unsigned int txqs_inline; /* Min Tx queues to enable inline. */
uint64_t dev_txoff = priv->dev_data->dev_conf.txmode.offloads;
bool tso = txq_ctrl->txq.offloads & (RTE_ETH_TX_OFFLOAD_TCP_TSO |
RTE_ETH_TX_OFFLOAD_VXLAN_TNL_TSO |
RTE_ETH_TX_OFFLOAD_GRE_TNL_TSO |
RTE_ETH_TX_OFFLOAD_IP_TNL_TSO |
RTE_ETH_TX_OFFLOAD_UDP_TNL_TSO);
bool vlan_inline;
unsigned int temp;
txq_ctrl->txq.fast_free =
!!((txq_ctrl->txq.offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) &&
!(txq_ctrl->txq.offloads & RTE_ETH_TX_OFFLOAD_MULTI_SEGS) &&
!config->mprq.enabled);
if (config->txqs_inline == MLX5_ARG_UNSET)
txqs_inline =
#if defined(RTE_ARCH_ARM64)
(priv->pci_dev && priv->pci_dev->id.device_id ==
PCI_DEVICE_ID_MELLANOX_CONNECTX5BF) ?
MLX5_INLINE_MAX_TXQS_BLUEFIELD :
#endif
MLX5_INLINE_MAX_TXQS;
else
txqs_inline = (unsigned int)config->txqs_inline;
inlen_send = (config->txq_inline_max == MLX5_ARG_UNSET) ?
MLX5_SEND_DEF_INLINE_LEN :
(unsigned int)config->txq_inline_max;
inlen_empw = (config->txq_inline_mpw == MLX5_ARG_UNSET) ?
MLX5_EMPW_DEF_INLINE_LEN :
(unsigned int)config->txq_inline_mpw;
inlen_mode = (config->txq_inline_min == MLX5_ARG_UNSET) ?
0 : (unsigned int)config->txq_inline_min;
if (config->mps != MLX5_MPW_ENHANCED && config->mps != MLX5_MPW)
inlen_empw = 0;
/*
* If there is requested minimal amount of data to inline
* we MUST enable inlining. This is a case for ConnectX-4
* which usually requires L2 inlined for correct operating
* and ConnectX-4 Lx which requires L2-L4 inlined to
* support E-Switch Flows.
*/
if (inlen_mode) {
if (inlen_mode <= MLX5_ESEG_MIN_INLINE_SIZE) {
/*
* Optimize minimal inlining for single
* segment packets to fill one WQEBB
* without gaps.
*/
temp = MLX5_ESEG_MIN_INLINE_SIZE;
} else {
temp = inlen_mode - MLX5_ESEG_MIN_INLINE_SIZE;
temp = RTE_ALIGN(temp, MLX5_WSEG_SIZE) +
MLX5_ESEG_MIN_INLINE_SIZE;
temp = RTE_MIN(temp, MLX5_SEND_MAX_INLINE_LEN);
}
if (temp != inlen_mode) {
DRV_LOG(INFO,
"port %u minimal required inline setting"
" aligned from %u to %u",
PORT_ID(priv), inlen_mode, temp);
inlen_mode = temp;
}
}
/*
* If port is configured to support VLAN insertion and device
* does not support this feature by HW (for NICs before ConnectX-5
* or in case of wqe_vlan_insert flag is not set) we must enable
* data inline on all queues because it is supported by single
* tx_burst routine.
*/
txq_ctrl->txq.vlan_en = config->hw_vlan_insert;
vlan_inline = (dev_txoff & RTE_ETH_TX_OFFLOAD_VLAN_INSERT) &&
!config->hw_vlan_insert;
/*
* If there are few Tx queues it is prioritized
* to save CPU cycles and disable data inlining at all.
*/
if (inlen_send && priv->txqs_n >= txqs_inline) {
/*
* The data sent with ordinal MLX5_OPCODE_SEND
* may be inlined in Ethernet Segment, align the
* length accordingly to fit entire WQEBBs.
*/
temp = RTE_MAX(inlen_send,
MLX5_ESEG_MIN_INLINE_SIZE + MLX5_WQE_DSEG_SIZE);
temp -= MLX5_ESEG_MIN_INLINE_SIZE + MLX5_WQE_DSEG_SIZE;
temp = RTE_ALIGN(temp, MLX5_WQE_SIZE);
temp += MLX5_ESEG_MIN_INLINE_SIZE + MLX5_WQE_DSEG_SIZE;
temp = RTE_MIN(temp, MLX5_WQE_SIZE_MAX +
MLX5_ESEG_MIN_INLINE_SIZE -
MLX5_WQE_CSEG_SIZE -
MLX5_WQE_ESEG_SIZE -
MLX5_WQE_DSEG_SIZE * 2);
temp = RTE_MIN(temp, MLX5_SEND_MAX_INLINE_LEN);
temp = RTE_MAX(temp, inlen_mode);
if (temp != inlen_send) {
DRV_LOG(INFO,
"port %u ordinary send inline setting"
" aligned from %u to %u",
PORT_ID(priv), inlen_send, temp);
inlen_send = temp;
}
/*
* Not aligned to cache lines, but to WQEs.
* First bytes of data (initial alignment)
* is going to be copied explicitly at the
* beginning of inlining buffer in Ethernet
* Segment.
*/
MLX5_ASSERT(inlen_send >= MLX5_ESEG_MIN_INLINE_SIZE);
MLX5_ASSERT(inlen_send <= MLX5_WQE_SIZE_MAX +
MLX5_ESEG_MIN_INLINE_SIZE -
MLX5_WQE_CSEG_SIZE -
MLX5_WQE_ESEG_SIZE -
MLX5_WQE_DSEG_SIZE * 2);
} else if (inlen_mode) {
/*
* If minimal inlining is requested we must
* enable inlining in general, despite the
* number of configured queues. Ignore the
* txq_inline_max devarg, this is not
* full-featured inline.
*/
inlen_send = inlen_mode;
inlen_empw = 0;
} else if (vlan_inline) {
/*
* Hardware does not report offload for
* VLAN insertion, we must enable data inline
* to implement feature by software.
*/
inlen_send = MLX5_ESEG_MIN_INLINE_SIZE;
inlen_empw = 0;
} else {
inlen_send = 0;
inlen_empw = 0;
}
txq_ctrl->txq.inlen_send = inlen_send;
txq_ctrl->txq.inlen_mode = inlen_mode;
txq_ctrl->txq.inlen_empw = 0;
if (inlen_send && inlen_empw && priv->txqs_n >= txqs_inline) {
/*
* The data sent with MLX5_OPCODE_ENHANCED_MPSW
* may be inlined in Data Segment, align the
* length accordingly to fit entire WQEBBs.
*/
temp = RTE_MAX(inlen_empw,
MLX5_WQE_SIZE + MLX5_DSEG_MIN_INLINE_SIZE);
temp -= MLX5_DSEG_MIN_INLINE_SIZE;
temp = RTE_ALIGN(temp, MLX5_WQE_SIZE);
temp += MLX5_DSEG_MIN_INLINE_SIZE;
temp = RTE_MIN(temp, MLX5_WQE_SIZE_MAX +
MLX5_DSEG_MIN_INLINE_SIZE -
MLX5_WQE_CSEG_SIZE -
MLX5_WQE_ESEG_SIZE -
MLX5_WQE_DSEG_SIZE);
temp = RTE_MIN(temp, MLX5_EMPW_MAX_INLINE_LEN);
if (temp != inlen_empw) {
DRV_LOG(INFO,
"port %u enhanced empw inline setting"
" aligned from %u to %u",
PORT_ID(priv), inlen_empw, temp);
inlen_empw = temp;
}
MLX5_ASSERT(inlen_empw >= MLX5_ESEG_MIN_INLINE_SIZE);
MLX5_ASSERT(inlen_empw <= MLX5_WQE_SIZE_MAX +
MLX5_DSEG_MIN_INLINE_SIZE -
MLX5_WQE_CSEG_SIZE -
MLX5_WQE_ESEG_SIZE -
MLX5_WQE_DSEG_SIZE);
txq_ctrl->txq.inlen_empw = inlen_empw;
}
txq_ctrl->max_inline_data = RTE_MAX(inlen_send, inlen_empw);
if (tso) {
txq_ctrl->max_tso_header = MLX5_MAX_TSO_HEADER;
txq_ctrl->max_inline_data = RTE_MAX(txq_ctrl->max_inline_data,
MLX5_MAX_TSO_HEADER);
txq_ctrl->txq.tso_en = 1;
}
if (((RTE_ETH_TX_OFFLOAD_VXLAN_TNL_TSO & txq_ctrl->txq.offloads) &&
(dev_cap->tunnel_en & MLX5_TUNNELED_OFFLOADS_VXLAN_CAP)) |
((RTE_ETH_TX_OFFLOAD_GRE_TNL_TSO & txq_ctrl->txq.offloads) &&
(dev_cap->tunnel_en & MLX5_TUNNELED_OFFLOADS_GRE_CAP)) |
((RTE_ETH_TX_OFFLOAD_GENEVE_TNL_TSO & txq_ctrl->txq.offloads) &&
(dev_cap->tunnel_en & MLX5_TUNNELED_OFFLOADS_GENEVE_CAP)) |
(dev_cap->swp & MLX5_SW_PARSING_TSO_CAP))
txq_ctrl->txq.tunnel_en = 1;
txq_ctrl->txq.swp_en = (((RTE_ETH_TX_OFFLOAD_IP_TNL_TSO |
RTE_ETH_TX_OFFLOAD_UDP_TNL_TSO) &
txq_ctrl->txq.offloads) && (dev_cap->swp &
MLX5_SW_PARSING_TSO_CAP)) |
((RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM &
txq_ctrl->txq.offloads) && (dev_cap->swp &
MLX5_SW_PARSING_CSUM_CAP));
}
/**
* Adjust Tx queue data inline parameters for large queue sizes.
* The data inline feature requires multiple WQEs to fit the packets,
* and if the large amount of Tx descriptors is requested by application
* the total WQE amount may exceed the hardware capabilities. If the
* default inline setting are used we can try to adjust these ones and
* meet the hardware requirements and not exceed the queue size.
*
* @param txq_ctrl
* Pointer to Tx queue control structure.
*
* @return
* Zero on success, otherwise the parameters can not be adjusted.
*/
static int
txq_adjust_params(struct mlx5_txq_ctrl *txq_ctrl)
{
struct mlx5_priv *priv = txq_ctrl->priv;
struct mlx5_port_config *config = &priv->config;
unsigned int max_inline;
max_inline = txq_calc_inline_max(txq_ctrl);
if (!txq_ctrl->txq.inlen_send) {
/*
* Inline data feature is not engaged at all.
* There is nothing to adjust.
*/
return 0;
}
if (txq_ctrl->max_inline_data <= max_inline) {
/*
* The requested inline data length does not
* exceed queue capabilities.
*/
return 0;
}
if (txq_ctrl->txq.inlen_mode > max_inline) {
DRV_LOG(ERR,
"minimal data inline requirements (%u) are not"
" satisfied (%u) on port %u, try the smaller"
" Tx queue size (%d)",
txq_ctrl->txq.inlen_mode, max_inline,
priv->dev_data->port_id, priv->sh->dev_cap.max_qp_wr);
goto error;
}
if (txq_ctrl->txq.inlen_send > max_inline &&
config->txq_inline_max != MLX5_ARG_UNSET &&
config->txq_inline_max > (int)max_inline) {
DRV_LOG(ERR,
"txq_inline_max requirements (%u) are not"
" satisfied (%u) on port %u, try the smaller"
" Tx queue size (%d)",
txq_ctrl->txq.inlen_send, max_inline,
priv->dev_data->port_id, priv->sh->dev_cap.max_qp_wr);
goto error;
}
if (txq_ctrl->txq.inlen_empw > max_inline &&
config->txq_inline_mpw != MLX5_ARG_UNSET &&
config->txq_inline_mpw > (int)max_inline) {
DRV_LOG(ERR,
"txq_inline_mpw requirements (%u) are not"
" satisfied (%u) on port %u, try the smaller"
" Tx queue size (%d)",
txq_ctrl->txq.inlen_empw, max_inline,
priv->dev_data->port_id, priv->sh->dev_cap.max_qp_wr);
goto error;
}
if (txq_ctrl->txq.tso_en && max_inline < MLX5_MAX_TSO_HEADER) {
DRV_LOG(ERR,
"tso header inline requirements (%u) are not"
" satisfied (%u) on port %u, try the smaller"
" Tx queue size (%d)",
MLX5_MAX_TSO_HEADER, max_inline,
priv->dev_data->port_id, priv->sh->dev_cap.max_qp_wr);
goto error;
}
if (txq_ctrl->txq.inlen_send > max_inline) {
DRV_LOG(WARNING,
"adjust txq_inline_max (%u->%u)"
" due to large Tx queue on port %u",
txq_ctrl->txq.inlen_send, max_inline,
priv->dev_data->port_id);
txq_ctrl->txq.inlen_send = max_inline;
}
if (txq_ctrl->txq.inlen_empw > max_inline) {
DRV_LOG(WARNING,
"adjust txq_inline_mpw (%u->%u)"
"due to large Tx queue on port %u",
txq_ctrl->txq.inlen_empw, max_inline,
priv->dev_data->port_id);
txq_ctrl->txq.inlen_empw = max_inline;
}
txq_ctrl->max_inline_data = RTE_MAX(txq_ctrl->txq.inlen_send,
txq_ctrl->txq.inlen_empw);
MLX5_ASSERT(txq_ctrl->max_inline_data <= max_inline);
MLX5_ASSERT(txq_ctrl->txq.inlen_mode <= max_inline);
MLX5_ASSERT(txq_ctrl->txq.inlen_mode <= txq_ctrl->txq.inlen_send);
MLX5_ASSERT(txq_ctrl->txq.inlen_mode <= txq_ctrl->txq.inlen_empw ||
!txq_ctrl->txq.inlen_empw);
return 0;
error:
rte_errno = ENOMEM;
return -ENOMEM;
}
/**
* Create a DPDK Tx queue.
*
* @param dev
* Pointer to Ethernet device.
* @param idx
* TX queue index.
* @param desc
* Number of descriptors to configure in queue.
* @param socket
* NUMA socket on which memory must be allocated.
* @param[in] conf
* Thresholds parameters.
*
* @return
* A DPDK queue object on success, NULL otherwise and rte_errno is set.
*/
struct mlx5_txq_ctrl *
mlx5_txq_new(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc,
unsigned int socket, const struct rte_eth_txconf *conf)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_txq_ctrl *tmpl;
tmpl = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, sizeof(*tmpl) +
desc * sizeof(struct rte_mbuf *), 0, socket);
if (!tmpl) {
rte_errno = ENOMEM;
return NULL;
}
if (mlx5_mr_ctrl_init(&tmpl->txq.mr_ctrl,
&priv->sh->cdev->mr_scache.dev_gen, socket)) {
/* rte_errno is already set. */
goto error;
}
MLX5_ASSERT(desc > MLX5_TX_COMP_THRESH);
tmpl->txq.offloads = conf->offloads |
dev->data->dev_conf.txmode.offloads;
tmpl->priv = priv;
tmpl->socket = socket;
tmpl->txq.elts_n = log2above(desc);
tmpl->txq.elts_s = desc;
tmpl->txq.elts_m = desc - 1;
tmpl->txq.port_id = dev->data->port_id;
tmpl->txq.idx = idx;
txq_set_params(tmpl);
if (txq_adjust_params(tmpl))
goto error;
if (txq_calc_wqebb_cnt(tmpl) >
priv->sh->dev_cap.max_qp_wr) {
DRV_LOG(ERR,
"port %u Tx WQEBB count (%d) exceeds the limit (%d),"
" try smaller queue size",
dev->data->port_id, txq_calc_wqebb_cnt(tmpl),
priv->sh->dev_cap.max_qp_wr);
rte_errno = ENOMEM;
goto error;
}
__atomic_fetch_add(&tmpl->refcnt, 1, __ATOMIC_RELAXED);
tmpl->is_hairpin = false;
LIST_INSERT_HEAD(&priv->txqsctrl, tmpl, next);
return tmpl;
error:
mlx5_mr_btree_free(&tmpl->txq.mr_ctrl.cache_bh);
mlx5_free(tmpl);
return NULL;
}
/**
* Create a DPDK Tx hairpin queue.
*
* @param dev
* Pointer to Ethernet device.
* @param idx
* TX queue index.
* @param desc
* Number of descriptors to configure in queue.
* @param hairpin_conf
* The hairpin configuration.
*
* @return
* A DPDK queue object on success, NULL otherwise and rte_errno is set.
*/
struct mlx5_txq_ctrl *
mlx5_txq_hairpin_new(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc,
const struct rte_eth_hairpin_conf *hairpin_conf)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_txq_ctrl *tmpl;
tmpl = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, sizeof(*tmpl), 0,
SOCKET_ID_ANY);
if (!tmpl) {
rte_errno = ENOMEM;
return NULL;
}
tmpl->priv = priv;
tmpl->socket = SOCKET_ID_ANY;
tmpl->txq.elts_n = log2above(desc);
tmpl->txq.port_id = dev->data->port_id;
tmpl->txq.idx = idx;
tmpl->hairpin_conf = *hairpin_conf;
tmpl->is_hairpin = true;
__atomic_fetch_add(&tmpl->refcnt, 1, __ATOMIC_RELAXED);
LIST_INSERT_HEAD(&priv->txqsctrl, tmpl, next);
return tmpl;
}
/**
* Get a Tx queue.
*
* @param dev
* Pointer to Ethernet device.
* @param idx
* TX queue index.
*
* @return
* A pointer to the queue if it exists.
*/
struct mlx5_txq_ctrl *
mlx5_txq_get(struct rte_eth_dev *dev, uint16_t idx)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_txq_data *txq_data = (*priv->txqs)[idx];
struct mlx5_txq_ctrl *ctrl = NULL;
if (txq_data) {
ctrl = container_of(txq_data, struct mlx5_txq_ctrl, txq);
__atomic_fetch_add(&ctrl->refcnt, 1, __ATOMIC_RELAXED);
}
return ctrl;
}
/**
* Release a Tx queue.
*
* @param dev
* Pointer to Ethernet device.
* @param idx
* TX queue index.
*
* @return
* 1 while a reference on it exists, 0 when freed.
*/
int
mlx5_txq_release(struct rte_eth_dev *dev, uint16_t idx)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_txq_ctrl *txq_ctrl;
if (priv->txqs == NULL || (*priv->txqs)[idx] == NULL)
return 0;
txq_ctrl = container_of((*priv->txqs)[idx], struct mlx5_txq_ctrl, txq);
if (__atomic_sub_fetch(&txq_ctrl->refcnt, 1, __ATOMIC_RELAXED) > 1)
return 1;
if (txq_ctrl->obj) {
priv->obj_ops.txq_obj_release(txq_ctrl->obj);
LIST_REMOVE(txq_ctrl->obj, next);
mlx5_free(txq_ctrl->obj);
txq_ctrl->obj = NULL;
}
if (!txq_ctrl->is_hairpin) {
if (txq_ctrl->txq.fcqs) {
mlx5_free(txq_ctrl->txq.fcqs);
txq_ctrl->txq.fcqs = NULL;
}
txq_free_elts(txq_ctrl);
dev->data->tx_queue_state[idx] = RTE_ETH_QUEUE_STATE_STOPPED;
}
if (!__atomic_load_n(&txq_ctrl->refcnt, __ATOMIC_RELAXED)) {
if (!txq_ctrl->is_hairpin)
mlx5_mr_btree_free(&txq_ctrl->txq.mr_ctrl.cache_bh);
LIST_REMOVE(txq_ctrl, next);
mlx5_free(txq_ctrl);
(*priv->txqs)[idx] = NULL;
}
return 0;
}
/**
* Verify if the queue can be released.
*
* @param dev
* Pointer to Ethernet device.
* @param idx
* TX queue index.
*
* @return
* 1 if the queue can be released.
*/
int
mlx5_txq_releasable(struct rte_eth_dev *dev, uint16_t idx)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_txq_ctrl *txq;
if (!(*priv->txqs)[idx])
return -1;
txq = container_of((*priv->txqs)[idx], struct mlx5_txq_ctrl, txq);
return (__atomic_load_n(&txq->refcnt, __ATOMIC_RELAXED) == 1);
}
/**
* Verify the Tx Queue list is empty
*
* @param dev
* Pointer to Ethernet device.
*
* @return
* The number of object not released.
*/
int
mlx5_txq_verify(struct rte_eth_dev *dev)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_txq_ctrl *txq_ctrl;
int ret = 0;
LIST_FOREACH(txq_ctrl, &priv->txqsctrl, next) {
DRV_LOG(DEBUG, "port %u Tx queue %u still referenced",
dev->data->port_id, txq_ctrl->txq.idx);
++ret;
}
return ret;
}
int
mlx5_txq_get_sqn(struct mlx5_txq_ctrl *txq)
{
return txq->is_hairpin ? txq->obj->sq->id : txq->obj->sq_obj.sq->id;
}
int
rte_pmd_mlx5_external_sq_enable(uint16_t port_id, uint32_t sq_num)
{
struct rte_eth_dev *dev;
struct mlx5_priv *priv;
uint32_t flow;
if (rte_eth_dev_is_valid_port(port_id) < 0) {
DRV_LOG(ERR, "There is no Ethernet device for port %u.",
port_id);
rte_errno = ENODEV;
return -rte_errno;
}
dev = &rte_eth_devices[port_id];
priv = dev->data->dev_private;
if ((!priv->representor && !priv->master) ||
!priv->sh->config.dv_esw_en) {
DRV_LOG(ERR, "Port %u must be represetnor or master port in E-Switch mode.",
port_id);
rte_errno = EINVAL;
return -rte_errno;
}
if (sq_num == 0) {
DRV_LOG(ERR, "Invalid SQ number.");
rte_errno = EINVAL;
return -rte_errno;
}
#ifdef HAVE_MLX5_HWS_SUPPORT
if (priv->sh->config.dv_flow_en == 2)
return mlx5_flow_hw_esw_create_sq_miss_flow(dev, sq_num);
#endif
flow = mlx5_flow_create_devx_sq_miss_flow(dev, sq_num);
if (flow > 0)
return 0;
DRV_LOG(ERR, "Port %u failed to create default miss flow for SQ %u.",
port_id, sq_num);
return -rte_errno;
}
/**
* Set the Tx queue dynamic timestamp (mask and offset)
*
* @param[in] dev
* Pointer to the Ethernet device structure.
*/
void
mlx5_txq_dynf_timestamp_set(struct rte_eth_dev *dev)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_dev_ctx_shared *sh = priv->sh;
struct mlx5_txq_data *data;
int off, nbit;
unsigned int i;
uint64_t mask = 0;
uint64_t ts_mask;
if (sh->dev_cap.rt_timestamp ||
!sh->cdev->config.hca_attr.dev_freq_khz)
ts_mask = MLX5_TS_MASK_SECS << 32;
else
ts_mask = rte_align64pow2(MLX5_TS_MASK_SECS * 1000ull *
sh->cdev->config.hca_attr.dev_freq_khz);
ts_mask = rte_cpu_to_be_64(ts_mask - 1ull);
nbit = rte_mbuf_dynflag_lookup
(RTE_MBUF_DYNFLAG_TX_TIMESTAMP_NAME, NULL);
off = rte_mbuf_dynfield_lookup
(RTE_MBUF_DYNFIELD_TIMESTAMP_NAME, NULL);
if (nbit >= 0 && off >= 0 &&
(sh->txpp.refcnt || priv->sh->cdev->config.hca_attr.wait_on_time))
mask = 1ULL << nbit;
for (i = 0; i != priv->txqs_n; ++i) {
data = (*priv->txqs)[i];
if (!data)
continue;
data->sh = sh;
data->ts_mask = mask;
data->ts_offset = off;
data->rt_timestamp = sh->dev_cap.rt_timestamp;
data->rt_timemask = (data->offloads &
RTE_ETH_TX_OFFLOAD_SEND_ON_TIMESTAMP) ?
ts_mask : 0;
}
}