numam-dpdk/drivers/net/mvpp2/mrvl_ethdev.c
Xuan Ding 8d54b1ec4a ethdev: remove Rx header split port offload
As announced in the deprecation note, remove the Rx offload flag
'RTE_ETH_RX_OFFLOAD_HEADER_SPLIT' and 'split_hdr_size' field from
the structure 'rte_eth_rxmode'. Meanwhile, the place where the examples
and apps initialize the 'split_hdr_size' field, and where the drivers
check if the 'split_hdr_size' value is 0 are also removed.

User can still use `RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT` for per-queue packet
split offload, which is configured by 'rte_eth_rxseg_split'.

Signed-off-by: Xuan Ding <xuan.ding@intel.com>
Acked-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
2022-10-04 11:20:04 +02:00

3314 lines
77 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017-2021 Marvell International Ltd.
* Copyright(c) 2017-2021 Semihalf.
* All rights reserved.
*/
#include <rte_string_fns.h>
#include <ethdev_driver.h>
#include <rte_kvargs.h>
#include <rte_log.h>
#include <rte_malloc.h>
#include <bus_vdev_driver.h>
#include <fcntl.h>
#include <linux/ethtool.h>
#include <linux/sockios.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <rte_mvep_common.h>
#include "mrvl_ethdev.h"
#include "mrvl_qos.h"
#include "mrvl_flow.h"
#include "mrvl_mtr.h"
#include "mrvl_tm.h"
/* bitmask with reserved hifs */
#define MRVL_MUSDK_HIFS_RESERVED 0x0F
/* bitmask with reserved bpools */
#define MRVL_MUSDK_BPOOLS_RESERVED 0x07
/* bitmask with reserved kernel RSS tables */
#define MRVL_MUSDK_RSS_RESERVED 0x0F
/* maximum number of available hifs */
#define MRVL_MUSDK_HIFS_MAX 9
/* prefetch shift */
#define MRVL_MUSDK_PREFETCH_SHIFT 2
/* TCAM has 25 entries reserved for uc/mc filter entries
* + 1 for primary mac address
*/
#define MRVL_MAC_ADDRS_MAX (1 + 25)
#define MRVL_MATCH_LEN 16
#define MRVL_PKT_EFFEC_OFFS (MRVL_PKT_OFFS + MV_MH_SIZE)
/* Maximum allowable packet size */
#define MRVL_PKT_SIZE_MAX (10240 - MV_MH_SIZE)
#define MRVL_IFACE_NAME_ARG "iface"
#define MRVL_CFG_ARG "cfg"
#define MRVL_ARP_LENGTH 28
#define MRVL_COOKIE_ADDR_INVALID ~0ULL
#define MRVL_COOKIE_HIGH_ADDR_MASK 0xffffff0000000000
/** Port Rx offload capabilities */
#define MRVL_RX_OFFLOADS (RTE_ETH_RX_OFFLOAD_VLAN_FILTER | \
RTE_ETH_RX_OFFLOAD_CHECKSUM)
/** Port Tx offloads capabilities */
#define MRVL_TX_OFFLOAD_CHECKSUM (RTE_ETH_TX_OFFLOAD_IPV4_CKSUM | \
RTE_ETH_TX_OFFLOAD_UDP_CKSUM | \
RTE_ETH_TX_OFFLOAD_TCP_CKSUM)
#define MRVL_TX_OFFLOADS (MRVL_TX_OFFLOAD_CHECKSUM | \
RTE_ETH_TX_OFFLOAD_MULTI_SEGS)
#define MRVL_TX_PKT_OFFLOADS (RTE_MBUF_F_TX_IP_CKSUM | \
RTE_MBUF_F_TX_TCP_CKSUM | \
RTE_MBUF_F_TX_UDP_CKSUM)
static const char * const valid_args[] = {
MRVL_IFACE_NAME_ARG,
MRVL_CFG_ARG,
NULL
};
static int used_hifs = MRVL_MUSDK_HIFS_RESERVED;
static struct pp2_hif *hifs[RTE_MAX_LCORE];
static int used_bpools[PP2_NUM_PKT_PROC] = {
[0 ... PP2_NUM_PKT_PROC - 1] = MRVL_MUSDK_BPOOLS_RESERVED
};
static struct pp2_bpool *mrvl_port_to_bpool_lookup[RTE_MAX_ETHPORTS];
static int mrvl_port_bpool_size[PP2_NUM_PKT_PROC][PP2_BPOOL_NUM_POOLS][RTE_MAX_LCORE];
static uint64_t cookie_addr_high = MRVL_COOKIE_ADDR_INVALID;
static int dummy_pool_id[PP2_NUM_PKT_PROC];
struct pp2_bpool *dummy_pool[PP2_NUM_PKT_PROC] = {0};
struct mrvl_ifnames {
const char *names[PP2_NUM_ETH_PPIO * PP2_NUM_PKT_PROC];
int idx;
};
/*
* To use buffer harvesting based on loopback port shadow queue structure
* was introduced for buffers information bookkeeping.
*
* Before sending the packet, related buffer information (pp2_buff_inf) is
* stored in shadow queue. After packet is transmitted no longer used
* packet buffer is released back to it's original hardware pool,
* on condition it originated from interface.
* In case it was generated by application itself i.e: mbuf->port field is
* 0xff then its released to software mempool.
*/
struct mrvl_shadow_txq {
int head; /* write index - used when sending buffers */
int tail; /* read index - used when releasing buffers */
u16 size; /* queue occupied size */
u16 num_to_release; /* number of descriptors sent, that can be
* released
*/
struct buff_release_entry ent[MRVL_PP2_TX_SHADOWQ_SIZE]; /* q entries */
};
struct mrvl_rxq {
struct mrvl_priv *priv;
struct rte_mempool *mp;
int queue_id;
int port_id;
int cksum_enabled;
uint64_t bytes_recv;
uint64_t drop_mac;
};
struct mrvl_txq {
struct mrvl_priv *priv;
int queue_id;
int port_id;
uint64_t bytes_sent;
struct mrvl_shadow_txq shadow_txqs[RTE_MAX_LCORE];
int tx_deferred_start;
};
static int mrvl_lcore_first;
static int mrvl_lcore_last;
static int mrvl_dev_num;
static int mrvl_fill_bpool(struct mrvl_rxq *rxq, int num);
static inline void mrvl_free_sent_buffers(struct pp2_ppio *ppio,
struct pp2_hif *hif, unsigned int core_id,
struct mrvl_shadow_txq *sq, int qid, int force);
static uint16_t mrvl_tx_pkt_burst(void *txq, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts);
static uint16_t mrvl_tx_sg_pkt_burst(void *txq, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts);
static int rte_pmd_mrvl_remove(struct rte_vdev_device *vdev);
static void mrvl_deinit_pp2(void);
static void mrvl_deinit_hifs(void);
static int
mrvl_mac_addr_add(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
uint32_t index, uint32_t vmdq __rte_unused);
static int
mrvl_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr);
static int
mrvl_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on);
static int mrvl_promiscuous_enable(struct rte_eth_dev *dev);
static int mrvl_allmulticast_enable(struct rte_eth_dev *dev);
static int
mrvl_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf);
#define MRVL_XSTATS_TBL_ENTRY(name) { \
#name, offsetof(struct pp2_ppio_statistics, name), \
sizeof(((struct pp2_ppio_statistics *)0)->name) \
}
/* Table with xstats data */
static struct {
const char *name;
unsigned int offset;
unsigned int size;
} mrvl_xstats_tbl[] = {
MRVL_XSTATS_TBL_ENTRY(rx_bytes),
MRVL_XSTATS_TBL_ENTRY(rx_packets),
MRVL_XSTATS_TBL_ENTRY(rx_unicast_packets),
MRVL_XSTATS_TBL_ENTRY(rx_errors),
MRVL_XSTATS_TBL_ENTRY(rx_fullq_dropped),
MRVL_XSTATS_TBL_ENTRY(rx_bm_dropped),
MRVL_XSTATS_TBL_ENTRY(rx_early_dropped),
MRVL_XSTATS_TBL_ENTRY(rx_fifo_dropped),
MRVL_XSTATS_TBL_ENTRY(rx_cls_dropped),
MRVL_XSTATS_TBL_ENTRY(tx_bytes),
MRVL_XSTATS_TBL_ENTRY(tx_packets),
MRVL_XSTATS_TBL_ENTRY(tx_unicast_packets),
MRVL_XSTATS_TBL_ENTRY(tx_errors)
};
static inline int
mrvl_reserve_bit(int *bitmap, int max)
{
int n = sizeof(*bitmap) * 8 - __builtin_clz(*bitmap);
if (n >= max)
return -1;
*bitmap |= 1 << n;
return n;
}
static int
mrvl_pp2_fixup_init(void)
{
struct pp2_bpool_params bpool_params;
char name[15];
int err, i;
memset(dummy_pool, 0, sizeof(dummy_pool));
for (i = 0; i < pp2_get_num_inst(); i++) {
dummy_pool_id[i] = mrvl_reserve_bit(&used_bpools[i],
PP2_BPOOL_NUM_POOLS);
if (dummy_pool_id[i] < 0) {
MRVL_LOG(ERR, "Can't find free pool\n");
return -1;
}
memset(name, 0, sizeof(name));
snprintf(name, sizeof(name), "pool-%d:%d", i, dummy_pool_id[i]);
memset(&bpool_params, 0, sizeof(bpool_params));
bpool_params.match = name;
bpool_params.buff_len = MRVL_PKT_OFFS;
bpool_params.dummy_short_pool = 1;
err = pp2_bpool_init(&bpool_params, &dummy_pool[i]);
if (err != 0 || !dummy_pool[i]) {
MRVL_LOG(ERR, "BPool init failed!\n");
used_bpools[i] &= ~(1 << dummy_pool_id[i]);
return -1;
}
}
return 0;
}
/**
* Initialize packet processor.
*
* @return
* 0 on success, negative error value otherwise.
*/
static int
mrvl_init_pp2(void)
{
struct pp2_init_params init_params;
int err;
memset(&init_params, 0, sizeof(init_params));
init_params.hif_reserved_map = MRVL_MUSDK_HIFS_RESERVED;
init_params.bm_pool_reserved_map = MRVL_MUSDK_BPOOLS_RESERVED;
init_params.rss_tbl_reserved_map = MRVL_MUSDK_RSS_RESERVED;
if (mrvl_cfg && mrvl_cfg->pp2_cfg.prs_udfs.num_udfs)
memcpy(&init_params.prs_udfs, &mrvl_cfg->pp2_cfg.prs_udfs,
sizeof(struct pp2_parse_udfs));
err = pp2_init(&init_params);
if (err != 0) {
MRVL_LOG(ERR, "PP2 init failed");
return -1;
}
err = mrvl_pp2_fixup_init();
if (err != 0) {
MRVL_LOG(ERR, "PP2 fixup init failed");
return -1;
}
return 0;
}
static void
mrvl_pp2_fixup_deinit(void)
{
int i;
for (i = 0; i < PP2_NUM_PKT_PROC; i++) {
if (!dummy_pool[i])
continue;
pp2_bpool_deinit(dummy_pool[i]);
used_bpools[i] &= ~(1 << dummy_pool_id[i]);
}
}
/**
* Deinitialize packet processor.
*
* @return
* 0 on success, negative error value otherwise.
*/
static void
mrvl_deinit_pp2(void)
{
mrvl_pp2_fixup_deinit();
pp2_deinit();
}
static inline void
mrvl_fill_shadowq(struct mrvl_shadow_txq *sq, struct rte_mbuf *buf)
{
sq->ent[sq->head].buff.cookie = (uint64_t)buf;
sq->ent[sq->head].buff.addr = buf ?
rte_mbuf_data_iova_default(buf) : 0;
sq->ent[sq->head].bpool =
(unlikely(!buf || buf->port >= RTE_MAX_ETHPORTS ||
buf->refcnt > 1)) ? NULL :
mrvl_port_to_bpool_lookup[buf->port];
sq->head = (sq->head + 1) & MRVL_PP2_TX_SHADOWQ_MASK;
sq->size++;
}
/**
* Deinitialize per-lcore MUSDK hardware interfaces (hifs).
*/
static void
mrvl_deinit_hifs(void)
{
int i;
for (i = mrvl_lcore_first; i <= mrvl_lcore_last; i++) {
if (hifs[i])
pp2_hif_deinit(hifs[i]);
}
used_hifs = MRVL_MUSDK_HIFS_RESERVED;
memset(hifs, 0, sizeof(hifs));
}
static inline void
mrvl_fill_desc(struct pp2_ppio_desc *desc, struct rte_mbuf *buf)
{
pp2_ppio_outq_desc_reset(desc);
pp2_ppio_outq_desc_set_phys_addr(desc, rte_pktmbuf_iova(buf));
pp2_ppio_outq_desc_set_pkt_offset(desc, 0);
pp2_ppio_outq_desc_set_pkt_len(desc, rte_pktmbuf_data_len(buf));
}
static inline int
mrvl_get_bpool_size(int pp2_id, int pool_id)
{
int i;
int size = 0;
for (i = mrvl_lcore_first; i <= mrvl_lcore_last; i++)
size += mrvl_port_bpool_size[pp2_id][pool_id][i];
return size;
}
static int
mrvl_init_hif(int core_id)
{
struct pp2_hif_params params;
char match[MRVL_MATCH_LEN];
int ret;
ret = mrvl_reserve_bit(&used_hifs, MRVL_MUSDK_HIFS_MAX);
if (ret < 0) {
MRVL_LOG(ERR, "Failed to allocate hif %d", core_id);
return ret;
}
snprintf(match, sizeof(match), "hif-%d", ret);
memset(&params, 0, sizeof(params));
params.match = match;
params.out_size = MRVL_PP2_AGGR_TXQD_MAX;
ret = pp2_hif_init(&params, &hifs[core_id]);
if (ret) {
MRVL_LOG(ERR, "Failed to initialize hif %d", core_id);
return ret;
}
return 0;
}
static inline struct pp2_hif*
mrvl_get_hif(struct mrvl_priv *priv, int core_id)
{
int ret;
if (likely(hifs[core_id] != NULL))
return hifs[core_id];
rte_spinlock_lock(&priv->lock);
ret = mrvl_init_hif(core_id);
if (ret < 0) {
MRVL_LOG(ERR, "Failed to allocate hif %d", core_id);
goto out;
}
if (core_id < mrvl_lcore_first)
mrvl_lcore_first = core_id;
if (core_id > mrvl_lcore_last)
mrvl_lcore_last = core_id;
out:
rte_spinlock_unlock(&priv->lock);
return hifs[core_id];
}
/**
* Set tx burst function according to offload flag
*
* @param dev
* Pointer to Ethernet device structure.
*/
static void
mrvl_set_tx_function(struct rte_eth_dev *dev)
{
struct mrvl_priv *priv = dev->data->dev_private;
/* Use a simple Tx queue (no offloads, no multi segs) if possible */
if (priv->multiseg) {
RTE_LOG(INFO, PMD, "Using multi-segment tx callback\n");
dev->tx_pkt_burst = mrvl_tx_sg_pkt_burst;
} else {
RTE_LOG(INFO, PMD, "Using single-segment tx callback\n");
dev->tx_pkt_burst = mrvl_tx_pkt_burst;
}
}
/**
* Configure rss based on dpdk rss configuration.
*
* @param priv
* Pointer to private structure.
* @param rss_conf
* Pointer to RSS configuration.
*
* @return
* 0 on success, negative error value otherwise.
*/
static int
mrvl_configure_rss(struct mrvl_priv *priv, struct rte_eth_rss_conf *rss_conf)
{
if (rss_conf->rss_key)
MRVL_LOG(WARNING, "Changing hash key is not supported");
if (rss_conf->rss_hf == 0) {
priv->ppio_params.inqs_params.hash_type = PP2_PPIO_HASH_T_NONE;
} else if (rss_conf->rss_hf & RTE_ETH_RSS_IPV4) {
priv->ppio_params.inqs_params.hash_type =
PP2_PPIO_HASH_T_2_TUPLE;
} else if (rss_conf->rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_TCP) {
priv->ppio_params.inqs_params.hash_type =
PP2_PPIO_HASH_T_5_TUPLE;
priv->rss_hf_tcp = 1;
} else if (rss_conf->rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_UDP) {
priv->ppio_params.inqs_params.hash_type =
PP2_PPIO_HASH_T_5_TUPLE;
priv->rss_hf_tcp = 0;
} else {
return -EINVAL;
}
return 0;
}
/**
* Ethernet device configuration.
*
* Prepare the driver for a given number of TX and RX queues and
* configure RSS.
*
* @param dev
* Pointer to Ethernet device structure.
*
* @return
* 0 on success, negative error value otherwise.
*/
static int
mrvl_dev_configure(struct rte_eth_dev *dev)
{
struct mrvl_priv *priv = dev->data->dev_private;
int ret;
if (priv->ppio) {
MRVL_LOG(INFO, "Device reconfiguration is not supported");
return -EINVAL;
}
if (dev->data->dev_conf.rxmode.mq_mode != RTE_ETH_MQ_RX_NONE &&
dev->data->dev_conf.rxmode.mq_mode != RTE_ETH_MQ_RX_RSS) {
MRVL_LOG(INFO, "Unsupported rx multi queue mode %d",
dev->data->dev_conf.rxmode.mq_mode);
return -EINVAL;
}
if (dev->data->dev_conf.rxmode.mtu > priv->max_mtu) {
MRVL_LOG(ERR, "MTU %u is larger than max_mtu %u\n",
dev->data->dev_conf.rxmode.mtu,
priv->max_mtu);
return -EINVAL;
}
if (dev->data->dev_conf.txmode.offloads & RTE_ETH_TX_OFFLOAD_MULTI_SEGS)
priv->multiseg = 1;
ret = mrvl_configure_rxqs(priv, dev->data->port_id,
dev->data->nb_rx_queues);
if (ret < 0)
return ret;
ret = mrvl_configure_txqs(priv, dev->data->port_id,
dev->data->nb_tx_queues);
if (ret < 0)
return ret;
priv->ppio_params.outqs_params.num_outqs = dev->data->nb_tx_queues;
priv->ppio_params.maintain_stats = 1;
priv->nb_rx_queues = dev->data->nb_rx_queues;
ret = mrvl_tm_init(dev);
if (ret < 0)
return ret;
if (dev->data->nb_rx_queues == 1 &&
dev->data->dev_conf.rxmode.mq_mode == RTE_ETH_MQ_RX_RSS) {
MRVL_LOG(WARNING, "Disabling hash for 1 rx queue");
priv->ppio_params.inqs_params.hash_type = PP2_PPIO_HASH_T_NONE;
priv->configured = 1;
return 0;
}
ret = mrvl_configure_rss(priv,
&dev->data->dev_conf.rx_adv_conf.rss_conf);
if (ret < 0)
return ret;
priv->configured = 1;
return 0;
}
/**
* DPDK callback to change the MTU.
*
* Setting the MTU affects hardware MRU (packets larger than the MRU
* will be dropped).
*
* @param dev
* Pointer to Ethernet device structure.
* @param mtu
* New MTU.
*
* @return
* 0 on success, negative error value otherwise.
*/
static int
mrvl_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
{
struct mrvl_priv *priv = dev->data->dev_private;
uint16_t mru;
uint16_t mbuf_data_size = 0; /* SW buffer size */
int ret;
mru = MRVL_PP2_MTU_TO_MRU(mtu);
/*
* min_rx_buf_size is equal to mbuf data size
* if pmd didn't set it differently
*/
mbuf_data_size = dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM;
/* Prevent PMD from:
* - setting mru greater than the mbuf size resulting in
* hw and sw buffer size mismatch
* - setting mtu that requires the support of scattered packets
* when this feature has not been enabled/supported so far
* (TODO check scattered_rx flag here once scattered RX is supported).
*/
if (mru - RTE_ETHER_CRC_LEN + MRVL_PKT_OFFS > mbuf_data_size) {
mru = mbuf_data_size + RTE_ETHER_CRC_LEN - MRVL_PKT_OFFS;
mtu = MRVL_PP2_MRU_TO_MTU(mru);
MRVL_LOG(WARNING, "MTU too big, max MTU possible limited "
"by current mbuf size: %u. Set MTU to %u, MRU to %u",
mbuf_data_size, mtu, mru);
}
if (mtu < RTE_ETHER_MIN_MTU || mru > MRVL_PKT_SIZE_MAX) {
MRVL_LOG(ERR, "Invalid MTU [%u] or MRU [%u]", mtu, mru);
return -EINVAL;
}
if (!priv->ppio)
return 0;
ret = pp2_ppio_set_mru(priv->ppio, mru);
if (ret) {
MRVL_LOG(ERR, "Failed to change MRU");
return ret;
}
ret = pp2_ppio_set_mtu(priv->ppio, mtu);
if (ret) {
MRVL_LOG(ERR, "Failed to change MTU");
return ret;
}
return 0;
}
/**
* DPDK callback to bring the link up.
*
* @param dev
* Pointer to Ethernet device structure.
*
* @return
* 0 on success, negative error value otherwise.
*/
static int
mrvl_dev_set_link_up(struct rte_eth_dev *dev)
{
struct mrvl_priv *priv = dev->data->dev_private;
int ret;
if (!priv->ppio) {
dev->data->dev_link.link_status = RTE_ETH_LINK_UP;
return 0;
}
ret = pp2_ppio_enable(priv->ppio);
if (ret)
return ret;
/*
* mtu/mru can be updated if pp2_ppio_enable() was called at least once
* as pp2_ppio_enable() changes port->t_mode from default 0 to
* PP2_TRAFFIC_INGRESS_EGRESS.
*
* Set mtu to default DPDK value here.
*/
ret = mrvl_mtu_set(dev, dev->data->mtu);
if (ret) {
pp2_ppio_disable(priv->ppio);
return ret;
}
dev->data->dev_link.link_status = RTE_ETH_LINK_UP;
return 0;
}
/**
* DPDK callback to bring the link down.
*
* @param dev
* Pointer to Ethernet device structure.
*
* @return
* 0 on success, negative error value otherwise.
*/
static int
mrvl_dev_set_link_down(struct rte_eth_dev *dev)
{
struct mrvl_priv *priv = dev->data->dev_private;
int ret;
if (!priv->ppio) {
dev->data->dev_link.link_status = RTE_ETH_LINK_DOWN;
return 0;
}
ret = pp2_ppio_disable(priv->ppio);
if (ret)
return ret;
dev->data->dev_link.link_status = RTE_ETH_LINK_DOWN;
return 0;
}
/**
* DPDK callback to start tx queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param queue_id
* Transmit queue index.
*
* @return
* 0 on success, negative error value otherwise.
*/
static int
mrvl_tx_queue_start(struct rte_eth_dev *dev, uint16_t queue_id)
{
struct mrvl_priv *priv = dev->data->dev_private;
int ret;
if (!priv)
return -EPERM;
/* passing 1 enables given tx queue */
ret = pp2_ppio_set_outq_state(priv->ppio, queue_id, 1);
if (ret) {
MRVL_LOG(ERR, "Failed to start txq %d", queue_id);
return ret;
}
dev->data->tx_queue_state[queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
return 0;
}
/**
* DPDK callback to stop tx queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param queue_id
* Transmit queue index.
*
* @return
* 0 on success, negative error value otherwise.
*/
static int
mrvl_tx_queue_stop(struct rte_eth_dev *dev, uint16_t queue_id)
{
struct mrvl_priv *priv = dev->data->dev_private;
int ret;
if (!priv->ppio)
return -EPERM;
/* passing 0 disables given tx queue */
ret = pp2_ppio_set_outq_state(priv->ppio, queue_id, 0);
if (ret) {
MRVL_LOG(ERR, "Failed to stop txq %d", queue_id);
return ret;
}
dev->data->tx_queue_state[queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
/**
* Populate VLAN Filter configuration.
*
* @param dev
* Pointer to Ethernet device structure.
* @param on
* Toggle filter.
*
* @return
* 0 on success, negative error value otherwise.
*/
static int mrvl_populate_vlan_table(struct rte_eth_dev *dev, int on)
{
uint32_t j;
int ret;
struct rte_vlan_filter_conf *vfc;
vfc = &dev->data->vlan_filter_conf;
for (j = 0; j < RTE_DIM(vfc->ids); j++) {
uint64_t vlan;
uint64_t vbit;
uint64_t ids = vfc->ids[j];
if (ids == 0)
continue;
while (ids) {
vlan = 64 * j;
/* count trailing zeroes */
vbit = ~ids & (ids - 1);
/* clear least significant bit set */
ids ^= (ids ^ (ids - 1)) ^ vbit;
for (; vbit; vlan++)
vbit >>= 1;
ret = mrvl_vlan_filter_set(dev, vlan, on);
if (ret) {
MRVL_LOG(ERR, "Failed to setup VLAN filter\n");
return ret;
}
}
}
return 0;
}
/**
* DPDK callback to start the device.
*
* @param dev
* Pointer to Ethernet device structure.
*
* @return
* 0 on success, negative errno value on failure.
*/
static int
mrvl_dev_start(struct rte_eth_dev *dev)
{
struct mrvl_priv *priv = dev->data->dev_private;
char match[MRVL_MATCH_LEN];
int ret = 0, i, def_init_size;
struct rte_ether_addr *mac_addr;
if (priv->ppio)
return mrvl_dev_set_link_up(dev);
snprintf(match, sizeof(match), "ppio-%d:%d",
priv->pp_id, priv->ppio_id);
priv->ppio_params.match = match;
priv->ppio_params.eth_start_hdr = PP2_PPIO_HDR_ETH;
priv->forward_bad_frames = 0;
priv->fill_bpool_buffs = MRVL_BURST_SIZE;
if (mrvl_cfg) {
priv->ppio_params.eth_start_hdr =
mrvl_cfg->port[dev->data->port_id].eth_start_hdr;
priv->forward_bad_frames =
mrvl_cfg->port[dev->data->port_id].forward_bad_frames;
priv->fill_bpool_buffs =
mrvl_cfg->port[dev->data->port_id].fill_bpool_buffs;
}
/*
* Calculate the minimum bpool size for refill feature as follows:
* 2 default burst sizes multiply by number of rx queues.
* If the bpool size will be below this value, new buffers will
* be added to the pool.
*/
priv->bpool_min_size = priv->nb_rx_queues * MRVL_BURST_SIZE * 2;
/* In case initial bpool size configured in queues setup is
* smaller than minimum size add more buffers
*/
def_init_size = priv->bpool_min_size + MRVL_BURST_SIZE * 2;
if (priv->bpool_init_size < def_init_size) {
int buffs_to_add = def_init_size - priv->bpool_init_size;
priv->bpool_init_size += buffs_to_add;
ret = mrvl_fill_bpool(dev->data->rx_queues[0], buffs_to_add);
if (ret)
MRVL_LOG(ERR, "Failed to add buffers to bpool");
}
/*
* Calculate the maximum bpool size for refill feature as follows:
* maximum number of descriptors in rx queue multiply by number
* of rx queues plus minimum bpool size.
* In case the bpool size will exceed this value, superfluous buffers
* will be removed
*/
priv->bpool_max_size = (priv->nb_rx_queues * MRVL_PP2_RXD_MAX) +
priv->bpool_min_size;
ret = pp2_ppio_init(&priv->ppio_params, &priv->ppio);
if (ret) {
MRVL_LOG(ERR, "Failed to init ppio");
return ret;
}
/*
* In case there are some some stale uc/mc mac addresses flush them
* here. It cannot be done during mrvl_dev_close() as port information
* is already gone at that point (due to pp2_ppio_deinit() in
* mrvl_dev_stop()).
*/
if (!priv->uc_mc_flushed) {
ret = pp2_ppio_flush_mac_addrs(priv->ppio, 1, 1);
if (ret) {
MRVL_LOG(ERR,
"Failed to flush uc/mc filter list");
goto out;
}
priv->uc_mc_flushed = 1;
}
ret = mrvl_mtu_set(dev, dev->data->mtu);
if (ret)
MRVL_LOG(ERR, "Failed to set MTU to %d", dev->data->mtu);
if (!rte_is_zero_ether_addr(&dev->data->mac_addrs[0]))
mrvl_mac_addr_set(dev, &dev->data->mac_addrs[0]);
for (i = 1; i < MRVL_MAC_ADDRS_MAX; i++) {
mac_addr = &dev->data->mac_addrs[i];
/* skip zero address */
if (rte_is_zero_ether_addr(mac_addr))
continue;
mrvl_mac_addr_add(dev, mac_addr, i, 0);
}
if (dev->data->all_multicast == 1)
mrvl_allmulticast_enable(dev);
if (dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER) {
ret = mrvl_populate_vlan_table(dev, 1);
if (ret) {
MRVL_LOG(ERR, "Failed to populate VLAN table");
goto out;
}
}
/* For default QoS config, don't start classifier. */
if (mrvl_cfg &&
mrvl_cfg->port[dev->data->port_id].use_qos_global_defaults == 0) {
ret = mrvl_start_qos_mapping(priv);
if (ret) {
MRVL_LOG(ERR, "Failed to setup QoS mapping");
goto out;
}
}
ret = pp2_ppio_set_loopback(priv->ppio, dev->data->dev_conf.lpbk_mode);
if (ret) {
MRVL_LOG(ERR, "Failed to set loopback");
goto out;
}
if (dev->data->promiscuous == 1)
mrvl_promiscuous_enable(dev);
if (priv->flow_ctrl) {
ret = mrvl_flow_ctrl_set(dev, &priv->fc_conf);
if (ret) {
MRVL_LOG(ERR, "Failed to configure flow control");
goto out;
}
priv->flow_ctrl = 0;
}
if (dev->data->dev_link.link_status == RTE_ETH_LINK_UP) {
ret = mrvl_dev_set_link_up(dev);
if (ret) {
MRVL_LOG(ERR, "Failed to set link up");
dev->data->dev_link.link_status = RTE_ETH_LINK_DOWN;
goto out;
}
}
/* start tx queues */
for (i = 0; i < dev->data->nb_tx_queues; i++) {
struct mrvl_txq *txq = dev->data->tx_queues[i];
dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
if (!txq->tx_deferred_start)
continue;
/*
* All txqs are started by default. Stop them
* so that tx_deferred_start works as expected.
*/
ret = mrvl_tx_queue_stop(dev, i);
if (ret)
goto out;
}
mrvl_flow_init(dev);
mrvl_mtr_init(dev);
mrvl_set_tx_function(dev);
return 0;
out:
MRVL_LOG(ERR, "Failed to start device");
pp2_ppio_deinit(priv->ppio);
return ret;
}
/**
* Flush receive queues.
*
* @param dev
* Pointer to Ethernet device structure.
*/
static void
mrvl_flush_rx_queues(struct rte_eth_dev *dev)
{
int i;
MRVL_LOG(INFO, "Flushing rx queues");
for (i = 0; i < dev->data->nb_rx_queues; i++) {
int ret, num;
do {
struct mrvl_rxq *q = dev->data->rx_queues[i];
struct pp2_ppio_desc descs[MRVL_PP2_RXD_MAX];
num = MRVL_PP2_RXD_MAX;
ret = pp2_ppio_recv(q->priv->ppio,
q->priv->rxq_map[q->queue_id].tc,
q->priv->rxq_map[q->queue_id].inq,
descs, (uint16_t *)&num);
} while (ret == 0 && num);
}
}
/**
* Flush transmit shadow queues.
*
* @param dev
* Pointer to Ethernet device structure.
*/
static void
mrvl_flush_tx_shadow_queues(struct rte_eth_dev *dev)
{
int i, j;
struct mrvl_txq *txq;
MRVL_LOG(INFO, "Flushing tx shadow queues");
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = (struct mrvl_txq *)dev->data->tx_queues[i];
for (j = 0; j < RTE_MAX_LCORE; j++) {
struct mrvl_shadow_txq *sq;
if (!hifs[j])
continue;
sq = &txq->shadow_txqs[j];
mrvl_free_sent_buffers(txq->priv->ppio,
hifs[j], j, sq, txq->queue_id, 1);
while (sq->tail != sq->head) {
uint64_t addr = cookie_addr_high |
sq->ent[sq->tail].buff.cookie;
rte_pktmbuf_free(
(struct rte_mbuf *)addr);
sq->tail = (sq->tail + 1) &
MRVL_PP2_TX_SHADOWQ_MASK;
}
memset(sq, 0, sizeof(*sq));
}
}
}
/**
* Flush hardware bpool (buffer-pool).
*
* @param dev
* Pointer to Ethernet device structure.
*/
static void
mrvl_flush_bpool(struct rte_eth_dev *dev)
{
struct mrvl_priv *priv = dev->data->dev_private;
struct pp2_hif *hif;
uint32_t num;
int ret;
unsigned int core_id = rte_lcore_id();
if (core_id == LCORE_ID_ANY)
core_id = rte_get_main_lcore();
hif = mrvl_get_hif(priv, core_id);
ret = pp2_bpool_get_num_buffs(priv->bpool, &num);
if (ret) {
MRVL_LOG(ERR, "Failed to get bpool buffers number");
return;
}
while (num--) {
struct pp2_buff_inf inf;
uint64_t addr;
ret = pp2_bpool_get_buff(hif, priv->bpool, &inf);
if (ret)
break;
addr = cookie_addr_high | inf.cookie;
rte_pktmbuf_free((struct rte_mbuf *)addr);
}
}
/**
* DPDK callback to stop the device.
*
* @param dev
* Pointer to Ethernet device structure.
*/
static int
mrvl_dev_stop(struct rte_eth_dev *dev)
{
return mrvl_dev_set_link_down(dev);
}
/**
* DPDK callback to close the device.
*
* @param dev
* Pointer to Ethernet device structure.
*/
static int
mrvl_dev_close(struct rte_eth_dev *dev)
{
struct mrvl_priv *priv = dev->data->dev_private;
size_t i;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
mrvl_flush_rx_queues(dev);
mrvl_flush_tx_shadow_queues(dev);
mrvl_flow_deinit(dev);
mrvl_mtr_deinit(dev);
for (i = 0; i < priv->ppio_params.inqs_params.num_tcs; ++i) {
struct pp2_ppio_tc_params *tc_params =
&priv->ppio_params.inqs_params.tcs_params[i];
if (tc_params->inqs_params) {
rte_free(tc_params->inqs_params);
tc_params->inqs_params = NULL;
}
}
if (priv->cls_tbl) {
pp2_cls_tbl_deinit(priv->cls_tbl);
priv->cls_tbl = NULL;
}
if (priv->qos_tbl) {
pp2_cls_qos_tbl_deinit(priv->qos_tbl);
priv->qos_tbl = NULL;
}
mrvl_flush_bpool(dev);
mrvl_tm_deinit(dev);
if (priv->ppio) {
pp2_ppio_deinit(priv->ppio);
priv->ppio = NULL;
}
/* policer must be released after ppio deinitialization */
if (priv->default_policer) {
pp2_cls_plcr_deinit(priv->default_policer);
priv->default_policer = NULL;
}
if (priv->bpool) {
pp2_bpool_deinit(priv->bpool);
used_bpools[priv->pp_id] &= ~(1 << priv->bpool_bit);
priv->bpool = NULL;
}
mrvl_dev_num--;
if (mrvl_dev_num == 0) {
MRVL_LOG(INFO, "Perform MUSDK deinit");
mrvl_deinit_hifs();
mrvl_deinit_pp2();
rte_mvep_deinit(MVEP_MOD_T_PP2);
}
return 0;
}
/**
* DPDK callback to retrieve physical link information.
*
* @param dev
* Pointer to Ethernet device structure.
* @param wait_to_complete
* Wait for request completion (ignored).
*
* @return
* 0 on success, negative error value otherwise.
*/
static int
mrvl_link_update(struct rte_eth_dev *dev, int wait_to_complete __rte_unused)
{
/*
* TODO
* once MUSDK provides necessary API use it here
*/
struct mrvl_priv *priv = dev->data->dev_private;
struct ethtool_cmd edata;
struct ifreq req;
int ret, fd, link_up;
if (!priv->ppio)
return -EPERM;
edata.cmd = ETHTOOL_GSET;
strcpy(req.ifr_name, dev->data->name);
req.ifr_data = (void *)&edata;
fd = socket(AF_INET, SOCK_DGRAM, 0);
if (fd == -1)
return -EFAULT;
ret = ioctl(fd, SIOCETHTOOL, &req);
if (ret == -1) {
close(fd);
return -EFAULT;
}
close(fd);
switch (ethtool_cmd_speed(&edata)) {
case SPEED_10:
dev->data->dev_link.link_speed = RTE_ETH_SPEED_NUM_10M;
break;
case SPEED_100:
dev->data->dev_link.link_speed = RTE_ETH_SPEED_NUM_100M;
break;
case SPEED_1000:
dev->data->dev_link.link_speed = RTE_ETH_SPEED_NUM_1G;
break;
case SPEED_2500:
dev->data->dev_link.link_speed = RTE_ETH_SPEED_NUM_2_5G;
break;
case SPEED_10000:
dev->data->dev_link.link_speed = RTE_ETH_SPEED_NUM_10G;
break;
default:
dev->data->dev_link.link_speed = RTE_ETH_SPEED_NUM_NONE;
}
dev->data->dev_link.link_duplex = edata.duplex ? RTE_ETH_LINK_FULL_DUPLEX :
RTE_ETH_LINK_HALF_DUPLEX;
dev->data->dev_link.link_autoneg = edata.autoneg ? RTE_ETH_LINK_AUTONEG :
RTE_ETH_LINK_FIXED;
pp2_ppio_get_link_state(priv->ppio, &link_up);
dev->data->dev_link.link_status = link_up ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
return 0;
}
/**
* DPDK callback to enable promiscuous mode.
*
* @param dev
* Pointer to Ethernet device structure.
*
* @return
* 0 on success, negative error value otherwise.
*/
static int
mrvl_promiscuous_enable(struct rte_eth_dev *dev)
{
struct mrvl_priv *priv = dev->data->dev_private;
int ret;
if (priv->isolated)
return -ENOTSUP;
if (!priv->ppio)
return 0;
ret = pp2_ppio_set_promisc(priv->ppio, 1);
if (ret) {
MRVL_LOG(ERR, "Failed to enable promiscuous mode");
return -EAGAIN;
}
return 0;
}
/**
* DPDK callback to enable allmulti mode.
*
* @param dev
* Pointer to Ethernet device structure.
*
* @return
* 0 on success, negative error value otherwise.
*/
static int
mrvl_allmulticast_enable(struct rte_eth_dev *dev)
{
struct mrvl_priv *priv = dev->data->dev_private;
int ret;
if (priv->isolated)
return -ENOTSUP;
if (!priv->ppio)
return 0;
ret = pp2_ppio_set_mc_promisc(priv->ppio, 1);
if (ret) {
MRVL_LOG(ERR, "Failed enable all-multicast mode");
return -EAGAIN;
}
return 0;
}
/**
* DPDK callback to disable promiscuous mode.
*
* @param dev
* Pointer to Ethernet device structure.
*
* @return
* 0 on success, negative error value otherwise.
*/
static int
mrvl_promiscuous_disable(struct rte_eth_dev *dev)
{
struct mrvl_priv *priv = dev->data->dev_private;
int ret;
if (priv->isolated)
return -ENOTSUP;
if (!priv->ppio)
return 0;
ret = pp2_ppio_set_promisc(priv->ppio, 0);
if (ret) {
MRVL_LOG(ERR, "Failed to disable promiscuous mode");
return -EAGAIN;
}
return 0;
}
/**
* DPDK callback to disable allmulticast mode.
*
* @param dev
* Pointer to Ethernet device structure.
*
* @return
* 0 on success, negative error value otherwise.
*/
static int
mrvl_allmulticast_disable(struct rte_eth_dev *dev)
{
struct mrvl_priv *priv = dev->data->dev_private;
int ret;
if (priv->isolated)
return -ENOTSUP;
if (!priv->ppio)
return 0;
ret = pp2_ppio_set_mc_promisc(priv->ppio, 0);
if (ret) {
MRVL_LOG(ERR, "Failed to disable all-multicast mode");
return -EAGAIN;
}
return 0;
}
/**
* DPDK callback to remove a MAC address.
*
* @param dev
* Pointer to Ethernet device structure.
* @param index
* MAC address index.
*/
static void
mrvl_mac_addr_remove(struct rte_eth_dev *dev, uint32_t index)
{
struct mrvl_priv *priv = dev->data->dev_private;
char buf[RTE_ETHER_ADDR_FMT_SIZE];
int ret;
if (priv->isolated)
return;
if (!priv->ppio)
return;
ret = pp2_ppio_remove_mac_addr(priv->ppio,
dev->data->mac_addrs[index].addr_bytes);
if (ret) {
rte_ether_format_addr(buf, sizeof(buf),
&dev->data->mac_addrs[index]);
MRVL_LOG(ERR, "Failed to remove mac %s", buf);
}
}
/**
* DPDK callback to add a MAC address.
*
* @param dev
* Pointer to Ethernet device structure.
* @param mac_addr
* MAC address to register.
* @param index
* MAC address index.
* @param vmdq
* VMDq pool index to associate address with (unused).
*
* @return
* 0 on success, negative error value otherwise.
*/
static int
mrvl_mac_addr_add(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
uint32_t index, uint32_t vmdq __rte_unused)
{
struct mrvl_priv *priv = dev->data->dev_private;
char buf[RTE_ETHER_ADDR_FMT_SIZE];
int ret;
if (priv->isolated)
return -ENOTSUP;
if (!priv->ppio)
return 0;
if (index == 0)
/* For setting index 0, mrvl_mac_addr_set() should be used.*/
return -1;
/*
* Maximum number of uc addresses can be tuned via kernel module mvpp2x
* parameter uc_filter_max. Maximum number of mc addresses is then
* MRVL_MAC_ADDRS_MAX - uc_filter_max. Currently it defaults to 4 and
* 21 respectively.
*
* If more than uc_filter_max uc addresses were added to filter list
* then NIC will switch to promiscuous mode automatically.
*
* If more than MRVL_MAC_ADDRS_MAX - uc_filter_max number mc addresses
* were added to filter list then NIC will switch to all-multicast mode
* automatically.
*/
ret = pp2_ppio_add_mac_addr(priv->ppio, mac_addr->addr_bytes);
if (ret) {
rte_ether_format_addr(buf, sizeof(buf), mac_addr);
MRVL_LOG(ERR, "Failed to add mac %s", buf);
return -1;
}
return 0;
}
/**
* DPDK callback to set the primary MAC address.
*
* @param dev
* Pointer to Ethernet device structure.
* @param mac_addr
* MAC address to register.
*
* @return
* 0 on success, negative error value otherwise.
*/
static int
mrvl_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
{
struct mrvl_priv *priv = dev->data->dev_private;
int ret;
if (priv->isolated)
return -ENOTSUP;
if (!priv->ppio)
return 0;
ret = pp2_ppio_set_mac_addr(priv->ppio, mac_addr->addr_bytes);
if (ret) {
char buf[RTE_ETHER_ADDR_FMT_SIZE];
rte_ether_format_addr(buf, sizeof(buf), mac_addr);
MRVL_LOG(ERR, "Failed to set mac to %s", buf);
}
return ret;
}
/**
* DPDK callback to get device statistics.
*
* @param dev
* Pointer to Ethernet device structure.
* @param stats
* Stats structure output buffer.
*
* @return
* 0 on success, negative error value otherwise.
*/
static int
mrvl_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
{
struct mrvl_priv *priv = dev->data->dev_private;
struct pp2_ppio_statistics ppio_stats;
uint64_t drop_mac = 0;
unsigned int i, idx, ret;
if (!priv->ppio)
return -EPERM;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
struct mrvl_rxq *rxq = dev->data->rx_queues[i];
struct pp2_ppio_inq_statistics rx_stats;
if (!rxq)
continue;
idx = rxq->queue_id;
if (unlikely(idx >= RTE_ETHDEV_QUEUE_STAT_CNTRS)) {
MRVL_LOG(ERR,
"rx queue %d stats out of range (0 - %d)",
idx, RTE_ETHDEV_QUEUE_STAT_CNTRS - 1);
continue;
}
ret = pp2_ppio_inq_get_statistics(priv->ppio,
priv->rxq_map[idx].tc,
priv->rxq_map[idx].inq,
&rx_stats, 0);
if (unlikely(ret)) {
MRVL_LOG(ERR,
"Failed to update rx queue %d stats", idx);
break;
}
stats->q_ibytes[idx] = rxq->bytes_recv;
stats->q_ipackets[idx] = rx_stats.enq_desc - rxq->drop_mac;
stats->q_errors[idx] = rx_stats.drop_early +
rx_stats.drop_fullq +
rx_stats.drop_bm +
rxq->drop_mac;
stats->ibytes += rxq->bytes_recv;
drop_mac += rxq->drop_mac;
}
for (i = 0; i < dev->data->nb_tx_queues; i++) {
struct mrvl_txq *txq = dev->data->tx_queues[i];
struct pp2_ppio_outq_statistics tx_stats;
if (!txq)
continue;
idx = txq->queue_id;
if (unlikely(idx >= RTE_ETHDEV_QUEUE_STAT_CNTRS)) {
MRVL_LOG(ERR,
"tx queue %d stats out of range (0 - %d)",
idx, RTE_ETHDEV_QUEUE_STAT_CNTRS - 1);
}
ret = pp2_ppio_outq_get_statistics(priv->ppio, idx,
&tx_stats, 0);
if (unlikely(ret)) {
MRVL_LOG(ERR,
"Failed to update tx queue %d stats", idx);
break;
}
stats->q_opackets[idx] = tx_stats.deq_desc;
stats->q_obytes[idx] = txq->bytes_sent;
stats->obytes += txq->bytes_sent;
}
ret = pp2_ppio_get_statistics(priv->ppio, &ppio_stats, 0);
if (unlikely(ret)) {
MRVL_LOG(ERR, "Failed to update port statistics");
return ret;
}
stats->ipackets += ppio_stats.rx_packets - drop_mac;
stats->opackets += ppio_stats.tx_packets;
stats->imissed += ppio_stats.rx_fullq_dropped +
ppio_stats.rx_bm_dropped +
ppio_stats.rx_early_dropped +
ppio_stats.rx_fifo_dropped +
ppio_stats.rx_cls_dropped;
stats->ierrors = drop_mac;
return 0;
}
/**
* DPDK callback to clear device statistics.
*
* @param dev
* Pointer to Ethernet device structure.
*
* @return
* 0 on success, negative error value otherwise.
*/
static int
mrvl_stats_reset(struct rte_eth_dev *dev)
{
struct mrvl_priv *priv = dev->data->dev_private;
int i;
if (!priv->ppio)
return 0;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
struct mrvl_rxq *rxq = dev->data->rx_queues[i];
pp2_ppio_inq_get_statistics(priv->ppio, priv->rxq_map[i].tc,
priv->rxq_map[i].inq, NULL, 1);
rxq->bytes_recv = 0;
rxq->drop_mac = 0;
}
for (i = 0; i < dev->data->nb_tx_queues; i++) {
struct mrvl_txq *txq = dev->data->tx_queues[i];
pp2_ppio_outq_get_statistics(priv->ppio, i, NULL, 1);
txq->bytes_sent = 0;
}
return pp2_ppio_get_statistics(priv->ppio, NULL, 1);
}
/**
* DPDK callback to get extended statistics.
*
* @param dev
* Pointer to Ethernet device structure.
* @param stats
* Pointer to xstats table.
* @param n
* Number of entries in xstats table.
* @return
* Negative value on error, number of read xstats otherwise.
*/
static int
mrvl_xstats_get(struct rte_eth_dev *dev,
struct rte_eth_xstat *stats, unsigned int n)
{
struct mrvl_priv *priv = dev->data->dev_private;
struct pp2_ppio_statistics ppio_stats;
unsigned int i, count;
count = RTE_DIM(mrvl_xstats_tbl);
if (n < count)
return count;
pp2_ppio_get_statistics(priv->ppio, &ppio_stats, 0);
for (i = 0; i < count; i++) {
uint64_t val;
if (mrvl_xstats_tbl[i].size == sizeof(uint32_t))
val = *(uint32_t *)((uint8_t *)&ppio_stats +
mrvl_xstats_tbl[i].offset);
else if (mrvl_xstats_tbl[i].size == sizeof(uint64_t))
val = *(uint64_t *)((uint8_t *)&ppio_stats +
mrvl_xstats_tbl[i].offset);
else
return -EINVAL;
stats[i].id = i;
stats[i].value = val;
}
return count;
}
/**
* DPDK callback to reset extended statistics.
*
* @param dev
* Pointer to Ethernet device structure.
*
* @return
* 0 on success, negative error value otherwise.
*/
static int
mrvl_xstats_reset(struct rte_eth_dev *dev)
{
return mrvl_stats_reset(dev);
}
/**
* DPDK callback to get extended statistics names.
*
* @param dev (unused)
* Pointer to Ethernet device structure.
* @param xstats_names
* Pointer to xstats names table.
* @param size
* Size of the xstats names table.
* @return
* Number of read names.
*/
static int
mrvl_xstats_get_names(struct rte_eth_dev *dev __rte_unused,
struct rte_eth_xstat_name *xstats_names,
unsigned int size)
{
unsigned int i;
if (!xstats_names)
return RTE_DIM(mrvl_xstats_tbl);
for (i = 0; i < size && i < RTE_DIM(mrvl_xstats_tbl); i++)
strlcpy(xstats_names[i].name, mrvl_xstats_tbl[i].name,
RTE_ETH_XSTATS_NAME_SIZE);
return size;
}
/**
* DPDK callback to get information about the device.
*
* @param dev
* Pointer to Ethernet device structure (unused).
* @param info
* Info structure output buffer.
*/
static int
mrvl_dev_infos_get(struct rte_eth_dev *dev,
struct rte_eth_dev_info *info)
{
struct mrvl_priv *priv = dev->data->dev_private;
info->dev_capa &= ~RTE_ETH_DEV_CAPA_FLOW_RULE_KEEP;
info->speed_capa = RTE_ETH_LINK_SPEED_10M |
RTE_ETH_LINK_SPEED_100M |
RTE_ETH_LINK_SPEED_1G |
RTE_ETH_LINK_SPEED_2_5G |
RTE_ETH_LINK_SPEED_10G;
info->max_rx_queues = MRVL_PP2_RXQ_MAX;
info->max_tx_queues = MRVL_PP2_TXQ_MAX;
info->max_mac_addrs = MRVL_MAC_ADDRS_MAX;
info->rx_desc_lim.nb_max = MRVL_PP2_RXD_MAX;
info->rx_desc_lim.nb_min = MRVL_PP2_RXD_MIN;
info->rx_desc_lim.nb_align = MRVL_PP2_RXD_ALIGN;
info->tx_desc_lim.nb_max = MRVL_PP2_TXD_MAX;
info->tx_desc_lim.nb_min = MRVL_PP2_TXD_MIN;
info->tx_desc_lim.nb_align = MRVL_PP2_TXD_ALIGN;
info->rx_offload_capa = MRVL_RX_OFFLOADS;
info->rx_queue_offload_capa = MRVL_RX_OFFLOADS;
info->tx_offload_capa = MRVL_TX_OFFLOADS;
info->tx_queue_offload_capa = MRVL_TX_OFFLOADS;
info->flow_type_rss_offloads = RTE_ETH_RSS_IPV4 |
RTE_ETH_RSS_NONFRAG_IPV4_TCP |
RTE_ETH_RSS_NONFRAG_IPV4_UDP;
/* By default packets are dropped if no descriptors are available */
info->default_rxconf.rx_drop_en = 1;
info->max_rx_pktlen = MRVL_PKT_SIZE_MAX;
info->max_mtu = priv->max_mtu;
return 0;
}
/**
* Return supported packet types.
*
* @param dev
* Pointer to Ethernet device structure (unused).
*
* @return
* Const pointer to the table with supported packet types.
*/
static const uint32_t *
mrvl_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
{
static const uint32_t ptypes[] = {
RTE_PTYPE_L2_ETHER,
RTE_PTYPE_L2_ETHER_VLAN,
RTE_PTYPE_L2_ETHER_QINQ,
RTE_PTYPE_L3_IPV4,
RTE_PTYPE_L3_IPV4_EXT,
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
RTE_PTYPE_L3_IPV6,
RTE_PTYPE_L3_IPV6_EXT,
RTE_PTYPE_L2_ETHER_ARP,
RTE_PTYPE_L4_TCP,
RTE_PTYPE_L4_UDP
};
return ptypes;
}
/**
* DPDK callback to get information about specific receive queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param rx_queue_id
* Receive queue index.
* @param qinfo
* Receive queue information structure.
*/
static void mrvl_rxq_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id,
struct rte_eth_rxq_info *qinfo)
{
struct mrvl_rxq *q = dev->data->rx_queues[rx_queue_id];
struct mrvl_priv *priv = dev->data->dev_private;
int inq = priv->rxq_map[rx_queue_id].inq;
int tc = priv->rxq_map[rx_queue_id].tc;
struct pp2_ppio_tc_params *tc_params =
&priv->ppio_params.inqs_params.tcs_params[tc];
qinfo->mp = q->mp;
qinfo->nb_desc = tc_params->inqs_params[inq].size;
}
/**
* DPDK callback to get information about specific transmit queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param tx_queue_id
* Transmit queue index.
* @param qinfo
* Transmit queue information structure.
*/
static void mrvl_txq_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id,
struct rte_eth_txq_info *qinfo)
{
struct mrvl_priv *priv = dev->data->dev_private;
struct mrvl_txq *txq = dev->data->tx_queues[tx_queue_id];
qinfo->nb_desc =
priv->ppio_params.outqs_params.outqs_params[tx_queue_id].size;
qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
}
/**
* DPDK callback to Configure a VLAN filter.
*
* @param dev
* Pointer to Ethernet device structure.
* @param vlan_id
* VLAN ID to filter.
* @param on
* Toggle filter.
*
* @return
* 0 on success, negative error value otherwise.
*/
static int
mrvl_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
{
struct mrvl_priv *priv = dev->data->dev_private;
if (priv->isolated)
return -ENOTSUP;
if (!priv->ppio)
return 0;
return on ? pp2_ppio_add_vlan(priv->ppio, vlan_id) :
pp2_ppio_remove_vlan(priv->ppio, vlan_id);
}
/**
* DPDK callback to Configure VLAN offload.
*
* @param dev
* Pointer to Ethernet device structure.
* @param mask
* VLAN offload mask.
*
* @return
* 0 on success, negative error value otherwise.
*/
static int mrvl_vlan_offload_set(struct rte_eth_dev *dev, int mask)
{
uint64_t rx_offloads = dev->data->dev_conf.rxmode.offloads;
int ret;
if (mask & RTE_ETH_VLAN_STRIP_MASK) {
MRVL_LOG(ERR, "VLAN stripping is not supported\n");
return -ENOTSUP;
}
if (mask & RTE_ETH_VLAN_FILTER_MASK) {
if (rx_offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER)
ret = mrvl_populate_vlan_table(dev, 1);
else
ret = mrvl_populate_vlan_table(dev, 0);
if (ret)
return ret;
}
if (mask & RTE_ETH_VLAN_EXTEND_MASK) {
MRVL_LOG(ERR, "Extend VLAN not supported\n");
return -ENOTSUP;
}
return 0;
}
/**
* Release buffers to hardware bpool (buffer-pool)
*
* @param rxq
* Receive queue pointer.
* @param num
* Number of buffers to release to bpool.
*
* @return
* 0 on success, negative error value otherwise.
*/
static int
mrvl_fill_bpool(struct mrvl_rxq *rxq, int num)
{
struct buff_release_entry entries[num];
struct rte_mbuf *mbufs[num];
int i, ret;
unsigned int core_id;
struct pp2_hif *hif;
struct pp2_bpool *bpool;
core_id = rte_lcore_id();
if (core_id == LCORE_ID_ANY)
core_id = rte_get_main_lcore();
hif = mrvl_get_hif(rxq->priv, core_id);
if (!hif)
return -1;
bpool = rxq->priv->bpool;
ret = rte_pktmbuf_alloc_bulk(rxq->mp, mbufs, num);
if (ret)
return ret;
if (cookie_addr_high == MRVL_COOKIE_ADDR_INVALID)
cookie_addr_high =
(uint64_t)mbufs[0] & MRVL_COOKIE_HIGH_ADDR_MASK;
for (i = 0; i < num; i++) {
if (((uint64_t)mbufs[i] & MRVL_COOKIE_HIGH_ADDR_MASK)
!= cookie_addr_high) {
MRVL_LOG(ERR,
"mbuf virtual addr high is out of range "
"0x%x instead of 0x%x\n",
(uint32_t)((uint64_t)mbufs[i] >> 32),
(uint32_t)(cookie_addr_high >> 32));
goto out;
}
entries[i].buff.addr =
rte_mbuf_data_iova_default(mbufs[i]);
entries[i].buff.cookie = (uintptr_t)mbufs[i];
entries[i].bpool = bpool;
}
pp2_bpool_put_buffs(hif, entries, (uint16_t *)&i);
mrvl_port_bpool_size[bpool->pp2_id][bpool->id][core_id] += i;
if (i != num)
goto out;
return 0;
out:
for (; i < num; i++)
rte_pktmbuf_free(mbufs[i]);
return -1;
}
/**
* DPDK callback to configure the receive queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param idx
* RX queue index.
* @param desc
* Number of descriptors to configure in queue.
* @param socket
* NUMA socket on which memory must be allocated.
* @param conf
* Thresholds parameters.
* @param mp
* Memory pool for buffer allocations.
*
* @return
* 0 on success, negative error value otherwise.
*/
static int
mrvl_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc,
unsigned int socket,
const struct rte_eth_rxconf *conf,
struct rte_mempool *mp)
{
struct mrvl_priv *priv = dev->data->dev_private;
struct mrvl_rxq *rxq;
uint32_t frame_size, buf_size = rte_pktmbuf_data_room_size(mp);
uint32_t max_rx_pktlen = dev->data->mtu + RTE_ETHER_HDR_LEN;
int ret, tc, inq;
uint64_t offloads;
offloads = conf->offloads | dev->data->dev_conf.rxmode.offloads;
if (priv->rxq_map[idx].tc == MRVL_UNKNOWN_TC) {
/*
* Unknown TC mapping, mapping will not have a correct queue.
*/
MRVL_LOG(ERR, "Unknown TC mapping for queue %hu eth%hhu",
idx, priv->ppio_id);
return -EFAULT;
}
frame_size = buf_size - RTE_PKTMBUF_HEADROOM - MRVL_PKT_EFFEC_OFFS;
if (frame_size < max_rx_pktlen) {
MRVL_LOG(WARNING,
"Mbuf size must be increased to %u bytes to hold up "
"to %u bytes of data.",
max_rx_pktlen + buf_size - frame_size,
max_rx_pktlen);
dev->data->mtu = frame_size - RTE_ETHER_HDR_LEN;
MRVL_LOG(INFO, "Setting MTU to %u", dev->data->mtu);
}
if (dev->data->rx_queues[idx]) {
rte_free(dev->data->rx_queues[idx]);
dev->data->rx_queues[idx] = NULL;
}
rxq = rte_zmalloc_socket("rxq", sizeof(*rxq), 0, socket);
if (!rxq)
return -ENOMEM;
rxq->priv = priv;
rxq->mp = mp;
rxq->cksum_enabled = offloads & RTE_ETH_RX_OFFLOAD_IPV4_CKSUM;
rxq->queue_id = idx;
rxq->port_id = dev->data->port_id;
mrvl_port_to_bpool_lookup[rxq->port_id] = priv->bpool;
tc = priv->rxq_map[rxq->queue_id].tc,
inq = priv->rxq_map[rxq->queue_id].inq;
priv->ppio_params.inqs_params.tcs_params[tc].inqs_params[inq].size =
desc;
ret = mrvl_fill_bpool(rxq, desc);
if (ret) {
rte_free(rxq);
return ret;
}
priv->bpool_init_size += desc;
dev->data->rx_queues[idx] = rxq;
return 0;
}
/**
* DPDK callback to release the receive queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param qid
* Receive queue index.
*/
static void
mrvl_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
{
struct mrvl_rxq *q = dev->data->rx_queues[qid];
struct pp2_ppio_tc_params *tc_params;
int i, num, tc, inq;
struct pp2_hif *hif;
unsigned int core_id = rte_lcore_id();
if (core_id == LCORE_ID_ANY)
core_id = rte_get_main_lcore();
if (!q)
return;
hif = mrvl_get_hif(q->priv, core_id);
if (!hif)
return;
tc = q->priv->rxq_map[q->queue_id].tc;
inq = q->priv->rxq_map[q->queue_id].inq;
tc_params = &q->priv->ppio_params.inqs_params.tcs_params[tc];
num = tc_params->inqs_params[inq].size;
for (i = 0; i < num; i++) {
struct pp2_buff_inf inf;
uint64_t addr;
pp2_bpool_get_buff(hif, q->priv->bpool, &inf);
addr = cookie_addr_high | inf.cookie;
rte_pktmbuf_free((struct rte_mbuf *)addr);
}
rte_free(q);
}
/**
* DPDK callback to configure the transmit queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param idx
* Transmit queue index.
* @param desc
* Number of descriptors to configure in the queue.
* @param socket
* NUMA socket on which memory must be allocated.
* @param conf
* Tx queue configuration parameters.
*
* @return
* 0 on success, negative error value otherwise.
*/
static int
mrvl_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc,
unsigned int socket,
const struct rte_eth_txconf *conf)
{
struct mrvl_priv *priv = dev->data->dev_private;
struct mrvl_txq *txq;
if (dev->data->tx_queues[idx]) {
rte_free(dev->data->tx_queues[idx]);
dev->data->tx_queues[idx] = NULL;
}
txq = rte_zmalloc_socket("txq", sizeof(*txq), 0, socket);
if (!txq)
return -ENOMEM;
txq->priv = priv;
txq->queue_id = idx;
txq->port_id = dev->data->port_id;
txq->tx_deferred_start = conf->tx_deferred_start;
dev->data->tx_queues[idx] = txq;
priv->ppio_params.outqs_params.outqs_params[idx].size = desc;
return 0;
}
/**
* DPDK callback to release the transmit queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param qid
* Transmit queue index.
*/
static void
mrvl_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
{
struct mrvl_txq *q = dev->data->tx_queues[qid];
if (!q)
return;
rte_free(q);
}
/**
* DPDK callback to get flow control configuration.
*
* @param dev
* Pointer to Ethernet device structure.
* @param fc_conf
* Pointer to the flow control configuration.
*
* @return
* 0 on success, negative error value otherwise.
*/
static int
mrvl_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
{
struct mrvl_priv *priv = dev->data->dev_private;
int ret, en;
if (!priv->ppio) {
memcpy(fc_conf, &priv->fc_conf, sizeof(struct rte_eth_fc_conf));
return 0;
}
fc_conf->autoneg = 1;
ret = pp2_ppio_get_rx_pause(priv->ppio, &en);
if (ret) {
MRVL_LOG(ERR, "Failed to read rx pause state");
return ret;
}
fc_conf->mode = en ? RTE_ETH_FC_RX_PAUSE : RTE_ETH_FC_NONE;
ret = pp2_ppio_get_tx_pause(priv->ppio, &en);
if (ret) {
MRVL_LOG(ERR, "Failed to read tx pause state");
return ret;
}
if (en) {
if (fc_conf->mode == RTE_ETH_FC_NONE)
fc_conf->mode = RTE_ETH_FC_TX_PAUSE;
else
fc_conf->mode = RTE_ETH_FC_FULL;
}
return 0;
}
/**
* DPDK callback to set flow control configuration.
*
* @param dev
* Pointer to Ethernet device structure.
* @param fc_conf
* Pointer to the flow control configuration.
*
* @return
* 0 on success, negative error value otherwise.
*/
static int
mrvl_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
{
struct mrvl_priv *priv = dev->data->dev_private;
struct pp2_ppio_tx_pause_params mrvl_pause_params;
int ret;
int rx_en, tx_en;
if (fc_conf->high_water ||
fc_conf->low_water ||
fc_conf->pause_time ||
fc_conf->mac_ctrl_frame_fwd) {
MRVL_LOG(ERR, "Flowctrl parameter is not supported");
return -EINVAL;
}
if (fc_conf->autoneg == 0) {
MRVL_LOG(ERR, "Flowctrl Autoneg disable is not supported");
return -EINVAL;
}
if (!priv->ppio) {
memcpy(&priv->fc_conf, fc_conf, sizeof(struct rte_eth_fc_conf));
priv->flow_ctrl = 1;
return 0;
}
switch (fc_conf->mode) {
case RTE_ETH_FC_FULL:
rx_en = 1;
tx_en = 1;
break;
case RTE_ETH_FC_TX_PAUSE:
rx_en = 0;
tx_en = 1;
break;
case RTE_ETH_FC_RX_PAUSE:
rx_en = 1;
tx_en = 0;
break;
case RTE_ETH_FC_NONE:
rx_en = 0;
tx_en = 0;
break;
default:
MRVL_LOG(ERR, "Incorrect Flow control flag (%d)",
fc_conf->mode);
return -EINVAL;
}
/* Set RX flow control */
ret = pp2_ppio_set_rx_pause(priv->ppio, rx_en);
if (ret) {
MRVL_LOG(ERR, "Failed to change RX flowctrl");
return ret;
}
/* Set TX flow control */
mrvl_pause_params.en = tx_en;
/* all inqs participate in xon/xoff decision */
mrvl_pause_params.use_tc_pause_inqs = 0;
ret = pp2_ppio_set_tx_pause(priv->ppio, &mrvl_pause_params);
if (ret) {
MRVL_LOG(ERR, "Failed to change TX flowctrl");
return ret;
}
return 0;
}
/**
* Update RSS hash configuration
*
* @param dev
* Pointer to Ethernet device structure.
* @param rss_conf
* Pointer to RSS configuration.
*
* @return
* 0 on success, negative error value otherwise.
*/
static int
mrvl_rss_hash_update(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct mrvl_priv *priv = dev->data->dev_private;
if (priv->isolated)
return -ENOTSUP;
return mrvl_configure_rss(priv, rss_conf);
}
/**
* DPDK callback to get RSS hash configuration.
*
* @param dev
* Pointer to Ethernet device structure.
* @rss_conf
* Pointer to RSS configuration.
*
* @return
* Always 0.
*/
static int
mrvl_rss_hash_conf_get(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct mrvl_priv *priv = dev->data->dev_private;
enum pp2_ppio_hash_type hash_type =
priv->ppio_params.inqs_params.hash_type;
rss_conf->rss_key = NULL;
if (hash_type == PP2_PPIO_HASH_T_NONE)
rss_conf->rss_hf = 0;
else if (hash_type == PP2_PPIO_HASH_T_2_TUPLE)
rss_conf->rss_hf = RTE_ETH_RSS_IPV4;
else if (hash_type == PP2_PPIO_HASH_T_5_TUPLE && priv->rss_hf_tcp)
rss_conf->rss_hf = RTE_ETH_RSS_NONFRAG_IPV4_TCP;
else if (hash_type == PP2_PPIO_HASH_T_5_TUPLE && !priv->rss_hf_tcp)
rss_conf->rss_hf = RTE_ETH_RSS_NONFRAG_IPV4_UDP;
return 0;
}
/**
* DPDK callback to get rte_flow callbacks.
*
* @param dev
* Pointer to the device structure.
* @param ops
* Pointer to pass the flow ops.
*
* @return
* 0 on success, negative error value otherwise.
*/
static int
mrvl_eth_flow_ops_get(struct rte_eth_dev *dev __rte_unused,
const struct rte_flow_ops **ops)
{
*ops = &mrvl_flow_ops;
return 0;
}
/**
* DPDK callback to get rte_mtr callbacks.
*
* @param dev
* Pointer to the device structure.
* @param ops
* Pointer to pass the mtr ops.
*
* @return
* Always 0.
*/
static int
mrvl_mtr_ops_get(struct rte_eth_dev *dev __rte_unused, void *ops)
{
*(const void **)ops = &mrvl_mtr_ops;
return 0;
}
/**
* DPDK callback to get rte_tm callbacks.
*
* @param dev
* Pointer to the device structure.
* @param ops
* Pointer to pass the tm ops.
*
* @return
* Always 0.
*/
static int
mrvl_tm_ops_get(struct rte_eth_dev *dev __rte_unused, void *ops)
{
*(const void **)ops = &mrvl_tm_ops;
return 0;
}
static const struct eth_dev_ops mrvl_ops = {
.dev_configure = mrvl_dev_configure,
.dev_start = mrvl_dev_start,
.dev_stop = mrvl_dev_stop,
.dev_set_link_up = mrvl_dev_set_link_up,
.dev_set_link_down = mrvl_dev_set_link_down,
.dev_close = mrvl_dev_close,
.link_update = mrvl_link_update,
.promiscuous_enable = mrvl_promiscuous_enable,
.allmulticast_enable = mrvl_allmulticast_enable,
.promiscuous_disable = mrvl_promiscuous_disable,
.allmulticast_disable = mrvl_allmulticast_disable,
.mac_addr_remove = mrvl_mac_addr_remove,
.mac_addr_add = mrvl_mac_addr_add,
.mac_addr_set = mrvl_mac_addr_set,
.mtu_set = mrvl_mtu_set,
.stats_get = mrvl_stats_get,
.stats_reset = mrvl_stats_reset,
.xstats_get = mrvl_xstats_get,
.xstats_reset = mrvl_xstats_reset,
.xstats_get_names = mrvl_xstats_get_names,
.dev_infos_get = mrvl_dev_infos_get,
.dev_supported_ptypes_get = mrvl_dev_supported_ptypes_get,
.rxq_info_get = mrvl_rxq_info_get,
.txq_info_get = mrvl_txq_info_get,
.vlan_filter_set = mrvl_vlan_filter_set,
.vlan_offload_set = mrvl_vlan_offload_set,
.tx_queue_start = mrvl_tx_queue_start,
.tx_queue_stop = mrvl_tx_queue_stop,
.rx_queue_setup = mrvl_rx_queue_setup,
.rx_queue_release = mrvl_rx_queue_release,
.tx_queue_setup = mrvl_tx_queue_setup,
.tx_queue_release = mrvl_tx_queue_release,
.flow_ctrl_get = mrvl_flow_ctrl_get,
.flow_ctrl_set = mrvl_flow_ctrl_set,
.rss_hash_update = mrvl_rss_hash_update,
.rss_hash_conf_get = mrvl_rss_hash_conf_get,
.flow_ops_get = mrvl_eth_flow_ops_get,
.mtr_ops_get = mrvl_mtr_ops_get,
.tm_ops_get = mrvl_tm_ops_get,
};
/**
* Return packet type information and l3/l4 offsets.
*
* @param desc
* Pointer to the received packet descriptor.
* @param l3_offset
* l3 packet offset.
* @param l4_offset
* l4 packet offset.
*
* @return
* Packet type information.
*/
static inline uint64_t
mrvl_desc_to_packet_type_and_offset(struct pp2_ppio_desc *desc,
uint8_t *l3_offset, uint8_t *l4_offset)
{
enum pp2_inq_l3_type l3_type;
enum pp2_inq_l4_type l4_type;
enum pp2_inq_vlan_tag vlan_tag;
uint64_t packet_type;
pp2_ppio_inq_desc_get_l3_info(desc, &l3_type, l3_offset);
pp2_ppio_inq_desc_get_l4_info(desc, &l4_type, l4_offset);
pp2_ppio_inq_desc_get_vlan_tag(desc, &vlan_tag);
packet_type = RTE_PTYPE_L2_ETHER;
switch (vlan_tag) {
case PP2_INQ_VLAN_TAG_SINGLE:
packet_type |= RTE_PTYPE_L2_ETHER_VLAN;
break;
case PP2_INQ_VLAN_TAG_DOUBLE:
case PP2_INQ_VLAN_TAG_TRIPLE:
packet_type |= RTE_PTYPE_L2_ETHER_QINQ;
break;
default:
break;
}
switch (l3_type) {
case PP2_INQ_L3_TYPE_IPV4_NO_OPTS:
packet_type |= RTE_PTYPE_L3_IPV4;
break;
case PP2_INQ_L3_TYPE_IPV4_OK:
packet_type |= RTE_PTYPE_L3_IPV4_EXT;
break;
case PP2_INQ_L3_TYPE_IPV4_TTL_ZERO:
packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
break;
case PP2_INQ_L3_TYPE_IPV6_NO_EXT:
packet_type |= RTE_PTYPE_L3_IPV6;
break;
case PP2_INQ_L3_TYPE_IPV6_EXT:
packet_type |= RTE_PTYPE_L3_IPV6_EXT;
break;
case PP2_INQ_L3_TYPE_ARP:
packet_type |= RTE_PTYPE_L2_ETHER_ARP;
/*
* In case of ARP l4_offset is set to wrong value.
* Set it to proper one so that later on mbuf->l3_len can be
* calculated subtracting l4_offset and l3_offset.
*/
*l4_offset = *l3_offset + MRVL_ARP_LENGTH;
break;
default:
break;
}
switch (l4_type) {
case PP2_INQ_L4_TYPE_TCP:
packet_type |= RTE_PTYPE_L4_TCP;
break;
case PP2_INQ_L4_TYPE_UDP:
packet_type |= RTE_PTYPE_L4_UDP;
break;
default:
break;
}
return packet_type;
}
/**
* Get offload information from the received packet descriptor.
*
* @param desc
* Pointer to the received packet descriptor.
*
* @return
* Mbuf offload flags.
*/
static inline uint64_t
mrvl_desc_to_ol_flags(struct pp2_ppio_desc *desc, uint64_t packet_type)
{
uint64_t flags = 0;
enum pp2_inq_desc_status status;
if (RTE_ETH_IS_IPV4_HDR(packet_type)) {
status = pp2_ppio_inq_desc_get_l3_pkt_error(desc);
if (unlikely(status != PP2_DESC_ERR_OK))
flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
else
flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
}
if (((packet_type & RTE_PTYPE_L4_UDP) == RTE_PTYPE_L4_UDP) ||
((packet_type & RTE_PTYPE_L4_TCP) == RTE_PTYPE_L4_TCP)) {
status = pp2_ppio_inq_desc_get_l4_pkt_error(desc);
if (unlikely(status != PP2_DESC_ERR_OK))
flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
else
flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
}
return flags;
}
/**
* DPDK callback for receive.
*
* @param rxq
* Generic pointer to the receive queue.
* @param rx_pkts
* Array to store received packets.
* @param nb_pkts
* Maximum number of packets in array.
*
* @return
* Number of packets successfully received.
*/
static uint16_t
mrvl_rx_pkt_burst(void *rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
struct mrvl_rxq *q = rxq;
struct pp2_ppio_desc descs[nb_pkts];
struct pp2_bpool *bpool;
int i, ret, rx_done = 0;
int num;
struct pp2_hif *hif;
unsigned int core_id = rte_lcore_id();
hif = mrvl_get_hif(q->priv, core_id);
if (unlikely(!q->priv->ppio || !hif))
return 0;
bpool = q->priv->bpool;
ret = pp2_ppio_recv(q->priv->ppio, q->priv->rxq_map[q->queue_id].tc,
q->priv->rxq_map[q->queue_id].inq, descs, &nb_pkts);
if (unlikely(ret < 0))
return 0;
mrvl_port_bpool_size[bpool->pp2_id][bpool->id][core_id] -= nb_pkts;
for (i = 0; i < nb_pkts; i++) {
struct rte_mbuf *mbuf;
uint8_t l3_offset, l4_offset;
enum pp2_inq_desc_status status;
uint64_t addr;
if (likely(nb_pkts - i > MRVL_MUSDK_PREFETCH_SHIFT)) {
struct pp2_ppio_desc *pref_desc;
u64 pref_addr;
pref_desc = &descs[i + MRVL_MUSDK_PREFETCH_SHIFT];
pref_addr = cookie_addr_high |
pp2_ppio_inq_desc_get_cookie(pref_desc);
rte_mbuf_prefetch_part1((struct rte_mbuf *)(pref_addr));
rte_mbuf_prefetch_part2((struct rte_mbuf *)(pref_addr));
}
addr = cookie_addr_high |
pp2_ppio_inq_desc_get_cookie(&descs[i]);
mbuf = (struct rte_mbuf *)addr;
rte_pktmbuf_reset(mbuf);
/* drop packet in case of mac, overrun or resource error */
status = pp2_ppio_inq_desc_get_l2_pkt_error(&descs[i]);
if ((unlikely(status != PP2_DESC_ERR_OK)) &&
!(q->priv->forward_bad_frames)) {
struct pp2_buff_inf binf = {
.addr = rte_mbuf_data_iova_default(mbuf),
.cookie = (uint64_t)mbuf,
};
pp2_bpool_put_buff(hif, bpool, &binf);
mrvl_port_bpool_size
[bpool->pp2_id][bpool->id][core_id]++;
q->drop_mac++;
continue;
}
mbuf->data_off += MRVL_PKT_EFFEC_OFFS;
mbuf->pkt_len = pp2_ppio_inq_desc_get_pkt_len(&descs[i]);
mbuf->data_len = mbuf->pkt_len;
mbuf->port = q->port_id;
mbuf->packet_type =
mrvl_desc_to_packet_type_and_offset(&descs[i],
&l3_offset,
&l4_offset);
mbuf->l2_len = l3_offset;
mbuf->l3_len = l4_offset - l3_offset;
if (likely(q->cksum_enabled))
mbuf->ol_flags =
mrvl_desc_to_ol_flags(&descs[i],
mbuf->packet_type);
rx_pkts[rx_done++] = mbuf;
q->bytes_recv += mbuf->pkt_len;
}
if (rte_spinlock_trylock(&q->priv->lock) == 1) {
num = mrvl_get_bpool_size(bpool->pp2_id, bpool->id);
if (unlikely(num <= q->priv->bpool_min_size ||
(!rx_done && num < q->priv->bpool_init_size))) {
mrvl_fill_bpool(q, q->priv->fill_bpool_buffs);
} else if (unlikely(num > q->priv->bpool_max_size)) {
int i;
int pkt_to_remove = num - q->priv->bpool_init_size;
struct rte_mbuf *mbuf;
struct pp2_buff_inf buff;
for (i = 0; i < pkt_to_remove; i++) {
ret = pp2_bpool_get_buff(hif, bpool, &buff);
if (ret)
break;
mbuf = (struct rte_mbuf *)
(cookie_addr_high | buff.cookie);
rte_pktmbuf_free(mbuf);
}
mrvl_port_bpool_size
[bpool->pp2_id][bpool->id][core_id] -= i;
}
rte_spinlock_unlock(&q->priv->lock);
}
return rx_done;
}
/**
* Prepare offload information.
*
* @param ol_flags
* Offload flags.
* @param l3_type
* Pointer to the pp2_ouq_l3_type structure.
* @param l4_type
* Pointer to the pp2_outq_l4_type structure.
* @param gen_l3_cksum
* Will be set to 1 in case l3 checksum is computed.
* @param l4_cksum
* Will be set to 1 in case l4 checksum is computed.
*/
static inline void
mrvl_prepare_proto_info(uint64_t ol_flags,
enum pp2_outq_l3_type *l3_type,
enum pp2_outq_l4_type *l4_type,
int *gen_l3_cksum,
int *gen_l4_cksum)
{
/*
* Based on ol_flags prepare information
* for pp2_ppio_outq_desc_set_proto_info() which setups descriptor
* for offloading.
* in most of the checksum cases ipv4 must be set, so this is the
* default value
*/
*l3_type = PP2_OUTQ_L3_TYPE_IPV4;
*gen_l3_cksum = ol_flags & RTE_MBUF_F_TX_IP_CKSUM ? 1 : 0;
if (ol_flags & RTE_MBUF_F_TX_IPV6) {
*l3_type = PP2_OUTQ_L3_TYPE_IPV6;
/* no checksum for ipv6 header */
*gen_l3_cksum = 0;
}
if ((ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM) {
*l4_type = PP2_OUTQ_L4_TYPE_TCP;
*gen_l4_cksum = 1;
} else if ((ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_UDP_CKSUM) {
*l4_type = PP2_OUTQ_L4_TYPE_UDP;
*gen_l4_cksum = 1;
} else {
*l4_type = PP2_OUTQ_L4_TYPE_OTHER;
/* no checksum for other type */
*gen_l4_cksum = 0;
}
}
/**
* Release already sent buffers to bpool (buffer-pool).
*
* @param ppio
* Pointer to the port structure.
* @param hif
* Pointer to the MUSDK hardware interface.
* @param sq
* Pointer to the shadow queue.
* @param qid
* Queue id number.
* @param force
* Force releasing packets.
*/
static inline void
mrvl_free_sent_buffers(struct pp2_ppio *ppio, struct pp2_hif *hif,
unsigned int core_id, struct mrvl_shadow_txq *sq,
int qid, int force)
{
struct buff_release_entry *entry;
uint16_t nb_done = 0, num = 0, skip_bufs = 0;
int i;
pp2_ppio_get_num_outq_done(ppio, hif, qid, &nb_done);
sq->num_to_release += nb_done;
if (likely(!force &&
sq->num_to_release < MRVL_PP2_BUF_RELEASE_BURST_SIZE))
return;
nb_done = sq->num_to_release;
sq->num_to_release = 0;
for (i = 0; i < nb_done; i++) {
entry = &sq->ent[sq->tail + num];
if (unlikely(!entry->buff.addr)) {
MRVL_LOG(ERR,
"Shadow memory @%d: cookie(%lx), pa(%lx)!",
sq->tail, (u64)entry->buff.cookie,
(u64)entry->buff.addr);
skip_bufs = 1;
goto skip;
}
if (unlikely(!entry->bpool)) {
struct rte_mbuf *mbuf;
mbuf = (struct rte_mbuf *)entry->buff.cookie;
rte_pktmbuf_free(mbuf);
skip_bufs = 1;
goto skip;
}
mrvl_port_bpool_size
[entry->bpool->pp2_id][entry->bpool->id][core_id]++;
num++;
if (unlikely(sq->tail + num == MRVL_PP2_TX_SHADOWQ_SIZE))
goto skip;
continue;
skip:
if (likely(num))
pp2_bpool_put_buffs(hif, &sq->ent[sq->tail], &num);
num += skip_bufs;
sq->tail = (sq->tail + num) & MRVL_PP2_TX_SHADOWQ_MASK;
sq->size -= num;
num = 0;
skip_bufs = 0;
}
if (likely(num)) {
pp2_bpool_put_buffs(hif, &sq->ent[sq->tail], &num);
sq->tail = (sq->tail + num) & MRVL_PP2_TX_SHADOWQ_MASK;
sq->size -= num;
}
}
/**
* DPDK callback for transmit.
*
* @param txq
* Generic pointer transmit queue.
* @param tx_pkts
* Packets to transmit.
* @param nb_pkts
* Number of packets in array.
*
* @return
* Number of packets successfully transmitted.
*/
static uint16_t
mrvl_tx_pkt_burst(void *txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
struct mrvl_txq *q = txq;
struct mrvl_shadow_txq *sq;
struct pp2_hif *hif;
struct pp2_ppio_desc descs[nb_pkts];
unsigned int core_id = rte_lcore_id();
int i, bytes_sent = 0;
uint16_t num, sq_free_size;
uint64_t addr;
hif = mrvl_get_hif(q->priv, core_id);
sq = &q->shadow_txqs[core_id];
if (unlikely(!q->priv->ppio || !hif))
return 0;
if (sq->size)
mrvl_free_sent_buffers(q->priv->ppio, hif, core_id,
sq, q->queue_id, 0);
sq_free_size = MRVL_PP2_TX_SHADOWQ_SIZE - sq->size - 1;
if (unlikely(nb_pkts > sq_free_size))
nb_pkts = sq_free_size;
for (i = 0; i < nb_pkts; i++) {
struct rte_mbuf *mbuf = tx_pkts[i];
int gen_l3_cksum, gen_l4_cksum;
enum pp2_outq_l3_type l3_type;
enum pp2_outq_l4_type l4_type;
if (likely(nb_pkts - i > MRVL_MUSDK_PREFETCH_SHIFT)) {
struct rte_mbuf *pref_pkt_hdr;
pref_pkt_hdr = tx_pkts[i + MRVL_MUSDK_PREFETCH_SHIFT];
rte_mbuf_prefetch_part1(pref_pkt_hdr);
rte_mbuf_prefetch_part2(pref_pkt_hdr);
}
mrvl_fill_shadowq(sq, mbuf);
mrvl_fill_desc(&descs[i], mbuf);
bytes_sent += rte_pktmbuf_pkt_len(mbuf);
/*
* in case unsupported ol_flags were passed
* do not update descriptor offload information
*/
if (!(mbuf->ol_flags & MRVL_TX_PKT_OFFLOADS))
continue;
mrvl_prepare_proto_info(mbuf->ol_flags, &l3_type, &l4_type,
&gen_l3_cksum, &gen_l4_cksum);
pp2_ppio_outq_desc_set_proto_info(&descs[i], l3_type, l4_type,
mbuf->l2_len,
mbuf->l2_len + mbuf->l3_len,
gen_l3_cksum, gen_l4_cksum);
}
num = nb_pkts;
pp2_ppio_send(q->priv->ppio, hif, q->queue_id, descs, &nb_pkts);
/* number of packets that were not sent */
if (unlikely(num > nb_pkts)) {
for (i = nb_pkts; i < num; i++) {
sq->head = (MRVL_PP2_TX_SHADOWQ_SIZE + sq->head - 1) &
MRVL_PP2_TX_SHADOWQ_MASK;
addr = sq->ent[sq->head].buff.cookie;
bytes_sent -=
rte_pktmbuf_pkt_len((struct rte_mbuf *)addr);
}
sq->size -= num - nb_pkts;
}
q->bytes_sent += bytes_sent;
return nb_pkts;
}
/** DPDK callback for S/G transmit.
*
* @param txq
* Generic pointer transmit queue.
* @param tx_pkts
* Packets to transmit.
* @param nb_pkts
* Number of packets in array.
*
* @return
* Number of packets successfully transmitted.
*/
static uint16_t
mrvl_tx_sg_pkt_burst(void *txq, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct mrvl_txq *q = txq;
struct mrvl_shadow_txq *sq;
struct pp2_hif *hif;
struct pp2_ppio_desc descs[nb_pkts * PP2_PPIO_DESC_NUM_FRAGS];
struct pp2_ppio_sg_pkts pkts;
uint8_t frags[nb_pkts];
unsigned int core_id = rte_lcore_id();
int i, j, bytes_sent = 0;
int tail, tail_first;
uint16_t num, sq_free_size;
uint16_t nb_segs, total_descs = 0;
uint64_t addr;
hif = mrvl_get_hif(q->priv, core_id);
sq = &q->shadow_txqs[core_id];
pkts.frags = frags;
pkts.num = 0;
if (unlikely(!q->priv->ppio || !hif))
return 0;
if (sq->size)
mrvl_free_sent_buffers(q->priv->ppio, hif, core_id,
sq, q->queue_id, 0);
/* Save shadow queue free size */
sq_free_size = MRVL_PP2_TX_SHADOWQ_SIZE - sq->size - 1;
tail = 0;
for (i = 0; i < nb_pkts; i++) {
struct rte_mbuf *mbuf = tx_pkts[i];
struct rte_mbuf *seg = NULL;
int gen_l3_cksum, gen_l4_cksum;
enum pp2_outq_l3_type l3_type;
enum pp2_outq_l4_type l4_type;
nb_segs = mbuf->nb_segs;
tail_first = tail;
total_descs += nb_segs;
/*
* Check if total_descs does not exceed
* shadow queue free size
*/
if (unlikely(total_descs > sq_free_size)) {
total_descs -= nb_segs;
break;
}
/* Check if nb_segs does not exceed the max nb of desc per
* fragmented packet
*/
if (nb_segs > PP2_PPIO_DESC_NUM_FRAGS) {
total_descs -= nb_segs;
RTE_LOG(ERR, PMD,
"Too many segments. Packet won't be sent.\n");
break;
}
if (likely(nb_pkts - i > MRVL_MUSDK_PREFETCH_SHIFT)) {
struct rte_mbuf *pref_pkt_hdr;
pref_pkt_hdr = tx_pkts[i + MRVL_MUSDK_PREFETCH_SHIFT];
rte_mbuf_prefetch_part1(pref_pkt_hdr);
rte_mbuf_prefetch_part2(pref_pkt_hdr);
}
pkts.frags[pkts.num] = nb_segs;
pkts.num++;
seg = mbuf;
for (j = 0; j < nb_segs - 1; j++) {
/* For the subsequent segments, set shadow queue
* buffer to NULL
*/
mrvl_fill_shadowq(sq, NULL);
mrvl_fill_desc(&descs[tail], seg);
tail++;
seg = seg->next;
}
/* Put first mbuf info in last shadow queue entry */
mrvl_fill_shadowq(sq, mbuf);
/* Update descriptor with last segment */
mrvl_fill_desc(&descs[tail++], seg);
bytes_sent += rte_pktmbuf_pkt_len(mbuf);
/* In case unsupported ol_flags were passed
* do not update descriptor offload information
*/
if (!(mbuf->ol_flags & MRVL_TX_PKT_OFFLOADS))
continue;
mrvl_prepare_proto_info(mbuf->ol_flags, &l3_type, &l4_type,
&gen_l3_cksum, &gen_l4_cksum);
pp2_ppio_outq_desc_set_proto_info(&descs[tail_first], l3_type,
l4_type, mbuf->l2_len,
mbuf->l2_len + mbuf->l3_len,
gen_l3_cksum, gen_l4_cksum);
}
num = total_descs;
pp2_ppio_send_sg(q->priv->ppio, hif, q->queue_id, descs,
&total_descs, &pkts);
/* number of packets that were not sent */
if (unlikely(num > total_descs)) {
for (i = total_descs; i < num; i++) {
sq->head = (MRVL_PP2_TX_SHADOWQ_SIZE + sq->head - 1) &
MRVL_PP2_TX_SHADOWQ_MASK;
addr = sq->ent[sq->head].buff.cookie;
if (addr)
bytes_sent -=
rte_pktmbuf_pkt_len((struct rte_mbuf *)
(cookie_addr_high | addr));
}
sq->size -= num - total_descs;
nb_pkts = pkts.num;
}
q->bytes_sent += bytes_sent;
return nb_pkts;
}
/**
* Create private device structure.
*
* @param dev_name
* Pointer to the port name passed in the initialization parameters.
*
* @return
* Pointer to the newly allocated private device structure.
*/
static struct mrvl_priv *
mrvl_priv_create(const char *dev_name)
{
struct pp2_bpool_params bpool_params;
char match[MRVL_MATCH_LEN];
struct mrvl_priv *priv;
uint16_t max_frame_size;
int ret, bpool_bit;
priv = rte_zmalloc_socket(dev_name, sizeof(*priv), 0, rte_socket_id());
if (!priv)
return NULL;
ret = pp2_netdev_get_ppio_info((char *)(uintptr_t)dev_name,
&priv->pp_id, &priv->ppio_id);
if (ret)
goto out_free_priv;
ret = pp2_ppio_get_l4_cksum_max_frame_size(priv->pp_id, priv->ppio_id,
&max_frame_size);
if (ret)
goto out_free_priv;
priv->max_mtu = max_frame_size + RTE_ETHER_CRC_LEN -
MRVL_PP2_ETH_HDRS_LEN;
bpool_bit = mrvl_reserve_bit(&used_bpools[priv->pp_id],
PP2_BPOOL_NUM_POOLS);
if (bpool_bit < 0)
goto out_free_priv;
priv->bpool_bit = bpool_bit;
snprintf(match, sizeof(match), "pool-%d:%d", priv->pp_id,
priv->bpool_bit);
memset(&bpool_params, 0, sizeof(bpool_params));
bpool_params.match = match;
bpool_params.buff_len = MRVL_PKT_SIZE_MAX + MRVL_PKT_EFFEC_OFFS;
ret = pp2_bpool_init(&bpool_params, &priv->bpool);
if (ret)
goto out_clear_bpool_bit;
priv->ppio_params.type = PP2_PPIO_T_NIC;
rte_spinlock_init(&priv->lock);
return priv;
out_clear_bpool_bit:
used_bpools[priv->pp_id] &= ~(1 << priv->bpool_bit);
out_free_priv:
rte_free(priv);
return NULL;
}
/**
* Create device representing Ethernet port.
*
* @param name
* Pointer to the port's name.
*
* @return
* 0 on success, negative error value otherwise.
*/
static int
mrvl_eth_dev_create(struct rte_vdev_device *vdev, const char *name)
{
int ret, fd = socket(AF_INET, SOCK_DGRAM, 0);
struct rte_eth_dev *eth_dev;
struct mrvl_priv *priv;
struct ifreq req;
eth_dev = rte_eth_dev_allocate(name);
if (!eth_dev)
return -ENOMEM;
priv = mrvl_priv_create(name);
if (!priv) {
ret = -ENOMEM;
goto out_free;
}
eth_dev->data->dev_private = priv;
eth_dev->data->mac_addrs =
rte_zmalloc("mac_addrs",
RTE_ETHER_ADDR_LEN * MRVL_MAC_ADDRS_MAX, 0);
if (!eth_dev->data->mac_addrs) {
MRVL_LOG(ERR, "Failed to allocate space for eth addrs");
ret = -ENOMEM;
goto out_free;
}
memset(&req, 0, sizeof(req));
strcpy(req.ifr_name, name);
ret = ioctl(fd, SIOCGIFHWADDR, &req);
if (ret)
goto out_free;
memcpy(eth_dev->data->mac_addrs[0].addr_bytes,
req.ifr_addr.sa_data, RTE_ETHER_ADDR_LEN);
eth_dev->device = &vdev->device;
eth_dev->rx_pkt_burst = mrvl_rx_pkt_burst;
mrvl_set_tx_function(eth_dev);
eth_dev->dev_ops = &mrvl_ops;
eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
eth_dev->data->dev_link.link_status = RTE_ETH_LINK_UP;
rte_eth_dev_probing_finish(eth_dev);
return 0;
out_free:
rte_eth_dev_release_port(eth_dev);
return ret;
}
/**
* Callback used by rte_kvargs_process() during argument parsing.
*
* @param key
* Pointer to the parsed key (unused).
* @param value
* Pointer to the parsed value.
* @param extra_args
* Pointer to the extra arguments which contains address of the
* table of pointers to parsed interface names.
*
* @return
* Always 0.
*/
static int
mrvl_get_ifnames(const char *key __rte_unused, const char *value,
void *extra_args)
{
struct mrvl_ifnames *ifnames = extra_args;
ifnames->names[ifnames->idx++] = value;
return 0;
}
/**
* DPDK callback to register the virtual device.
*
* @param vdev
* Pointer to the virtual device.
*
* @return
* 0 on success, negative error value otherwise.
*/
static int
rte_pmd_mrvl_probe(struct rte_vdev_device *vdev)
{
struct rte_kvargs *kvlist;
struct mrvl_ifnames ifnames;
int ret = -EINVAL;
uint32_t i, ifnum, cfgnum;
const char *params;
params = rte_vdev_device_args(vdev);
if (!params)
return -EINVAL;
kvlist = rte_kvargs_parse(params, valid_args);
if (!kvlist)
return -EINVAL;
ifnum = rte_kvargs_count(kvlist, MRVL_IFACE_NAME_ARG);
if (ifnum > RTE_DIM(ifnames.names))
goto out_free_kvlist;
ifnames.idx = 0;
rte_kvargs_process(kvlist, MRVL_IFACE_NAME_ARG,
mrvl_get_ifnames, &ifnames);
/*
* The below system initialization should be done only once,
* on the first provided configuration file
*/
if (!mrvl_cfg) {
cfgnum = rte_kvargs_count(kvlist, MRVL_CFG_ARG);
MRVL_LOG(INFO, "Parsing config file!");
if (cfgnum > 1) {
MRVL_LOG(ERR, "Cannot handle more than one config file!");
goto out_free_kvlist;
} else if (cfgnum == 1) {
rte_kvargs_process(kvlist, MRVL_CFG_ARG,
mrvl_get_cfg, &mrvl_cfg);
}
}
if (mrvl_dev_num)
goto init_devices;
MRVL_LOG(INFO, "Perform MUSDK initializations");
ret = rte_mvep_init(MVEP_MOD_T_PP2, kvlist);
if (ret)
goto out_free_kvlist;
ret = mrvl_init_pp2();
if (ret) {
MRVL_LOG(ERR, "Failed to init PP!");
rte_mvep_deinit(MVEP_MOD_T_PP2);
goto out_free_kvlist;
}
memset(mrvl_port_bpool_size, 0, sizeof(mrvl_port_bpool_size));
memset(mrvl_port_to_bpool_lookup, 0, sizeof(mrvl_port_to_bpool_lookup));
mrvl_lcore_first = RTE_MAX_LCORE;
mrvl_lcore_last = 0;
init_devices:
for (i = 0; i < ifnum; i++) {
MRVL_LOG(INFO, "Creating %s", ifnames.names[i]);
ret = mrvl_eth_dev_create(vdev, ifnames.names[i]);
if (ret)
goto out_cleanup;
mrvl_dev_num++;
}
rte_kvargs_free(kvlist);
return 0;
out_cleanup:
rte_pmd_mrvl_remove(vdev);
out_free_kvlist:
rte_kvargs_free(kvlist);
return ret;
}
/**
* DPDK callback to remove virtual device.
*
* @param vdev
* Pointer to the removed virtual device.
*
* @return
* 0 on success, negative error value otherwise.
*/
static int
rte_pmd_mrvl_remove(struct rte_vdev_device *vdev)
{
uint16_t port_id;
int ret = 0;
RTE_ETH_FOREACH_DEV(port_id) {
if (rte_eth_devices[port_id].device != &vdev->device)
continue;
ret |= rte_eth_dev_close(port_id);
}
return ret == 0 ? 0 : -EIO;
}
static struct rte_vdev_driver pmd_mrvl_drv = {
.probe = rte_pmd_mrvl_probe,
.remove = rte_pmd_mrvl_remove,
};
RTE_PMD_REGISTER_VDEV(net_mvpp2, pmd_mrvl_drv);
RTE_PMD_REGISTER_ALIAS(net_mvpp2, eth_mvpp2);
RTE_LOG_REGISTER_DEFAULT(mrvl_logtype, NOTICE);