numam-dpdk/drivers/net/netvsc/hn_ethdev.c
David Marchand 1acb7f5474 dev: hide driver object
Make rte_driver opaque for non internal users.
This will make extending this object possible without breaking the ABI.

Introduce a new driver header and move rte_driver definition.
Update drivers and library to use the internal header.

Some applications may have been dereferencing rte_driver objects, mark
this object's accessors as stable.

Signed-off-by: David Marchand <david.marchand@redhat.com>
Acked-by: Bruce Richardson <bruce.richardson@intel.com>
Acked-by: Jay Jayatheerthan <jay.jayatheerthan@intel.com>
Acked-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
Acked-by: Akhil Goyal <gakhil@marvell.com>
Acked-by: Abhinandan Gujjar <abhinandan.gujjar@intel.com>
2022-09-23 16:14:34 +02:00

1355 lines
33 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2016-2018 Microsoft Corporation
* Copyright(c) 2013-2016 Brocade Communications Systems, Inc.
* All rights reserved.
*/
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include <unistd.h>
#include <dirent.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <netinet/in.h>
#include <sys/ioctl.h>
#include <rte_ethdev.h>
#include <rte_memcpy.h>
#include <rte_string_fns.h>
#include <rte_memzone.h>
#include <rte_devargs.h>
#include <rte_malloc.h>
#include <rte_kvargs.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_ether.h>
#include <ethdev_driver.h>
#include <rte_cycles.h>
#include <rte_errno.h>
#include <rte_memory.h>
#include <rte_eal.h>
#include <dev_driver.h>
#include <bus_driver.h>
#include <bus_vmbus_driver.h>
#include <rte_alarm.h>
#include "hn_logs.h"
#include "hn_var.h"
#include "hn_rndis.h"
#include "hn_nvs.h"
#include "ndis.h"
#define HN_TX_OFFLOAD_CAPS (RTE_ETH_TX_OFFLOAD_IPV4_CKSUM | \
RTE_ETH_TX_OFFLOAD_TCP_CKSUM | \
RTE_ETH_TX_OFFLOAD_UDP_CKSUM | \
RTE_ETH_TX_OFFLOAD_TCP_TSO | \
RTE_ETH_TX_OFFLOAD_MULTI_SEGS | \
RTE_ETH_TX_OFFLOAD_VLAN_INSERT)
#define HN_RX_OFFLOAD_CAPS (RTE_ETH_RX_OFFLOAD_CHECKSUM | \
RTE_ETH_RX_OFFLOAD_VLAN_STRIP | \
RTE_ETH_RX_OFFLOAD_RSS_HASH)
#define NETVSC_ARG_LATENCY "latency"
#define NETVSC_ARG_RXBREAK "rx_copybreak"
#define NETVSC_ARG_TXBREAK "tx_copybreak"
#define NETVSC_ARG_RX_EXTMBUF_ENABLE "rx_extmbuf_enable"
/* The max number of retry when hot adding a VF device */
#define NETVSC_MAX_HOTADD_RETRY 10
struct hn_xstats_name_off {
char name[RTE_ETH_XSTATS_NAME_SIZE];
unsigned int offset;
};
static const struct hn_xstats_name_off hn_stat_strings[] = {
{ "good_packets", offsetof(struct hn_stats, packets) },
{ "good_bytes", offsetof(struct hn_stats, bytes) },
{ "errors", offsetof(struct hn_stats, errors) },
{ "ring full", offsetof(struct hn_stats, ring_full) },
{ "channel full", offsetof(struct hn_stats, channel_full) },
{ "multicast_packets", offsetof(struct hn_stats, multicast) },
{ "broadcast_packets", offsetof(struct hn_stats, broadcast) },
{ "undersize_packets", offsetof(struct hn_stats, size_bins[0]) },
{ "size_64_packets", offsetof(struct hn_stats, size_bins[1]) },
{ "size_65_127_packets", offsetof(struct hn_stats, size_bins[2]) },
{ "size_128_255_packets", offsetof(struct hn_stats, size_bins[3]) },
{ "size_256_511_packets", offsetof(struct hn_stats, size_bins[4]) },
{ "size_512_1023_packets", offsetof(struct hn_stats, size_bins[5]) },
{ "size_1024_1518_packets", offsetof(struct hn_stats, size_bins[6]) },
{ "size_1519_max_packets", offsetof(struct hn_stats, size_bins[7]) },
};
/* The default RSS key.
* This value is the same as MLX5 so that flows will be
* received on same path for both VF and synthetic NIC.
*/
static const uint8_t rss_default_key[NDIS_HASH_KEYSIZE_TOEPLITZ] = {
0x2c, 0xc6, 0x81, 0xd1, 0x5b, 0xdb, 0xf4, 0xf7,
0xfc, 0xa2, 0x83, 0x19, 0xdb, 0x1a, 0x3e, 0x94,
0x6b, 0x9e, 0x38, 0xd9, 0x2c, 0x9c, 0x03, 0xd1,
0xad, 0x99, 0x44, 0xa7, 0xd9, 0x56, 0x3d, 0x59,
0x06, 0x3c, 0x25, 0xf3, 0xfc, 0x1f, 0xdc, 0x2a,
};
static struct rte_eth_dev *
eth_dev_vmbus_allocate(struct rte_vmbus_device *dev, size_t private_data_size)
{
struct rte_eth_dev *eth_dev;
const char *name;
if (!dev)
return NULL;
name = dev->device.name;
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
eth_dev = rte_eth_dev_allocate(name);
if (!eth_dev) {
PMD_DRV_LOG(NOTICE, "can not allocate rte ethdev");
return NULL;
}
if (private_data_size) {
eth_dev->data->dev_private =
rte_zmalloc_socket(name, private_data_size,
RTE_CACHE_LINE_SIZE, dev->device.numa_node);
if (!eth_dev->data->dev_private) {
PMD_DRV_LOG(NOTICE, "can not allocate driver data");
rte_eth_dev_release_port(eth_dev);
return NULL;
}
}
} else {
eth_dev = rte_eth_dev_attach_secondary(name);
if (!eth_dev) {
PMD_DRV_LOG(NOTICE, "can not attach secondary");
return NULL;
}
}
eth_dev->device = &dev->device;
/* interrupt is simulated */
rte_intr_type_set(dev->intr_handle, RTE_INTR_HANDLE_EXT);
eth_dev->data->dev_flags |= RTE_ETH_DEV_INTR_LSC;
eth_dev->intr_handle = dev->intr_handle;
return eth_dev;
}
static void
eth_dev_vmbus_release(struct rte_eth_dev *eth_dev)
{
/* free ether device */
rte_eth_dev_release_port(eth_dev);
eth_dev->device = NULL;
eth_dev->intr_handle = NULL;
}
static int hn_set_parameter(const char *key, const char *value, void *opaque)
{
struct hn_data *hv = opaque;
char *endp = NULL;
unsigned long v;
v = strtoul(value, &endp, 0);
if (*value == '\0' || *endp != '\0') {
PMD_DRV_LOG(ERR, "invalid parameter %s=%s", key, value);
return -EINVAL;
}
if (!strcmp(key, NETVSC_ARG_LATENCY)) {
/* usec to nsec */
hv->latency = v * 1000;
PMD_DRV_LOG(DEBUG, "set latency %u usec", hv->latency);
} else if (!strcmp(key, NETVSC_ARG_RXBREAK)) {
hv->rx_copybreak = v;
PMD_DRV_LOG(DEBUG, "rx copy break set to %u",
hv->rx_copybreak);
} else if (!strcmp(key, NETVSC_ARG_TXBREAK)) {
hv->tx_copybreak = v;
PMD_DRV_LOG(DEBUG, "tx copy break set to %u",
hv->tx_copybreak);
} else if (!strcmp(key, NETVSC_ARG_RX_EXTMBUF_ENABLE)) {
hv->rx_extmbuf_enable = v;
PMD_DRV_LOG(DEBUG, "rx extmbuf enable set to %u",
hv->rx_extmbuf_enable);
}
return 0;
}
/* Parse device arguments */
static int hn_parse_args(const struct rte_eth_dev *dev)
{
struct hn_data *hv = dev->data->dev_private;
struct rte_devargs *devargs = dev->device->devargs;
static const char * const valid_keys[] = {
NETVSC_ARG_LATENCY,
NETVSC_ARG_RXBREAK,
NETVSC_ARG_TXBREAK,
NETVSC_ARG_RX_EXTMBUF_ENABLE,
NULL
};
struct rte_kvargs *kvlist;
int ret;
if (!devargs)
return 0;
PMD_INIT_LOG(DEBUG, "device args %s %s",
devargs->name, devargs->args);
kvlist = rte_kvargs_parse(devargs->args, valid_keys);
if (!kvlist) {
PMD_DRV_LOG(ERR, "invalid parameters");
return -EINVAL;
}
ret = rte_kvargs_process(kvlist, NULL, hn_set_parameter, hv);
rte_kvargs_free(kvlist);
return ret;
}
/* Update link status.
* Note: the DPDK definition of "wait_to_complete"
* means block this call until link is up.
* which is not worth supporting.
*/
int
hn_dev_link_update(struct rte_eth_dev *dev,
int wait_to_complete __rte_unused)
{
struct hn_data *hv = dev->data->dev_private;
struct rte_eth_link link, old;
int error;
old = dev->data->dev_link;
error = hn_rndis_get_linkstatus(hv);
if (error)
return error;
hn_rndis_get_linkspeed(hv);
link = (struct rte_eth_link) {
.link_duplex = RTE_ETH_LINK_FULL_DUPLEX,
.link_autoneg = RTE_ETH_LINK_SPEED_FIXED,
.link_speed = hv->link_speed / 10000,
};
if (hv->link_status == NDIS_MEDIA_STATE_CONNECTED)
link.link_status = RTE_ETH_LINK_UP;
else
link.link_status = RTE_ETH_LINK_DOWN;
if (old.link_status == link.link_status)
return 0;
PMD_INIT_LOG(DEBUG, "Port %d is %s", dev->data->port_id,
(link.link_status == RTE_ETH_LINK_UP) ? "up" : "down");
return rte_eth_linkstatus_set(dev, &link);
}
static int hn_dev_info_get(struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info)
{
struct hn_data *hv = dev->data->dev_private;
int rc;
dev_info->speed_capa = RTE_ETH_LINK_SPEED_10G;
dev_info->min_rx_bufsize = HN_MIN_RX_BUF_SIZE;
dev_info->max_rx_pktlen = HN_MAX_XFER_LEN;
dev_info->max_mac_addrs = 1;
dev_info->hash_key_size = NDIS_HASH_KEYSIZE_TOEPLITZ;
dev_info->flow_type_rss_offloads = hv->rss_offloads;
dev_info->reta_size = RTE_ETH_RSS_RETA_SIZE_128;
dev_info->max_rx_queues = hv->max_queues;
dev_info->max_tx_queues = hv->max_queues;
dev_info->tx_desc_lim.nb_min = 1;
dev_info->tx_desc_lim.nb_max = 4096;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
/* fills in rx and tx offload capability */
rc = hn_rndis_get_offload(hv, dev_info);
if (rc != 0)
return rc;
/* merges the offload and queues of vf */
return hn_vf_info_get(hv, dev_info);
}
static int hn_rss_reta_update(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct hn_data *hv = dev->data->dev_private;
unsigned int i;
int err;
PMD_INIT_FUNC_TRACE();
if (reta_size != NDIS_HASH_INDCNT) {
PMD_DRV_LOG(ERR, "Hash lookup table size does not match NDIS");
return -EINVAL;
}
for (i = 0; i < NDIS_HASH_INDCNT; i++) {
uint16_t idx = i / RTE_ETH_RETA_GROUP_SIZE;
uint16_t shift = i % RTE_ETH_RETA_GROUP_SIZE;
uint64_t mask = (uint64_t)1 << shift;
if (reta_conf[idx].mask & mask)
hv->rss_ind[i] = reta_conf[idx].reta[shift];
}
err = hn_rndis_conf_rss(hv, NDIS_RSS_FLAG_DISABLE);
if (err) {
PMD_DRV_LOG(NOTICE,
"rss disable failed");
return err;
}
err = hn_rndis_conf_rss(hv, 0);
if (err) {
PMD_DRV_LOG(NOTICE,
"reta reconfig failed");
return err;
}
return hn_vf_reta_hash_update(dev, reta_conf, reta_size);
}
static int hn_rss_reta_query(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct hn_data *hv = dev->data->dev_private;
unsigned int i;
PMD_INIT_FUNC_TRACE();
if (reta_size != NDIS_HASH_INDCNT) {
PMD_DRV_LOG(ERR, "Hash lookup table size does not match NDIS");
return -EINVAL;
}
for (i = 0; i < NDIS_HASH_INDCNT; i++) {
uint16_t idx = i / RTE_ETH_RETA_GROUP_SIZE;
uint16_t shift = i % RTE_ETH_RETA_GROUP_SIZE;
uint64_t mask = (uint64_t)1 << shift;
if (reta_conf[idx].mask & mask)
reta_conf[idx].reta[shift] = hv->rss_ind[i];
}
return 0;
}
static void hn_rss_hash_init(struct hn_data *hv,
const struct rte_eth_rss_conf *rss_conf)
{
/* Convert from DPDK RSS hash flags to NDIS hash flags */
hv->rss_hash = NDIS_HASH_FUNCTION_TOEPLITZ;
if (rss_conf->rss_hf & RTE_ETH_RSS_IPV4)
hv->rss_hash |= NDIS_HASH_IPV4;
if (rss_conf->rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_TCP)
hv->rss_hash |= NDIS_HASH_TCP_IPV4;
if (rss_conf->rss_hf & RTE_ETH_RSS_IPV6)
hv->rss_hash |= NDIS_HASH_IPV6;
if (rss_conf->rss_hf & RTE_ETH_RSS_IPV6_EX)
hv->rss_hash |= NDIS_HASH_IPV6_EX;
if (rss_conf->rss_hf & RTE_ETH_RSS_NONFRAG_IPV6_TCP)
hv->rss_hash |= NDIS_HASH_TCP_IPV6;
if (rss_conf->rss_hf & RTE_ETH_RSS_IPV6_TCP_EX)
hv->rss_hash |= NDIS_HASH_TCP_IPV6_EX;
memcpy(hv->rss_key, rss_conf->rss_key ? : rss_default_key,
NDIS_HASH_KEYSIZE_TOEPLITZ);
}
static int hn_rss_hash_update(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct hn_data *hv = dev->data->dev_private;
int err;
PMD_INIT_FUNC_TRACE();
err = hn_rndis_conf_rss(hv, NDIS_RSS_FLAG_DISABLE);
if (err) {
PMD_DRV_LOG(NOTICE,
"rss disable failed");
return err;
}
hn_rss_hash_init(hv, rss_conf);
if (rss_conf->rss_hf != 0) {
err = hn_rndis_conf_rss(hv, 0);
if (err) {
PMD_DRV_LOG(NOTICE,
"rss reconfig failed (RSS disabled)");
return err;
}
}
return hn_vf_rss_hash_update(dev, rss_conf);
}
static int hn_rss_hash_conf_get(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct hn_data *hv = dev->data->dev_private;
PMD_INIT_FUNC_TRACE();
if (hv->ndis_ver < NDIS_VERSION_6_20) {
PMD_DRV_LOG(DEBUG, "RSS not supported on this host");
return -EOPNOTSUPP;
}
rss_conf->rss_key_len = NDIS_HASH_KEYSIZE_TOEPLITZ;
if (rss_conf->rss_key)
memcpy(rss_conf->rss_key, hv->rss_key,
NDIS_HASH_KEYSIZE_TOEPLITZ);
rss_conf->rss_hf = 0;
if (hv->rss_hash & NDIS_HASH_IPV4)
rss_conf->rss_hf |= RTE_ETH_RSS_IPV4;
if (hv->rss_hash & NDIS_HASH_TCP_IPV4)
rss_conf->rss_hf |= RTE_ETH_RSS_NONFRAG_IPV4_TCP;
if (hv->rss_hash & NDIS_HASH_IPV6)
rss_conf->rss_hf |= RTE_ETH_RSS_IPV6;
if (hv->rss_hash & NDIS_HASH_IPV6_EX)
rss_conf->rss_hf |= RTE_ETH_RSS_IPV6_EX;
if (hv->rss_hash & NDIS_HASH_TCP_IPV6)
rss_conf->rss_hf |= RTE_ETH_RSS_NONFRAG_IPV6_TCP;
if (hv->rss_hash & NDIS_HASH_TCP_IPV6_EX)
rss_conf->rss_hf |= RTE_ETH_RSS_IPV6_TCP_EX;
return 0;
}
static int
hn_dev_promiscuous_enable(struct rte_eth_dev *dev)
{
struct hn_data *hv = dev->data->dev_private;
hn_rndis_set_rxfilter(hv, NDIS_PACKET_TYPE_PROMISCUOUS);
return hn_vf_promiscuous_enable(dev);
}
static int
hn_dev_promiscuous_disable(struct rte_eth_dev *dev)
{
struct hn_data *hv = dev->data->dev_private;
uint32_t filter;
filter = NDIS_PACKET_TYPE_DIRECTED | NDIS_PACKET_TYPE_BROADCAST;
if (dev->data->all_multicast)
filter |= NDIS_PACKET_TYPE_ALL_MULTICAST;
hn_rndis_set_rxfilter(hv, filter);
return hn_vf_promiscuous_disable(dev);
}
static int
hn_dev_allmulticast_enable(struct rte_eth_dev *dev)
{
struct hn_data *hv = dev->data->dev_private;
hn_rndis_set_rxfilter(hv, NDIS_PACKET_TYPE_DIRECTED |
NDIS_PACKET_TYPE_ALL_MULTICAST |
NDIS_PACKET_TYPE_BROADCAST);
return hn_vf_allmulticast_enable(dev);
}
static int
hn_dev_allmulticast_disable(struct rte_eth_dev *dev)
{
struct hn_data *hv = dev->data->dev_private;
hn_rndis_set_rxfilter(hv, NDIS_PACKET_TYPE_DIRECTED |
NDIS_PACKET_TYPE_BROADCAST);
return hn_vf_allmulticast_disable(dev);
}
static int
hn_dev_mc_addr_list(struct rte_eth_dev *dev,
struct rte_ether_addr *mc_addr_set,
uint32_t nb_mc_addr)
{
/* No filtering on the synthetic path, but can do it on VF */
return hn_vf_mc_addr_list(dev, mc_addr_set, nb_mc_addr);
}
/* Setup shared rx/tx queue data */
static int hn_subchan_configure(struct hn_data *hv,
uint32_t subchan)
{
struct vmbus_channel *primary = hn_primary_chan(hv);
int err;
unsigned int retry = 0;
PMD_DRV_LOG(DEBUG,
"open %u subchannels", subchan);
/* Send create sub channels command */
err = hn_nvs_alloc_subchans(hv, &subchan);
if (err)
return err;
while (subchan > 0) {
struct vmbus_channel *new_sc;
uint16_t chn_index;
err = rte_vmbus_subchan_open(primary, &new_sc);
if (err == -ENOENT && ++retry < 1000) {
/* This can happen if not ready yet */
rte_delay_ms(10);
continue;
}
if (err) {
PMD_DRV_LOG(ERR,
"open subchannel failed: %d", err);
return err;
}
rte_vmbus_set_latency(hv->vmbus, new_sc, hv->latency);
retry = 0;
chn_index = rte_vmbus_sub_channel_index(new_sc);
if (chn_index == 0 || chn_index > hv->max_queues) {
PMD_DRV_LOG(ERR,
"Invalid subchannel offermsg channel %u",
chn_index);
return -EIO;
}
PMD_DRV_LOG(DEBUG, "new sub channel %u", chn_index);
hv->channels[chn_index] = new_sc;
--subchan;
}
return err;
}
static void netvsc_hotplug_retry(void *args)
{
int ret;
struct hv_hotadd_context *hot_ctx = args;
struct hn_data *hv = hot_ctx->hv;
struct rte_eth_dev *dev = &rte_eth_devices[hv->port_id];
struct rte_devargs *d = &hot_ctx->da;
char buf[256];
DIR *di;
struct dirent *dir;
struct ifreq req;
struct rte_ether_addr eth_addr;
int s;
PMD_DRV_LOG(DEBUG, "%s: retry count %d",
__func__, hot_ctx->eal_hot_plug_retry);
if (hot_ctx->eal_hot_plug_retry++ > NETVSC_MAX_HOTADD_RETRY) {
PMD_DRV_LOG(NOTICE, "Failed to parse PCI device retry=%d",
hot_ctx->eal_hot_plug_retry);
goto free_hotadd_ctx;
}
snprintf(buf, sizeof(buf), "/sys/bus/pci/devices/%s/net", d->name);
di = opendir(buf);
if (!di) {
PMD_DRV_LOG(DEBUG, "%s: can't open directory %s, "
"retrying in 1 second", __func__, buf);
goto retry;
}
while ((dir = readdir(di))) {
/* Skip . and .. directories */
if (!strcmp(dir->d_name, ".") || !strcmp(dir->d_name, ".."))
continue;
/* trying to get mac address if this is a network device*/
s = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
if (s == -1) {
PMD_DRV_LOG(ERR, "Failed to create socket errno %d",
errno);
break;
}
strlcpy(req.ifr_name, dir->d_name, sizeof(req.ifr_name));
ret = ioctl(s, SIOCGIFHWADDR, &req);
close(s);
if (ret == -1) {
PMD_DRV_LOG(ERR,
"Failed to send SIOCGIFHWADDR for device %s",
dir->d_name);
break;
}
if (req.ifr_hwaddr.sa_family != ARPHRD_ETHER) {
closedir(di);
goto free_hotadd_ctx;
}
memcpy(eth_addr.addr_bytes, req.ifr_hwaddr.sa_data,
RTE_DIM(eth_addr.addr_bytes));
if (rte_is_same_ether_addr(&eth_addr, dev->data->mac_addrs)) {
PMD_DRV_LOG(NOTICE,
"Found matching MAC address, adding device %s network name %s",
d->name, dir->d_name);
/* If this device has been hot removed from this
* parent device, restore its args.
*/
ret = rte_eal_hotplug_add(d->bus->name, d->name,
hv->vf_devargs ?
hv->vf_devargs : "");
if (ret) {
PMD_DRV_LOG(ERR,
"Failed to add PCI device %s",
d->name);
break;
}
}
/* When the code reaches here, we either have already added
* the device, or its MAC address did not match.
*/
closedir(di);
goto free_hotadd_ctx;
}
closedir(di);
retry:
/* The device is still being initialized, retry after 1 second */
rte_eal_alarm_set(1000000, netvsc_hotplug_retry, hot_ctx);
return;
free_hotadd_ctx:
rte_spinlock_lock(&hv->hotadd_lock);
LIST_REMOVE(hot_ctx, list);
rte_spinlock_unlock(&hv->hotadd_lock);
rte_free(hot_ctx);
}
static void
netvsc_hotadd_callback(const char *device_name, enum rte_dev_event_type type,
void *arg)
{
struct hn_data *hv = arg;
struct hv_hotadd_context *hot_ctx;
struct rte_devargs *d;
int ret;
PMD_DRV_LOG(INFO, "Device notification type=%d device_name=%s",
type, device_name);
switch (type) {
case RTE_DEV_EVENT_ADD:
/* if we already has a VF, don't check on hot add */
if (hv->vf_ctx.vf_state > vf_removed)
break;
hot_ctx = rte_zmalloc("NETVSC-HOTADD", sizeof(*hot_ctx),
rte_mem_page_size());
if (!hot_ctx) {
PMD_DRV_LOG(ERR, "Failed to allocate hotadd context");
return;
}
hot_ctx->hv = hv;
d = &hot_ctx->da;
ret = rte_devargs_parse(d, device_name);
if (ret) {
PMD_DRV_LOG(ERR,
"devargs parsing failed ret=%d", ret);
goto free_ctx;
}
if (!strcmp(d->bus->name, "pci")) {
/* Start the process of figuring out if this
* PCI device is a VF device
*/
rte_spinlock_lock(&hv->hotadd_lock);
LIST_INSERT_HEAD(&hv->hotadd_list, hot_ctx, list);
rte_spinlock_unlock(&hv->hotadd_lock);
rte_eal_alarm_set(1000000, netvsc_hotplug_retry, hot_ctx);
return;
}
/* We will switch to VF on RDNIS configure message
* sent from VSP
*/
free_ctx:
rte_free(hot_ctx);
break;
default:
break;
}
}
static int hn_dev_configure(struct rte_eth_dev *dev)
{
struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
struct rte_eth_rss_conf *rss_conf = &dev_conf->rx_adv_conf.rss_conf;
const struct rte_eth_rxmode *rxmode = &dev_conf->rxmode;
const struct rte_eth_txmode *txmode = &dev_conf->txmode;
struct hn_data *hv = dev->data->dev_private;
uint64_t unsupported;
int i, err, subchan;
PMD_INIT_FUNC_TRACE();
if (dev_conf->rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
dev_conf->rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
unsupported = txmode->offloads & ~HN_TX_OFFLOAD_CAPS;
if (unsupported) {
PMD_DRV_LOG(NOTICE,
"unsupported TX offload: %#" PRIx64,
unsupported);
return -EINVAL;
}
unsupported = rxmode->offloads & ~HN_RX_OFFLOAD_CAPS;
if (unsupported) {
PMD_DRV_LOG(NOTICE,
"unsupported RX offload: %#" PRIx64,
rxmode->offloads);
return -EINVAL;
}
hv->vlan_strip = !!(rxmode->offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP);
err = hn_rndis_conf_offload(hv, txmode->offloads,
rxmode->offloads);
if (err) {
PMD_DRV_LOG(NOTICE,
"offload configure failed");
return err;
}
hv->num_queues = RTE_MAX(dev->data->nb_rx_queues,
dev->data->nb_tx_queues);
for (i = 0; i < NDIS_HASH_INDCNT; i++)
hv->rss_ind[i] = i % dev->data->nb_rx_queues;
hn_rss_hash_init(hv, rss_conf);
subchan = hv->num_queues - 1;
if (subchan > 0) {
err = hn_subchan_configure(hv, subchan);
if (err) {
PMD_DRV_LOG(NOTICE,
"subchannel configuration failed");
return err;
}
err = hn_rndis_conf_rss(hv, NDIS_RSS_FLAG_DISABLE);
if (err) {
PMD_DRV_LOG(NOTICE,
"rss disable failed");
return err;
}
if (rss_conf->rss_hf != 0) {
err = hn_rndis_conf_rss(hv, 0);
if (err) {
PMD_DRV_LOG(NOTICE,
"initial RSS config failed");
return err;
}
}
}
return hn_vf_configure_locked(dev, dev_conf);
}
static int hn_dev_stats_get(struct rte_eth_dev *dev,
struct rte_eth_stats *stats)
{
unsigned int i;
hn_vf_stats_get(dev, stats);
for (i = 0; i < dev->data->nb_tx_queues; i++) {
const struct hn_tx_queue *txq = dev->data->tx_queues[i];
if (!txq)
continue;
stats->opackets += txq->stats.packets;
stats->obytes += txq->stats.bytes;
stats->oerrors += txq->stats.errors;
if (i < RTE_ETHDEV_QUEUE_STAT_CNTRS) {
stats->q_opackets[i] = txq->stats.packets;
stats->q_obytes[i] = txq->stats.bytes;
}
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
const struct hn_rx_queue *rxq = dev->data->rx_queues[i];
if (!rxq)
continue;
stats->ipackets += rxq->stats.packets;
stats->ibytes += rxq->stats.bytes;
stats->ierrors += rxq->stats.errors;
stats->imissed += rxq->stats.ring_full;
if (i < RTE_ETHDEV_QUEUE_STAT_CNTRS) {
stats->q_ipackets[i] = rxq->stats.packets;
stats->q_ibytes[i] = rxq->stats.bytes;
}
}
stats->rx_nombuf = dev->data->rx_mbuf_alloc_failed;
return 0;
}
static int
hn_dev_stats_reset(struct rte_eth_dev *dev)
{
unsigned int i;
PMD_INIT_FUNC_TRACE();
for (i = 0; i < dev->data->nb_tx_queues; i++) {
struct hn_tx_queue *txq = dev->data->tx_queues[i];
if (!txq)
continue;
memset(&txq->stats, 0, sizeof(struct hn_stats));
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
struct hn_rx_queue *rxq = dev->data->rx_queues[i];
if (!rxq)
continue;
memset(&rxq->stats, 0, sizeof(struct hn_stats));
}
return 0;
}
static int
hn_dev_xstats_reset(struct rte_eth_dev *dev)
{
int ret;
ret = hn_dev_stats_reset(dev);
if (ret != 0)
return 0;
return hn_vf_xstats_reset(dev);
}
static int
hn_dev_xstats_count(struct rte_eth_dev *dev)
{
int ret, count;
count = dev->data->nb_tx_queues * RTE_DIM(hn_stat_strings);
count += dev->data->nb_rx_queues * RTE_DIM(hn_stat_strings);
ret = hn_vf_xstats_get_names(dev, NULL, 0);
if (ret < 0)
return ret;
return count + ret;
}
static int
hn_dev_xstats_get_names(struct rte_eth_dev *dev,
struct rte_eth_xstat_name *xstats_names,
unsigned int limit)
{
unsigned int i, t, count = 0;
int ret;
if (!xstats_names)
return hn_dev_xstats_count(dev);
/* Note: limit checked in rte_eth_xstats_names() */
for (i = 0; i < dev->data->nb_tx_queues; i++) {
const struct hn_tx_queue *txq = dev->data->tx_queues[i];
if (!txq)
continue;
if (count >= limit)
break;
for (t = 0; t < RTE_DIM(hn_stat_strings); t++)
snprintf(xstats_names[count++].name,
RTE_ETH_XSTATS_NAME_SIZE,
"tx_q%u_%s", i, hn_stat_strings[t].name);
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
const struct hn_rx_queue *rxq = dev->data->rx_queues[i];
if (!rxq)
continue;
if (count >= limit)
break;
for (t = 0; t < RTE_DIM(hn_stat_strings); t++)
snprintf(xstats_names[count++].name,
RTE_ETH_XSTATS_NAME_SIZE,
"rx_q%u_%s", i,
hn_stat_strings[t].name);
}
ret = hn_vf_xstats_get_names(dev, xstats_names + count,
limit - count);
if (ret < 0)
return ret;
return count + ret;
}
static int
hn_dev_xstats_get(struct rte_eth_dev *dev,
struct rte_eth_xstat *xstats,
unsigned int n)
{
unsigned int i, t, count = 0;
const unsigned int nstats = hn_dev_xstats_count(dev);
const char *stats;
int ret;
PMD_INIT_FUNC_TRACE();
if (n < nstats)
return nstats;
for (i = 0; i < dev->data->nb_tx_queues; i++) {
const struct hn_tx_queue *txq = dev->data->tx_queues[i];
if (!txq)
continue;
stats = (const char *)&txq->stats;
for (t = 0; t < RTE_DIM(hn_stat_strings); t++, count++) {
xstats[count].id = count;
xstats[count].value = *(const uint64_t *)
(stats + hn_stat_strings[t].offset);
}
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
const struct hn_rx_queue *rxq = dev->data->rx_queues[i];
if (!rxq)
continue;
stats = (const char *)&rxq->stats;
for (t = 0; t < RTE_DIM(hn_stat_strings); t++, count++) {
xstats[count].id = count;
xstats[count].value = *(const uint64_t *)
(stats + hn_stat_strings[t].offset);
}
}
ret = hn_vf_xstats_get(dev, xstats, count, n);
if (ret < 0)
return ret;
return count + ret;
}
static int
hn_dev_start(struct rte_eth_dev *dev)
{
struct hn_data *hv = dev->data->dev_private;
int error;
PMD_INIT_FUNC_TRACE();
/* Register to monitor hot plug events */
error = rte_dev_event_callback_register(NULL, netvsc_hotadd_callback,
hv);
if (error) {
PMD_DRV_LOG(ERR, "failed to register device event callback");
return error;
}
error = hn_rndis_set_rxfilter(hv,
NDIS_PACKET_TYPE_BROADCAST |
NDIS_PACKET_TYPE_ALL_MULTICAST |
NDIS_PACKET_TYPE_DIRECTED);
if (error)
return error;
error = hn_vf_start(dev);
if (error)
hn_rndis_set_rxfilter(hv, 0);
/* Initialize Link state */
if (error == 0)
hn_dev_link_update(dev, 0);
return error;
}
static int
hn_dev_stop(struct rte_eth_dev *dev)
{
struct hn_data *hv = dev->data->dev_private;
PMD_INIT_FUNC_TRACE();
dev->data->dev_started = 0;
rte_dev_event_callback_unregister(NULL, netvsc_hotadd_callback, hv);
hn_rndis_set_rxfilter(hv, 0);
return hn_vf_stop(dev);
}
static int
hn_dev_close(struct rte_eth_dev *dev)
{
int ret;
struct hn_data *hv = dev->data->dev_private;
struct hv_hotadd_context *hot_ctx;
PMD_INIT_FUNC_TRACE();
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
rte_spinlock_lock(&hv->hotadd_lock);
while (!LIST_EMPTY(&hv->hotadd_list)) {
hot_ctx = LIST_FIRST(&hv->hotadd_list);
rte_eal_alarm_cancel(netvsc_hotplug_retry, hot_ctx);
LIST_REMOVE(hot_ctx, list);
rte_free(hot_ctx);
}
rte_spinlock_unlock(&hv->hotadd_lock);
ret = hn_vf_close(dev);
hn_dev_free_queues(dev);
return ret;
}
static const struct eth_dev_ops hn_eth_dev_ops = {
.dev_configure = hn_dev_configure,
.dev_start = hn_dev_start,
.dev_stop = hn_dev_stop,
.dev_close = hn_dev_close,
.dev_infos_get = hn_dev_info_get,
.txq_info_get = hn_dev_tx_queue_info,
.rxq_info_get = hn_dev_rx_queue_info,
.dev_supported_ptypes_get = hn_vf_supported_ptypes,
.promiscuous_enable = hn_dev_promiscuous_enable,
.promiscuous_disable = hn_dev_promiscuous_disable,
.allmulticast_enable = hn_dev_allmulticast_enable,
.allmulticast_disable = hn_dev_allmulticast_disable,
.set_mc_addr_list = hn_dev_mc_addr_list,
.reta_update = hn_rss_reta_update,
.reta_query = hn_rss_reta_query,
.rss_hash_update = hn_rss_hash_update,
.rss_hash_conf_get = hn_rss_hash_conf_get,
.tx_queue_setup = hn_dev_tx_queue_setup,
.tx_queue_release = hn_dev_tx_queue_release,
.tx_done_cleanup = hn_dev_tx_done_cleanup,
.rx_queue_setup = hn_dev_rx_queue_setup,
.rx_queue_release = hn_dev_rx_queue_release,
.link_update = hn_dev_link_update,
.stats_get = hn_dev_stats_get,
.stats_reset = hn_dev_stats_reset,
.xstats_get = hn_dev_xstats_get,
.xstats_get_names = hn_dev_xstats_get_names,
.xstats_reset = hn_dev_xstats_reset,
};
/*
* Setup connection between PMD and kernel.
*/
static int
hn_attach(struct hn_data *hv, unsigned int mtu)
{
int error;
/* Attach NVS */
error = hn_nvs_attach(hv, mtu);
if (error)
goto failed_nvs;
/* Attach RNDIS */
error = hn_rndis_attach(hv);
if (error)
goto failed_rndis;
/*
* NOTE:
* Under certain conditions on certain versions of Hyper-V,
* the RNDIS rxfilter is _not_ zero on the hypervisor side
* after the successful RNDIS initialization.
*/
hn_rndis_set_rxfilter(hv, NDIS_PACKET_TYPE_NONE);
return 0;
failed_rndis:
hn_nvs_detach(hv);
failed_nvs:
return error;
}
static void
hn_detach(struct hn_data *hv)
{
hn_nvs_detach(hv);
hn_rndis_detach(hv);
}
static int
eth_hn_dev_init(struct rte_eth_dev *eth_dev)
{
struct hn_data *hv = eth_dev->data->dev_private;
struct rte_device *device = eth_dev->device;
struct rte_vmbus_device *vmbus;
unsigned int rxr_cnt;
int err, max_chan;
PMD_INIT_FUNC_TRACE();
rte_spinlock_init(&hv->hotadd_lock);
LIST_INIT(&hv->hotadd_list);
vmbus = container_of(device, struct rte_vmbus_device, device);
eth_dev->dev_ops = &hn_eth_dev_ops;
eth_dev->rx_queue_count = hn_dev_rx_queue_count;
eth_dev->rx_descriptor_status = hn_dev_rx_queue_status;
eth_dev->tx_descriptor_status = hn_dev_tx_descriptor_status;
eth_dev->tx_pkt_burst = &hn_xmit_pkts;
eth_dev->rx_pkt_burst = &hn_recv_pkts;
/*
* for secondary processes, we don't initialize any further as primary
* has already done this work.
*/
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
/* Since Hyper-V only supports one MAC address */
eth_dev->data->mac_addrs = rte_calloc("hv_mac", HN_MAX_MAC_ADDRS,
sizeof(struct rte_ether_addr), 0);
if (eth_dev->data->mac_addrs == NULL) {
PMD_INIT_LOG(ERR,
"Failed to allocate memory store MAC addresses");
return -ENOMEM;
}
hv->vmbus = vmbus;
hv->rxbuf_res = vmbus->resource[HV_RECV_BUF_MAP];
hv->chim_res = vmbus->resource[HV_SEND_BUF_MAP];
hv->port_id = eth_dev->data->port_id;
hv->latency = HN_CHAN_LATENCY_NS;
hv->rx_copybreak = HN_RXCOPY_THRESHOLD;
hv->tx_copybreak = HN_TXCOPY_THRESHOLD;
hv->rx_extmbuf_enable = HN_RX_EXTMBUF_ENABLE;
hv->max_queues = 1;
rte_rwlock_init(&hv->vf_lock);
hv->vf_ctx.vf_vsc_switched = false;
hv->vf_ctx.vf_vsp_reported = false;
hv->vf_ctx.vf_attached = false;
hv->vf_ctx.vf_state = vf_unknown;
err = hn_parse_args(eth_dev);
if (err)
return err;
strlcpy(hv->owner.name, eth_dev->device->name,
RTE_ETH_MAX_OWNER_NAME_LEN);
err = rte_eth_dev_owner_new(&hv->owner.id);
if (err) {
PMD_INIT_LOG(ERR, "Can not get owner id");
return err;
}
/* Initialize primary channel input for control operations */
err = rte_vmbus_chan_open(vmbus, &hv->channels[0]);
if (err)
return err;
rte_vmbus_set_latency(hv->vmbus, hv->channels[0], hv->latency);
hv->primary = hn_rx_queue_alloc(hv, 0,
eth_dev->device->numa_node);
if (!hv->primary)
return -ENOMEM;
err = hn_attach(hv, RTE_ETHER_MTU);
if (err)
goto failed;
err = hn_chim_init(eth_dev);
if (err)
goto failed;
err = hn_rndis_get_eaddr(hv, eth_dev->data->mac_addrs->addr_bytes);
if (err)
goto failed;
/* Multi queue requires later versions of windows server */
if (hv->nvs_ver < NVS_VERSION_5)
return 0;
max_chan = rte_vmbus_max_channels(vmbus);
PMD_INIT_LOG(DEBUG, "VMBus max channels %d", max_chan);
if (max_chan <= 0)
goto failed;
if (hn_rndis_query_rsscaps(hv, &rxr_cnt) != 0)
rxr_cnt = 1;
hv->max_queues = RTE_MIN(rxr_cnt, (unsigned int)max_chan);
/* If VF was reported but not added, do it now */
if (hv->vf_ctx.vf_vsp_reported && !hv->vf_ctx.vf_vsc_switched) {
PMD_INIT_LOG(DEBUG, "Adding VF device");
err = hn_vf_add(eth_dev, hv);
}
return 0;
failed:
PMD_INIT_LOG(NOTICE, "device init failed");
hn_chim_uninit(eth_dev);
hn_detach(hv);
return err;
}
static int
eth_hn_dev_uninit(struct rte_eth_dev *eth_dev)
{
struct hn_data *hv = eth_dev->data->dev_private;
int ret, ret_stop;
PMD_INIT_FUNC_TRACE();
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
ret_stop = hn_dev_stop(eth_dev);
hn_dev_close(eth_dev);
free(hv->vf_devargs);
hv->vf_devargs = NULL;
hn_detach(hv);
hn_chim_uninit(eth_dev);
rte_vmbus_chan_close(hv->primary->chan);
rte_free(hv->primary);
ret = rte_eth_dev_owner_delete(hv->owner.id);
if (ret != 0)
return ret;
return ret_stop;
}
static int eth_hn_probe(struct rte_vmbus_driver *drv __rte_unused,
struct rte_vmbus_device *dev)
{
struct rte_eth_dev *eth_dev;
int ret;
PMD_INIT_FUNC_TRACE();
ret = rte_dev_event_monitor_start();
if (ret) {
PMD_DRV_LOG(ERR, "Failed to start device event monitoring");
return ret;
}
eth_dev = eth_dev_vmbus_allocate(dev, sizeof(struct hn_data));
if (!eth_dev)
return -ENOMEM;
ret = eth_hn_dev_init(eth_dev);
if (ret) {
eth_dev_vmbus_release(eth_dev);
rte_dev_event_monitor_stop();
} else {
rte_eth_dev_probing_finish(eth_dev);
}
return ret;
}
static int eth_hn_remove(struct rte_vmbus_device *dev)
{
struct rte_eth_dev *eth_dev;
int ret;
PMD_INIT_FUNC_TRACE();
eth_dev = rte_eth_dev_allocated(dev->device.name);
if (!eth_dev)
return 0; /* port already released */
ret = eth_hn_dev_uninit(eth_dev);
if (ret)
return ret;
eth_dev_vmbus_release(eth_dev);
rte_dev_event_monitor_stop();
return 0;
}
/* Network device GUID */
static const rte_uuid_t hn_net_ids[] = {
/* f8615163-df3e-46c5-913f-f2d2f965ed0e */
RTE_UUID_INIT(0xf8615163, 0xdf3e, 0x46c5, 0x913f, 0xf2d2f965ed0eULL),
{ 0 }
};
static struct rte_vmbus_driver rte_netvsc_pmd = {
.id_table = hn_net_ids,
.probe = eth_hn_probe,
.remove = eth_hn_remove,
};
RTE_PMD_REGISTER_VMBUS(net_netvsc, rte_netvsc_pmd);
RTE_PMD_REGISTER_KMOD_DEP(net_netvsc, "* uio_hv_generic");
RTE_LOG_REGISTER_SUFFIX(hn_logtype_init, init, NOTICE);
RTE_LOG_REGISTER_SUFFIX(hn_logtype_driver, driver, NOTICE);
RTE_PMD_REGISTER_PARAM_STRING(net_netvsc,
NETVSC_ARG_LATENCY "=<uint32> "
NETVSC_ARG_RXBREAK "=<uint32> "
NETVSC_ARG_TXBREAK "=<uint32> "
NETVSC_ARG_RX_EXTMBUF_ENABLE "=<0|1>");