60ad04e2a0
Flags for IEEE1588 with ``PKT_*`` prefix has been changed to
``RTE_MBUF_F_*``. So in this patch updating the
old flags.
Fixes: b9b509246d
("mbuf: remove deprecated offload flags")
Signed-off-by: Gagandeep Singh <g.singh@nxp.com>
Reviewed-by: Ferruh Yigit <ferruh.yigit@xilinx.com>
Tested-by: Yu Jiang <yux.jiang@intel.com>
3340 lines
88 KiB
C
3340 lines
88 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2018-2021 Beijing WangXun Technology Co., Ltd.
|
|
* Copyright(c) 2010-2017 Intel Corporation
|
|
*/
|
|
|
|
#include <sys/queue.h>
|
|
|
|
#include <stdint.h>
|
|
#include <rte_ethdev.h>
|
|
#include <ethdev_driver.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_net.h>
|
|
|
|
#include "ngbe_logs.h"
|
|
#include "base/ngbe.h"
|
|
#include "ngbe_ethdev.h"
|
|
#include "ngbe_rxtx.h"
|
|
|
|
#ifdef RTE_LIBRTE_IEEE1588
|
|
#define NGBE_TX_IEEE1588_TMST RTE_MBUF_F_TX_IEEE1588_TMST
|
|
#else
|
|
#define NGBE_TX_IEEE1588_TMST 0
|
|
#endif
|
|
|
|
/* Bit Mask to indicate what bits required for building Tx context */
|
|
static const u64 NGBE_TX_OFFLOAD_MASK = (RTE_MBUF_F_TX_IP_CKSUM |
|
|
RTE_MBUF_F_TX_OUTER_IPV6 |
|
|
RTE_MBUF_F_TX_OUTER_IPV4 |
|
|
RTE_MBUF_F_TX_IPV6 |
|
|
RTE_MBUF_F_TX_IPV4 |
|
|
RTE_MBUF_F_TX_VLAN |
|
|
RTE_MBUF_F_TX_L4_MASK |
|
|
RTE_MBUF_F_TX_TCP_SEG |
|
|
RTE_MBUF_F_TX_TUNNEL_MASK |
|
|
RTE_MBUF_F_TX_OUTER_IP_CKSUM |
|
|
NGBE_TX_IEEE1588_TMST);
|
|
|
|
#define NGBE_TX_OFFLOAD_NOTSUP_MASK \
|
|
(RTE_MBUF_F_TX_OFFLOAD_MASK ^ NGBE_TX_OFFLOAD_MASK)
|
|
|
|
/*
|
|
* Prefetch a cache line into all cache levels.
|
|
*/
|
|
#define rte_ngbe_prefetch(p) rte_prefetch0(p)
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Tx functions
|
|
*
|
|
**********************************************************************/
|
|
|
|
/*
|
|
* Check for descriptors with their DD bit set and free mbufs.
|
|
* Return the total number of buffers freed.
|
|
*/
|
|
static __rte_always_inline int
|
|
ngbe_tx_free_bufs(struct ngbe_tx_queue *txq)
|
|
{
|
|
struct ngbe_tx_entry *txep;
|
|
uint32_t status;
|
|
int i, nb_free = 0;
|
|
struct rte_mbuf *m, *free[RTE_NGBE_TX_MAX_FREE_BUF_SZ];
|
|
|
|
/* check DD bit on threshold descriptor */
|
|
status = txq->tx_ring[txq->tx_next_dd].dw3;
|
|
if (!(status & rte_cpu_to_le_32(NGBE_TXD_DD))) {
|
|
if (txq->nb_tx_free >> 1 < txq->tx_free_thresh)
|
|
ngbe_set32_masked(txq->tdc_reg_addr,
|
|
NGBE_TXCFG_FLUSH, NGBE_TXCFG_FLUSH);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* first buffer to free from S/W ring is at index
|
|
* tx_next_dd - (tx_free_thresh-1)
|
|
*/
|
|
txep = &txq->sw_ring[txq->tx_next_dd - (txq->tx_free_thresh - 1)];
|
|
for (i = 0; i < txq->tx_free_thresh; ++i, ++txep) {
|
|
/* free buffers one at a time */
|
|
m = rte_pktmbuf_prefree_seg(txep->mbuf);
|
|
txep->mbuf = NULL;
|
|
|
|
if (unlikely(m == NULL))
|
|
continue;
|
|
|
|
if (nb_free >= RTE_NGBE_TX_MAX_FREE_BUF_SZ ||
|
|
(nb_free > 0 && m->pool != free[0]->pool)) {
|
|
rte_mempool_put_bulk(free[0]->pool,
|
|
(void **)free, nb_free);
|
|
nb_free = 0;
|
|
}
|
|
|
|
free[nb_free++] = m;
|
|
}
|
|
|
|
if (nb_free > 0)
|
|
rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
|
|
|
|
/* buffers were freed, update counters */
|
|
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_free_thresh);
|
|
txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_free_thresh);
|
|
if (txq->tx_next_dd >= txq->nb_tx_desc)
|
|
txq->tx_next_dd = (uint16_t)(txq->tx_free_thresh - 1);
|
|
|
|
return txq->tx_free_thresh;
|
|
}
|
|
|
|
/* Populate 4 descriptors with data from 4 mbufs */
|
|
static inline void
|
|
tx4(volatile struct ngbe_tx_desc *txdp, struct rte_mbuf **pkts)
|
|
{
|
|
uint64_t buf_dma_addr;
|
|
uint32_t pkt_len;
|
|
int i;
|
|
|
|
for (i = 0; i < 4; ++i, ++txdp, ++pkts) {
|
|
buf_dma_addr = rte_mbuf_data_iova(*pkts);
|
|
pkt_len = (*pkts)->data_len;
|
|
|
|
/* write data to descriptor */
|
|
txdp->qw0 = rte_cpu_to_le_64(buf_dma_addr);
|
|
txdp->dw2 = cpu_to_le32(NGBE_TXD_FLAGS |
|
|
NGBE_TXD_DATLEN(pkt_len));
|
|
txdp->dw3 = cpu_to_le32(NGBE_TXD_PAYLEN(pkt_len));
|
|
|
|
rte_prefetch0(&(*pkts)->pool);
|
|
}
|
|
}
|
|
|
|
/* Populate 1 descriptor with data from 1 mbuf */
|
|
static inline void
|
|
tx1(volatile struct ngbe_tx_desc *txdp, struct rte_mbuf **pkts)
|
|
{
|
|
uint64_t buf_dma_addr;
|
|
uint32_t pkt_len;
|
|
|
|
buf_dma_addr = rte_mbuf_data_iova(*pkts);
|
|
pkt_len = (*pkts)->data_len;
|
|
|
|
/* write data to descriptor */
|
|
txdp->qw0 = cpu_to_le64(buf_dma_addr);
|
|
txdp->dw2 = cpu_to_le32(NGBE_TXD_FLAGS |
|
|
NGBE_TXD_DATLEN(pkt_len));
|
|
txdp->dw3 = cpu_to_le32(NGBE_TXD_PAYLEN(pkt_len));
|
|
|
|
rte_prefetch0(&(*pkts)->pool);
|
|
}
|
|
|
|
/*
|
|
* Fill H/W descriptor ring with mbuf data.
|
|
* Copy mbuf pointers to the S/W ring.
|
|
*/
|
|
static inline void
|
|
ngbe_tx_fill_hw_ring(struct ngbe_tx_queue *txq, struct rte_mbuf **pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
volatile struct ngbe_tx_desc *txdp = &txq->tx_ring[txq->tx_tail];
|
|
struct ngbe_tx_entry *txep = &txq->sw_ring[txq->tx_tail];
|
|
const int N_PER_LOOP = 4;
|
|
const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
|
|
int mainpart, leftover;
|
|
int i, j;
|
|
|
|
/*
|
|
* Process most of the packets in chunks of N pkts. Any
|
|
* leftover packets will get processed one at a time.
|
|
*/
|
|
mainpart = (nb_pkts & ((uint32_t)~N_PER_LOOP_MASK));
|
|
leftover = (nb_pkts & ((uint32_t)N_PER_LOOP_MASK));
|
|
for (i = 0; i < mainpart; i += N_PER_LOOP) {
|
|
/* Copy N mbuf pointers to the S/W ring */
|
|
for (j = 0; j < N_PER_LOOP; ++j)
|
|
(txep + i + j)->mbuf = *(pkts + i + j);
|
|
tx4(txdp + i, pkts + i);
|
|
}
|
|
|
|
if (unlikely(leftover > 0)) {
|
|
for (i = 0; i < leftover; ++i) {
|
|
(txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
|
|
tx1(txdp + mainpart + i, pkts + mainpart + i);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline uint16_t
|
|
tx_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct ngbe_tx_queue *txq = (struct ngbe_tx_queue *)tx_queue;
|
|
uint16_t n = 0;
|
|
|
|
/*
|
|
* Begin scanning the H/W ring for done descriptors when the
|
|
* number of available descriptors drops below tx_free_thresh.
|
|
* For each done descriptor, free the associated buffer.
|
|
*/
|
|
if (txq->nb_tx_free < txq->tx_free_thresh)
|
|
ngbe_tx_free_bufs(txq);
|
|
|
|
/* Only use descriptors that are available */
|
|
nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
|
|
if (unlikely(nb_pkts == 0))
|
|
return 0;
|
|
|
|
/* Use exactly nb_pkts descriptors */
|
|
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
|
|
|
|
/*
|
|
* At this point, we know there are enough descriptors in the
|
|
* ring to transmit all the packets. This assumes that each
|
|
* mbuf contains a single segment, and that no new offloads
|
|
* are expected, which would require a new context descriptor.
|
|
*/
|
|
|
|
/*
|
|
* See if we're going to wrap-around. If so, handle the top
|
|
* of the descriptor ring first, then do the bottom. If not,
|
|
* the processing looks just like the "bottom" part anyway...
|
|
*/
|
|
if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
|
|
n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
|
|
ngbe_tx_fill_hw_ring(txq, tx_pkts, n);
|
|
txq->tx_tail = 0;
|
|
}
|
|
|
|
/* Fill H/W descriptor ring with mbuf data */
|
|
ngbe_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
|
|
txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
|
|
|
|
/*
|
|
* Check for wrap-around. This would only happen if we used
|
|
* up to the last descriptor in the ring, no more, no less.
|
|
*/
|
|
if (txq->tx_tail >= txq->nb_tx_desc)
|
|
txq->tx_tail = 0;
|
|
|
|
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
|
|
(uint16_t)txq->port_id, (uint16_t)txq->queue_id,
|
|
(uint16_t)txq->tx_tail, (uint16_t)nb_pkts);
|
|
|
|
/* update tail pointer */
|
|
rte_wmb();
|
|
ngbe_set32_relaxed(txq->tdt_reg_addr, txq->tx_tail);
|
|
|
|
return nb_pkts;
|
|
}
|
|
|
|
uint16_t
|
|
ngbe_xmit_pkts_simple(void *tx_queue, struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
uint16_t nb_tx;
|
|
|
|
/* Try to transmit at least chunks of TX_MAX_BURST pkts */
|
|
if (likely(nb_pkts <= RTE_PMD_NGBE_TX_MAX_BURST))
|
|
return tx_xmit_pkts(tx_queue, tx_pkts, nb_pkts);
|
|
|
|
/* transmit more than the max burst, in chunks of TX_MAX_BURST */
|
|
nb_tx = 0;
|
|
while (nb_pkts != 0) {
|
|
uint16_t ret, n;
|
|
|
|
n = (uint16_t)RTE_MIN(nb_pkts, RTE_PMD_NGBE_TX_MAX_BURST);
|
|
ret = tx_xmit_pkts(tx_queue, &tx_pkts[nb_tx], n);
|
|
nb_tx = (uint16_t)(nb_tx + ret);
|
|
nb_pkts = (uint16_t)(nb_pkts - ret);
|
|
if (ret < n)
|
|
break;
|
|
}
|
|
|
|
return nb_tx;
|
|
}
|
|
|
|
static inline void
|
|
ngbe_set_xmit_ctx(struct ngbe_tx_queue *txq,
|
|
volatile struct ngbe_tx_ctx_desc *ctx_txd,
|
|
uint64_t ol_flags, union ngbe_tx_offload tx_offload)
|
|
{
|
|
union ngbe_tx_offload tx_offload_mask;
|
|
uint32_t type_tucmd_mlhl;
|
|
uint32_t mss_l4len_idx;
|
|
uint32_t ctx_idx;
|
|
uint32_t vlan_macip_lens;
|
|
uint32_t tunnel_seed;
|
|
|
|
ctx_idx = txq->ctx_curr;
|
|
tx_offload_mask.data[0] = 0;
|
|
tx_offload_mask.data[1] = 0;
|
|
|
|
/* Specify which HW CTX to upload. */
|
|
mss_l4len_idx = NGBE_TXD_IDX(ctx_idx);
|
|
type_tucmd_mlhl = NGBE_TXD_CTXT;
|
|
|
|
tx_offload_mask.ptid |= ~0;
|
|
type_tucmd_mlhl |= NGBE_TXD_PTID(tx_offload.ptid);
|
|
|
|
/* check if TCP segmentation required for this packet */
|
|
if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
|
|
tx_offload_mask.l2_len |= ~0;
|
|
tx_offload_mask.l3_len |= ~0;
|
|
tx_offload_mask.l4_len |= ~0;
|
|
tx_offload_mask.tso_segsz |= ~0;
|
|
mss_l4len_idx |= NGBE_TXD_MSS(tx_offload.tso_segsz);
|
|
mss_l4len_idx |= NGBE_TXD_L4LEN(tx_offload.l4_len);
|
|
} else { /* no TSO, check if hardware checksum is needed */
|
|
if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM) {
|
|
tx_offload_mask.l2_len |= ~0;
|
|
tx_offload_mask.l3_len |= ~0;
|
|
}
|
|
|
|
switch (ol_flags & RTE_MBUF_F_TX_L4_MASK) {
|
|
case RTE_MBUF_F_TX_UDP_CKSUM:
|
|
mss_l4len_idx |=
|
|
NGBE_TXD_L4LEN(sizeof(struct rte_udp_hdr));
|
|
tx_offload_mask.l2_len |= ~0;
|
|
tx_offload_mask.l3_len |= ~0;
|
|
break;
|
|
case RTE_MBUF_F_TX_TCP_CKSUM:
|
|
mss_l4len_idx |=
|
|
NGBE_TXD_L4LEN(sizeof(struct rte_tcp_hdr));
|
|
tx_offload_mask.l2_len |= ~0;
|
|
tx_offload_mask.l3_len |= ~0;
|
|
break;
|
|
case RTE_MBUF_F_TX_SCTP_CKSUM:
|
|
mss_l4len_idx |=
|
|
NGBE_TXD_L4LEN(sizeof(struct rte_sctp_hdr));
|
|
tx_offload_mask.l2_len |= ~0;
|
|
tx_offload_mask.l3_len |= ~0;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
vlan_macip_lens = NGBE_TXD_IPLEN(tx_offload.l3_len >> 1);
|
|
|
|
if (ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) {
|
|
tx_offload_mask.outer_tun_len |= ~0;
|
|
tx_offload_mask.outer_l2_len |= ~0;
|
|
tx_offload_mask.outer_l3_len |= ~0;
|
|
tx_offload_mask.l2_len |= ~0;
|
|
tunnel_seed = NGBE_TXD_ETUNLEN(tx_offload.outer_tun_len >> 1);
|
|
tunnel_seed |= NGBE_TXD_EIPLEN(tx_offload.outer_l3_len >> 2);
|
|
|
|
switch (ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) {
|
|
case RTE_MBUF_F_TX_TUNNEL_IPIP:
|
|
/* for non UDP / GRE tunneling, set to 0b */
|
|
break;
|
|
default:
|
|
PMD_TX_LOG(ERR, "Tunnel type not supported");
|
|
return;
|
|
}
|
|
vlan_macip_lens |= NGBE_TXD_MACLEN(tx_offload.outer_l2_len);
|
|
} else {
|
|
tunnel_seed = 0;
|
|
vlan_macip_lens |= NGBE_TXD_MACLEN(tx_offload.l2_len);
|
|
}
|
|
|
|
if (ol_flags & RTE_MBUF_F_TX_VLAN) {
|
|
tx_offload_mask.vlan_tci |= ~0;
|
|
vlan_macip_lens |= NGBE_TXD_VLAN(tx_offload.vlan_tci);
|
|
}
|
|
|
|
txq->ctx_cache[ctx_idx].flags = ol_flags;
|
|
txq->ctx_cache[ctx_idx].tx_offload.data[0] =
|
|
tx_offload_mask.data[0] & tx_offload.data[0];
|
|
txq->ctx_cache[ctx_idx].tx_offload.data[1] =
|
|
tx_offload_mask.data[1] & tx_offload.data[1];
|
|
txq->ctx_cache[ctx_idx].tx_offload_mask = tx_offload_mask;
|
|
|
|
ctx_txd->dw0 = rte_cpu_to_le_32(vlan_macip_lens);
|
|
ctx_txd->dw1 = rte_cpu_to_le_32(tunnel_seed);
|
|
ctx_txd->dw2 = rte_cpu_to_le_32(type_tucmd_mlhl);
|
|
ctx_txd->dw3 = rte_cpu_to_le_32(mss_l4len_idx);
|
|
}
|
|
|
|
/*
|
|
* Check which hardware context can be used. Use the existing match
|
|
* or create a new context descriptor.
|
|
*/
|
|
static inline uint32_t
|
|
what_ctx_update(struct ngbe_tx_queue *txq, uint64_t flags,
|
|
union ngbe_tx_offload tx_offload)
|
|
{
|
|
/* If match with the current used context */
|
|
if (likely(txq->ctx_cache[txq->ctx_curr].flags == flags &&
|
|
(txq->ctx_cache[txq->ctx_curr].tx_offload.data[0] ==
|
|
(txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[0]
|
|
& tx_offload.data[0])) &&
|
|
(txq->ctx_cache[txq->ctx_curr].tx_offload.data[1] ==
|
|
(txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[1]
|
|
& tx_offload.data[1]))))
|
|
return txq->ctx_curr;
|
|
|
|
/* What if match with the next context */
|
|
txq->ctx_curr ^= 1;
|
|
if (likely(txq->ctx_cache[txq->ctx_curr].flags == flags &&
|
|
(txq->ctx_cache[txq->ctx_curr].tx_offload.data[0] ==
|
|
(txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[0]
|
|
& tx_offload.data[0])) &&
|
|
(txq->ctx_cache[txq->ctx_curr].tx_offload.data[1] ==
|
|
(txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[1]
|
|
& tx_offload.data[1]))))
|
|
return txq->ctx_curr;
|
|
|
|
/* Mismatch, use the previous context */
|
|
return NGBE_CTX_NUM;
|
|
}
|
|
|
|
static inline uint32_t
|
|
tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags)
|
|
{
|
|
uint32_t tmp = 0;
|
|
|
|
if ((ol_flags & RTE_MBUF_F_TX_L4_MASK) != RTE_MBUF_F_TX_L4_NO_CKSUM) {
|
|
tmp |= NGBE_TXD_CC;
|
|
tmp |= NGBE_TXD_L4CS;
|
|
}
|
|
if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM) {
|
|
tmp |= NGBE_TXD_CC;
|
|
tmp |= NGBE_TXD_IPCS;
|
|
}
|
|
if (ol_flags & RTE_MBUF_F_TX_OUTER_IP_CKSUM) {
|
|
tmp |= NGBE_TXD_CC;
|
|
tmp |= NGBE_TXD_EIPCS;
|
|
}
|
|
if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
|
|
tmp |= NGBE_TXD_CC;
|
|
/* implies IPv4 cksum */
|
|
if (ol_flags & RTE_MBUF_F_TX_IPV4)
|
|
tmp |= NGBE_TXD_IPCS;
|
|
tmp |= NGBE_TXD_L4CS;
|
|
}
|
|
if (ol_flags & RTE_MBUF_F_TX_VLAN)
|
|
tmp |= NGBE_TXD_CC;
|
|
|
|
return tmp;
|
|
}
|
|
|
|
static inline uint32_t
|
|
tx_desc_ol_flags_to_cmdtype(uint64_t ol_flags)
|
|
{
|
|
uint32_t cmdtype = 0;
|
|
|
|
if (ol_flags & RTE_MBUF_F_TX_VLAN)
|
|
cmdtype |= NGBE_TXD_VLE;
|
|
if (ol_flags & RTE_MBUF_F_TX_TCP_SEG)
|
|
cmdtype |= NGBE_TXD_TSE;
|
|
return cmdtype;
|
|
}
|
|
|
|
static inline uint8_t
|
|
tx_desc_ol_flags_to_ptid(uint64_t oflags, uint32_t ptype)
|
|
{
|
|
bool tun;
|
|
|
|
if (ptype)
|
|
return ngbe_encode_ptype(ptype);
|
|
|
|
/* Only support flags in NGBE_TX_OFFLOAD_MASK */
|
|
tun = !!(oflags & RTE_MBUF_F_TX_TUNNEL_MASK);
|
|
|
|
/* L2 level */
|
|
ptype = RTE_PTYPE_L2_ETHER;
|
|
if (oflags & RTE_MBUF_F_TX_VLAN)
|
|
ptype |= RTE_PTYPE_L2_ETHER_VLAN;
|
|
|
|
/* L3 level */
|
|
if (oflags & (RTE_MBUF_F_TX_OUTER_IPV4 | RTE_MBUF_F_TX_OUTER_IP_CKSUM))
|
|
ptype |= RTE_PTYPE_L3_IPV4;
|
|
else if (oflags & (RTE_MBUF_F_TX_OUTER_IPV6))
|
|
ptype |= RTE_PTYPE_L3_IPV6;
|
|
|
|
if (oflags & (RTE_MBUF_F_TX_IPV4 | RTE_MBUF_F_TX_IP_CKSUM))
|
|
ptype |= (tun ? RTE_PTYPE_INNER_L3_IPV4 : RTE_PTYPE_L3_IPV4);
|
|
else if (oflags & (RTE_MBUF_F_TX_IPV6))
|
|
ptype |= (tun ? RTE_PTYPE_INNER_L3_IPV6 : RTE_PTYPE_L3_IPV6);
|
|
|
|
/* L4 level */
|
|
switch (oflags & (RTE_MBUF_F_TX_L4_MASK)) {
|
|
case RTE_MBUF_F_TX_TCP_CKSUM:
|
|
ptype |= (tun ? RTE_PTYPE_INNER_L4_TCP : RTE_PTYPE_L4_TCP);
|
|
break;
|
|
case RTE_MBUF_F_TX_UDP_CKSUM:
|
|
ptype |= (tun ? RTE_PTYPE_INNER_L4_UDP : RTE_PTYPE_L4_UDP);
|
|
break;
|
|
case RTE_MBUF_F_TX_SCTP_CKSUM:
|
|
ptype |= (tun ? RTE_PTYPE_INNER_L4_SCTP : RTE_PTYPE_L4_SCTP);
|
|
break;
|
|
}
|
|
|
|
if (oflags & RTE_MBUF_F_TX_TCP_SEG)
|
|
ptype |= (tun ? RTE_PTYPE_INNER_L4_TCP : RTE_PTYPE_L4_TCP);
|
|
|
|
/* Tunnel */
|
|
switch (oflags & RTE_MBUF_F_TX_TUNNEL_MASK) {
|
|
case RTE_MBUF_F_TX_TUNNEL_IPIP:
|
|
case RTE_MBUF_F_TX_TUNNEL_IP:
|
|
ptype |= RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4 |
|
|
RTE_PTYPE_TUNNEL_IP;
|
|
break;
|
|
}
|
|
|
|
return ngbe_encode_ptype(ptype);
|
|
}
|
|
|
|
/* Reset transmit descriptors after they have been used */
|
|
static inline int
|
|
ngbe_xmit_cleanup(struct ngbe_tx_queue *txq)
|
|
{
|
|
struct ngbe_tx_entry *sw_ring = txq->sw_ring;
|
|
volatile struct ngbe_tx_desc *txr = txq->tx_ring;
|
|
uint16_t last_desc_cleaned = txq->last_desc_cleaned;
|
|
uint16_t nb_tx_desc = txq->nb_tx_desc;
|
|
uint16_t desc_to_clean_to;
|
|
uint16_t nb_tx_to_clean;
|
|
uint32_t status;
|
|
|
|
/* Determine the last descriptor needing to be cleaned */
|
|
desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_free_thresh);
|
|
if (desc_to_clean_to >= nb_tx_desc)
|
|
desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
|
|
|
|
/* Check to make sure the last descriptor to clean is done */
|
|
desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
|
|
status = txr[desc_to_clean_to].dw3;
|
|
if (!(status & rte_cpu_to_le_32(NGBE_TXD_DD))) {
|
|
PMD_TX_LOG(DEBUG,
|
|
"Tx descriptor %4u is not done"
|
|
"(port=%d queue=%d)",
|
|
desc_to_clean_to,
|
|
txq->port_id, txq->queue_id);
|
|
if (txq->nb_tx_free >> 1 < txq->tx_free_thresh)
|
|
ngbe_set32_masked(txq->tdc_reg_addr,
|
|
NGBE_TXCFG_FLUSH, NGBE_TXCFG_FLUSH);
|
|
/* Failed to clean any descriptors, better luck next time */
|
|
return -(1);
|
|
}
|
|
|
|
/* Figure out how many descriptors will be cleaned */
|
|
if (last_desc_cleaned > desc_to_clean_to)
|
|
nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
|
|
desc_to_clean_to);
|
|
else
|
|
nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
|
|
last_desc_cleaned);
|
|
|
|
PMD_TX_LOG(DEBUG,
|
|
"Cleaning %4u Tx descriptors: %4u to %4u (port=%d queue=%d)",
|
|
nb_tx_to_clean, last_desc_cleaned, desc_to_clean_to,
|
|
txq->port_id, txq->queue_id);
|
|
|
|
/*
|
|
* The last descriptor to clean is done, so that means all the
|
|
* descriptors from the last descriptor that was cleaned
|
|
* up to the last descriptor with the RS bit set
|
|
* are done. Only reset the threshold descriptor.
|
|
*/
|
|
txr[desc_to_clean_to].dw3 = 0;
|
|
|
|
/* Update the txq to reflect the last descriptor that was cleaned */
|
|
txq->last_desc_cleaned = desc_to_clean_to;
|
|
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
|
|
|
|
/* No Error */
|
|
return 0;
|
|
}
|
|
|
|
uint16_t
|
|
ngbe_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct ngbe_tx_queue *txq;
|
|
struct ngbe_tx_entry *sw_ring;
|
|
struct ngbe_tx_entry *txe, *txn;
|
|
volatile struct ngbe_tx_desc *txr;
|
|
volatile struct ngbe_tx_desc *txd;
|
|
struct rte_mbuf *tx_pkt;
|
|
struct rte_mbuf *m_seg;
|
|
uint64_t buf_dma_addr;
|
|
uint32_t olinfo_status;
|
|
uint32_t cmd_type_len;
|
|
uint32_t pkt_len;
|
|
uint16_t slen;
|
|
uint64_t ol_flags;
|
|
uint16_t tx_id;
|
|
uint16_t tx_last;
|
|
uint16_t nb_tx;
|
|
uint16_t nb_used;
|
|
uint64_t tx_ol_req;
|
|
uint32_t ctx = 0;
|
|
uint32_t new_ctx;
|
|
union ngbe_tx_offload tx_offload;
|
|
|
|
tx_offload.data[0] = 0;
|
|
tx_offload.data[1] = 0;
|
|
txq = tx_queue;
|
|
sw_ring = txq->sw_ring;
|
|
txr = txq->tx_ring;
|
|
tx_id = txq->tx_tail;
|
|
txe = &sw_ring[tx_id];
|
|
|
|
/* Determine if the descriptor ring needs to be cleaned. */
|
|
if (txq->nb_tx_free < txq->tx_free_thresh)
|
|
ngbe_xmit_cleanup(txq);
|
|
|
|
rte_prefetch0(&txe->mbuf->pool);
|
|
|
|
/* Tx loop */
|
|
for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
|
|
new_ctx = 0;
|
|
tx_pkt = *tx_pkts++;
|
|
pkt_len = tx_pkt->pkt_len;
|
|
|
|
/*
|
|
* Determine how many (if any) context descriptors
|
|
* are needed for offload functionality.
|
|
*/
|
|
ol_flags = tx_pkt->ol_flags;
|
|
|
|
/* If hardware offload required */
|
|
tx_ol_req = ol_flags & NGBE_TX_OFFLOAD_MASK;
|
|
if (tx_ol_req) {
|
|
tx_offload.ptid = tx_desc_ol_flags_to_ptid(tx_ol_req,
|
|
tx_pkt->packet_type);
|
|
tx_offload.l2_len = tx_pkt->l2_len;
|
|
tx_offload.l3_len = tx_pkt->l3_len;
|
|
tx_offload.l4_len = tx_pkt->l4_len;
|
|
tx_offload.vlan_tci = tx_pkt->vlan_tci;
|
|
tx_offload.tso_segsz = tx_pkt->tso_segsz;
|
|
tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
|
|
tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
|
|
tx_offload.outer_tun_len = 0;
|
|
|
|
/* If new context need be built or reuse the exist ctx*/
|
|
ctx = what_ctx_update(txq, tx_ol_req, tx_offload);
|
|
/* Only allocate context descriptor if required */
|
|
new_ctx = (ctx == NGBE_CTX_NUM);
|
|
ctx = txq->ctx_curr;
|
|
}
|
|
|
|
/*
|
|
* Keep track of how many descriptors are used this loop
|
|
* This will always be the number of segments + the number of
|
|
* Context descriptors required to transmit the packet
|
|
*/
|
|
nb_used = (uint16_t)(tx_pkt->nb_segs + new_ctx);
|
|
|
|
/*
|
|
* The number of descriptors that must be allocated for a
|
|
* packet is the number of segments of that packet, plus 1
|
|
* Context Descriptor for the hardware offload, if any.
|
|
* Determine the last Tx descriptor to allocate in the Tx ring
|
|
* for the packet, starting from the current position (tx_id)
|
|
* in the ring.
|
|
*/
|
|
tx_last = (uint16_t)(tx_id + nb_used - 1);
|
|
|
|
/* Circular ring */
|
|
if (tx_last >= txq->nb_tx_desc)
|
|
tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
|
|
|
|
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
|
|
" tx_first=%u tx_last=%u",
|
|
(uint16_t)txq->port_id,
|
|
(uint16_t)txq->queue_id,
|
|
(uint32_t)pkt_len,
|
|
(uint16_t)tx_id,
|
|
(uint16_t)tx_last);
|
|
|
|
/*
|
|
* Make sure there are enough Tx descriptors available to
|
|
* transmit the entire packet.
|
|
* nb_used better be less than or equal to txq->tx_free_thresh
|
|
*/
|
|
if (nb_used > txq->nb_tx_free) {
|
|
PMD_TX_LOG(DEBUG,
|
|
"Not enough free Tx descriptors "
|
|
"nb_used=%4u nb_free=%4u "
|
|
"(port=%d queue=%d)",
|
|
nb_used, txq->nb_tx_free,
|
|
txq->port_id, txq->queue_id);
|
|
|
|
if (ngbe_xmit_cleanup(txq) != 0) {
|
|
/* Could not clean any descriptors */
|
|
if (nb_tx == 0)
|
|
return 0;
|
|
goto end_of_tx;
|
|
}
|
|
|
|
/* nb_used better be <= txq->tx_free_thresh */
|
|
if (unlikely(nb_used > txq->tx_free_thresh)) {
|
|
PMD_TX_LOG(DEBUG,
|
|
"The number of descriptors needed to "
|
|
"transmit the packet exceeds the "
|
|
"RS bit threshold. This will impact "
|
|
"performance."
|
|
"nb_used=%4u nb_free=%4u "
|
|
"tx_free_thresh=%4u. "
|
|
"(port=%d queue=%d)",
|
|
nb_used, txq->nb_tx_free,
|
|
txq->tx_free_thresh,
|
|
txq->port_id, txq->queue_id);
|
|
/*
|
|
* Loop here until there are enough Tx
|
|
* descriptors or until the ring cannot be
|
|
* cleaned.
|
|
*/
|
|
while (nb_used > txq->nb_tx_free) {
|
|
if (ngbe_xmit_cleanup(txq) != 0) {
|
|
/*
|
|
* Could not clean any
|
|
* descriptors
|
|
*/
|
|
if (nb_tx == 0)
|
|
return 0;
|
|
goto end_of_tx;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* By now there are enough free Tx descriptors to transmit
|
|
* the packet.
|
|
*/
|
|
|
|
/*
|
|
* Set common flags of all Tx Data Descriptors.
|
|
*
|
|
* The following bits must be set in the first Data Descriptor
|
|
* and are ignored in the other ones:
|
|
* - NGBE_TXD_FCS
|
|
*
|
|
* The following bits must only be set in the last Data
|
|
* Descriptor:
|
|
* - NGBE_TXD_EOP
|
|
*/
|
|
cmd_type_len = NGBE_TXD_FCS;
|
|
|
|
#ifdef RTE_LIBRTE_IEEE1588
|
|
if (ol_flags & RTE_MBUF_F_TX_IEEE1588_TMST)
|
|
cmd_type_len |= NGBE_TXD_1588;
|
|
#endif
|
|
|
|
olinfo_status = 0;
|
|
if (tx_ol_req) {
|
|
if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
|
|
/* when TSO is on, paylen in descriptor is the
|
|
* not the packet len but the tcp payload len
|
|
*/
|
|
pkt_len -= (tx_offload.l2_len +
|
|
tx_offload.l3_len + tx_offload.l4_len);
|
|
pkt_len -=
|
|
(tx_pkt->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK)
|
|
? tx_offload.outer_l2_len +
|
|
tx_offload.outer_l3_len : 0;
|
|
}
|
|
|
|
/*
|
|
* Setup the Tx Context Descriptor if required
|
|
*/
|
|
if (new_ctx) {
|
|
volatile struct ngbe_tx_ctx_desc *ctx_txd;
|
|
|
|
ctx_txd = (volatile struct ngbe_tx_ctx_desc *)
|
|
&txr[tx_id];
|
|
|
|
txn = &sw_ring[txe->next_id];
|
|
rte_prefetch0(&txn->mbuf->pool);
|
|
|
|
if (txe->mbuf != NULL) {
|
|
rte_pktmbuf_free_seg(txe->mbuf);
|
|
txe->mbuf = NULL;
|
|
}
|
|
|
|
ngbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
|
|
tx_offload);
|
|
|
|
txe->last_id = tx_last;
|
|
tx_id = txe->next_id;
|
|
txe = txn;
|
|
}
|
|
|
|
/*
|
|
* Setup the Tx Data Descriptor,
|
|
* This path will go through
|
|
* whatever new/reuse the context descriptor
|
|
*/
|
|
cmd_type_len |= tx_desc_ol_flags_to_cmdtype(ol_flags);
|
|
olinfo_status |=
|
|
tx_desc_cksum_flags_to_olinfo(ol_flags);
|
|
olinfo_status |= NGBE_TXD_IDX(ctx);
|
|
}
|
|
|
|
olinfo_status |= NGBE_TXD_PAYLEN(pkt_len);
|
|
|
|
m_seg = tx_pkt;
|
|
do {
|
|
txd = &txr[tx_id];
|
|
txn = &sw_ring[txe->next_id];
|
|
rte_prefetch0(&txn->mbuf->pool);
|
|
|
|
if (txe->mbuf != NULL)
|
|
rte_pktmbuf_free_seg(txe->mbuf);
|
|
txe->mbuf = m_seg;
|
|
|
|
/*
|
|
* Set up Transmit Data Descriptor.
|
|
*/
|
|
slen = m_seg->data_len;
|
|
buf_dma_addr = rte_mbuf_data_iova(m_seg);
|
|
txd->qw0 = rte_cpu_to_le_64(buf_dma_addr);
|
|
txd->dw2 = rte_cpu_to_le_32(cmd_type_len | slen);
|
|
txd->dw3 = rte_cpu_to_le_32(olinfo_status);
|
|
txe->last_id = tx_last;
|
|
tx_id = txe->next_id;
|
|
txe = txn;
|
|
m_seg = m_seg->next;
|
|
} while (m_seg != NULL);
|
|
|
|
/*
|
|
* The last packet data descriptor needs End Of Packet (EOP)
|
|
*/
|
|
cmd_type_len |= NGBE_TXD_EOP;
|
|
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
|
|
|
|
txd->dw2 |= rte_cpu_to_le_32(cmd_type_len);
|
|
}
|
|
|
|
end_of_tx:
|
|
|
|
rte_wmb();
|
|
|
|
/*
|
|
* Set the Transmit Descriptor Tail (TDT)
|
|
*/
|
|
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
|
|
(uint16_t)txq->port_id, (uint16_t)txq->queue_id,
|
|
(uint16_t)tx_id, (uint16_t)nb_tx);
|
|
ngbe_set32_relaxed(txq->tdt_reg_addr, tx_id);
|
|
txq->tx_tail = tx_id;
|
|
|
|
return nb_tx;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Tx prep functions
|
|
*
|
|
**********************************************************************/
|
|
uint16_t
|
|
ngbe_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
|
|
{
|
|
int i, ret;
|
|
uint64_t ol_flags;
|
|
struct rte_mbuf *m;
|
|
struct ngbe_tx_queue *txq = (struct ngbe_tx_queue *)tx_queue;
|
|
|
|
for (i = 0; i < nb_pkts; i++) {
|
|
m = tx_pkts[i];
|
|
ol_flags = m->ol_flags;
|
|
|
|
/**
|
|
* Check if packet meets requirements for number of segments
|
|
*
|
|
* NOTE: for ngbe it's always (40 - WTHRESH) for both TSO and
|
|
* non-TSO
|
|
*/
|
|
|
|
if (m->nb_segs > NGBE_TX_MAX_SEG - txq->wthresh) {
|
|
rte_errno = -EINVAL;
|
|
return i;
|
|
}
|
|
|
|
if (ol_flags & NGBE_TX_OFFLOAD_NOTSUP_MASK) {
|
|
rte_errno = -ENOTSUP;
|
|
return i;
|
|
}
|
|
|
|
#ifdef RTE_ETHDEV_DEBUG_TX
|
|
ret = rte_validate_tx_offload(m);
|
|
if (ret != 0) {
|
|
rte_errno = ret;
|
|
return i;
|
|
}
|
|
#endif
|
|
ret = rte_net_intel_cksum_prepare(m);
|
|
if (ret != 0) {
|
|
rte_errno = ret;
|
|
return i;
|
|
}
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Rx functions
|
|
*
|
|
**********************************************************************/
|
|
static inline uint32_t
|
|
ngbe_rxd_pkt_info_to_pkt_type(uint32_t pkt_info, uint16_t ptid_mask)
|
|
{
|
|
uint16_t ptid = NGBE_RXD_PTID(pkt_info);
|
|
|
|
ptid &= ptid_mask;
|
|
|
|
return ngbe_decode_ptype(ptid);
|
|
}
|
|
|
|
static inline uint64_t
|
|
ngbe_rxd_pkt_info_to_pkt_flags(uint32_t pkt_info)
|
|
{
|
|
static uint64_t ip_rss_types_map[16] __rte_cache_aligned = {
|
|
0, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
|
|
0, RTE_MBUF_F_RX_RSS_HASH, 0, RTE_MBUF_F_RX_RSS_HASH,
|
|
RTE_MBUF_F_RX_RSS_HASH, 0, 0, 0,
|
|
0, 0, 0, RTE_MBUF_F_RX_FDIR,
|
|
};
|
|
#ifdef RTE_LIBRTE_IEEE1588
|
|
static uint64_t ip_pkt_etqf_map[8] = {
|
|
0, 0, 0, RTE_MBUF_F_RX_IEEE1588_PTP,
|
|
0, 0, 0, 0,
|
|
};
|
|
int etfid = ngbe_etflt_id(NGBE_RXD_PTID(pkt_info));
|
|
if (likely(-1 != etfid))
|
|
return ip_pkt_etqf_map[etfid] |
|
|
ip_rss_types_map[NGBE_RXD_RSSTYPE(pkt_info)];
|
|
else
|
|
return ip_rss_types_map[NGBE_RXD_RSSTYPE(pkt_info)];
|
|
#else
|
|
return ip_rss_types_map[NGBE_RXD_RSSTYPE(pkt_info)];
|
|
#endif
|
|
}
|
|
|
|
static inline uint64_t
|
|
rx_desc_status_to_pkt_flags(uint32_t rx_status, uint64_t vlan_flags)
|
|
{
|
|
uint64_t pkt_flags;
|
|
|
|
/*
|
|
* Check if VLAN present only.
|
|
* Do not check whether L3/L4 rx checksum done by NIC or not,
|
|
* That can be found from rte_eth_rxmode.offloads flag
|
|
*/
|
|
pkt_flags = (rx_status & NGBE_RXD_STAT_VLAN &&
|
|
vlan_flags & RTE_MBUF_F_RX_VLAN_STRIPPED)
|
|
? vlan_flags : 0;
|
|
|
|
#ifdef RTE_LIBRTE_IEEE1588
|
|
if (rx_status & NGBE_RXD_STAT_1588)
|
|
pkt_flags = pkt_flags | RTE_MBUF_F_RX_IEEE1588_TMST;
|
|
#endif
|
|
return pkt_flags;
|
|
}
|
|
|
|
static inline uint64_t
|
|
rx_desc_error_to_pkt_flags(uint32_t rx_status)
|
|
{
|
|
uint64_t pkt_flags = 0;
|
|
|
|
/* checksum offload can't be disabled */
|
|
if (rx_status & NGBE_RXD_STAT_IPCS)
|
|
pkt_flags |= (rx_status & NGBE_RXD_ERR_IPCS
|
|
? RTE_MBUF_F_RX_IP_CKSUM_BAD : RTE_MBUF_F_RX_IP_CKSUM_GOOD);
|
|
|
|
if (rx_status & NGBE_RXD_STAT_L4CS)
|
|
pkt_flags |= (rx_status & NGBE_RXD_ERR_L4CS
|
|
? RTE_MBUF_F_RX_L4_CKSUM_BAD : RTE_MBUF_F_RX_L4_CKSUM_GOOD);
|
|
|
|
if (rx_status & NGBE_RXD_STAT_EIPCS &&
|
|
rx_status & NGBE_RXD_ERR_EIPCS)
|
|
pkt_flags |= RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD;
|
|
|
|
return pkt_flags;
|
|
}
|
|
|
|
/*
|
|
* LOOK_AHEAD defines how many desc statuses to check beyond the
|
|
* current descriptor.
|
|
* It must be a pound define for optimal performance.
|
|
* Do not change the value of LOOK_AHEAD, as the ngbe_rx_scan_hw_ring
|
|
* function only works with LOOK_AHEAD=8.
|
|
*/
|
|
#define LOOK_AHEAD 8
|
|
#if (LOOK_AHEAD != 8)
|
|
#error "PMD NGBE: LOOK_AHEAD must be 8\n"
|
|
#endif
|
|
static inline int
|
|
ngbe_rx_scan_hw_ring(struct ngbe_rx_queue *rxq)
|
|
{
|
|
volatile struct ngbe_rx_desc *rxdp;
|
|
struct ngbe_rx_entry *rxep;
|
|
struct rte_mbuf *mb;
|
|
uint16_t pkt_len;
|
|
uint64_t pkt_flags;
|
|
int nb_dd;
|
|
uint32_t s[LOOK_AHEAD];
|
|
uint32_t pkt_info[LOOK_AHEAD];
|
|
int i, j, nb_rx = 0;
|
|
uint32_t status;
|
|
|
|
/* get references to current descriptor and S/W ring entry */
|
|
rxdp = &rxq->rx_ring[rxq->rx_tail];
|
|
rxep = &rxq->sw_ring[rxq->rx_tail];
|
|
|
|
status = rxdp->qw1.lo.status;
|
|
/* check to make sure there is at least 1 packet to receive */
|
|
if (!(status & rte_cpu_to_le_32(NGBE_RXD_STAT_DD)))
|
|
return 0;
|
|
|
|
/*
|
|
* Scan LOOK_AHEAD descriptors at a time to determine which descriptors
|
|
* reference packets that are ready to be received.
|
|
*/
|
|
for (i = 0; i < RTE_PMD_NGBE_RX_MAX_BURST;
|
|
i += LOOK_AHEAD, rxdp += LOOK_AHEAD, rxep += LOOK_AHEAD) {
|
|
/* Read desc statuses backwards to avoid race condition */
|
|
for (j = 0; j < LOOK_AHEAD; j++)
|
|
s[j] = rte_le_to_cpu_32(rxdp[j].qw1.lo.status);
|
|
|
|
rte_atomic_thread_fence(__ATOMIC_ACQUIRE);
|
|
|
|
/* Compute how many status bits were set */
|
|
for (nb_dd = 0; nb_dd < LOOK_AHEAD &&
|
|
(s[nb_dd] & NGBE_RXD_STAT_DD); nb_dd++)
|
|
;
|
|
|
|
for (j = 0; j < nb_dd; j++)
|
|
pkt_info[j] = rte_le_to_cpu_32(rxdp[j].qw0.dw0);
|
|
|
|
nb_rx += nb_dd;
|
|
|
|
/* Translate descriptor info to mbuf format */
|
|
for (j = 0; j < nb_dd; ++j) {
|
|
mb = rxep[j].mbuf;
|
|
pkt_len = rte_le_to_cpu_16(rxdp[j].qw1.hi.len) -
|
|
rxq->crc_len;
|
|
mb->data_len = pkt_len;
|
|
mb->pkt_len = pkt_len;
|
|
mb->vlan_tci = rte_le_to_cpu_16(rxdp[j].qw1.hi.tag);
|
|
|
|
/* convert descriptor fields to rte mbuf flags */
|
|
pkt_flags = rx_desc_status_to_pkt_flags(s[j],
|
|
rxq->vlan_flags);
|
|
pkt_flags |= rx_desc_error_to_pkt_flags(s[j]);
|
|
pkt_flags |=
|
|
ngbe_rxd_pkt_info_to_pkt_flags(pkt_info[j]);
|
|
mb->ol_flags = pkt_flags;
|
|
mb->packet_type =
|
|
ngbe_rxd_pkt_info_to_pkt_type(pkt_info[j],
|
|
NGBE_PTID_MASK);
|
|
|
|
if (likely(pkt_flags & RTE_MBUF_F_RX_RSS_HASH))
|
|
mb->hash.rss =
|
|
rte_le_to_cpu_32(rxdp[j].qw0.dw1);
|
|
}
|
|
|
|
/* Move mbuf pointers from the S/W ring to the stage */
|
|
for (j = 0; j < LOOK_AHEAD; ++j)
|
|
rxq->rx_stage[i + j] = rxep[j].mbuf;
|
|
|
|
/* stop if all requested packets could not be received */
|
|
if (nb_dd != LOOK_AHEAD)
|
|
break;
|
|
}
|
|
|
|
/* clear software ring entries so we can cleanup correctly */
|
|
for (i = 0; i < nb_rx; ++i)
|
|
rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
|
|
|
|
return nb_rx;
|
|
}
|
|
|
|
static inline int
|
|
ngbe_rx_alloc_bufs(struct ngbe_rx_queue *rxq, bool reset_mbuf)
|
|
{
|
|
volatile struct ngbe_rx_desc *rxdp;
|
|
struct ngbe_rx_entry *rxep;
|
|
struct rte_mbuf *mb;
|
|
uint16_t alloc_idx;
|
|
__le64 dma_addr;
|
|
int diag, i;
|
|
|
|
/* allocate buffers in bulk directly into the S/W ring */
|
|
alloc_idx = rxq->rx_free_trigger - (rxq->rx_free_thresh - 1);
|
|
rxep = &rxq->sw_ring[alloc_idx];
|
|
diag = rte_mempool_get_bulk(rxq->mb_pool, (void *)rxep,
|
|
rxq->rx_free_thresh);
|
|
if (unlikely(diag != 0))
|
|
return -ENOMEM;
|
|
|
|
rxdp = &rxq->rx_ring[alloc_idx];
|
|
for (i = 0; i < rxq->rx_free_thresh; ++i) {
|
|
/* populate the static rte mbuf fields */
|
|
mb = rxep[i].mbuf;
|
|
if (reset_mbuf)
|
|
mb->port = rxq->port_id;
|
|
|
|
rte_mbuf_refcnt_set(mb, 1);
|
|
mb->data_off = RTE_PKTMBUF_HEADROOM;
|
|
|
|
/* populate the descriptors */
|
|
dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
|
|
NGBE_RXD_HDRADDR(&rxdp[i], 0);
|
|
NGBE_RXD_PKTADDR(&rxdp[i], dma_addr);
|
|
}
|
|
|
|
/* update state of internal queue structure */
|
|
rxq->rx_free_trigger = rxq->rx_free_trigger + rxq->rx_free_thresh;
|
|
if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
|
|
rxq->rx_free_trigger = rxq->rx_free_thresh - 1;
|
|
|
|
/* no errors */
|
|
return 0;
|
|
}
|
|
|
|
static inline uint16_t
|
|
ngbe_rx_fill_from_stage(struct ngbe_rx_queue *rxq, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
|
|
int i;
|
|
|
|
/* how many packets are ready to return? */
|
|
nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
|
|
|
|
/* copy mbuf pointers to the application's packet list */
|
|
for (i = 0; i < nb_pkts; ++i)
|
|
rx_pkts[i] = stage[i];
|
|
|
|
/* update internal queue state */
|
|
rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
|
|
rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
|
|
|
|
return nb_pkts;
|
|
}
|
|
|
|
static inline uint16_t
|
|
ngbe_rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct ngbe_rx_queue *rxq = (struct ngbe_rx_queue *)rx_queue;
|
|
struct rte_eth_dev *dev = &rte_eth_devices[rxq->port_id];
|
|
uint16_t nb_rx = 0;
|
|
|
|
/* Any previously recv'd pkts will be returned from the Rx stage */
|
|
if (rxq->rx_nb_avail)
|
|
return ngbe_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
|
|
|
|
/* Scan the H/W ring for packets to receive */
|
|
nb_rx = (uint16_t)ngbe_rx_scan_hw_ring(rxq);
|
|
|
|
/* update internal queue state */
|
|
rxq->rx_next_avail = 0;
|
|
rxq->rx_nb_avail = nb_rx;
|
|
rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
|
|
|
|
/* if required, allocate new buffers to replenish descriptors */
|
|
if (rxq->rx_tail > rxq->rx_free_trigger) {
|
|
uint16_t cur_free_trigger = rxq->rx_free_trigger;
|
|
|
|
if (ngbe_rx_alloc_bufs(rxq, true) != 0) {
|
|
int i, j;
|
|
|
|
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
|
|
"queue_id=%u", (uint16_t)rxq->port_id,
|
|
(uint16_t)rxq->queue_id);
|
|
|
|
dev->data->rx_mbuf_alloc_failed +=
|
|
rxq->rx_free_thresh;
|
|
|
|
/*
|
|
* Need to rewind any previous receives if we cannot
|
|
* allocate new buffers to replenish the old ones.
|
|
*/
|
|
rxq->rx_nb_avail = 0;
|
|
rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
|
|
for (i = 0, j = rxq->rx_tail; i < nb_rx; ++i, ++j)
|
|
rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* update tail pointer */
|
|
rte_wmb();
|
|
ngbe_set32_relaxed(rxq->rdt_reg_addr, cur_free_trigger);
|
|
}
|
|
|
|
if (rxq->rx_tail >= rxq->nb_rx_desc)
|
|
rxq->rx_tail = 0;
|
|
|
|
/* received any packets this loop? */
|
|
if (rxq->rx_nb_avail)
|
|
return ngbe_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* split requests into chunks of size RTE_PMD_NGBE_RX_MAX_BURST */
|
|
uint16_t
|
|
ngbe_recv_pkts_bulk_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
uint16_t nb_rx;
|
|
|
|
if (unlikely(nb_pkts == 0))
|
|
return 0;
|
|
|
|
if (likely(nb_pkts <= RTE_PMD_NGBE_RX_MAX_BURST))
|
|
return ngbe_rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
|
|
|
|
/* request is relatively large, chunk it up */
|
|
nb_rx = 0;
|
|
while (nb_pkts) {
|
|
uint16_t ret, n;
|
|
|
|
n = (uint16_t)RTE_MIN(nb_pkts, RTE_PMD_NGBE_RX_MAX_BURST);
|
|
ret = ngbe_rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
|
|
nb_rx = (uint16_t)(nb_rx + ret);
|
|
nb_pkts = (uint16_t)(nb_pkts - ret);
|
|
if (ret < n)
|
|
break;
|
|
}
|
|
|
|
return nb_rx;
|
|
}
|
|
|
|
uint16_t
|
|
ngbe_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct ngbe_rx_queue *rxq;
|
|
volatile struct ngbe_rx_desc *rx_ring;
|
|
volatile struct ngbe_rx_desc *rxdp;
|
|
struct ngbe_rx_entry *sw_ring;
|
|
struct ngbe_rx_entry *rxe;
|
|
struct rte_mbuf *rxm;
|
|
struct rte_mbuf *nmb;
|
|
struct ngbe_rx_desc rxd;
|
|
uint64_t dma_addr;
|
|
uint32_t staterr;
|
|
uint32_t pkt_info;
|
|
uint16_t pkt_len;
|
|
uint16_t rx_id;
|
|
uint16_t nb_rx;
|
|
uint16_t nb_hold;
|
|
uint64_t pkt_flags;
|
|
|
|
nb_rx = 0;
|
|
nb_hold = 0;
|
|
rxq = rx_queue;
|
|
rx_id = rxq->rx_tail;
|
|
rx_ring = rxq->rx_ring;
|
|
sw_ring = rxq->sw_ring;
|
|
struct rte_eth_dev *dev = &rte_eth_devices[rxq->port_id];
|
|
while (nb_rx < nb_pkts) {
|
|
/*
|
|
* The order of operations here is important as the DD status
|
|
* bit must not be read after any other descriptor fields.
|
|
* rx_ring and rxdp are pointing to volatile data so the order
|
|
* of accesses cannot be reordered by the compiler. If they were
|
|
* not volatile, they could be reordered which could lead to
|
|
* using invalid descriptor fields when read from rxd.
|
|
*/
|
|
rxdp = &rx_ring[rx_id];
|
|
staterr = rxdp->qw1.lo.status;
|
|
if (!(staterr & rte_cpu_to_le_32(NGBE_RXD_STAT_DD)))
|
|
break;
|
|
rxd = *rxdp;
|
|
|
|
/*
|
|
* End of packet.
|
|
*
|
|
* If the NGBE_RXD_STAT_EOP flag is not set, the Rx packet
|
|
* is likely to be invalid and to be dropped by the various
|
|
* validation checks performed by the network stack.
|
|
*
|
|
* Allocate a new mbuf to replenish the RX ring descriptor.
|
|
* If the allocation fails:
|
|
* - arrange for that Rx descriptor to be the first one
|
|
* being parsed the next time the receive function is
|
|
* invoked [on the same queue].
|
|
*
|
|
* - Stop parsing the Rx ring and return immediately.
|
|
*
|
|
* This policy do not drop the packet received in the Rx
|
|
* descriptor for which the allocation of a new mbuf failed.
|
|
* Thus, it allows that packet to be later retrieved if
|
|
* mbuf have been freed in the mean time.
|
|
* As a side effect, holding Rx descriptors instead of
|
|
* systematically giving them back to the NIC may lead to
|
|
* Rx ring exhaustion situations.
|
|
* However, the NIC can gracefully prevent such situations
|
|
* to happen by sending specific "back-pressure" flow control
|
|
* frames to its peer(s).
|
|
*/
|
|
PMD_RX_LOG(DEBUG,
|
|
"port_id=%u queue_id=%u rx_id=%u ext_err_stat=0x%08x pkt_len=%u",
|
|
(uint16_t)rxq->port_id, (uint16_t)rxq->queue_id,
|
|
(uint16_t)rx_id, (uint32_t)staterr,
|
|
(uint16_t)rte_le_to_cpu_16(rxd.qw1.hi.len));
|
|
|
|
nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
|
|
if (nmb == NULL) {
|
|
PMD_RX_LOG(DEBUG,
|
|
"Rx mbuf alloc failed port_id=%u queue_id=%u",
|
|
(uint16_t)rxq->port_id,
|
|
(uint16_t)rxq->queue_id);
|
|
dev->data->rx_mbuf_alloc_failed++;
|
|
break;
|
|
}
|
|
|
|
nb_hold++;
|
|
rxe = &sw_ring[rx_id];
|
|
rx_id++;
|
|
if (rx_id == rxq->nb_rx_desc)
|
|
rx_id = 0;
|
|
|
|
/* Prefetch next mbuf while processing current one. */
|
|
rte_ngbe_prefetch(sw_ring[rx_id].mbuf);
|
|
|
|
/*
|
|
* When next Rx descriptor is on a cache-line boundary,
|
|
* prefetch the next 4 Rx descriptors and the next 8 pointers
|
|
* to mbufs.
|
|
*/
|
|
if ((rx_id & 0x3) == 0) {
|
|
rte_ngbe_prefetch(&rx_ring[rx_id]);
|
|
rte_ngbe_prefetch(&sw_ring[rx_id]);
|
|
}
|
|
|
|
rxm = rxe->mbuf;
|
|
rxe->mbuf = nmb;
|
|
dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
|
|
NGBE_RXD_HDRADDR(rxdp, 0);
|
|
NGBE_RXD_PKTADDR(rxdp, dma_addr);
|
|
|
|
/*
|
|
* Initialize the returned mbuf.
|
|
* 1) setup generic mbuf fields:
|
|
* - number of segments,
|
|
* - next segment,
|
|
* - packet length,
|
|
* - Rx port identifier.
|
|
* 2) integrate hardware offload data, if any:
|
|
* - RSS flag & hash,
|
|
* - IP checksum flag,
|
|
* - VLAN TCI, if any,
|
|
* - error flags.
|
|
*/
|
|
pkt_len = (uint16_t)(rte_le_to_cpu_16(rxd.qw1.hi.len) -
|
|
rxq->crc_len);
|
|
rxm->data_off = RTE_PKTMBUF_HEADROOM;
|
|
rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
|
|
rxm->nb_segs = 1;
|
|
rxm->next = NULL;
|
|
rxm->pkt_len = pkt_len;
|
|
rxm->data_len = pkt_len;
|
|
rxm->port = rxq->port_id;
|
|
|
|
pkt_info = rte_le_to_cpu_32(rxd.qw0.dw0);
|
|
/* Only valid if RTE_MBUF_F_RX_VLAN set in pkt_flags */
|
|
rxm->vlan_tci = rte_le_to_cpu_16(rxd.qw1.hi.tag);
|
|
|
|
pkt_flags = rx_desc_status_to_pkt_flags(staterr,
|
|
rxq->vlan_flags);
|
|
pkt_flags |= rx_desc_error_to_pkt_flags(staterr);
|
|
pkt_flags |= ngbe_rxd_pkt_info_to_pkt_flags(pkt_info);
|
|
rxm->ol_flags = pkt_flags;
|
|
rxm->packet_type = ngbe_rxd_pkt_info_to_pkt_type(pkt_info,
|
|
NGBE_PTID_MASK);
|
|
|
|
if (likely(pkt_flags & RTE_MBUF_F_RX_RSS_HASH))
|
|
rxm->hash.rss = rte_le_to_cpu_32(rxd.qw0.dw1);
|
|
|
|
/*
|
|
* Store the mbuf address into the next entry of the array
|
|
* of returned packets.
|
|
*/
|
|
rx_pkts[nb_rx++] = rxm;
|
|
}
|
|
rxq->rx_tail = rx_id;
|
|
|
|
/*
|
|
* If the number of free Rx descriptors is greater than the Rx free
|
|
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
|
|
* register.
|
|
* Update the RDT with the value of the last processed Rx descriptor
|
|
* minus 1, to guarantee that the RDT register is never equal to the
|
|
* RDH register, which creates a "full" ring situation from the
|
|
* hardware point of view...
|
|
*/
|
|
nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
|
|
if (nb_hold > rxq->rx_free_thresh) {
|
|
PMD_RX_LOG(DEBUG,
|
|
"port_id=%u queue_id=%u rx_tail=%u nb_hold=%u nb_rx=%u",
|
|
(uint16_t)rxq->port_id, (uint16_t)rxq->queue_id,
|
|
(uint16_t)rx_id, (uint16_t)nb_hold,
|
|
(uint16_t)nb_rx);
|
|
rx_id = (uint16_t)((rx_id == 0) ?
|
|
(rxq->nb_rx_desc - 1) : (rx_id - 1));
|
|
ngbe_set32(rxq->rdt_reg_addr, rx_id);
|
|
nb_hold = 0;
|
|
}
|
|
rxq->nb_rx_hold = nb_hold;
|
|
return nb_rx;
|
|
}
|
|
|
|
/**
|
|
* ngbe_fill_cluster_head_buf - fill the first mbuf of the returned packet
|
|
*
|
|
* Fill the following info in the HEAD buffer of the Rx cluster:
|
|
* - RX port identifier
|
|
* - hardware offload data, if any:
|
|
* - RSS flag & hash
|
|
* - IP checksum flag
|
|
* - VLAN TCI, if any
|
|
* - error flags
|
|
* @head HEAD of the packet cluster
|
|
* @desc HW descriptor to get data from
|
|
* @rxq Pointer to the Rx queue
|
|
*/
|
|
static inline void
|
|
ngbe_fill_cluster_head_buf(struct rte_mbuf *head, struct ngbe_rx_desc *desc,
|
|
struct ngbe_rx_queue *rxq, uint32_t staterr)
|
|
{
|
|
uint32_t pkt_info;
|
|
uint64_t pkt_flags;
|
|
|
|
head->port = rxq->port_id;
|
|
|
|
/* The vlan_tci field is only valid when RTE_MBUF_F_RX_VLAN is
|
|
* set in the pkt_flags field.
|
|
*/
|
|
head->vlan_tci = rte_le_to_cpu_16(desc->qw1.hi.tag);
|
|
pkt_info = rte_le_to_cpu_32(desc->qw0.dw0);
|
|
pkt_flags = rx_desc_status_to_pkt_flags(staterr, rxq->vlan_flags);
|
|
pkt_flags |= rx_desc_error_to_pkt_flags(staterr);
|
|
pkt_flags |= ngbe_rxd_pkt_info_to_pkt_flags(pkt_info);
|
|
head->ol_flags = pkt_flags;
|
|
head->packet_type = ngbe_rxd_pkt_info_to_pkt_type(pkt_info,
|
|
NGBE_PTID_MASK);
|
|
|
|
if (likely(pkt_flags & RTE_MBUF_F_RX_RSS_HASH))
|
|
head->hash.rss = rte_le_to_cpu_32(desc->qw0.dw1);
|
|
}
|
|
|
|
/**
|
|
* ngbe_recv_pkts_sc - receive handler for scatter case.
|
|
*
|
|
* @rx_queue Rx queue handle
|
|
* @rx_pkts table of received packets
|
|
* @nb_pkts size of rx_pkts table
|
|
* @bulk_alloc if TRUE bulk allocation is used for a HW ring refilling
|
|
*
|
|
* Returns the number of received packets/clusters (according to the "bulk
|
|
* receive" interface).
|
|
*/
|
|
static inline uint16_t
|
|
ngbe_recv_pkts_sc(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts,
|
|
bool bulk_alloc)
|
|
{
|
|
struct ngbe_rx_queue *rxq = rx_queue;
|
|
struct rte_eth_dev *dev = &rte_eth_devices[rxq->port_id];
|
|
volatile struct ngbe_rx_desc *rx_ring = rxq->rx_ring;
|
|
struct ngbe_rx_entry *sw_ring = rxq->sw_ring;
|
|
struct ngbe_scattered_rx_entry *sw_sc_ring = rxq->sw_sc_ring;
|
|
uint16_t rx_id = rxq->rx_tail;
|
|
uint16_t nb_rx = 0;
|
|
uint16_t nb_hold = rxq->nb_rx_hold;
|
|
uint16_t prev_id = rxq->rx_tail;
|
|
|
|
while (nb_rx < nb_pkts) {
|
|
bool eop;
|
|
struct ngbe_rx_entry *rxe;
|
|
struct ngbe_scattered_rx_entry *sc_entry;
|
|
struct ngbe_scattered_rx_entry *next_sc_entry = NULL;
|
|
struct ngbe_rx_entry *next_rxe = NULL;
|
|
struct rte_mbuf *first_seg;
|
|
struct rte_mbuf *rxm;
|
|
struct rte_mbuf *nmb = NULL;
|
|
struct ngbe_rx_desc rxd;
|
|
uint16_t data_len;
|
|
uint16_t next_id;
|
|
volatile struct ngbe_rx_desc *rxdp;
|
|
uint32_t staterr;
|
|
|
|
next_desc:
|
|
rxdp = &rx_ring[rx_id];
|
|
staterr = rte_le_to_cpu_32(rxdp->qw1.lo.status);
|
|
|
|
if (!(staterr & NGBE_RXD_STAT_DD))
|
|
break;
|
|
|
|
rxd = *rxdp;
|
|
|
|
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
|
|
"staterr=0x%x data_len=%u",
|
|
rxq->port_id, rxq->queue_id, rx_id, staterr,
|
|
rte_le_to_cpu_16(rxd.qw1.hi.len));
|
|
|
|
if (!bulk_alloc) {
|
|
nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
|
|
if (nmb == NULL) {
|
|
PMD_RX_LOG(DEBUG, "Rx mbuf alloc failed "
|
|
"port_id=%u queue_id=%u",
|
|
rxq->port_id, rxq->queue_id);
|
|
|
|
dev->data->rx_mbuf_alloc_failed++;
|
|
break;
|
|
}
|
|
} else if (nb_hold > rxq->rx_free_thresh) {
|
|
uint16_t next_rdt = rxq->rx_free_trigger;
|
|
|
|
if (!ngbe_rx_alloc_bufs(rxq, false)) {
|
|
rte_wmb();
|
|
ngbe_set32_relaxed(rxq->rdt_reg_addr,
|
|
next_rdt);
|
|
nb_hold -= rxq->rx_free_thresh;
|
|
} else {
|
|
PMD_RX_LOG(DEBUG, "Rx bulk alloc failed "
|
|
"port_id=%u queue_id=%u",
|
|
rxq->port_id, rxq->queue_id);
|
|
|
|
dev->data->rx_mbuf_alloc_failed++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
nb_hold++;
|
|
rxe = &sw_ring[rx_id];
|
|
eop = staterr & NGBE_RXD_STAT_EOP;
|
|
|
|
next_id = rx_id + 1;
|
|
if (next_id == rxq->nb_rx_desc)
|
|
next_id = 0;
|
|
|
|
/* Prefetch next mbuf while processing current one. */
|
|
rte_ngbe_prefetch(sw_ring[next_id].mbuf);
|
|
|
|
/*
|
|
* When next Rx descriptor is on a cache-line boundary,
|
|
* prefetch the next 4 RX descriptors and the next 4 pointers
|
|
* to mbufs.
|
|
*/
|
|
if ((next_id & 0x3) == 0) {
|
|
rte_ngbe_prefetch(&rx_ring[next_id]);
|
|
rte_ngbe_prefetch(&sw_ring[next_id]);
|
|
}
|
|
|
|
rxm = rxe->mbuf;
|
|
|
|
if (!bulk_alloc) {
|
|
__le64 dma =
|
|
rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
|
|
/*
|
|
* Update Rx descriptor with the physical address of the
|
|
* new data buffer of the new allocated mbuf.
|
|
*/
|
|
rxe->mbuf = nmb;
|
|
|
|
rxm->data_off = RTE_PKTMBUF_HEADROOM;
|
|
NGBE_RXD_HDRADDR(rxdp, 0);
|
|
NGBE_RXD_PKTADDR(rxdp, dma);
|
|
} else {
|
|
rxe->mbuf = NULL;
|
|
}
|
|
|
|
/*
|
|
* Set data length & data buffer address of mbuf.
|
|
*/
|
|
data_len = rte_le_to_cpu_16(rxd.qw1.hi.len);
|
|
rxm->data_len = data_len;
|
|
|
|
if (!eop) {
|
|
uint16_t nextp_id;
|
|
|
|
nextp_id = next_id;
|
|
next_sc_entry = &sw_sc_ring[nextp_id];
|
|
next_rxe = &sw_ring[nextp_id];
|
|
rte_ngbe_prefetch(next_rxe);
|
|
}
|
|
|
|
sc_entry = &sw_sc_ring[rx_id];
|
|
first_seg = sc_entry->fbuf;
|
|
sc_entry->fbuf = NULL;
|
|
|
|
/*
|
|
* If this is the first buffer of the received packet,
|
|
* set the pointer to the first mbuf of the packet and
|
|
* initialize its context.
|
|
* Otherwise, update the total length and the number of segments
|
|
* of the current scattered packet, and update the pointer to
|
|
* the last mbuf of the current packet.
|
|
*/
|
|
if (first_seg == NULL) {
|
|
first_seg = rxm;
|
|
first_seg->pkt_len = data_len;
|
|
first_seg->nb_segs = 1;
|
|
} else {
|
|
first_seg->pkt_len += data_len;
|
|
first_seg->nb_segs++;
|
|
}
|
|
|
|
prev_id = rx_id;
|
|
rx_id = next_id;
|
|
|
|
/*
|
|
* If this is not the last buffer of the received packet, update
|
|
* the pointer to the first mbuf at the NEXTP entry in the
|
|
* sw_sc_ring and continue to parse the Rx ring.
|
|
*/
|
|
if (!eop && next_rxe) {
|
|
rxm->next = next_rxe->mbuf;
|
|
next_sc_entry->fbuf = first_seg;
|
|
goto next_desc;
|
|
}
|
|
|
|
/* Initialize the first mbuf of the returned packet */
|
|
ngbe_fill_cluster_head_buf(first_seg, &rxd, rxq, staterr);
|
|
|
|
/* Deal with the case, when HW CRC srip is disabled. */
|
|
first_seg->pkt_len -= rxq->crc_len;
|
|
if (unlikely(rxm->data_len <= rxq->crc_len)) {
|
|
struct rte_mbuf *lp;
|
|
|
|
for (lp = first_seg; lp->next != rxm; lp = lp->next)
|
|
;
|
|
|
|
first_seg->nb_segs--;
|
|
lp->data_len -= rxq->crc_len - rxm->data_len;
|
|
lp->next = NULL;
|
|
rte_pktmbuf_free_seg(rxm);
|
|
} else {
|
|
rxm->data_len -= rxq->crc_len;
|
|
}
|
|
|
|
/* Prefetch data of first segment, if configured to do so. */
|
|
rte_packet_prefetch((char *)first_seg->buf_addr +
|
|
first_seg->data_off);
|
|
|
|
/*
|
|
* Store the mbuf address into the next entry of the array
|
|
* of returned packets.
|
|
*/
|
|
rx_pkts[nb_rx++] = first_seg;
|
|
}
|
|
|
|
/*
|
|
* Record index of the next Rx descriptor to probe.
|
|
*/
|
|
rxq->rx_tail = rx_id;
|
|
|
|
/*
|
|
* If the number of free Rx descriptors is greater than the Rx free
|
|
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
|
|
* register.
|
|
* Update the RDT with the value of the last processed Rx descriptor
|
|
* minus 1, to guarantee that the RDT register is never equal to the
|
|
* RDH register, which creates a "full" ring situation from the
|
|
* hardware point of view...
|
|
*/
|
|
if (!bulk_alloc && nb_hold > rxq->rx_free_thresh) {
|
|
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
|
|
"nb_hold=%u nb_rx=%u",
|
|
rxq->port_id, rxq->queue_id, rx_id, nb_hold, nb_rx);
|
|
|
|
rte_wmb();
|
|
ngbe_set32_relaxed(rxq->rdt_reg_addr, prev_id);
|
|
nb_hold = 0;
|
|
}
|
|
|
|
rxq->nb_rx_hold = nb_hold;
|
|
return nb_rx;
|
|
}
|
|
|
|
uint16_t
|
|
ngbe_recv_pkts_sc_single_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
return ngbe_recv_pkts_sc(rx_queue, rx_pkts, nb_pkts, false);
|
|
}
|
|
|
|
uint16_t
|
|
ngbe_recv_pkts_sc_bulk_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
return ngbe_recv_pkts_sc(rx_queue, rx_pkts, nb_pkts, true);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Queue management functions
|
|
*
|
|
**********************************************************************/
|
|
|
|
static void
|
|
ngbe_tx_queue_release_mbufs(struct ngbe_tx_queue *txq)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (txq->sw_ring != NULL) {
|
|
for (i = 0; i < txq->nb_tx_desc; i++) {
|
|
if (txq->sw_ring[i].mbuf != NULL) {
|
|
rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
|
|
txq->sw_ring[i].mbuf = NULL;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
ngbe_tx_done_cleanup_full(struct ngbe_tx_queue *txq, uint32_t free_cnt)
|
|
{
|
|
struct ngbe_tx_entry *swr_ring = txq->sw_ring;
|
|
uint16_t i, tx_last, tx_id;
|
|
uint16_t nb_tx_free_last;
|
|
uint16_t nb_tx_to_clean;
|
|
uint32_t pkt_cnt;
|
|
|
|
/* Start free mbuf from the next of tx_tail */
|
|
tx_last = txq->tx_tail;
|
|
tx_id = swr_ring[tx_last].next_id;
|
|
|
|
if (txq->nb_tx_free == 0 && ngbe_xmit_cleanup(txq))
|
|
return 0;
|
|
|
|
nb_tx_to_clean = txq->nb_tx_free;
|
|
nb_tx_free_last = txq->nb_tx_free;
|
|
if (!free_cnt)
|
|
free_cnt = txq->nb_tx_desc;
|
|
|
|
/* Loop through swr_ring to count the amount of
|
|
* freeable mubfs and packets.
|
|
*/
|
|
for (pkt_cnt = 0; pkt_cnt < free_cnt; ) {
|
|
for (i = 0; i < nb_tx_to_clean &&
|
|
pkt_cnt < free_cnt &&
|
|
tx_id != tx_last; i++) {
|
|
if (swr_ring[tx_id].mbuf != NULL) {
|
|
rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
|
|
swr_ring[tx_id].mbuf = NULL;
|
|
|
|
/*
|
|
* last segment in the packet,
|
|
* increment packet count
|
|
*/
|
|
pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
|
|
}
|
|
|
|
tx_id = swr_ring[tx_id].next_id;
|
|
}
|
|
|
|
if (pkt_cnt < free_cnt) {
|
|
if (ngbe_xmit_cleanup(txq))
|
|
break;
|
|
|
|
nb_tx_to_clean = txq->nb_tx_free - nb_tx_free_last;
|
|
nb_tx_free_last = txq->nb_tx_free;
|
|
}
|
|
}
|
|
|
|
return (int)pkt_cnt;
|
|
}
|
|
|
|
static int
|
|
ngbe_tx_done_cleanup_simple(struct ngbe_tx_queue *txq,
|
|
uint32_t free_cnt)
|
|
{
|
|
int i, n, cnt;
|
|
|
|
if (free_cnt == 0 || free_cnt > txq->nb_tx_desc)
|
|
free_cnt = txq->nb_tx_desc;
|
|
|
|
cnt = free_cnt - free_cnt % txq->tx_free_thresh;
|
|
|
|
for (i = 0; i < cnt; i += n) {
|
|
if (txq->nb_tx_desc - txq->nb_tx_free < txq->tx_free_thresh)
|
|
break;
|
|
|
|
n = ngbe_tx_free_bufs(txq);
|
|
|
|
if (n == 0)
|
|
break;
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
int
|
|
ngbe_dev_tx_done_cleanup(void *tx_queue, uint32_t free_cnt)
|
|
{
|
|
struct ngbe_tx_queue *txq = (struct ngbe_tx_queue *)tx_queue;
|
|
if (txq->offloads == 0 &&
|
|
txq->tx_free_thresh >= RTE_PMD_NGBE_TX_MAX_BURST)
|
|
return ngbe_tx_done_cleanup_simple(txq, free_cnt);
|
|
|
|
return ngbe_tx_done_cleanup_full(txq, free_cnt);
|
|
}
|
|
|
|
static void
|
|
ngbe_tx_free_swring(struct ngbe_tx_queue *txq)
|
|
{
|
|
if (txq != NULL)
|
|
rte_free(txq->sw_ring);
|
|
}
|
|
|
|
static void
|
|
ngbe_tx_queue_release(struct ngbe_tx_queue *txq)
|
|
{
|
|
if (txq != NULL) {
|
|
if (txq->ops != NULL) {
|
|
txq->ops->release_mbufs(txq);
|
|
txq->ops->free_swring(txq);
|
|
}
|
|
rte_free(txq);
|
|
}
|
|
}
|
|
|
|
void
|
|
ngbe_dev_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
|
|
{
|
|
ngbe_tx_queue_release(dev->data->tx_queues[qid]);
|
|
}
|
|
|
|
/* (Re)set dynamic ngbe_tx_queue fields to defaults */
|
|
static void
|
|
ngbe_reset_tx_queue(struct ngbe_tx_queue *txq)
|
|
{
|
|
static const struct ngbe_tx_desc zeroed_desc = {0};
|
|
struct ngbe_tx_entry *txe = txq->sw_ring;
|
|
uint16_t prev, i;
|
|
|
|
/* Zero out HW ring memory */
|
|
for (i = 0; i < txq->nb_tx_desc; i++)
|
|
txq->tx_ring[i] = zeroed_desc;
|
|
|
|
/* Initialize SW ring entries */
|
|
prev = (uint16_t)(txq->nb_tx_desc - 1);
|
|
for (i = 0; i < txq->nb_tx_desc; i++) {
|
|
/* the ring can also be modified by hardware */
|
|
volatile struct ngbe_tx_desc *txd = &txq->tx_ring[i];
|
|
|
|
txd->dw3 = rte_cpu_to_le_32(NGBE_TXD_DD);
|
|
txe[i].mbuf = NULL;
|
|
txe[i].last_id = i;
|
|
txe[prev].next_id = i;
|
|
prev = i;
|
|
}
|
|
|
|
txq->tx_next_dd = (uint16_t)(txq->tx_free_thresh - 1);
|
|
txq->tx_tail = 0;
|
|
|
|
/*
|
|
* Always allow 1 descriptor to be un-allocated to avoid
|
|
* a H/W race condition
|
|
*/
|
|
txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
|
|
txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
|
|
txq->ctx_curr = 0;
|
|
memset((void *)&txq->ctx_cache, 0,
|
|
NGBE_CTX_NUM * sizeof(struct ngbe_ctx_info));
|
|
}
|
|
|
|
static const struct ngbe_txq_ops def_txq_ops = {
|
|
.release_mbufs = ngbe_tx_queue_release_mbufs,
|
|
.free_swring = ngbe_tx_free_swring,
|
|
.reset = ngbe_reset_tx_queue,
|
|
};
|
|
|
|
/* Takes an ethdev and a queue and sets up the tx function to be used based on
|
|
* the queue parameters. Used in tx_queue_setup by primary process and then
|
|
* in dev_init by secondary process when attaching to an existing ethdev.
|
|
*/
|
|
void
|
|
ngbe_set_tx_function(struct rte_eth_dev *dev, struct ngbe_tx_queue *txq)
|
|
{
|
|
/* Use a simple Tx queue (no offloads, no multi segs) if possible */
|
|
if (txq->offloads == 0 &&
|
|
txq->tx_free_thresh >= RTE_PMD_NGBE_TX_MAX_BURST) {
|
|
PMD_INIT_LOG(DEBUG, "Using simple tx code path");
|
|
dev->tx_pkt_burst = ngbe_xmit_pkts_simple;
|
|
dev->tx_pkt_prepare = NULL;
|
|
} else {
|
|
PMD_INIT_LOG(DEBUG, "Using full-featured tx code path");
|
|
PMD_INIT_LOG(DEBUG,
|
|
" - offloads = 0x%" PRIx64,
|
|
txq->offloads);
|
|
PMD_INIT_LOG(DEBUG,
|
|
" - tx_free_thresh = %lu [RTE_PMD_NGBE_TX_MAX_BURST=%lu]",
|
|
(unsigned long)txq->tx_free_thresh,
|
|
(unsigned long)RTE_PMD_NGBE_TX_MAX_BURST);
|
|
dev->tx_pkt_burst = ngbe_xmit_pkts;
|
|
dev->tx_pkt_prepare = ngbe_prep_pkts;
|
|
}
|
|
}
|
|
|
|
static const struct {
|
|
eth_tx_burst_t pkt_burst;
|
|
const char *info;
|
|
} ngbe_tx_burst_infos[] = {
|
|
{ ngbe_xmit_pkts_simple, "Scalar Simple"},
|
|
{ ngbe_xmit_pkts, "Scalar"},
|
|
};
|
|
|
|
int
|
|
ngbe_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
|
|
struct rte_eth_burst_mode *mode)
|
|
{
|
|
eth_tx_burst_t pkt_burst = dev->tx_pkt_burst;
|
|
int ret = -EINVAL;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < RTE_DIM(ngbe_tx_burst_infos); ++i) {
|
|
if (pkt_burst == ngbe_tx_burst_infos[i].pkt_burst) {
|
|
snprintf(mode->info, sizeof(mode->info), "%s",
|
|
ngbe_tx_burst_infos[i].info);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
uint64_t
|
|
ngbe_get_tx_port_offloads(struct rte_eth_dev *dev)
|
|
{
|
|
uint64_t tx_offload_capa;
|
|
struct ngbe_hw *hw = ngbe_dev_hw(dev);
|
|
|
|
tx_offload_capa =
|
|
RTE_ETH_TX_OFFLOAD_VLAN_INSERT |
|
|
RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |
|
|
RTE_ETH_TX_OFFLOAD_UDP_CKSUM |
|
|
RTE_ETH_TX_OFFLOAD_TCP_CKSUM |
|
|
RTE_ETH_TX_OFFLOAD_SCTP_CKSUM |
|
|
RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM |
|
|
RTE_ETH_TX_OFFLOAD_TCP_TSO |
|
|
RTE_ETH_TX_OFFLOAD_UDP_TSO |
|
|
RTE_ETH_TX_OFFLOAD_UDP_TNL_TSO |
|
|
RTE_ETH_TX_OFFLOAD_IP_TNL_TSO |
|
|
RTE_ETH_TX_OFFLOAD_IPIP_TNL_TSO |
|
|
RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
|
|
|
|
if (hw->is_pf)
|
|
tx_offload_capa |= RTE_ETH_TX_OFFLOAD_QINQ_INSERT;
|
|
|
|
return tx_offload_capa;
|
|
}
|
|
|
|
int
|
|
ngbe_dev_tx_queue_setup(struct rte_eth_dev *dev,
|
|
uint16_t queue_idx,
|
|
uint16_t nb_desc,
|
|
unsigned int socket_id,
|
|
const struct rte_eth_txconf *tx_conf)
|
|
{
|
|
const struct rte_memzone *tz;
|
|
struct ngbe_tx_queue *txq;
|
|
struct ngbe_hw *hw;
|
|
uint16_t tx_free_thresh;
|
|
uint64_t offloads;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
hw = ngbe_dev_hw(dev);
|
|
|
|
offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
|
|
|
|
/*
|
|
* The Tx descriptor ring will be cleaned after txq->tx_free_thresh
|
|
* descriptors are used or if the number of descriptors required
|
|
* to transmit a packet is greater than the number of free Tx
|
|
* descriptors.
|
|
* One descriptor in the Tx ring is used as a sentinel to avoid a
|
|
* H/W race condition, hence the maximum threshold constraints.
|
|
* When set to zero use default values.
|
|
*/
|
|
tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
|
|
tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
|
|
if (tx_free_thresh >= (nb_desc - 3)) {
|
|
PMD_INIT_LOG(ERR,
|
|
"tx_free_thresh must be less than the number of TX descriptors minus 3. (tx_free_thresh=%u port=%d queue=%d)",
|
|
(unsigned int)tx_free_thresh,
|
|
(int)dev->data->port_id, (int)queue_idx);
|
|
return -(EINVAL);
|
|
}
|
|
|
|
if (nb_desc % tx_free_thresh != 0) {
|
|
PMD_INIT_LOG(ERR,
|
|
"tx_free_thresh must be a divisor of the number of Tx descriptors. (tx_free_thresh=%u port=%d queue=%d)",
|
|
(unsigned int)tx_free_thresh,
|
|
(int)dev->data->port_id, (int)queue_idx);
|
|
return -(EINVAL);
|
|
}
|
|
|
|
/* Free memory prior to re-allocation if needed... */
|
|
if (dev->data->tx_queues[queue_idx] != NULL) {
|
|
ngbe_tx_queue_release(dev->data->tx_queues[queue_idx]);
|
|
dev->data->tx_queues[queue_idx] = NULL;
|
|
}
|
|
|
|
/* First allocate the Tx queue data structure */
|
|
txq = rte_zmalloc_socket("ethdev Tx queue",
|
|
sizeof(struct ngbe_tx_queue),
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (txq == NULL)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Allocate Tx ring hardware descriptors. A memzone large enough to
|
|
* handle the maximum ring size is allocated in order to allow for
|
|
* resizing in later calls to the queue setup function.
|
|
*/
|
|
tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
|
|
sizeof(struct ngbe_tx_desc) * NGBE_RING_DESC_MAX,
|
|
NGBE_ALIGN, socket_id);
|
|
if (tz == NULL) {
|
|
ngbe_tx_queue_release(txq);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
txq->nb_tx_desc = nb_desc;
|
|
txq->tx_free_thresh = tx_free_thresh;
|
|
txq->pthresh = tx_conf->tx_thresh.pthresh;
|
|
txq->hthresh = tx_conf->tx_thresh.hthresh;
|
|
txq->wthresh = tx_conf->tx_thresh.wthresh;
|
|
txq->queue_id = queue_idx;
|
|
txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
|
|
queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
|
|
txq->port_id = dev->data->port_id;
|
|
txq->offloads = offloads;
|
|
txq->ops = &def_txq_ops;
|
|
txq->tx_deferred_start = tx_conf->tx_deferred_start;
|
|
|
|
txq->tdt_reg_addr = NGBE_REG_ADDR(hw, NGBE_TXWP(txq->reg_idx));
|
|
txq->tdc_reg_addr = NGBE_REG_ADDR(hw, NGBE_TXCFG(txq->reg_idx));
|
|
|
|
txq->tx_ring_phys_addr = TMZ_PADDR(tz);
|
|
txq->tx_ring = (struct ngbe_tx_desc *)TMZ_VADDR(tz);
|
|
|
|
/* Allocate software ring */
|
|
txq->sw_ring = rte_zmalloc_socket("txq->sw_ring",
|
|
sizeof(struct ngbe_tx_entry) * nb_desc,
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (txq->sw_ring == NULL) {
|
|
ngbe_tx_queue_release(txq);
|
|
return -ENOMEM;
|
|
}
|
|
PMD_INIT_LOG(DEBUG,
|
|
"sw_ring=%p hw_ring=%p dma_addr=0x%" PRIx64,
|
|
txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
|
|
|
|
/* set up scalar Tx function as appropriate */
|
|
ngbe_set_tx_function(dev, txq);
|
|
|
|
txq->ops->reset(txq);
|
|
|
|
dev->data->tx_queues[queue_idx] = txq;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ngbe_free_sc_cluster - free the not-yet-completed scattered cluster
|
|
*
|
|
* The "next" pointer of the last segment of (not-yet-completed) RSC clusters
|
|
* in the sw_sc_ring is not set to NULL but rather points to the next
|
|
* mbuf of this RSC aggregation (that has not been completed yet and still
|
|
* resides on the HW ring). So, instead of calling for rte_pktmbuf_free() we
|
|
* will just free first "nb_segs" segments of the cluster explicitly by calling
|
|
* an rte_pktmbuf_free_seg().
|
|
*
|
|
* @m scattered cluster head
|
|
*/
|
|
static void
|
|
ngbe_free_sc_cluster(struct rte_mbuf *m)
|
|
{
|
|
uint16_t i, nb_segs = m->nb_segs;
|
|
struct rte_mbuf *next_seg;
|
|
|
|
for (i = 0; i < nb_segs; i++) {
|
|
next_seg = m->next;
|
|
rte_pktmbuf_free_seg(m);
|
|
m = next_seg;
|
|
}
|
|
}
|
|
|
|
static void
|
|
ngbe_rx_queue_release_mbufs(struct ngbe_rx_queue *rxq)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (rxq->sw_ring != NULL) {
|
|
for (i = 0; i < rxq->nb_rx_desc; i++) {
|
|
if (rxq->sw_ring[i].mbuf != NULL) {
|
|
rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
|
|
rxq->sw_ring[i].mbuf = NULL;
|
|
}
|
|
}
|
|
for (i = 0; i < rxq->rx_nb_avail; ++i) {
|
|
struct rte_mbuf *mb;
|
|
|
|
mb = rxq->rx_stage[rxq->rx_next_avail + i];
|
|
rte_pktmbuf_free_seg(mb);
|
|
}
|
|
rxq->rx_nb_avail = 0;
|
|
}
|
|
|
|
if (rxq->sw_sc_ring != NULL)
|
|
for (i = 0; i < rxq->nb_rx_desc; i++)
|
|
if (rxq->sw_sc_ring[i].fbuf != NULL) {
|
|
ngbe_free_sc_cluster(rxq->sw_sc_ring[i].fbuf);
|
|
rxq->sw_sc_ring[i].fbuf = NULL;
|
|
}
|
|
}
|
|
|
|
static void
|
|
ngbe_rx_queue_release(struct ngbe_rx_queue *rxq)
|
|
{
|
|
if (rxq != NULL) {
|
|
ngbe_rx_queue_release_mbufs(rxq);
|
|
rte_free(rxq->sw_ring);
|
|
rte_free(rxq->sw_sc_ring);
|
|
rte_free(rxq);
|
|
}
|
|
}
|
|
|
|
void
|
|
ngbe_dev_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
|
|
{
|
|
ngbe_rx_queue_release(dev->data->rx_queues[qid]);
|
|
}
|
|
|
|
/*
|
|
* Check if Rx Burst Bulk Alloc function can be used.
|
|
* Return
|
|
* 0: the preconditions are satisfied and the bulk allocation function
|
|
* can be used.
|
|
* -EINVAL: the preconditions are NOT satisfied and the default Rx burst
|
|
* function must be used.
|
|
*/
|
|
static inline int
|
|
check_rx_burst_bulk_alloc_preconditions(struct ngbe_rx_queue *rxq)
|
|
{
|
|
int ret = 0;
|
|
|
|
/*
|
|
* Make sure the following pre-conditions are satisfied:
|
|
* rxq->rx_free_thresh >= RTE_PMD_NGBE_RX_MAX_BURST
|
|
* rxq->rx_free_thresh < rxq->nb_rx_desc
|
|
* (rxq->nb_rx_desc % rxq->rx_free_thresh) == 0
|
|
* Scattered packets are not supported. This should be checked
|
|
* outside of this function.
|
|
*/
|
|
if (rxq->rx_free_thresh < RTE_PMD_NGBE_RX_MAX_BURST) {
|
|
PMD_INIT_LOG(DEBUG,
|
|
"Rx Burst Bulk Alloc Preconditions: rxq->rx_free_thresh=%d, RTE_PMD_NGBE_RX_MAX_BURST=%d",
|
|
rxq->rx_free_thresh, RTE_PMD_NGBE_RX_MAX_BURST);
|
|
ret = -EINVAL;
|
|
} else if (rxq->rx_free_thresh >= rxq->nb_rx_desc) {
|
|
PMD_INIT_LOG(DEBUG,
|
|
"Rx Burst Bulk Alloc Preconditions: rxq->rx_free_thresh=%d, rxq->nb_rx_desc=%d",
|
|
rxq->rx_free_thresh, rxq->nb_rx_desc);
|
|
ret = -EINVAL;
|
|
} else if ((rxq->nb_rx_desc % rxq->rx_free_thresh) != 0) {
|
|
PMD_INIT_LOG(DEBUG,
|
|
"Rx Burst Bulk Alloc Preconditions: rxq->nb_rx_desc=%d, rxq->rx_free_thresh=%d",
|
|
rxq->nb_rx_desc, rxq->rx_free_thresh);
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Reset dynamic ngbe_rx_queue fields back to defaults */
|
|
static void
|
|
ngbe_reset_rx_queue(struct ngbe_adapter *adapter, struct ngbe_rx_queue *rxq)
|
|
{
|
|
static const struct ngbe_rx_desc zeroed_desc = {
|
|
{{0}, {0} }, {{0}, {0} } };
|
|
unsigned int i;
|
|
uint16_t len = rxq->nb_rx_desc;
|
|
|
|
/*
|
|
* By default, the Rx queue setup function allocates enough memory for
|
|
* NGBE_RING_DESC_MAX. The Rx Burst bulk allocation function requires
|
|
* extra memory at the end of the descriptor ring to be zero'd out.
|
|
*/
|
|
if (adapter->rx_bulk_alloc_allowed)
|
|
/* zero out extra memory */
|
|
len += RTE_PMD_NGBE_RX_MAX_BURST;
|
|
|
|
/*
|
|
* Zero out HW ring memory. Zero out extra memory at the end of
|
|
* the H/W ring so look-ahead logic in Rx Burst bulk alloc function
|
|
* reads extra memory as zeros.
|
|
*/
|
|
for (i = 0; i < len; i++)
|
|
rxq->rx_ring[i] = zeroed_desc;
|
|
|
|
/*
|
|
* initialize extra software ring entries. Space for these extra
|
|
* entries is always allocated
|
|
*/
|
|
memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
|
|
for (i = rxq->nb_rx_desc; i < len; ++i)
|
|
rxq->sw_ring[i].mbuf = &rxq->fake_mbuf;
|
|
|
|
rxq->rx_nb_avail = 0;
|
|
rxq->rx_next_avail = 0;
|
|
rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
|
|
rxq->rx_tail = 0;
|
|
rxq->nb_rx_hold = 0;
|
|
rxq->pkt_first_seg = NULL;
|
|
rxq->pkt_last_seg = NULL;
|
|
}
|
|
|
|
uint64_t
|
|
ngbe_get_rx_queue_offloads(struct rte_eth_dev *dev __rte_unused)
|
|
{
|
|
return RTE_ETH_RX_OFFLOAD_VLAN_STRIP;
|
|
}
|
|
|
|
uint64_t
|
|
ngbe_get_rx_port_offloads(struct rte_eth_dev *dev)
|
|
{
|
|
uint64_t offloads;
|
|
struct ngbe_hw *hw = ngbe_dev_hw(dev);
|
|
|
|
offloads = RTE_ETH_RX_OFFLOAD_IPV4_CKSUM |
|
|
RTE_ETH_RX_OFFLOAD_UDP_CKSUM |
|
|
RTE_ETH_RX_OFFLOAD_TCP_CKSUM |
|
|
RTE_ETH_RX_OFFLOAD_KEEP_CRC |
|
|
RTE_ETH_RX_OFFLOAD_VLAN_FILTER |
|
|
RTE_ETH_RX_OFFLOAD_SCATTER;
|
|
|
|
if (hw->is_pf)
|
|
offloads |= (RTE_ETH_RX_OFFLOAD_QINQ_STRIP |
|
|
RTE_ETH_RX_OFFLOAD_VLAN_EXTEND);
|
|
|
|
return offloads;
|
|
}
|
|
|
|
int
|
|
ngbe_dev_rx_queue_setup(struct rte_eth_dev *dev,
|
|
uint16_t queue_idx,
|
|
uint16_t nb_desc,
|
|
unsigned int socket_id,
|
|
const struct rte_eth_rxconf *rx_conf,
|
|
struct rte_mempool *mp)
|
|
{
|
|
const struct rte_memzone *rz;
|
|
struct ngbe_rx_queue *rxq;
|
|
struct ngbe_hw *hw;
|
|
uint16_t len;
|
|
struct ngbe_adapter *adapter = ngbe_dev_adapter(dev);
|
|
uint64_t offloads;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
hw = ngbe_dev_hw(dev);
|
|
|
|
offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
|
|
|
|
/* Free memory prior to re-allocation if needed... */
|
|
if (dev->data->rx_queues[queue_idx] != NULL) {
|
|
ngbe_rx_queue_release(dev->data->rx_queues[queue_idx]);
|
|
dev->data->rx_queues[queue_idx] = NULL;
|
|
}
|
|
|
|
/* First allocate the Rx queue data structure */
|
|
rxq = rte_zmalloc_socket("ethdev RX queue",
|
|
sizeof(struct ngbe_rx_queue),
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (rxq == NULL)
|
|
return -ENOMEM;
|
|
rxq->mb_pool = mp;
|
|
rxq->nb_rx_desc = nb_desc;
|
|
rxq->rx_free_thresh = rx_conf->rx_free_thresh;
|
|
rxq->queue_id = queue_idx;
|
|
rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
|
|
queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
|
|
rxq->port_id = dev->data->port_id;
|
|
if (dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
|
|
rxq->crc_len = RTE_ETHER_CRC_LEN;
|
|
else
|
|
rxq->crc_len = 0;
|
|
rxq->drop_en = rx_conf->rx_drop_en;
|
|
rxq->rx_deferred_start = rx_conf->rx_deferred_start;
|
|
rxq->offloads = offloads;
|
|
|
|
/*
|
|
* Allocate Rx ring hardware descriptors. A memzone large enough to
|
|
* handle the maximum ring size is allocated in order to allow for
|
|
* resizing in later calls to the queue setup function.
|
|
*/
|
|
rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
|
|
RX_RING_SZ, NGBE_ALIGN, socket_id);
|
|
if (rz == NULL) {
|
|
ngbe_rx_queue_release(rxq);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* Zero init all the descriptors in the ring.
|
|
*/
|
|
memset(rz->addr, 0, RX_RING_SZ);
|
|
|
|
rxq->rdt_reg_addr = NGBE_REG_ADDR(hw, NGBE_RXWP(rxq->reg_idx));
|
|
rxq->rdh_reg_addr = NGBE_REG_ADDR(hw, NGBE_RXRP(rxq->reg_idx));
|
|
|
|
rxq->rx_ring_phys_addr = TMZ_PADDR(rz);
|
|
rxq->rx_ring = (struct ngbe_rx_desc *)TMZ_VADDR(rz);
|
|
|
|
/*
|
|
* Certain constraints must be met in order to use the bulk buffer
|
|
* allocation Rx burst function. If any of Rx queues doesn't meet them
|
|
* the feature should be disabled for the whole port.
|
|
*/
|
|
if (check_rx_burst_bulk_alloc_preconditions(rxq)) {
|
|
PMD_INIT_LOG(DEBUG,
|
|
"queue[%d] doesn't meet Rx Bulk Alloc preconditions - canceling the feature for the whole port[%d]",
|
|
rxq->queue_id, rxq->port_id);
|
|
adapter->rx_bulk_alloc_allowed = false;
|
|
}
|
|
|
|
/*
|
|
* Allocate software ring. Allow for space at the end of the
|
|
* S/W ring to make sure look-ahead logic in bulk alloc Rx burst
|
|
* function does not access an invalid memory region.
|
|
*/
|
|
len = nb_desc;
|
|
if (adapter->rx_bulk_alloc_allowed)
|
|
len += RTE_PMD_NGBE_RX_MAX_BURST;
|
|
|
|
rxq->sw_ring = rte_zmalloc_socket("rxq->sw_ring",
|
|
sizeof(struct ngbe_rx_entry) * len,
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (rxq->sw_ring == NULL) {
|
|
ngbe_rx_queue_release(rxq);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* Always allocate even if it's not going to be needed in order to
|
|
* simplify the code.
|
|
*
|
|
* This ring is used in Scattered Rx cases and Scattered Rx may
|
|
* be requested in ngbe_dev_rx_init(), which is called later from
|
|
* dev_start() flow.
|
|
*/
|
|
rxq->sw_sc_ring =
|
|
rte_zmalloc_socket("rxq->sw_sc_ring",
|
|
sizeof(struct ngbe_scattered_rx_entry) * len,
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (rxq->sw_sc_ring == NULL) {
|
|
ngbe_rx_queue_release(rxq);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
PMD_INIT_LOG(DEBUG,
|
|
"sw_ring=%p sw_sc_ring=%p hw_ring=%p dma_addr=0x%" PRIx64,
|
|
rxq->sw_ring, rxq->sw_sc_ring, rxq->rx_ring,
|
|
rxq->rx_ring_phys_addr);
|
|
|
|
dev->data->rx_queues[queue_idx] = rxq;
|
|
|
|
ngbe_reset_rx_queue(adapter, rxq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
uint32_t
|
|
ngbe_dev_rx_queue_count(void *rx_queue)
|
|
{
|
|
#define NGBE_RXQ_SCAN_INTERVAL 4
|
|
volatile struct ngbe_rx_desc *rxdp;
|
|
struct ngbe_rx_queue *rxq = rx_queue;
|
|
uint32_t desc = 0;
|
|
|
|
rxdp = &rxq->rx_ring[rxq->rx_tail];
|
|
|
|
while ((desc < rxq->nb_rx_desc) &&
|
|
(rxdp->qw1.lo.status &
|
|
rte_cpu_to_le_32(NGBE_RXD_STAT_DD))) {
|
|
desc += NGBE_RXQ_SCAN_INTERVAL;
|
|
rxdp += NGBE_RXQ_SCAN_INTERVAL;
|
|
if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
|
|
rxdp = &(rxq->rx_ring[rxq->rx_tail +
|
|
desc - rxq->nb_rx_desc]);
|
|
}
|
|
|
|
return desc;
|
|
}
|
|
|
|
int
|
|
ngbe_dev_rx_descriptor_status(void *rx_queue, uint16_t offset)
|
|
{
|
|
struct ngbe_rx_queue *rxq = rx_queue;
|
|
volatile uint32_t *status;
|
|
uint32_t nb_hold, desc;
|
|
|
|
if (unlikely(offset >= rxq->nb_rx_desc))
|
|
return -EINVAL;
|
|
|
|
nb_hold = rxq->nb_rx_hold;
|
|
if (offset >= rxq->nb_rx_desc - nb_hold)
|
|
return RTE_ETH_RX_DESC_UNAVAIL;
|
|
|
|
desc = rxq->rx_tail + offset;
|
|
if (desc >= rxq->nb_rx_desc)
|
|
desc -= rxq->nb_rx_desc;
|
|
|
|
status = &rxq->rx_ring[desc].qw1.lo.status;
|
|
if (*status & rte_cpu_to_le_32(NGBE_RXD_STAT_DD))
|
|
return RTE_ETH_RX_DESC_DONE;
|
|
|
|
return RTE_ETH_RX_DESC_AVAIL;
|
|
}
|
|
|
|
int
|
|
ngbe_dev_tx_descriptor_status(void *tx_queue, uint16_t offset)
|
|
{
|
|
struct ngbe_tx_queue *txq = tx_queue;
|
|
volatile uint32_t *status;
|
|
uint32_t desc;
|
|
|
|
if (unlikely(offset >= txq->nb_tx_desc))
|
|
return -EINVAL;
|
|
|
|
desc = txq->tx_tail + offset;
|
|
if (desc >= txq->nb_tx_desc) {
|
|
desc -= txq->nb_tx_desc;
|
|
if (desc >= txq->nb_tx_desc)
|
|
desc -= txq->nb_tx_desc;
|
|
}
|
|
|
|
status = &txq->tx_ring[desc].dw3;
|
|
if (*status & rte_cpu_to_le_32(NGBE_TXD_DD))
|
|
return RTE_ETH_TX_DESC_DONE;
|
|
|
|
return RTE_ETH_TX_DESC_FULL;
|
|
}
|
|
|
|
void
|
|
ngbe_dev_clear_queues(struct rte_eth_dev *dev)
|
|
{
|
|
unsigned int i;
|
|
struct ngbe_adapter *adapter = ngbe_dev_adapter(dev);
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
struct ngbe_tx_queue *txq = dev->data->tx_queues[i];
|
|
|
|
if (txq != NULL) {
|
|
txq->ops->release_mbufs(txq);
|
|
txq->ops->reset(txq);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
struct ngbe_rx_queue *rxq = dev->data->rx_queues[i];
|
|
|
|
if (rxq != NULL) {
|
|
ngbe_rx_queue_release_mbufs(rxq);
|
|
ngbe_reset_rx_queue(adapter, rxq);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
ngbe_dev_free_queues(struct rte_eth_dev *dev)
|
|
{
|
|
unsigned int i;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
ngbe_dev_rx_queue_release(dev, i);
|
|
dev->data->rx_queues[i] = NULL;
|
|
}
|
|
dev->data->nb_rx_queues = 0;
|
|
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
ngbe_dev_tx_queue_release(dev, i);
|
|
dev->data->tx_queues[i] = NULL;
|
|
}
|
|
dev->data->nb_tx_queues = 0;
|
|
}
|
|
|
|
/**
|
|
* Receive Side Scaling (RSS)
|
|
*
|
|
* Principles:
|
|
* The source and destination IP addresses of the IP header and the source
|
|
* and destination ports of TCP/UDP headers, if any, of received packets are
|
|
* hashed against a configurable random key to compute a 32-bit RSS hash result.
|
|
* The seven (7) LSBs of the 32-bit hash result are used as an index into a
|
|
* 128-entry redirection table (RETA). Each entry of the RETA provides a 3-bit
|
|
* RSS output index which is used as the Rx queue index where to store the
|
|
* received packets.
|
|
* The following output is supplied in the Rx write-back descriptor:
|
|
* - 32-bit result of the Microsoft RSS hash function,
|
|
* - 4-bit RSS type field.
|
|
*/
|
|
|
|
/*
|
|
* Used as the default key.
|
|
*/
|
|
static uint8_t rss_intel_key[40] = {
|
|
0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
|
|
0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
|
|
0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
|
|
0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
|
|
0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
|
|
};
|
|
|
|
static void
|
|
ngbe_rss_disable(struct rte_eth_dev *dev)
|
|
{
|
|
struct ngbe_hw *hw = ngbe_dev_hw(dev);
|
|
|
|
wr32m(hw, NGBE_RACTL, NGBE_RACTL_RSSENA, 0);
|
|
}
|
|
|
|
int
|
|
ngbe_dev_rss_hash_update(struct rte_eth_dev *dev,
|
|
struct rte_eth_rss_conf *rss_conf)
|
|
{
|
|
struct ngbe_hw *hw = ngbe_dev_hw(dev);
|
|
uint8_t *hash_key;
|
|
uint32_t mrqc;
|
|
uint32_t rss_key;
|
|
uint64_t rss_hf;
|
|
uint16_t i;
|
|
|
|
if (!hw->is_pf) {
|
|
PMD_DRV_LOG(ERR, "RSS hash update is not supported on this "
|
|
"NIC.");
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
hash_key = rss_conf->rss_key;
|
|
if (hash_key) {
|
|
/* Fill in RSS hash key */
|
|
for (i = 0; i < 10; i++) {
|
|
rss_key = LS32(hash_key[(i * 4) + 0], 0, 0xFF);
|
|
rss_key |= LS32(hash_key[(i * 4) + 1], 8, 0xFF);
|
|
rss_key |= LS32(hash_key[(i * 4) + 2], 16, 0xFF);
|
|
rss_key |= LS32(hash_key[(i * 4) + 3], 24, 0xFF);
|
|
wr32a(hw, NGBE_REG_RSSKEY, i, rss_key);
|
|
}
|
|
}
|
|
|
|
/* Set configured hashing protocols */
|
|
rss_hf = rss_conf->rss_hf & NGBE_RSS_OFFLOAD_ALL;
|
|
|
|
mrqc = rd32(hw, NGBE_RACTL);
|
|
mrqc &= ~NGBE_RACTL_RSSMASK;
|
|
if (rss_hf & RTE_ETH_RSS_IPV4)
|
|
mrqc |= NGBE_RACTL_RSSIPV4;
|
|
if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_TCP)
|
|
mrqc |= NGBE_RACTL_RSSIPV4TCP;
|
|
if (rss_hf & RTE_ETH_RSS_IPV6 ||
|
|
rss_hf & RTE_ETH_RSS_IPV6_EX)
|
|
mrqc |= NGBE_RACTL_RSSIPV6;
|
|
if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV6_TCP ||
|
|
rss_hf & RTE_ETH_RSS_IPV6_TCP_EX)
|
|
mrqc |= NGBE_RACTL_RSSIPV6TCP;
|
|
if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_UDP)
|
|
mrqc |= NGBE_RACTL_RSSIPV4UDP;
|
|
if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV6_UDP ||
|
|
rss_hf & RTE_ETH_RSS_IPV6_UDP_EX)
|
|
mrqc |= NGBE_RACTL_RSSIPV6UDP;
|
|
|
|
if (rss_hf)
|
|
mrqc |= NGBE_RACTL_RSSENA;
|
|
else
|
|
mrqc &= ~NGBE_RACTL_RSSENA;
|
|
|
|
wr32(hw, NGBE_RACTL, mrqc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
ngbe_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
|
|
struct rte_eth_rss_conf *rss_conf)
|
|
{
|
|
struct ngbe_hw *hw = ngbe_dev_hw(dev);
|
|
uint8_t *hash_key;
|
|
uint32_t mrqc;
|
|
uint32_t rss_key;
|
|
uint64_t rss_hf;
|
|
uint16_t i;
|
|
|
|
hash_key = rss_conf->rss_key;
|
|
if (hash_key) {
|
|
/* Return RSS hash key */
|
|
for (i = 0; i < 10; i++) {
|
|
rss_key = rd32a(hw, NGBE_REG_RSSKEY, i);
|
|
hash_key[(i * 4) + 0] = RS32(rss_key, 0, 0xFF);
|
|
hash_key[(i * 4) + 1] = RS32(rss_key, 8, 0xFF);
|
|
hash_key[(i * 4) + 2] = RS32(rss_key, 16, 0xFF);
|
|
hash_key[(i * 4) + 3] = RS32(rss_key, 24, 0xFF);
|
|
}
|
|
}
|
|
|
|
rss_hf = 0;
|
|
|
|
mrqc = rd32(hw, NGBE_RACTL);
|
|
if (mrqc & NGBE_RACTL_RSSIPV4)
|
|
rss_hf |= RTE_ETH_RSS_IPV4;
|
|
if (mrqc & NGBE_RACTL_RSSIPV4TCP)
|
|
rss_hf |= RTE_ETH_RSS_NONFRAG_IPV4_TCP;
|
|
if (mrqc & NGBE_RACTL_RSSIPV6)
|
|
rss_hf |= RTE_ETH_RSS_IPV6 |
|
|
RTE_ETH_RSS_IPV6_EX;
|
|
if (mrqc & NGBE_RACTL_RSSIPV6TCP)
|
|
rss_hf |= RTE_ETH_RSS_NONFRAG_IPV6_TCP |
|
|
RTE_ETH_RSS_IPV6_TCP_EX;
|
|
if (mrqc & NGBE_RACTL_RSSIPV4UDP)
|
|
rss_hf |= RTE_ETH_RSS_NONFRAG_IPV4_UDP;
|
|
if (mrqc & NGBE_RACTL_RSSIPV6UDP)
|
|
rss_hf |= RTE_ETH_RSS_NONFRAG_IPV6_UDP |
|
|
RTE_ETH_RSS_IPV6_UDP_EX;
|
|
if (!(mrqc & NGBE_RACTL_RSSENA))
|
|
rss_hf = 0;
|
|
|
|
rss_hf &= NGBE_RSS_OFFLOAD_ALL;
|
|
|
|
rss_conf->rss_hf = rss_hf;
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
ngbe_rss_configure(struct rte_eth_dev *dev)
|
|
{
|
|
struct rte_eth_rss_conf rss_conf;
|
|
struct ngbe_adapter *adapter = ngbe_dev_adapter(dev);
|
|
struct ngbe_hw *hw = ngbe_dev_hw(dev);
|
|
uint32_t reta;
|
|
uint16_t i;
|
|
uint16_t j;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
/*
|
|
* Fill in redirection table
|
|
* The byte-swap is needed because NIC registers are in
|
|
* little-endian order.
|
|
*/
|
|
if (adapter->rss_reta_updated == 0) {
|
|
reta = 0;
|
|
for (i = 0, j = 0; i < RTE_ETH_RSS_RETA_SIZE_128; i++, j++) {
|
|
if (j == dev->data->nb_rx_queues)
|
|
j = 0;
|
|
reta = (reta >> 8) | LS32(j, 24, 0xFF);
|
|
if ((i & 3) == 3)
|
|
wr32a(hw, NGBE_REG_RSSTBL, i >> 2, reta);
|
|
}
|
|
}
|
|
/*
|
|
* Configure the RSS key and the RSS protocols used to compute
|
|
* the RSS hash of input packets.
|
|
*/
|
|
rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf;
|
|
if (rss_conf.rss_key == NULL)
|
|
rss_conf.rss_key = rss_intel_key; /* Default hash key */
|
|
ngbe_dev_rss_hash_update(dev, &rss_conf);
|
|
}
|
|
|
|
void ngbe_configure_port(struct rte_eth_dev *dev)
|
|
{
|
|
struct ngbe_hw *hw = ngbe_dev_hw(dev);
|
|
int i = 0;
|
|
uint16_t tpids[8] = {RTE_ETHER_TYPE_VLAN, RTE_ETHER_TYPE_QINQ,
|
|
0x9100, 0x9200,
|
|
0x0000, 0x0000,
|
|
0x0000, 0x0000};
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
/* default outer vlan tpid */
|
|
wr32(hw, NGBE_EXTAG,
|
|
NGBE_EXTAG_ETAG(RTE_ETHER_TYPE_ETAG) |
|
|
NGBE_EXTAG_VLAN(RTE_ETHER_TYPE_QINQ));
|
|
|
|
/* default inner vlan tpid */
|
|
wr32m(hw, NGBE_VLANCTL,
|
|
NGBE_VLANCTL_TPID_MASK,
|
|
NGBE_VLANCTL_TPID(RTE_ETHER_TYPE_VLAN));
|
|
wr32m(hw, NGBE_DMATXCTRL,
|
|
NGBE_DMATXCTRL_TPID_MASK,
|
|
NGBE_DMATXCTRL_TPID(RTE_ETHER_TYPE_VLAN));
|
|
|
|
/* default vlan tpid filters */
|
|
for (i = 0; i < 8; i++) {
|
|
wr32m(hw, NGBE_TAGTPID(i / 2),
|
|
(i % 2 ? NGBE_TAGTPID_MSB_MASK
|
|
: NGBE_TAGTPID_LSB_MASK),
|
|
(i % 2 ? NGBE_TAGTPID_MSB(tpids[i])
|
|
: NGBE_TAGTPID_LSB(tpids[i])));
|
|
}
|
|
}
|
|
|
|
static int
|
|
ngbe_alloc_rx_queue_mbufs(struct ngbe_rx_queue *rxq)
|
|
{
|
|
struct ngbe_rx_entry *rxe = rxq->sw_ring;
|
|
uint64_t dma_addr;
|
|
unsigned int i;
|
|
|
|
/* Initialize software ring entries */
|
|
for (i = 0; i < rxq->nb_rx_desc; i++) {
|
|
/* the ring can also be modified by hardware */
|
|
volatile struct ngbe_rx_desc *rxd;
|
|
struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
|
|
|
|
if (mbuf == NULL) {
|
|
PMD_INIT_LOG(ERR, "Rx mbuf alloc failed queue_id=%u port_id=%u",
|
|
(unsigned int)rxq->queue_id,
|
|
(unsigned int)rxq->port_id);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
|
|
mbuf->port = rxq->port_id;
|
|
|
|
dma_addr =
|
|
rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
|
|
rxd = &rxq->rx_ring[i];
|
|
NGBE_RXD_HDRADDR(rxd, 0);
|
|
NGBE_RXD_PKTADDR(rxd, dma_addr);
|
|
rxe[i].mbuf = mbuf;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
ngbe_dev_mq_rx_configure(struct rte_eth_dev *dev)
|
|
{
|
|
if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
|
|
switch (dev->data->dev_conf.rxmode.mq_mode) {
|
|
case RTE_ETH_MQ_RX_RSS:
|
|
ngbe_rss_configure(dev);
|
|
break;
|
|
|
|
case RTE_ETH_MQ_RX_NONE:
|
|
default:
|
|
/* if mq_mode is none, disable rss mode.*/
|
|
ngbe_rss_disable(dev);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
ngbe_set_rx_function(struct rte_eth_dev *dev)
|
|
{
|
|
struct ngbe_adapter *adapter = ngbe_dev_adapter(dev);
|
|
|
|
if (dev->data->scattered_rx) {
|
|
/*
|
|
* Set the scattered callback: there are bulk and
|
|
* single allocation versions.
|
|
*/
|
|
if (adapter->rx_bulk_alloc_allowed) {
|
|
PMD_INIT_LOG(DEBUG, "Using a Scattered with bulk "
|
|
"allocation callback (port=%d).",
|
|
dev->data->port_id);
|
|
dev->rx_pkt_burst = ngbe_recv_pkts_sc_bulk_alloc;
|
|
} else {
|
|
PMD_INIT_LOG(DEBUG, "Using Regular (non-vector, "
|
|
"single allocation) "
|
|
"Scattered Rx callback "
|
|
"(port=%d).",
|
|
dev->data->port_id);
|
|
|
|
dev->rx_pkt_burst = ngbe_recv_pkts_sc_single_alloc;
|
|
}
|
|
/*
|
|
* Below we set "simple" callbacks according to port/queues parameters.
|
|
* If parameters allow we are going to choose between the following
|
|
* callbacks:
|
|
* - Bulk Allocation
|
|
* - Single buffer allocation (the simplest one)
|
|
*/
|
|
} else if (adapter->rx_bulk_alloc_allowed) {
|
|
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
|
|
"satisfied. Rx Burst Bulk Alloc function "
|
|
"will be used on port=%d.",
|
|
dev->data->port_id);
|
|
|
|
dev->rx_pkt_burst = ngbe_recv_pkts_bulk_alloc;
|
|
} else {
|
|
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are not "
|
|
"satisfied, or Scattered Rx is requested "
|
|
"(port=%d).",
|
|
dev->data->port_id);
|
|
|
|
dev->rx_pkt_burst = ngbe_recv_pkts;
|
|
}
|
|
}
|
|
|
|
static const struct {
|
|
eth_rx_burst_t pkt_burst;
|
|
const char *info;
|
|
} ngbe_rx_burst_infos[] = {
|
|
{ ngbe_recv_pkts_sc_single_alloc, "Scalar Scattered"},
|
|
{ ngbe_recv_pkts_sc_bulk_alloc, "Scalar Scattered Bulk Alloc"},
|
|
{ ngbe_recv_pkts_bulk_alloc, "Scalar Bulk Alloc"},
|
|
{ ngbe_recv_pkts, "Scalar"},
|
|
};
|
|
|
|
int
|
|
ngbe_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
|
|
struct rte_eth_burst_mode *mode)
|
|
{
|
|
eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
|
|
int ret = -EINVAL;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < RTE_DIM(ngbe_rx_burst_infos); ++i) {
|
|
if (pkt_burst == ngbe_rx_burst_infos[i].pkt_burst) {
|
|
snprintf(mode->info, sizeof(mode->info), "%s",
|
|
ngbe_rx_burst_infos[i].info);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Initializes Receive Unit.
|
|
*/
|
|
int
|
|
ngbe_dev_rx_init(struct rte_eth_dev *dev)
|
|
{
|
|
struct ngbe_hw *hw;
|
|
struct ngbe_rx_queue *rxq;
|
|
uint64_t bus_addr;
|
|
uint32_t fctrl;
|
|
uint32_t hlreg0;
|
|
uint32_t srrctl;
|
|
uint32_t rdrxctl;
|
|
uint32_t rxcsum;
|
|
uint16_t buf_size;
|
|
uint16_t i;
|
|
struct rte_eth_rxmode *rx_conf = &dev->data->dev_conf.rxmode;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
hw = ngbe_dev_hw(dev);
|
|
|
|
/*
|
|
* Make sure receives are disabled while setting
|
|
* up the Rx context (registers, descriptor rings, etc.).
|
|
*/
|
|
wr32m(hw, NGBE_MACRXCFG, NGBE_MACRXCFG_ENA, 0);
|
|
wr32m(hw, NGBE_PBRXCTL, NGBE_PBRXCTL_ENA, 0);
|
|
|
|
/* Enable receipt of broadcasted frames */
|
|
fctrl = rd32(hw, NGBE_PSRCTL);
|
|
fctrl |= NGBE_PSRCTL_BCA;
|
|
wr32(hw, NGBE_PSRCTL, fctrl);
|
|
|
|
/*
|
|
* Configure CRC stripping, if any.
|
|
*/
|
|
hlreg0 = rd32(hw, NGBE_SECRXCTL);
|
|
if (rx_conf->offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
|
|
hlreg0 &= ~NGBE_SECRXCTL_CRCSTRIP;
|
|
else
|
|
hlreg0 |= NGBE_SECRXCTL_CRCSTRIP;
|
|
hlreg0 &= ~NGBE_SECRXCTL_XDSA;
|
|
wr32(hw, NGBE_SECRXCTL, hlreg0);
|
|
|
|
/*
|
|
* Configure jumbo frame support, if any.
|
|
*/
|
|
wr32m(hw, NGBE_FRMSZ, NGBE_FRMSZ_MAX_MASK,
|
|
NGBE_FRMSZ_MAX(dev->data->mtu + NGBE_ETH_OVERHEAD));
|
|
|
|
/*
|
|
* If loopback mode is configured, set LPBK bit.
|
|
*/
|
|
hlreg0 = rd32(hw, NGBE_PSRCTL);
|
|
if (hw->is_pf && dev->data->dev_conf.lpbk_mode)
|
|
hlreg0 |= NGBE_PSRCTL_LBENA;
|
|
else
|
|
hlreg0 &= ~NGBE_PSRCTL_LBENA;
|
|
|
|
wr32(hw, NGBE_PSRCTL, hlreg0);
|
|
|
|
/*
|
|
* Assume no header split and no VLAN strip support
|
|
* on any Rx queue first .
|
|
*/
|
|
rx_conf->offloads &= ~RTE_ETH_RX_OFFLOAD_VLAN_STRIP;
|
|
|
|
/* Setup Rx queues */
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
rxq = dev->data->rx_queues[i];
|
|
|
|
/*
|
|
* Reset crc_len in case it was changed after queue setup by a
|
|
* call to configure.
|
|
*/
|
|
if (rx_conf->offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
|
|
rxq->crc_len = RTE_ETHER_CRC_LEN;
|
|
else
|
|
rxq->crc_len = 0;
|
|
|
|
/* Setup the Base and Length of the Rx Descriptor Rings */
|
|
bus_addr = rxq->rx_ring_phys_addr;
|
|
wr32(hw, NGBE_RXBAL(rxq->reg_idx),
|
|
(uint32_t)(bus_addr & BIT_MASK32));
|
|
wr32(hw, NGBE_RXBAH(rxq->reg_idx),
|
|
(uint32_t)(bus_addr >> 32));
|
|
wr32(hw, NGBE_RXRP(rxq->reg_idx), 0);
|
|
wr32(hw, NGBE_RXWP(rxq->reg_idx), 0);
|
|
|
|
srrctl = NGBE_RXCFG_RNGLEN(rxq->nb_rx_desc);
|
|
|
|
/* Set if packets are dropped when no descriptors available */
|
|
if (rxq->drop_en)
|
|
srrctl |= NGBE_RXCFG_DROP;
|
|
|
|
/*
|
|
* Configure the Rx buffer size in the PKTLEN field of
|
|
* the RXCFG register of the queue.
|
|
* The value is in 1 KB resolution. Valid values can be from
|
|
* 1 KB to 16 KB.
|
|
*/
|
|
buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
|
|
RTE_PKTMBUF_HEADROOM);
|
|
buf_size = ROUND_DOWN(buf_size, 0x1 << 10);
|
|
srrctl |= NGBE_RXCFG_PKTLEN(buf_size);
|
|
|
|
wr32(hw, NGBE_RXCFG(rxq->reg_idx), srrctl);
|
|
|
|
/* It adds dual VLAN length for supporting dual VLAN */
|
|
if (dev->data->mtu + NGBE_ETH_OVERHEAD +
|
|
2 * RTE_VLAN_HLEN > buf_size)
|
|
dev->data->scattered_rx = 1;
|
|
if (rxq->offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP)
|
|
rx_conf->offloads |= RTE_ETH_RX_OFFLOAD_VLAN_STRIP;
|
|
}
|
|
|
|
if (rx_conf->offloads & RTE_ETH_RX_OFFLOAD_SCATTER)
|
|
dev->data->scattered_rx = 1;
|
|
|
|
/*
|
|
* Device configured with multiple RX queues.
|
|
*/
|
|
ngbe_dev_mq_rx_configure(dev);
|
|
|
|
/*
|
|
* Setup the Checksum Register.
|
|
* Disable Full-Packet Checksum which is mutually exclusive with RSS.
|
|
* Enable IP/L4 checksum computation by hardware if requested to do so.
|
|
*/
|
|
rxcsum = rd32(hw, NGBE_PSRCTL);
|
|
rxcsum |= NGBE_PSRCTL_PCSD;
|
|
if (rx_conf->offloads & RTE_ETH_RX_OFFLOAD_CHECKSUM)
|
|
rxcsum |= NGBE_PSRCTL_L4CSUM;
|
|
else
|
|
rxcsum &= ~NGBE_PSRCTL_L4CSUM;
|
|
|
|
wr32(hw, NGBE_PSRCTL, rxcsum);
|
|
|
|
if (hw->is_pf) {
|
|
rdrxctl = rd32(hw, NGBE_SECRXCTL);
|
|
if (rx_conf->offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
|
|
rdrxctl &= ~NGBE_SECRXCTL_CRCSTRIP;
|
|
else
|
|
rdrxctl |= NGBE_SECRXCTL_CRCSTRIP;
|
|
wr32(hw, NGBE_SECRXCTL, rdrxctl);
|
|
}
|
|
|
|
ngbe_set_rx_function(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initializes Transmit Unit.
|
|
*/
|
|
void
|
|
ngbe_dev_tx_init(struct rte_eth_dev *dev)
|
|
{
|
|
struct ngbe_hw *hw;
|
|
struct ngbe_tx_queue *txq;
|
|
uint64_t bus_addr;
|
|
uint16_t i;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
hw = ngbe_dev_hw(dev);
|
|
|
|
wr32m(hw, NGBE_SECTXCTL, NGBE_SECTXCTL_ODSA, NGBE_SECTXCTL_ODSA);
|
|
wr32m(hw, NGBE_SECTXCTL, NGBE_SECTXCTL_XDSA, 0);
|
|
|
|
/* Setup the Base and Length of the Tx Descriptor Rings */
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
txq = dev->data->tx_queues[i];
|
|
|
|
bus_addr = txq->tx_ring_phys_addr;
|
|
wr32(hw, NGBE_TXBAL(txq->reg_idx),
|
|
(uint32_t)(bus_addr & BIT_MASK32));
|
|
wr32(hw, NGBE_TXBAH(txq->reg_idx),
|
|
(uint32_t)(bus_addr >> 32));
|
|
wr32m(hw, NGBE_TXCFG(txq->reg_idx), NGBE_TXCFG_BUFLEN_MASK,
|
|
NGBE_TXCFG_BUFLEN(txq->nb_tx_desc));
|
|
/* Setup the HW Tx Head and TX Tail descriptor pointers */
|
|
wr32(hw, NGBE_TXRP(txq->reg_idx), 0);
|
|
wr32(hw, NGBE_TXWP(txq->reg_idx), 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set up link loopback mode Tx->Rx.
|
|
*/
|
|
static inline void
|
|
ngbe_setup_loopback_link(struct ngbe_hw *hw)
|
|
{
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
wr32m(hw, NGBE_MACRXCFG, NGBE_MACRXCFG_LB, NGBE_MACRXCFG_LB);
|
|
|
|
msec_delay(50);
|
|
}
|
|
|
|
/*
|
|
* Start Transmit and Receive Units.
|
|
*/
|
|
int
|
|
ngbe_dev_rxtx_start(struct rte_eth_dev *dev)
|
|
{
|
|
struct ngbe_hw *hw;
|
|
struct ngbe_tx_queue *txq;
|
|
struct ngbe_rx_queue *rxq;
|
|
uint32_t dmatxctl;
|
|
uint32_t rxctrl;
|
|
uint16_t i;
|
|
int ret = 0;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
hw = ngbe_dev_hw(dev);
|
|
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
txq = dev->data->tx_queues[i];
|
|
/* Setup Transmit Threshold Registers */
|
|
wr32m(hw, NGBE_TXCFG(txq->reg_idx),
|
|
NGBE_TXCFG_HTHRESH_MASK |
|
|
NGBE_TXCFG_WTHRESH_MASK,
|
|
NGBE_TXCFG_HTHRESH(txq->hthresh) |
|
|
NGBE_TXCFG_WTHRESH(txq->wthresh));
|
|
}
|
|
|
|
dmatxctl = rd32(hw, NGBE_DMATXCTRL);
|
|
dmatxctl |= NGBE_DMATXCTRL_ENA;
|
|
wr32(hw, NGBE_DMATXCTRL, dmatxctl);
|
|
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
txq = dev->data->tx_queues[i];
|
|
if (txq->tx_deferred_start == 0) {
|
|
ret = ngbe_dev_tx_queue_start(dev, i);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
rxq = dev->data->rx_queues[i];
|
|
if (rxq->rx_deferred_start == 0) {
|
|
ret = ngbe_dev_rx_queue_start(dev, i);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* Enable Receive engine */
|
|
rxctrl = rd32(hw, NGBE_PBRXCTL);
|
|
rxctrl |= NGBE_PBRXCTL_ENA;
|
|
hw->mac.enable_rx_dma(hw, rxctrl);
|
|
|
|
/* If loopback mode is enabled, set up the link accordingly */
|
|
if (hw->is_pf && dev->data->dev_conf.lpbk_mode)
|
|
ngbe_setup_loopback_link(hw);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
ngbe_dev_save_rx_queue(struct ngbe_hw *hw, uint16_t rx_queue_id)
|
|
{
|
|
u32 *reg = &hw->q_rx_regs[rx_queue_id * 8];
|
|
*(reg++) = rd32(hw, NGBE_RXBAL(rx_queue_id));
|
|
*(reg++) = rd32(hw, NGBE_RXBAH(rx_queue_id));
|
|
*(reg++) = rd32(hw, NGBE_RXCFG(rx_queue_id));
|
|
}
|
|
|
|
void
|
|
ngbe_dev_store_rx_queue(struct ngbe_hw *hw, uint16_t rx_queue_id)
|
|
{
|
|
u32 *reg = &hw->q_rx_regs[rx_queue_id * 8];
|
|
wr32(hw, NGBE_RXBAL(rx_queue_id), *(reg++));
|
|
wr32(hw, NGBE_RXBAH(rx_queue_id), *(reg++));
|
|
wr32(hw, NGBE_RXCFG(rx_queue_id), *(reg++) & ~NGBE_RXCFG_ENA);
|
|
}
|
|
|
|
void
|
|
ngbe_dev_save_tx_queue(struct ngbe_hw *hw, uint16_t tx_queue_id)
|
|
{
|
|
u32 *reg = &hw->q_tx_regs[tx_queue_id * 8];
|
|
*(reg++) = rd32(hw, NGBE_TXBAL(tx_queue_id));
|
|
*(reg++) = rd32(hw, NGBE_TXBAH(tx_queue_id));
|
|
*(reg++) = rd32(hw, NGBE_TXCFG(tx_queue_id));
|
|
}
|
|
|
|
void
|
|
ngbe_dev_store_tx_queue(struct ngbe_hw *hw, uint16_t tx_queue_id)
|
|
{
|
|
u32 *reg = &hw->q_tx_regs[tx_queue_id * 8];
|
|
wr32(hw, NGBE_TXBAL(tx_queue_id), *(reg++));
|
|
wr32(hw, NGBE_TXBAH(tx_queue_id), *(reg++));
|
|
wr32(hw, NGBE_TXCFG(tx_queue_id), *(reg++) & ~NGBE_TXCFG_ENA);
|
|
}
|
|
|
|
/*
|
|
* Start Receive Units for specified queue.
|
|
*/
|
|
int
|
|
ngbe_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
|
|
{
|
|
struct ngbe_hw *hw = ngbe_dev_hw(dev);
|
|
struct ngbe_rx_queue *rxq;
|
|
uint32_t rxdctl;
|
|
int poll_ms;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
rxq = dev->data->rx_queues[rx_queue_id];
|
|
|
|
/* Allocate buffers for descriptor rings */
|
|
if (ngbe_alloc_rx_queue_mbufs(rxq) != 0) {
|
|
PMD_INIT_LOG(ERR, "Could not alloc mbuf for queue:%d",
|
|
rx_queue_id);
|
|
return -1;
|
|
}
|
|
rxdctl = rd32(hw, NGBE_RXCFG(rxq->reg_idx));
|
|
rxdctl |= NGBE_RXCFG_ENA;
|
|
wr32(hw, NGBE_RXCFG(rxq->reg_idx), rxdctl);
|
|
|
|
/* Wait until Rx Enable ready */
|
|
poll_ms = RTE_NGBE_REGISTER_POLL_WAIT_10_MS;
|
|
do {
|
|
rte_delay_ms(1);
|
|
rxdctl = rd32(hw, NGBE_RXCFG(rxq->reg_idx));
|
|
} while (--poll_ms && !(rxdctl & NGBE_RXCFG_ENA));
|
|
if (poll_ms == 0)
|
|
PMD_INIT_LOG(ERR, "Could not enable Rx Queue %d", rx_queue_id);
|
|
rte_wmb();
|
|
wr32(hw, NGBE_RXRP(rxq->reg_idx), 0);
|
|
wr32(hw, NGBE_RXWP(rxq->reg_idx), rxq->nb_rx_desc - 1);
|
|
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Stop Receive Units for specified queue.
|
|
*/
|
|
int
|
|
ngbe_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
|
|
{
|
|
struct ngbe_hw *hw = ngbe_dev_hw(dev);
|
|
struct ngbe_adapter *adapter = ngbe_dev_adapter(dev);
|
|
struct ngbe_rx_queue *rxq;
|
|
uint32_t rxdctl;
|
|
int poll_ms;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
rxq = dev->data->rx_queues[rx_queue_id];
|
|
|
|
ngbe_dev_save_rx_queue(hw, rxq->reg_idx);
|
|
wr32m(hw, NGBE_RXCFG(rxq->reg_idx), NGBE_RXCFG_ENA, 0);
|
|
|
|
/* Wait until Rx Enable bit clear */
|
|
poll_ms = RTE_NGBE_REGISTER_POLL_WAIT_10_MS;
|
|
do {
|
|
rte_delay_ms(1);
|
|
rxdctl = rd32(hw, NGBE_RXCFG(rxq->reg_idx));
|
|
} while (--poll_ms && (rxdctl & NGBE_RXCFG_ENA));
|
|
if (poll_ms == 0)
|
|
PMD_INIT_LOG(ERR, "Could not disable Rx Queue %d", rx_queue_id);
|
|
|
|
rte_delay_us(RTE_NGBE_WAIT_100_US);
|
|
ngbe_dev_store_rx_queue(hw, rxq->reg_idx);
|
|
|
|
ngbe_rx_queue_release_mbufs(rxq);
|
|
ngbe_reset_rx_queue(adapter, rxq);
|
|
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Start Transmit Units for specified queue.
|
|
*/
|
|
int
|
|
ngbe_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
|
|
{
|
|
struct ngbe_hw *hw = ngbe_dev_hw(dev);
|
|
struct ngbe_tx_queue *txq;
|
|
uint32_t txdctl;
|
|
int poll_ms;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
txq = dev->data->tx_queues[tx_queue_id];
|
|
wr32m(hw, NGBE_TXCFG(txq->reg_idx), NGBE_TXCFG_ENA, NGBE_TXCFG_ENA);
|
|
|
|
/* Wait until Tx Enable ready */
|
|
poll_ms = RTE_NGBE_REGISTER_POLL_WAIT_10_MS;
|
|
do {
|
|
rte_delay_ms(1);
|
|
txdctl = rd32(hw, NGBE_TXCFG(txq->reg_idx));
|
|
} while (--poll_ms && !(txdctl & NGBE_TXCFG_ENA));
|
|
if (poll_ms == 0)
|
|
PMD_INIT_LOG(ERR, "Could not enable Tx Queue %d",
|
|
tx_queue_id);
|
|
|
|
rte_wmb();
|
|
wr32(hw, NGBE_TXWP(txq->reg_idx), txq->tx_tail);
|
|
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Stop Transmit Units for specified queue.
|
|
*/
|
|
int
|
|
ngbe_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
|
|
{
|
|
struct ngbe_hw *hw = ngbe_dev_hw(dev);
|
|
struct ngbe_tx_queue *txq;
|
|
uint32_t txdctl;
|
|
uint32_t txtdh, txtdt;
|
|
int poll_ms;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
txq = dev->data->tx_queues[tx_queue_id];
|
|
|
|
/* Wait until Tx queue is empty */
|
|
poll_ms = RTE_NGBE_REGISTER_POLL_WAIT_10_MS;
|
|
do {
|
|
rte_delay_us(RTE_NGBE_WAIT_100_US);
|
|
txtdh = rd32(hw, NGBE_TXRP(txq->reg_idx));
|
|
txtdt = rd32(hw, NGBE_TXWP(txq->reg_idx));
|
|
} while (--poll_ms && (txtdh != txtdt));
|
|
if (poll_ms == 0)
|
|
PMD_INIT_LOG(ERR, "Tx Queue %d is not empty when stopping.",
|
|
tx_queue_id);
|
|
|
|
ngbe_dev_save_tx_queue(hw, txq->reg_idx);
|
|
wr32m(hw, NGBE_TXCFG(txq->reg_idx), NGBE_TXCFG_ENA, 0);
|
|
|
|
/* Wait until Tx Enable bit clear */
|
|
poll_ms = RTE_NGBE_REGISTER_POLL_WAIT_10_MS;
|
|
do {
|
|
rte_delay_ms(1);
|
|
txdctl = rd32(hw, NGBE_TXCFG(txq->reg_idx));
|
|
} while (--poll_ms && (txdctl & NGBE_TXCFG_ENA));
|
|
if (poll_ms == 0)
|
|
PMD_INIT_LOG(ERR, "Could not disable Tx Queue %d",
|
|
tx_queue_id);
|
|
|
|
rte_delay_us(RTE_NGBE_WAIT_100_US);
|
|
ngbe_dev_store_tx_queue(hw, txq->reg_idx);
|
|
|
|
if (txq->ops != NULL) {
|
|
txq->ops->release_mbufs(txq);
|
|
txq->ops->reset(txq);
|
|
}
|
|
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
ngbe_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
|
|
struct rte_eth_rxq_info *qinfo)
|
|
{
|
|
struct ngbe_rx_queue *rxq;
|
|
|
|
rxq = dev->data->rx_queues[queue_id];
|
|
|
|
qinfo->mp = rxq->mb_pool;
|
|
qinfo->scattered_rx = dev->data->scattered_rx;
|
|
qinfo->nb_desc = rxq->nb_rx_desc;
|
|
|
|
qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
|
|
qinfo->conf.rx_drop_en = rxq->drop_en;
|
|
qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
|
|
qinfo->conf.offloads = rxq->offloads;
|
|
}
|
|
|
|
void
|
|
ngbe_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
|
|
struct rte_eth_txq_info *qinfo)
|
|
{
|
|
struct ngbe_tx_queue *txq;
|
|
|
|
txq = dev->data->tx_queues[queue_id];
|
|
|
|
qinfo->nb_desc = txq->nb_tx_desc;
|
|
|
|
qinfo->conf.tx_thresh.pthresh = txq->pthresh;
|
|
qinfo->conf.tx_thresh.hthresh = txq->hthresh;
|
|
qinfo->conf.tx_thresh.wthresh = txq->wthresh;
|
|
|
|
qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
|
|
qinfo->conf.offloads = txq->offloads;
|
|
qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
|
|
}
|