numam-dpdk/drivers/regex/mlx5/mlx5_regex_fastpath.c
Gerry Gribbon 60ffb0d72f regex/mlx5: support stop on first match
Handle flag RTE_REGEX_OPS_REQ_STOP_ON_MATCH_F.

Signed-off-by: Gerry Gribbon <ggribbon@nvidia.com>
Acked-by: Ori Kam <orika@nvidia.com>
2022-10-09 15:16:34 +02:00

811 lines
23 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2020 Mellanox Technologies, Ltd
*/
#include <unistd.h>
#include <strings.h>
#include <stdint.h>
#include <sys/mman.h>
#include <rte_malloc.h>
#include <rte_log.h>
#include <rte_errno.h>
#include <bus_pci_driver.h>
#include <rte_pci.h>
#include <rte_regexdev_driver.h>
#include <rte_mbuf.h>
#include <infiniband/mlx5dv.h>
#include <mlx5_glue.h>
#include <mlx5_common.h>
#include <mlx5_prm.h>
#include "mlx5_regex_utils.h"
#include "mlx5_rxp.h"
#include "mlx5_regex.h"
#define MLX5_REGEX_MAX_WQE_INDEX 0xffff
#define MLX5_REGEX_METADATA_SIZE ((size_t)64)
#define MLX5_REGEX_MAX_OUTPUT (((size_t)1) << 11)
#define MLX5_REGEX_WQE_CTRL_OFFSET 12
#define MLX5_REGEX_WQE_METADATA_OFFSET 16
#define MLX5_REGEX_WQE_GATHER_OFFSET 32
#define MLX5_REGEX_WQE_SCATTER_OFFSET 48
#define MLX5_REGEX_METADATA_OFF 32
#define MLX5_REGEX_UMR_WQE_SIZE 192
/* The maximum KLMs can be added to one UMR indirect mkey. */
#define MLX5_REGEX_MAX_KLM_NUM 128
/* The KLM array size for one job. */
#define MLX5_REGEX_KLMS_SIZE \
((MLX5_REGEX_MAX_KLM_NUM) * sizeof(struct mlx5_klm))
/* In WQE set mode, the pi should be quarter of the MLX5_REGEX_MAX_WQE_INDEX. */
#define MLX5_REGEX_UMR_QP_PI_IDX(pi, ops) \
(((pi) + (ops)) & (MLX5_REGEX_MAX_WQE_INDEX >> 2))
#ifdef RTE_LIBRTE_MLX5_DEBUG
#define MLX5_REGEX_DEBUG 0
#endif
#ifdef HAVE_MLX5_UMR_IMKEY
static uint16_t max_nb_segs = MLX5_REGEX_MAX_KLM_NUM;
#else
static uint16_t max_nb_segs = 1;
#endif
uint16_t
mlx5_regexdev_max_segs_get(void)
{
return max_nb_segs;
}
#ifdef MLX5_REGEX_DEBUG
static inline uint16_t
validate_ops(struct rte_regex_ops **ops, uint16_t nb_ops)
{
uint16_t nb_left = nb_ops;
struct rte_mbuf *mbuf;
while (nb_left--) {
mbuf = ops[nb_left]->mbuf;
if ((mbuf->pkt_len > MLX5_RXP_MAX_JOB_LENGTH) ||
(mbuf->nb_segs > max_nb_segs)) {
DRV_LOG(ERR, "Failed to validate regex ops");
return 1;
}
}
return 0;
}
#endif
static inline uint32_t
qp_size_get(struct mlx5_regex_hw_qp *qp)
{
return (1U << qp->log_nb_desc);
}
static inline uint32_t
cq_size_get(struct mlx5_regex_cq *cq)
{
return (1U << cq->log_nb_desc);
}
struct mlx5_regex_job {
uint64_t user_id;
volatile uint8_t *output;
volatile uint8_t *metadata;
struct mlx5_klm *imkey_array; /* Indirect mkey's KLM array. */
struct mlx5_devx_obj *imkey; /* UMR WQE's indirect meky. */
} __rte_cached_aligned;
static inline void
set_data_seg(struct mlx5_wqe_data_seg *seg,
uint32_t length, uint32_t lkey,
uintptr_t address)
{
seg->byte_count = rte_cpu_to_be_32(length);
seg->lkey = rte_cpu_to_be_32(lkey);
seg->addr = rte_cpu_to_be_64(address);
}
static inline void
set_metadata_seg(struct mlx5_wqe_metadata_seg *seg,
uint32_t mmo_control_31_0, uint32_t lkey,
uintptr_t address)
{
seg->mmo_control_31_0 = htobe32(mmo_control_31_0);
seg->lkey = rte_cpu_to_be_32(lkey);
seg->addr = rte_cpu_to_be_64(address);
}
static inline void
set_regex_ctrl_seg(void *seg, uint8_t le, uint16_t subset_id0,
uint16_t subset_id1, uint16_t subset_id2,
uint16_t subset_id3, uint8_t ctrl)
{
MLX5_SET(regexp_mmo_control, seg, le, le);
MLX5_SET(regexp_mmo_control, seg, ctrl, ctrl);
MLX5_SET(regexp_mmo_control, seg, subset_id_0, subset_id0);
MLX5_SET(regexp_mmo_control, seg, subset_id_1, subset_id1);
MLX5_SET(regexp_mmo_control, seg, subset_id_2, subset_id2);
MLX5_SET(regexp_mmo_control, seg, subset_id_3, subset_id3);
}
static inline void
set_wqe_ctrl_seg(struct mlx5_wqe_ctrl_seg *seg, uint16_t pi, uint8_t opcode,
uint8_t opmod, uint32_t qp_num, uint8_t fm_ce_se, uint8_t ds,
uint8_t signature, uint32_t imm)
{
seg->opmod_idx_opcode = rte_cpu_to_be_32(((uint32_t)opmod << 24) |
((uint32_t)pi << 8) |
opcode);
seg->qpn_ds = rte_cpu_to_be_32((qp_num << 8) | ds);
seg->fm_ce_se = fm_ce_se;
seg->signature = signature;
seg->imm = imm;
}
static inline void
__prep_one(struct mlx5_regex_priv *priv, struct mlx5_regex_hw_qp *qp_obj,
struct rte_regex_ops *op, struct mlx5_regex_job *job,
size_t pi, struct mlx5_klm *klm)
{
size_t wqe_offset = (pi & (qp_size_get(qp_obj) - 1)) *
(MLX5_SEND_WQE_BB << (priv->has_umr ? 2 : 0)) +
(priv->has_umr ? MLX5_REGEX_UMR_WQE_SIZE : 0);
uint16_t group0 = op->req_flags & RTE_REGEX_OPS_REQ_GROUP_ID0_VALID_F ?
op->group_id0 : 0;
uint16_t group1 = op->req_flags & RTE_REGEX_OPS_REQ_GROUP_ID1_VALID_F ?
op->group_id1 : 0;
uint16_t group2 = op->req_flags & RTE_REGEX_OPS_REQ_GROUP_ID2_VALID_F ?
op->group_id2 : 0;
uint16_t group3 = op->req_flags & RTE_REGEX_OPS_REQ_GROUP_ID3_VALID_F ?
op->group_id3 : 0;
uint8_t control = 0x0;
if (op->req_flags & RTE_REGEX_OPS_REQ_MATCH_HIGH_PRIORITY_F)
control = 0x1;
else if (op->req_flags & RTE_REGEX_OPS_REQ_STOP_ON_MATCH_F)
control = 0x2;
/* For backward compatibility. */
if (!(op->req_flags & (RTE_REGEX_OPS_REQ_GROUP_ID0_VALID_F |
RTE_REGEX_OPS_REQ_GROUP_ID1_VALID_F |
RTE_REGEX_OPS_REQ_GROUP_ID2_VALID_F |
RTE_REGEX_OPS_REQ_GROUP_ID3_VALID_F)))
group0 = op->group_id0;
uint8_t *wqe = (uint8_t *)(uintptr_t)qp_obj->qp_obj.wqes + wqe_offset;
int ds = 4; /* ctrl + meta + input + output */
set_wqe_ctrl_seg((struct mlx5_wqe_ctrl_seg *)wqe,
(priv->has_umr ? (pi * 4 + 3) : pi),
MLX5_OPCODE_MMO, MLX5_OPC_MOD_MMO_REGEX,
qp_obj->qp_obj.qp->id, 0, ds, 0, 0);
set_regex_ctrl_seg(wqe + 12, 0, group0, group1, group2, group3,
control);
struct mlx5_wqe_data_seg *input_seg =
(struct mlx5_wqe_data_seg *)(wqe +
MLX5_REGEX_WQE_GATHER_OFFSET);
input_seg->byte_count = rte_cpu_to_be_32(klm->byte_count);
input_seg->addr = rte_cpu_to_be_64(klm->address);
input_seg->lkey = klm->mkey;
job->user_id = op->user_id;
}
static inline void
prep_one(struct mlx5_regex_priv *priv, struct mlx5_regex_qp *qp,
struct mlx5_regex_hw_qp *qp_obj, struct rte_regex_ops *op,
struct mlx5_regex_job *job)
{
struct mlx5_klm klm;
klm.byte_count = rte_pktmbuf_data_len(op->mbuf);
klm.mkey = mlx5_mr_mb2mr(&qp->mr_ctrl, op->mbuf);
klm.address = rte_pktmbuf_mtod(op->mbuf, uintptr_t);
__prep_one(priv, qp_obj, op, job, qp_obj->pi, &klm);
qp_obj->db_pi = qp_obj->pi;
qp_obj->pi = (qp_obj->pi + 1) & MLX5_REGEX_MAX_WQE_INDEX;
}
static inline void
send_doorbell(struct mlx5_regex_priv *priv, struct mlx5_regex_hw_qp *qp)
{
size_t wqe_offset = (qp->db_pi & (qp_size_get(qp) - 1)) *
(MLX5_SEND_WQE_BB << (priv->has_umr ? 2 : 0)) +
(priv->has_umr ? MLX5_REGEX_UMR_WQE_SIZE : 0);
uint8_t *wqe = (uint8_t *)(uintptr_t)qp->qp_obj.wqes + wqe_offset;
uint32_t actual_pi = (priv->has_umr ? (qp->db_pi * 4 + 3) : qp->db_pi) &
MLX5_REGEX_MAX_WQE_INDEX;
/* Or the fm_ce_se instead of set, avoid the fence be cleared. */
((struct mlx5_wqe_ctrl_seg *)wqe)->fm_ce_se |= MLX5_WQE_CTRL_CQ_UPDATE;
mlx5_doorbell_ring(&priv->uar.bf_db, *(volatile uint64_t *)wqe,
actual_pi, &qp->qp_obj.db_rec[MLX5_SND_DBR],
!priv->uar.dbnc);
}
static inline int
get_free(struct mlx5_regex_hw_qp *qp, uint8_t has_umr) {
return (qp_size_get(qp) - ((qp->pi - qp->ci) &
(has_umr ? (MLX5_REGEX_MAX_WQE_INDEX >> 2) :
MLX5_REGEX_MAX_WQE_INDEX)));
}
static inline uint32_t
job_id_get(uint32_t qid, size_t qp_size, size_t index) {
return qid * qp_size + (index & (qp_size - 1));
}
#ifdef HAVE_MLX5_UMR_IMKEY
static inline int
mkey_klm_available(struct mlx5_klm *klm, uint32_t pos, uint32_t new)
{
return (klm && ((pos + new) <= MLX5_REGEX_MAX_KLM_NUM));
}
static inline void
complete_umr_wqe(struct mlx5_regex_qp *qp, struct mlx5_regex_hw_qp *qp_obj,
struct mlx5_regex_job *mkey_job,
size_t umr_index, uint32_t klm_size, uint32_t total_len)
{
size_t wqe_offset = (umr_index & (qp_size_get(qp_obj) - 1)) *
(MLX5_SEND_WQE_BB * 4);
struct mlx5_wqe_ctrl_seg *wqe = (struct mlx5_wqe_ctrl_seg *)((uint8_t *)
(uintptr_t)qp_obj->qp_obj.wqes + wqe_offset);
struct mlx5_wqe_umr_ctrl_seg *ucseg =
(struct mlx5_wqe_umr_ctrl_seg *)(wqe + 1);
struct mlx5_wqe_mkey_context_seg *mkc =
(struct mlx5_wqe_mkey_context_seg *)(ucseg + 1);
struct mlx5_klm *iklm = (struct mlx5_klm *)(mkc + 1);
uint16_t klm_align = RTE_ALIGN(klm_size, 4);
memset(wqe, 0, MLX5_REGEX_UMR_WQE_SIZE);
/* Set WQE control seg. Non-inline KLM UMR WQE size must be 9 WQE_DS. */
set_wqe_ctrl_seg(wqe, (umr_index * 4), MLX5_OPCODE_UMR,
0, qp_obj->qp_obj.qp->id, 0, 9, 0,
rte_cpu_to_be_32(mkey_job->imkey->id));
/* Set UMR WQE control seg. */
ucseg->mkey_mask |= rte_cpu_to_be_64(MLX5_WQE_UMR_CTRL_MKEY_MASK_LEN |
MLX5_WQE_UMR_CTRL_FLAG_TRNSLATION_OFFSET |
MLX5_WQE_UMR_CTRL_MKEY_MASK_ACCESS_LOCAL_WRITE);
ucseg->klm_octowords = rte_cpu_to_be_16(klm_align);
/* Set mkey context seg. */
mkc->len = rte_cpu_to_be_64(total_len);
mkc->qpn_mkey = rte_cpu_to_be_32(0xffffff00 |
(mkey_job->imkey->id & 0xff));
/* Set UMR pointer to data seg. */
iklm->address = rte_cpu_to_be_64
((uintptr_t)((char *)mkey_job->imkey_array));
iklm->mkey = rte_cpu_to_be_32(qp->imkey_addr->lkey);
iklm->byte_count = rte_cpu_to_be_32(klm_align);
/* Clear the padding memory. */
memset((uint8_t *)&mkey_job->imkey_array[klm_size], 0,
sizeof(struct mlx5_klm) * (klm_align - klm_size));
/* Add the following RegEx WQE with fence. */
wqe = (struct mlx5_wqe_ctrl_seg *)
(((uint8_t *)wqe) + MLX5_REGEX_UMR_WQE_SIZE);
wqe->fm_ce_se |= MLX5_WQE_CTRL_INITIATOR_SMALL_FENCE;
}
static inline void
prep_nop_regex_wqe_set(struct mlx5_regex_priv *priv,
struct mlx5_regex_hw_qp *qp, struct rte_regex_ops *op,
struct mlx5_regex_job *job, size_t pi, struct mlx5_klm *klm)
{
size_t wqe_offset = (pi & (qp_size_get(qp) - 1)) *
(MLX5_SEND_WQE_BB << 2);
struct mlx5_wqe_ctrl_seg *wqe = (struct mlx5_wqe_ctrl_seg *)((uint8_t *)
(uintptr_t)qp->qp_obj.wqes + wqe_offset);
/* Clear the WQE memory used as UMR WQE previously. */
if ((rte_be_to_cpu_32(wqe->opmod_idx_opcode) & 0xff) != MLX5_OPCODE_NOP)
memset(wqe, 0, MLX5_REGEX_UMR_WQE_SIZE);
/* UMR WQE size is 9 DS, align nop WQE to 3 WQEBBS(12 DS). */
set_wqe_ctrl_seg(wqe, pi * 4, MLX5_OPCODE_NOP, 0, qp->qp_obj.qp->id,
0, 12, 0, 0);
__prep_one(priv, qp, op, job, pi, klm);
}
static inline void
prep_regex_umr_wqe_set(struct mlx5_regex_priv *priv, struct mlx5_regex_qp *qp,
struct mlx5_regex_hw_qp *qp_obj, struct rte_regex_ops **op,
size_t nb_ops)
{
struct mlx5_regex_job *job = NULL;
size_t hw_qpid = qp_obj->qpn, mkey_job_id = 0;
size_t left_ops = nb_ops;
uint32_t klm_num = 0;
uint32_t len = 0;
struct mlx5_klm *mkey_klm = NULL;
struct mlx5_klm klm;
uintptr_t addr;
while (left_ops--)
rte_prefetch0(op[left_ops]);
left_ops = nb_ops;
/*
* Build the WQE set by reverse. In case the burst may consume
* multiple mkeys, build the WQE set as normal will hard to
* address the last mkey index, since we will only know the last
* RegEx WQE's index when finishes building.
*/
while (left_ops--) {
struct rte_mbuf *mbuf = op[left_ops]->mbuf;
size_t pi = MLX5_REGEX_UMR_QP_PI_IDX(qp_obj->pi, left_ops);
if (mbuf->nb_segs > 1) {
size_t scatter_size = 0;
if (!mkey_klm_available(mkey_klm, klm_num,
mbuf->nb_segs)) {
/*
* The mkey's KLM is full, create the UMR
* WQE in the next WQE set.
*/
if (mkey_klm)
complete_umr_wqe(qp, qp_obj,
&qp->jobs[mkey_job_id],
MLX5_REGEX_UMR_QP_PI_IDX(pi, 1),
klm_num, len);
/*
* Get the indircet mkey and KLM array index
* from the last WQE set.
*/
mkey_job_id = job_id_get(hw_qpid,
qp_size_get(qp_obj), pi);
mkey_klm = qp->jobs[mkey_job_id].imkey_array;
klm_num = 0;
len = 0;
}
/* Build RegEx WQE's data segment KLM. */
klm.address = len;
klm.mkey = rte_cpu_to_be_32
(qp->jobs[mkey_job_id].imkey->id);
while (mbuf) {
addr = rte_pktmbuf_mtod(mbuf, uintptr_t);
/* Build indirect mkey seg's KLM. */
mkey_klm->mkey = mlx5_mr_mb2mr(&qp->mr_ctrl,
mbuf);
mkey_klm->address = rte_cpu_to_be_64(addr);
mkey_klm->byte_count = rte_cpu_to_be_32
(rte_pktmbuf_data_len(mbuf));
/*
* Save the mbuf's total size for RegEx data
* segment.
*/
scatter_size += rte_pktmbuf_data_len(mbuf);
mkey_klm++;
klm_num++;
mbuf = mbuf->next;
}
len += scatter_size;
klm.byte_count = scatter_size;
} else {
/* The single mubf case. Build the KLM directly. */
klm.mkey = mlx5_mr_mb2mr(&qp->mr_ctrl, mbuf);
klm.address = rte_pktmbuf_mtod(mbuf, uintptr_t);
klm.byte_count = rte_pktmbuf_data_len(mbuf);
}
job = &qp->jobs[job_id_get(hw_qpid, qp_size_get(qp_obj), pi)];
/*
* Build the nop + RegEx WQE set by default. The fist nop WQE
* will be updated later as UMR WQE if scattered mubf exist.
*/
prep_nop_regex_wqe_set(priv, qp_obj, op[left_ops], job, pi,
&klm);
}
/*
* Scattered mbuf have been added to the KLM array. Complete the build
* of UMR WQE, update the first nop WQE as UMR WQE.
*/
if (mkey_klm)
complete_umr_wqe(qp, qp_obj, &qp->jobs[mkey_job_id], qp_obj->pi,
klm_num, len);
qp_obj->db_pi = MLX5_REGEX_UMR_QP_PI_IDX(qp_obj->pi, nb_ops - 1);
qp_obj->pi = MLX5_REGEX_UMR_QP_PI_IDX(qp_obj->pi, nb_ops);
}
uint16_t
mlx5_regexdev_enqueue_gga(struct rte_regexdev *dev, uint16_t qp_id,
struct rte_regex_ops **ops, uint16_t nb_ops)
{
struct mlx5_regex_priv *priv = dev->data->dev_private;
struct mlx5_regex_qp *queue = &priv->qps[qp_id];
struct mlx5_regex_hw_qp *qp_obj;
size_t hw_qpid, nb_left = nb_ops, nb_desc;
#ifdef MLX5_REGEX_DEBUG
if (validate_ops(ops, nb_ops))
return 0;
#endif
while ((hw_qpid = ffs(queue->free_qps))) {
hw_qpid--; /* ffs returns 1 for bit 0 */
qp_obj = &queue->qps[hw_qpid];
nb_desc = get_free(qp_obj, priv->has_umr);
if (nb_desc) {
/* The ops be handled can't exceed nb_ops. */
if (nb_desc > nb_left)
nb_desc = nb_left;
else
queue->free_qps &= ~(1 << hw_qpid);
prep_regex_umr_wqe_set(priv, queue, qp_obj, ops,
nb_desc);
send_doorbell(priv, qp_obj);
nb_left -= nb_desc;
}
if (!nb_left)
break;
ops += nb_desc;
}
nb_ops -= nb_left;
queue->pi += nb_ops;
return nb_ops;
}
#endif
uint16_t
mlx5_regexdev_enqueue(struct rte_regexdev *dev, uint16_t qp_id,
struct rte_regex_ops **ops, uint16_t nb_ops)
{
struct mlx5_regex_priv *priv = dev->data->dev_private;
struct mlx5_regex_qp *queue = &priv->qps[qp_id];
struct mlx5_regex_hw_qp *qp_obj;
size_t hw_qpid, job_id, i = 0;
#ifdef MLX5_REGEX_DEBUG
if (validate_ops(ops, nb_ops))
return 0;
#endif
while ((hw_qpid = ffs(queue->free_qps))) {
hw_qpid--; /* ffs returns 1 for bit 0 */
qp_obj = &queue->qps[hw_qpid];
while (get_free(qp_obj, priv->has_umr)) {
job_id = job_id_get(hw_qpid, qp_size_get(qp_obj),
qp_obj->pi);
prep_one(priv, queue, qp_obj, ops[i],
&queue->jobs[job_id]);
i++;
if (unlikely(i == nb_ops)) {
send_doorbell(priv, qp_obj);
goto out;
}
}
queue->free_qps &= ~(1 << hw_qpid);
send_doorbell(priv, qp_obj);
}
out:
queue->pi += i;
return i;
}
#define MLX5_REGEX_RESP_SZ 8
static inline void
extract_result(struct rte_regex_ops *op, struct mlx5_regex_job *job)
{
size_t j;
size_t offset;
uint16_t status;
op->user_id = job->user_id;
op->nb_matches = MLX5_GET_VOLATILE(regexp_metadata, job->metadata +
MLX5_REGEX_METADATA_OFF,
match_count);
op->nb_actual_matches = MLX5_GET_VOLATILE(regexp_metadata,
job->metadata +
MLX5_REGEX_METADATA_OFF,
detected_match_count);
for (j = 0; j < op->nb_matches; j++) {
offset = MLX5_REGEX_RESP_SZ * j;
op->matches[j].rule_id =
MLX5_GET_VOLATILE(regexp_match_tuple,
(job->output + offset), rule_id);
op->matches[j].start_offset =
MLX5_GET_VOLATILE(regexp_match_tuple,
(job->output + offset), start_ptr);
op->matches[j].len =
MLX5_GET_VOLATILE(regexp_match_tuple,
(job->output + offset), length);
}
status = MLX5_GET_VOLATILE(regexp_metadata, job->metadata +
MLX5_REGEX_METADATA_OFF,
status);
op->rsp_flags = 0;
if (status & MLX5_RXP_RESP_STATUS_PMI_SOJ)
op->rsp_flags |= RTE_REGEX_OPS_RSP_PMI_SOJ_F;
if (status & MLX5_RXP_RESP_STATUS_PMI_EOJ)
op->rsp_flags |= RTE_REGEX_OPS_RSP_PMI_EOJ_F;
if (status & MLX5_RXP_RESP_STATUS_MAX_LATENCY)
op->rsp_flags |= RTE_REGEX_OPS_RSP_MAX_SCAN_TIMEOUT_F;
if (status & MLX5_RXP_RESP_STATUS_MAX_MATCH)
op->rsp_flags |= RTE_REGEX_OPS_RSP_MAX_MATCH_F;
if (status & MLX5_RXP_RESP_STATUS_MAX_PREFIX)
op->rsp_flags |= RTE_REGEX_OPS_RSP_MAX_PREFIX_F;
if (status & MLX5_RXP_RESP_STATUS_MAX_PRI_THREADS)
op->rsp_flags |= RTE_REGEX_OPS_RSP_RESOURCE_LIMIT_REACHED_F;
if (status & MLX5_RXP_RESP_STATUS_MAX_SEC_THREADS)
op->rsp_flags |= RTE_REGEX_OPS_RSP_RESOURCE_LIMIT_REACHED_F;
}
static inline volatile struct mlx5_cqe *
poll_one(struct mlx5_regex_cq *cq)
{
volatile struct mlx5_cqe *cqe;
size_t next_cqe_offset;
next_cqe_offset = (cq->ci & (cq_size_get(cq) - 1));
cqe = (volatile struct mlx5_cqe *)(cq->cq_obj.cqes + next_cqe_offset);
rte_io_wmb();
int ret = check_cqe(cqe, cq_size_get(cq), cq->ci);
if (unlikely(ret == MLX5_CQE_STATUS_ERR)) {
DRV_LOG(ERR, "Completion with error on qp 0x%x", 0);
return NULL;
}
if (unlikely(ret != MLX5_CQE_STATUS_SW_OWN))
return NULL;
return cqe;
}
/**
* DPDK callback for dequeue.
*
* @param dev
* Pointer to the regex dev structure.
* @param qp_id
* The queue to enqueue the traffic to.
* @param ops
* List of regex ops to dequeue.
* @param nb_ops
* Number of ops in ops parameter.
*
* @return
* Number of packets successfully dequeued (<= pkts_n).
*/
uint16_t
mlx5_regexdev_dequeue(struct rte_regexdev *dev, uint16_t qp_id,
struct rte_regex_ops **ops, uint16_t nb_ops)
{
struct mlx5_regex_priv *priv = dev->data->dev_private;
struct mlx5_regex_qp *queue = &priv->qps[qp_id];
struct mlx5_regex_cq *cq = &queue->cq;
volatile struct mlx5_cqe *cqe;
size_t i = 0;
while ((cqe = poll_one(cq))) {
uint16_t wq_counter
= (rte_be_to_cpu_16(cqe->wqe_counter) + 1) &
MLX5_REGEX_MAX_WQE_INDEX;
size_t hw_qpid = cqe->user_index_bytes[2];
struct mlx5_regex_hw_qp *qp_obj = &queue->qps[hw_qpid];
/* UMR mode WQE counter move as WQE set(4 WQEBBS).*/
if (priv->has_umr)
wq_counter >>= 2;
while (qp_obj->ci != wq_counter) {
if (unlikely(i == nb_ops)) {
/* Return without updating cq->ci */
goto out;
}
uint32_t job_id = job_id_get(hw_qpid,
qp_size_get(qp_obj), qp_obj->ci);
extract_result(ops[i], &queue->jobs[job_id]);
qp_obj->ci = (qp_obj->ci + 1) & (priv->has_umr ?
(MLX5_REGEX_MAX_WQE_INDEX >> 2) :
MLX5_REGEX_MAX_WQE_INDEX);
i++;
}
cq->ci = (cq->ci + 1) & 0xffffff;
rte_wmb();
cq->cq_obj.db_rec[0] = rte_cpu_to_be_32(cq->ci);
queue->free_qps |= (1 << hw_qpid);
}
out:
queue->ci += i;
return i;
}
static void
setup_qps(struct mlx5_regex_priv *priv, struct mlx5_regex_qp *queue)
{
size_t hw_qpid, entry;
uint32_t job_id;
for (hw_qpid = 0; hw_qpid < queue->nb_obj; hw_qpid++) {
struct mlx5_regex_hw_qp *qp_obj = &queue->qps[hw_qpid];
uint8_t *wqe = (uint8_t *)(uintptr_t)qp_obj->qp_obj.wqes;
for (entry = 0 ; entry < qp_size_get(qp_obj); entry++) {
job_id = hw_qpid * qp_size_get(qp_obj) + entry;
struct mlx5_regex_job *job = &queue->jobs[job_id];
/* Fill UMR WQE with NOP in advanced. */
if (priv->has_umr) {
set_wqe_ctrl_seg
((struct mlx5_wqe_ctrl_seg *)wqe,
entry * 2, MLX5_OPCODE_NOP, 0,
qp_obj->qp_obj.qp->id, 0, 12, 0, 0);
wqe += MLX5_REGEX_UMR_WQE_SIZE;
}
set_metadata_seg((struct mlx5_wqe_metadata_seg *)
(wqe + MLX5_REGEX_WQE_METADATA_OFFSET),
0, queue->metadata->lkey,
(uintptr_t)job->metadata);
set_data_seg((struct mlx5_wqe_data_seg *)
(wqe + MLX5_REGEX_WQE_SCATTER_OFFSET),
MLX5_REGEX_MAX_OUTPUT,
queue->outputs->lkey,
(uintptr_t)job->output);
wqe += 64;
}
queue->free_qps |= 1 << hw_qpid;
}
}
static int
setup_buffers(struct mlx5_regex_priv *priv, struct mlx5_regex_qp *qp)
{
struct ibv_pd *pd = priv->cdev->pd;
uint32_t i;
int err;
void *ptr = rte_calloc(__func__, qp->nb_desc,
MLX5_REGEX_METADATA_SIZE,
MLX5_REGEX_METADATA_SIZE);
if (!ptr)
return -ENOMEM;
qp->metadata = mlx5_glue->reg_mr(pd, ptr,
MLX5_REGEX_METADATA_SIZE * qp->nb_desc,
IBV_ACCESS_LOCAL_WRITE);
if (!qp->metadata) {
DRV_LOG(ERR, "Failed to register metadata");
rte_free(ptr);
return -EINVAL;
}
ptr = rte_calloc(__func__, qp->nb_desc,
MLX5_REGEX_MAX_OUTPUT,
MLX5_REGEX_MAX_OUTPUT);
if (!ptr) {
err = -ENOMEM;
goto err_output;
}
qp->outputs = mlx5_glue->reg_mr(pd, ptr,
MLX5_REGEX_MAX_OUTPUT * qp->nb_desc,
IBV_ACCESS_LOCAL_WRITE);
if (!qp->outputs) {
rte_free(ptr);
DRV_LOG(ERR, "Failed to register output");
err = -EINVAL;
goto err_output;
}
if (priv->has_umr) {
ptr = rte_calloc(__func__, qp->nb_desc, MLX5_REGEX_KLMS_SIZE,
MLX5_REGEX_KLMS_SIZE);
if (!ptr) {
err = -ENOMEM;
goto err_imkey;
}
qp->imkey_addr = mlx5_glue->reg_mr(pd, ptr,
MLX5_REGEX_KLMS_SIZE * qp->nb_desc,
IBV_ACCESS_LOCAL_WRITE);
if (!qp->imkey_addr) {
rte_free(ptr);
DRV_LOG(ERR, "Failed to register output");
err = -EINVAL;
goto err_imkey;
}
}
/* distribute buffers to jobs */
for (i = 0; i < qp->nb_desc; i++) {
qp->jobs[i].output =
(uint8_t *)qp->outputs->addr +
(i % qp->nb_desc) * MLX5_REGEX_MAX_OUTPUT;
qp->jobs[i].metadata =
(uint8_t *)qp->metadata->addr +
(i % qp->nb_desc) * MLX5_REGEX_METADATA_SIZE;
if (qp->imkey_addr)
qp->jobs[i].imkey_array = (struct mlx5_klm *)
qp->imkey_addr->addr +
(i % qp->nb_desc) * MLX5_REGEX_MAX_KLM_NUM;
}
return 0;
err_imkey:
ptr = qp->outputs->addr;
rte_free(ptr);
mlx5_glue->dereg_mr(qp->outputs);
err_output:
ptr = qp->metadata->addr;
rte_free(ptr);
mlx5_glue->dereg_mr(qp->metadata);
return err;
}
int
mlx5_regexdev_setup_fastpath(struct mlx5_regex_priv *priv, uint32_t qp_id)
{
struct mlx5_regex_qp *qp = &priv->qps[qp_id];
struct mlx5_klm klm = { 0 };
struct mlx5_devx_mkey_attr attr = {
.klm_array = &klm,
.klm_num = 1,
.umr_en = 1,
};
uint32_t i;
int err = 0;
qp->jobs = rte_calloc(__func__, qp->nb_desc, sizeof(*qp->jobs), 64);
if (!qp->jobs)
return -ENOMEM;
err = setup_buffers(priv, qp);
if (err) {
rte_free(qp->jobs);
qp->jobs = NULL;
return err;
}
setup_qps(priv, qp);
if (priv->has_umr) {
#ifdef HAVE_IBV_FLOW_DV_SUPPORT
attr.pd = priv->cdev->pdn;
#endif
for (i = 0; i < qp->nb_desc; i++) {
attr.klm_num = MLX5_REGEX_MAX_KLM_NUM;
attr.klm_array = qp->jobs[i].imkey_array;
qp->jobs[i].imkey = mlx5_devx_cmd_mkey_create
(priv->cdev->ctx, &attr);
if (!qp->jobs[i].imkey) {
err = -rte_errno;
DRV_LOG(ERR, "Failed to allocate imkey.");
mlx5_regexdev_teardown_fastpath(priv, qp_id);
}
}
}
return err;
}
static void
free_buffers(struct mlx5_regex_qp *qp)
{
if (qp->imkey_addr) {
mlx5_glue->dereg_mr(qp->imkey_addr);
rte_free(qp->imkey_addr->addr);
}
if (qp->metadata) {
mlx5_glue->dereg_mr(qp->metadata);
rte_free(qp->metadata->addr);
}
if (qp->outputs) {
mlx5_glue->dereg_mr(qp->outputs);
rte_free(qp->outputs->addr);
}
}
void
mlx5_regexdev_teardown_fastpath(struct mlx5_regex_priv *priv, uint32_t qp_id)
{
struct mlx5_regex_qp *qp = &priv->qps[qp_id];
uint32_t i;
if (qp->jobs) {
for (i = 0; i < qp->nb_desc; i++) {
if (qp->jobs[i].imkey)
claim_zero(mlx5_devx_cmd_destroy
(qp->jobs[i].imkey));
}
free_buffers(qp);
rte_free(qp->jobs);
qp->jobs = NULL;
}
}