numam-dpdk/drivers/net/e1000/base/e1000_api.c
Guinan Sun bc05f34e95 net/e1000/base: modify copyright
Modify the copyright of the file header.

Signed-off-by: Guinan Sun <guinanx.sun@intel.com>
Reviewed-by: Wei Zhao <wei.zhao1@intel.com>
2020-07-07 23:38:27 +02:00

1366 lines
36 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2001-2020 Intel Corporation
*/
#include "e1000_api.h"
/**
* e1000_init_mac_params - Initialize MAC function pointers
* @hw: pointer to the HW structure
*
* This function initializes the function pointers for the MAC
* set of functions. Called by drivers or by e1000_setup_init_funcs.
**/
s32 e1000_init_mac_params(struct e1000_hw *hw)
{
s32 ret_val = E1000_SUCCESS;
if (hw->mac.ops.init_params) {
ret_val = hw->mac.ops.init_params(hw);
if (ret_val) {
DEBUGOUT("MAC Initialization Error\n");
goto out;
}
} else {
DEBUGOUT("mac.init_mac_params was NULL\n");
ret_val = -E1000_ERR_CONFIG;
}
out:
return ret_val;
}
/**
* e1000_init_nvm_params - Initialize NVM function pointers
* @hw: pointer to the HW structure
*
* This function initializes the function pointers for the NVM
* set of functions. Called by drivers or by e1000_setup_init_funcs.
**/
s32 e1000_init_nvm_params(struct e1000_hw *hw)
{
s32 ret_val = E1000_SUCCESS;
if (hw->nvm.ops.init_params) {
ret_val = hw->nvm.ops.init_params(hw);
if (ret_val) {
DEBUGOUT("NVM Initialization Error\n");
goto out;
}
} else {
DEBUGOUT("nvm.init_nvm_params was NULL\n");
ret_val = -E1000_ERR_CONFIG;
}
out:
return ret_val;
}
/**
* e1000_init_phy_params - Initialize PHY function pointers
* @hw: pointer to the HW structure
*
* This function initializes the function pointers for the PHY
* set of functions. Called by drivers or by e1000_setup_init_funcs.
**/
s32 e1000_init_phy_params(struct e1000_hw *hw)
{
s32 ret_val = E1000_SUCCESS;
if (hw->phy.ops.init_params) {
ret_val = hw->phy.ops.init_params(hw);
if (ret_val) {
DEBUGOUT("PHY Initialization Error\n");
goto out;
}
} else {
DEBUGOUT("phy.init_phy_params was NULL\n");
ret_val = -E1000_ERR_CONFIG;
}
out:
return ret_val;
}
/**
* e1000_init_mbx_params - Initialize mailbox function pointers
* @hw: pointer to the HW structure
*
* This function initializes the function pointers for the PHY
* set of functions. Called by drivers or by e1000_setup_init_funcs.
**/
s32 e1000_init_mbx_params(struct e1000_hw *hw)
{
s32 ret_val = E1000_SUCCESS;
if (hw->mbx.ops.init_params) {
ret_val = hw->mbx.ops.init_params(hw);
if (ret_val) {
DEBUGOUT("Mailbox Initialization Error\n");
goto out;
}
} else {
DEBUGOUT("mbx.init_mbx_params was NULL\n");
ret_val = -E1000_ERR_CONFIG;
}
out:
return ret_val;
}
/**
* e1000_set_mac_type - Sets MAC type
* @hw: pointer to the HW structure
*
* This function sets the mac type of the adapter based on the
* device ID stored in the hw structure.
* MUST BE FIRST FUNCTION CALLED (explicitly or through
* e1000_setup_init_funcs()).
**/
s32 e1000_set_mac_type(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
s32 ret_val = E1000_SUCCESS;
DEBUGFUNC("e1000_set_mac_type");
switch (hw->device_id) {
case E1000_DEV_ID_82542:
mac->type = e1000_82542;
break;
case E1000_DEV_ID_82543GC_FIBER:
case E1000_DEV_ID_82543GC_COPPER:
mac->type = e1000_82543;
break;
case E1000_DEV_ID_82544EI_COPPER:
case E1000_DEV_ID_82544EI_FIBER:
case E1000_DEV_ID_82544GC_COPPER:
case E1000_DEV_ID_82544GC_LOM:
mac->type = e1000_82544;
break;
case E1000_DEV_ID_82540EM:
case E1000_DEV_ID_82540EM_LOM:
case E1000_DEV_ID_82540EP:
case E1000_DEV_ID_82540EP_LOM:
case E1000_DEV_ID_82540EP_LP:
mac->type = e1000_82540;
break;
case E1000_DEV_ID_82545EM_COPPER:
case E1000_DEV_ID_82545EM_FIBER:
mac->type = e1000_82545;
break;
case E1000_DEV_ID_82545GM_COPPER:
case E1000_DEV_ID_82545GM_FIBER:
case E1000_DEV_ID_82545GM_SERDES:
mac->type = e1000_82545_rev_3;
break;
case E1000_DEV_ID_82546EB_COPPER:
case E1000_DEV_ID_82546EB_FIBER:
case E1000_DEV_ID_82546EB_QUAD_COPPER:
mac->type = e1000_82546;
break;
case E1000_DEV_ID_82546GB_COPPER:
case E1000_DEV_ID_82546GB_FIBER:
case E1000_DEV_ID_82546GB_SERDES:
case E1000_DEV_ID_82546GB_PCIE:
case E1000_DEV_ID_82546GB_QUAD_COPPER:
case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
mac->type = e1000_82546_rev_3;
break;
case E1000_DEV_ID_82541EI:
case E1000_DEV_ID_82541EI_MOBILE:
case E1000_DEV_ID_82541ER_LOM:
mac->type = e1000_82541;
break;
case E1000_DEV_ID_82541ER:
case E1000_DEV_ID_82541GI:
case E1000_DEV_ID_82541GI_LF:
case E1000_DEV_ID_82541GI_MOBILE:
mac->type = e1000_82541_rev_2;
break;
case E1000_DEV_ID_82547EI:
case E1000_DEV_ID_82547EI_MOBILE:
mac->type = e1000_82547;
break;
case E1000_DEV_ID_82547GI:
mac->type = e1000_82547_rev_2;
break;
case E1000_DEV_ID_82571EB_COPPER:
case E1000_DEV_ID_82571EB_FIBER:
case E1000_DEV_ID_82571EB_SERDES:
case E1000_DEV_ID_82571EB_SERDES_DUAL:
case E1000_DEV_ID_82571EB_SERDES_QUAD:
case E1000_DEV_ID_82571EB_QUAD_COPPER:
case E1000_DEV_ID_82571PT_QUAD_COPPER:
case E1000_DEV_ID_82571EB_QUAD_FIBER:
case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
mac->type = e1000_82571;
break;
case E1000_DEV_ID_82572EI:
case E1000_DEV_ID_82572EI_COPPER:
case E1000_DEV_ID_82572EI_FIBER:
case E1000_DEV_ID_82572EI_SERDES:
mac->type = e1000_82572;
break;
case E1000_DEV_ID_82573E:
case E1000_DEV_ID_82573E_IAMT:
case E1000_DEV_ID_82573L:
mac->type = e1000_82573;
break;
case E1000_DEV_ID_82574L:
case E1000_DEV_ID_82574LA:
mac->type = e1000_82574;
break;
case E1000_DEV_ID_82583V:
mac->type = e1000_82583;
break;
case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
mac->type = e1000_80003es2lan;
break;
case E1000_DEV_ID_ICH8_IFE:
case E1000_DEV_ID_ICH8_IFE_GT:
case E1000_DEV_ID_ICH8_IFE_G:
case E1000_DEV_ID_ICH8_IGP_M:
case E1000_DEV_ID_ICH8_IGP_M_AMT:
case E1000_DEV_ID_ICH8_IGP_AMT:
case E1000_DEV_ID_ICH8_IGP_C:
case E1000_DEV_ID_ICH8_82567V_3:
mac->type = e1000_ich8lan;
break;
case E1000_DEV_ID_ICH9_IFE:
case E1000_DEV_ID_ICH9_IFE_GT:
case E1000_DEV_ID_ICH9_IFE_G:
case E1000_DEV_ID_ICH9_IGP_M:
case E1000_DEV_ID_ICH9_IGP_M_AMT:
case E1000_DEV_ID_ICH9_IGP_M_V:
case E1000_DEV_ID_ICH9_IGP_AMT:
case E1000_DEV_ID_ICH9_BM:
case E1000_DEV_ID_ICH9_IGP_C:
case E1000_DEV_ID_ICH10_R_BM_LM:
case E1000_DEV_ID_ICH10_R_BM_LF:
case E1000_DEV_ID_ICH10_R_BM_V:
mac->type = e1000_ich9lan;
break;
case E1000_DEV_ID_ICH10_D_BM_LM:
case E1000_DEV_ID_ICH10_D_BM_LF:
case E1000_DEV_ID_ICH10_D_BM_V:
mac->type = e1000_ich10lan;
break;
case E1000_DEV_ID_PCH_D_HV_DM:
case E1000_DEV_ID_PCH_D_HV_DC:
case E1000_DEV_ID_PCH_M_HV_LM:
case E1000_DEV_ID_PCH_M_HV_LC:
mac->type = e1000_pchlan;
break;
case E1000_DEV_ID_PCH2_LV_LM:
case E1000_DEV_ID_PCH2_LV_V:
mac->type = e1000_pch2lan;
break;
case E1000_DEV_ID_PCH_LPT_I217_LM:
case E1000_DEV_ID_PCH_LPT_I217_V:
case E1000_DEV_ID_PCH_LPTLP_I218_LM:
case E1000_DEV_ID_PCH_LPTLP_I218_V:
case E1000_DEV_ID_PCH_I218_LM2:
case E1000_DEV_ID_PCH_I218_V2:
case E1000_DEV_ID_PCH_I218_LM3:
case E1000_DEV_ID_PCH_I218_V3:
mac->type = e1000_pch_lpt;
break;
case E1000_DEV_ID_PCH_SPT_I219_LM:
case E1000_DEV_ID_PCH_SPT_I219_V:
case E1000_DEV_ID_PCH_SPT_I219_LM2:
case E1000_DEV_ID_PCH_SPT_I219_V2:
case E1000_DEV_ID_PCH_LBG_I219_LM3:
case E1000_DEV_ID_PCH_SPT_I219_LM4:
case E1000_DEV_ID_PCH_SPT_I219_V4:
case E1000_DEV_ID_PCH_SPT_I219_LM5:
case E1000_DEV_ID_PCH_SPT_I219_V5:
mac->type = e1000_pch_spt;
break;
case E1000_DEV_ID_PCH_CNP_I219_LM6:
case E1000_DEV_ID_PCH_CNP_I219_V6:
case E1000_DEV_ID_PCH_CNP_I219_LM7:
case E1000_DEV_ID_PCH_CNP_I219_V7:
case E1000_DEV_ID_PCH_ICP_I219_LM8:
case E1000_DEV_ID_PCH_ICP_I219_V8:
case E1000_DEV_ID_PCH_ICP_I219_LM9:
case E1000_DEV_ID_PCH_ICP_I219_V9:
mac->type = e1000_pch_cnp;
break;
case E1000_DEV_ID_PCH_ADL_I219_LM16:
case E1000_DEV_ID_PCH_ADL_I219_V16:
case E1000_DEV_ID_PCH_ADL_I219_LM17:
case E1000_DEV_ID_PCH_ADL_I219_V17:
mac->type = e1000_pch_adp;
break;
case E1000_DEV_ID_82575EB_COPPER:
case E1000_DEV_ID_82575EB_FIBER_SERDES:
case E1000_DEV_ID_82575GB_QUAD_COPPER:
mac->type = e1000_82575;
break;
case E1000_DEV_ID_82576:
case E1000_DEV_ID_82576_FIBER:
case E1000_DEV_ID_82576_SERDES:
case E1000_DEV_ID_82576_QUAD_COPPER:
case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
case E1000_DEV_ID_82576_NS:
case E1000_DEV_ID_82576_NS_SERDES:
case E1000_DEV_ID_82576_SERDES_QUAD:
mac->type = e1000_82576;
break;
case E1000_DEV_ID_82580_COPPER:
case E1000_DEV_ID_82580_FIBER:
case E1000_DEV_ID_82580_SERDES:
case E1000_DEV_ID_82580_SGMII:
case E1000_DEV_ID_82580_COPPER_DUAL:
case E1000_DEV_ID_82580_QUAD_FIBER:
case E1000_DEV_ID_DH89XXCC_SGMII:
case E1000_DEV_ID_DH89XXCC_SERDES:
case E1000_DEV_ID_DH89XXCC_BACKPLANE:
case E1000_DEV_ID_DH89XXCC_SFP:
mac->type = e1000_82580;
break;
case E1000_DEV_ID_I350_COPPER:
case E1000_DEV_ID_I350_FIBER:
case E1000_DEV_ID_I350_SERDES:
case E1000_DEV_ID_I350_SGMII:
case E1000_DEV_ID_I350_DA4:
mac->type = e1000_i350;
break;
case E1000_DEV_ID_I210_COPPER_FLASHLESS:
case E1000_DEV_ID_I210_SERDES_FLASHLESS:
case E1000_DEV_ID_I210_SGMII_FLASHLESS:
case E1000_DEV_ID_I210_COPPER:
case E1000_DEV_ID_I210_COPPER_OEM1:
case E1000_DEV_ID_I210_COPPER_IT:
case E1000_DEV_ID_I210_FIBER:
case E1000_DEV_ID_I210_SERDES:
case E1000_DEV_ID_I210_SGMII:
mac->type = e1000_i210;
break;
case E1000_DEV_ID_I211_COPPER:
mac->type = e1000_i211;
break;
case E1000_DEV_ID_82576_VF:
case E1000_DEV_ID_82576_VF_HV:
mac->type = e1000_vfadapt;
break;
case E1000_DEV_ID_I350_VF:
case E1000_DEV_ID_I350_VF_HV:
mac->type = e1000_vfadapt_i350;
break;
case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
case E1000_DEV_ID_I354_SGMII:
case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
mac->type = e1000_i354;
break;
default:
/* Should never have loaded on this device */
ret_val = -E1000_ERR_MAC_INIT;
break;
}
return ret_val;
}
/**
* e1000_setup_init_funcs - Initializes function pointers
* @hw: pointer to the HW structure
* @init_device: true will initialize the rest of the function pointers
* getting the device ready for use. false will only set
* MAC type and the function pointers for the other init
* functions. Passing false will not generate any hardware
* reads or writes.
*
* This function must be called by a driver in order to use the rest
* of the 'shared' code files. Called by drivers only.
**/
s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
{
s32 ret_val;
/* Can't do much good without knowing the MAC type. */
ret_val = e1000_set_mac_type(hw);
if (ret_val) {
DEBUGOUT("ERROR: MAC type could not be set properly.\n");
goto out;
}
if (!hw->hw_addr) {
DEBUGOUT("ERROR: Registers not mapped\n");
ret_val = -E1000_ERR_CONFIG;
goto out;
}
/*
* Init function pointers to generic implementations. We do this first
* allowing a driver module to override it afterward.
*/
e1000_init_mac_ops_generic(hw);
e1000_init_phy_ops_generic(hw);
e1000_init_nvm_ops_generic(hw);
e1000_init_mbx_ops_generic(hw);
/*
* Set up the init function pointers. These are functions within the
* adapter family file that sets up function pointers for the rest of
* the functions in that family.
*/
switch (hw->mac.type) {
case e1000_82542:
e1000_init_function_pointers_82542(hw);
break;
case e1000_82543:
case e1000_82544:
e1000_init_function_pointers_82543(hw);
break;
case e1000_82540:
case e1000_82545:
case e1000_82545_rev_3:
case e1000_82546:
case e1000_82546_rev_3:
e1000_init_function_pointers_82540(hw);
break;
case e1000_82541:
case e1000_82541_rev_2:
case e1000_82547:
case e1000_82547_rev_2:
e1000_init_function_pointers_82541(hw);
break;
case e1000_82571:
case e1000_82572:
case e1000_82573:
case e1000_82574:
case e1000_82583:
e1000_init_function_pointers_82571(hw);
break;
case e1000_80003es2lan:
e1000_init_function_pointers_80003es2lan(hw);
break;
case e1000_ich8lan:
case e1000_ich9lan:
case e1000_ich10lan:
case e1000_pchlan:
case e1000_pch2lan:
case e1000_pch_lpt:
case e1000_pch_spt:
case e1000_pch_cnp:
case e1000_pch_adp:
e1000_init_function_pointers_ich8lan(hw);
break;
case e1000_82575:
case e1000_82576:
case e1000_82580:
case e1000_i350:
case e1000_i354:
e1000_init_function_pointers_82575(hw);
break;
case e1000_i210:
case e1000_i211:
e1000_init_function_pointers_i210(hw);
break;
case e1000_vfadapt:
e1000_init_function_pointers_vf(hw);
break;
case e1000_vfadapt_i350:
e1000_init_function_pointers_vf(hw);
break;
default:
DEBUGOUT("Hardware not supported\n");
ret_val = -E1000_ERR_CONFIG;
break;
}
/*
* Initialize the rest of the function pointers. These require some
* register reads/writes in some cases.
*/
if (!(ret_val) && init_device) {
ret_val = e1000_init_mac_params(hw);
if (ret_val)
goto out;
ret_val = e1000_init_nvm_params(hw);
if (ret_val)
goto out;
ret_val = e1000_init_phy_params(hw);
if (ret_val)
goto out;
ret_val = e1000_init_mbx_params(hw);
if (ret_val)
goto out;
}
out:
return ret_val;
}
/**
* e1000_get_bus_info - Obtain bus information for adapter
* @hw: pointer to the HW structure
*
* This will obtain information about the HW bus for which the
* adapter is attached and stores it in the hw structure. This is a
* function pointer entry point called by drivers.
**/
s32 e1000_get_bus_info(struct e1000_hw *hw)
{
if (hw->mac.ops.get_bus_info)
return hw->mac.ops.get_bus_info(hw);
return E1000_SUCCESS;
}
/**
* e1000_clear_vfta - Clear VLAN filter table
* @hw: pointer to the HW structure
*
* This clears the VLAN filter table on the adapter. This is a function
* pointer entry point called by drivers.
**/
void e1000_clear_vfta(struct e1000_hw *hw)
{
if (hw->mac.ops.clear_vfta)
hw->mac.ops.clear_vfta(hw);
}
/**
* e1000_write_vfta - Write value to VLAN filter table
* @hw: pointer to the HW structure
* @offset: the 32-bit offset in which to write the value to.
* @value: the 32-bit value to write at location offset.
*
* This writes a 32-bit value to a 32-bit offset in the VLAN filter
* table. This is a function pointer entry point called by drivers.
**/
void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
{
if (hw->mac.ops.write_vfta)
hw->mac.ops.write_vfta(hw, offset, value);
}
/**
* e1000_update_mc_addr_list - Update Multicast addresses
* @hw: pointer to the HW structure
* @mc_addr_list: array of multicast addresses to program
* @mc_addr_count: number of multicast addresses to program
*
* Updates the Multicast Table Array.
* The caller must have a packed mc_addr_list of multicast addresses.
**/
void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
u32 mc_addr_count)
{
if (hw->mac.ops.update_mc_addr_list)
hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
mc_addr_count);
}
/**
* e1000_force_mac_fc - Force MAC flow control
* @hw: pointer to the HW structure
*
* Force the MAC's flow control settings. Currently no func pointer exists
* and all implementations are handled in the generic version of this
* function.
**/
s32 e1000_force_mac_fc(struct e1000_hw *hw)
{
return e1000_force_mac_fc_generic(hw);
}
/**
* e1000_check_for_link - Check/Store link connection
* @hw: pointer to the HW structure
*
* This checks the link condition of the adapter and stores the
* results in the hw->mac structure. This is a function pointer entry
* point called by drivers.
**/
s32 e1000_check_for_link(struct e1000_hw *hw)
{
if (hw->mac.ops.check_for_link)
return hw->mac.ops.check_for_link(hw);
return -E1000_ERR_CONFIG;
}
/**
* e1000_check_mng_mode - Check management mode
* @hw: pointer to the HW structure
*
* This checks if the adapter has manageability enabled.
* This is a function pointer entry point called by drivers.
**/
bool e1000_check_mng_mode(struct e1000_hw *hw)
{
if (hw->mac.ops.check_mng_mode)
return hw->mac.ops.check_mng_mode(hw);
return false;
}
/**
* e1000_mng_write_dhcp_info - Writes DHCP info to host interface
* @hw: pointer to the HW structure
* @buffer: pointer to the host interface
* @length: size of the buffer
*
* Writes the DHCP information to the host interface.
**/
s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
{
return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
}
/**
* e1000_reset_hw - Reset hardware
* @hw: pointer to the HW structure
*
* This resets the hardware into a known state. This is a function pointer
* entry point called by drivers.
**/
s32 e1000_reset_hw(struct e1000_hw *hw)
{
if (hw->mac.ops.reset_hw)
return hw->mac.ops.reset_hw(hw);
return -E1000_ERR_CONFIG;
}
/**
* e1000_init_hw - Initialize hardware
* @hw: pointer to the HW structure
*
* This inits the hardware readying it for operation. This is a function
* pointer entry point called by drivers.
**/
s32 e1000_init_hw(struct e1000_hw *hw)
{
if (hw->mac.ops.init_hw)
return hw->mac.ops.init_hw(hw);
return -E1000_ERR_CONFIG;
}
/**
* e1000_setup_link - Configures link and flow control
* @hw: pointer to the HW structure
*
* This configures link and flow control settings for the adapter. This
* is a function pointer entry point called by drivers. While modules can
* also call this, they probably call their own version of this function.
**/
s32 e1000_setup_link(struct e1000_hw *hw)
{
if (hw->mac.ops.setup_link)
return hw->mac.ops.setup_link(hw);
return -E1000_ERR_CONFIG;
}
/**
* e1000_get_speed_and_duplex - Returns current speed and duplex
* @hw: pointer to the HW structure
* @speed: pointer to a 16-bit value to store the speed
* @duplex: pointer to a 16-bit value to store the duplex.
*
* This returns the speed and duplex of the adapter in the two 'out'
* variables passed in. This is a function pointer entry point called
* by drivers.
**/
s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
{
if (hw->mac.ops.get_link_up_info)
return hw->mac.ops.get_link_up_info(hw, speed, duplex);
return -E1000_ERR_CONFIG;
}
/**
* e1000_setup_led - Configures SW controllable LED
* @hw: pointer to the HW structure
*
* This prepares the SW controllable LED for use and saves the current state
* of the LED so it can be later restored. This is a function pointer entry
* point called by drivers.
**/
s32 e1000_setup_led(struct e1000_hw *hw)
{
if (hw->mac.ops.setup_led)
return hw->mac.ops.setup_led(hw);
return E1000_SUCCESS;
}
/**
* e1000_cleanup_led - Restores SW controllable LED
* @hw: pointer to the HW structure
*
* This restores the SW controllable LED to the value saved off by
* e1000_setup_led. This is a function pointer entry point called by drivers.
**/
s32 e1000_cleanup_led(struct e1000_hw *hw)
{
if (hw->mac.ops.cleanup_led)
return hw->mac.ops.cleanup_led(hw);
return E1000_SUCCESS;
}
/**
* e1000_blink_led - Blink SW controllable LED
* @hw: pointer to the HW structure
*
* This starts the adapter LED blinking. Request the LED to be setup first
* and cleaned up after. This is a function pointer entry point called by
* drivers.
**/
s32 e1000_blink_led(struct e1000_hw *hw)
{
if (hw->mac.ops.blink_led)
return hw->mac.ops.blink_led(hw);
return E1000_SUCCESS;
}
/**
* e1000_id_led_init - store LED configurations in SW
* @hw: pointer to the HW structure
*
* Initializes the LED config in SW. This is a function pointer entry point
* called by drivers.
**/
s32 e1000_id_led_init(struct e1000_hw *hw)
{
if (hw->mac.ops.id_led_init)
return hw->mac.ops.id_led_init(hw);
return E1000_SUCCESS;
}
/**
* e1000_led_on - Turn on SW controllable LED
* @hw: pointer to the HW structure
*
* Turns the SW defined LED on. This is a function pointer entry point
* called by drivers.
**/
s32 e1000_led_on(struct e1000_hw *hw)
{
if (hw->mac.ops.led_on)
return hw->mac.ops.led_on(hw);
return E1000_SUCCESS;
}
/**
* e1000_led_off - Turn off SW controllable LED
* @hw: pointer to the HW structure
*
* Turns the SW defined LED off. This is a function pointer entry point
* called by drivers.
**/
s32 e1000_led_off(struct e1000_hw *hw)
{
if (hw->mac.ops.led_off)
return hw->mac.ops.led_off(hw);
return E1000_SUCCESS;
}
/**
* e1000_reset_adaptive - Reset adaptive IFS
* @hw: pointer to the HW structure
*
* Resets the adaptive IFS. Currently no func pointer exists and all
* implementations are handled in the generic version of this function.
**/
void e1000_reset_adaptive(struct e1000_hw *hw)
{
e1000_reset_adaptive_generic(hw);
}
/**
* e1000_update_adaptive - Update adaptive IFS
* @hw: pointer to the HW structure
*
* Updates adapter IFS. Currently no func pointer exists and all
* implementations are handled in the generic version of this function.
**/
void e1000_update_adaptive(struct e1000_hw *hw)
{
e1000_update_adaptive_generic(hw);
}
/**
* e1000_disable_pcie_master - Disable PCI-Express master access
* @hw: pointer to the HW structure
*
* Disables PCI-Express master access and verifies there are no pending
* requests. Currently no func pointer exists and all implementations are
* handled in the generic version of this function.
**/
s32 e1000_disable_pcie_master(struct e1000_hw *hw)
{
return e1000_disable_pcie_master_generic(hw);
}
/**
* e1000_config_collision_dist - Configure collision distance
* @hw: pointer to the HW structure
*
* Configures the collision distance to the default value and is used
* during link setup.
**/
void e1000_config_collision_dist(struct e1000_hw *hw)
{
if (hw->mac.ops.config_collision_dist)
hw->mac.ops.config_collision_dist(hw);
}
/**
* e1000_rar_set - Sets a receive address register
* @hw: pointer to the HW structure
* @addr: address to set the RAR to
* @index: the RAR to set
*
* Sets a Receive Address Register (RAR) to the specified address.
**/
int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
{
if (hw->mac.ops.rar_set)
return hw->mac.ops.rar_set(hw, addr, index);
return E1000_SUCCESS;
}
/**
* e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
* @hw: pointer to the HW structure
*
* Ensures that the MDI/MDIX SW state is valid.
**/
s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
{
if (hw->mac.ops.validate_mdi_setting)
return hw->mac.ops.validate_mdi_setting(hw);
return E1000_SUCCESS;
}
/**
* e1000_hash_mc_addr - Determines address location in multicast table
* @hw: pointer to the HW structure
* @mc_addr: Multicast address to hash.
*
* This hashes an address to determine its location in the multicast
* table. Currently no func pointer exists and all implementations
* are handled in the generic version of this function.
**/
u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
{
return e1000_hash_mc_addr_generic(hw, mc_addr);
}
/**
* e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
* @hw: pointer to the HW structure
*
* Enables packet filtering on transmit packets if manageability is enabled
* and host interface is enabled.
* Currently no func pointer exists and all implementations are handled in the
* generic version of this function.
**/
bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
{
return e1000_enable_tx_pkt_filtering_generic(hw);
}
/**
* e1000_mng_host_if_write - Writes to the manageability host interface
* @hw: pointer to the HW structure
* @buffer: pointer to the host interface buffer
* @length: size of the buffer
* @offset: location in the buffer to write to
* @sum: sum of the data (not checksum)
*
* This function writes the buffer content at the offset given on the host if.
* It also does alignment considerations to do the writes in most efficient
* way. Also fills up the sum of the buffer in *buffer parameter.
**/
s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
u16 offset, u8 *sum)
{
return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
}
/**
* e1000_mng_write_cmd_header - Writes manageability command header
* @hw: pointer to the HW structure
* @hdr: pointer to the host interface command header
*
* Writes the command header after does the checksum calculation.
**/
s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
struct e1000_host_mng_command_header *hdr)
{
return e1000_mng_write_cmd_header_generic(hw, hdr);
}
/**
* e1000_mng_enable_host_if - Checks host interface is enabled
* @hw: pointer to the HW structure
*
* Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
*
* This function checks whether the HOST IF is enabled for command operation
* and also checks whether the previous command is completed. It busy waits
* in case of previous command is not completed.
**/
s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
{
return e1000_mng_enable_host_if_generic(hw);
}
/**
* e1000_check_reset_block - Verifies PHY can be reset
* @hw: pointer to the HW structure
*
* Checks if the PHY is in a state that can be reset or if manageability
* has it tied up. This is a function pointer entry point called by drivers.
**/
s32 e1000_check_reset_block(struct e1000_hw *hw)
{
if (hw->phy.ops.check_reset_block)
return hw->phy.ops.check_reset_block(hw);
return E1000_SUCCESS;
}
/**
* e1000_read_phy_reg - Reads PHY register
* @hw: pointer to the HW structure
* @offset: the register to read
* @data: the buffer to store the 16-bit read.
*
* Reads the PHY register and returns the value in data.
* This is a function pointer entry point called by drivers.
**/
s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
{
if (hw->phy.ops.read_reg)
return hw->phy.ops.read_reg(hw, offset, data);
return E1000_SUCCESS;
}
/**
* e1000_write_phy_reg - Writes PHY register
* @hw: pointer to the HW structure
* @offset: the register to write
* @data: the value to write.
*
* Writes the PHY register at offset with the value in data.
* This is a function pointer entry point called by drivers.
**/
s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
{
if (hw->phy.ops.write_reg)
return hw->phy.ops.write_reg(hw, offset, data);
return E1000_SUCCESS;
}
/**
* e1000_release_phy - Generic release PHY
* @hw: pointer to the HW structure
*
* Return if silicon family does not require a semaphore when accessing the
* PHY.
**/
void e1000_release_phy(struct e1000_hw *hw)
{
if (hw->phy.ops.release)
hw->phy.ops.release(hw);
}
/**
* e1000_acquire_phy - Generic acquire PHY
* @hw: pointer to the HW structure
*
* Return success if silicon family does not require a semaphore when
* accessing the PHY.
**/
s32 e1000_acquire_phy(struct e1000_hw *hw)
{
if (hw->phy.ops.acquire)
return hw->phy.ops.acquire(hw);
return E1000_SUCCESS;
}
/**
* e1000_cfg_on_link_up - Configure PHY upon link up
* @hw: pointer to the HW structure
**/
s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
{
if (hw->phy.ops.cfg_on_link_up)
return hw->phy.ops.cfg_on_link_up(hw);
return E1000_SUCCESS;
}
/**
* e1000_read_kmrn_reg - Reads register using Kumeran interface
* @hw: pointer to the HW structure
* @offset: the register to read
* @data: the location to store the 16-bit value read.
*
* Reads a register out of the Kumeran interface. Currently no func pointer
* exists and all implementations are handled in the generic version of
* this function.
**/
s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
{
return e1000_read_kmrn_reg_generic(hw, offset, data);
}
/**
* e1000_write_kmrn_reg - Writes register using Kumeran interface
* @hw: pointer to the HW structure
* @offset: the register to write
* @data: the value to write.
*
* Writes a register to the Kumeran interface. Currently no func pointer
* exists and all implementations are handled in the generic version of
* this function.
**/
s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
{
return e1000_write_kmrn_reg_generic(hw, offset, data);
}
/**
* e1000_get_cable_length - Retrieves cable length estimation
* @hw: pointer to the HW structure
*
* This function estimates the cable length and stores them in
* hw->phy.min_length and hw->phy.max_length. This is a function pointer
* entry point called by drivers.
**/
s32 e1000_get_cable_length(struct e1000_hw *hw)
{
if (hw->phy.ops.get_cable_length)
return hw->phy.ops.get_cable_length(hw);
return E1000_SUCCESS;
}
/**
* e1000_get_phy_info - Retrieves PHY information from registers
* @hw: pointer to the HW structure
*
* This function gets some information from various PHY registers and
* populates hw->phy values with it. This is a function pointer entry
* point called by drivers.
**/
s32 e1000_get_phy_info(struct e1000_hw *hw)
{
if (hw->phy.ops.get_info)
return hw->phy.ops.get_info(hw);
return E1000_SUCCESS;
}
/**
* e1000_phy_hw_reset - Hard PHY reset
* @hw: pointer to the HW structure
*
* Performs a hard PHY reset. This is a function pointer entry point called
* by drivers.
**/
s32 e1000_phy_hw_reset(struct e1000_hw *hw)
{
if (hw->phy.ops.reset)
return hw->phy.ops.reset(hw);
return E1000_SUCCESS;
}
/**
* e1000_phy_commit - Soft PHY reset
* @hw: pointer to the HW structure
*
* Performs a soft PHY reset on those that apply. This is a function pointer
* entry point called by drivers.
**/
s32 e1000_phy_commit(struct e1000_hw *hw)
{
if (hw->phy.ops.commit)
return hw->phy.ops.commit(hw);
return E1000_SUCCESS;
}
/**
* e1000_set_d0_lplu_state - Sets low power link up state for D0
* @hw: pointer to the HW structure
* @active: boolean used to enable/disable lplu
*
* Success returns 0, Failure returns 1
*
* The low power link up (lplu) state is set to the power management level D0
* and SmartSpeed is disabled when active is true, else clear lplu for D0
* and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
* is used during Dx states where the power conservation is most important.
* During driver activity, SmartSpeed should be enabled so performance is
* maintained. This is a function pointer entry point called by drivers.
**/
s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
{
if (hw->phy.ops.set_d0_lplu_state)
return hw->phy.ops.set_d0_lplu_state(hw, active);
return E1000_SUCCESS;
}
/**
* e1000_set_d3_lplu_state - Sets low power link up state for D3
* @hw: pointer to the HW structure
* @active: boolean used to enable/disable lplu
*
* Success returns 0, Failure returns 1
*
* The low power link up (lplu) state is set to the power management level D3
* and SmartSpeed is disabled when active is true, else clear lplu for D3
* and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
* is used during Dx states where the power conservation is most important.
* During driver activity, SmartSpeed should be enabled so performance is
* maintained. This is a function pointer entry point called by drivers.
**/
s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
{
if (hw->phy.ops.set_d3_lplu_state)
return hw->phy.ops.set_d3_lplu_state(hw, active);
return E1000_SUCCESS;
}
/**
* e1000_read_mac_addr - Reads MAC address
* @hw: pointer to the HW structure
*
* Reads the MAC address out of the adapter and stores it in the HW structure.
* Currently no func pointer exists and all implementations are handled in the
* generic version of this function.
**/
s32 e1000_read_mac_addr(struct e1000_hw *hw)
{
if (hw->mac.ops.read_mac_addr)
return hw->mac.ops.read_mac_addr(hw);
return e1000_read_mac_addr_generic(hw);
}
/**
* e1000_read_pba_string - Read device part number string
* @hw: pointer to the HW structure
* @pba_num: pointer to device part number
* @pba_num_size: size of part number buffer
*
* Reads the product board assembly (PBA) number from the EEPROM and stores
* the value in pba_num.
* Currently no func pointer exists and all implementations are handled in the
* generic version of this function.
**/
s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
{
return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
}
/**
* e1000_read_pba_length - Read device part number string length
* @hw: pointer to the HW structure
* @pba_num_size: size of part number buffer
*
* Reads the product board assembly (PBA) number length from the EEPROM and
* stores the value in pba_num.
* Currently no func pointer exists and all implementations are handled in the
* generic version of this function.
**/
s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
{
return e1000_read_pba_length_generic(hw, pba_num_size);
}
/**
* e1000_read_pba_num - Read device part number
* @hw: pointer to the HW structure
* @pba_num: pointer to device part number
*
* Reads the product board assembly (PBA) number from the EEPROM and stores
* the value in pba_num.
* Currently no func pointer exists and all implementations are handled in the
* generic version of this function.
**/
s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
{
return e1000_read_pba_num_generic(hw, pba_num);
}
/**
* e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
* @hw: pointer to the HW structure
*
* Validates the NVM checksum is correct. This is a function pointer entry
* point called by drivers.
**/
s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
{
if (hw->nvm.ops.validate)
return hw->nvm.ops.validate(hw);
return -E1000_ERR_CONFIG;
}
/**
* e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
* @hw: pointer to the HW structure
*
* Updates the NVM checksum. Currently no func pointer exists and all
* implementations are handled in the generic version of this function.
**/
s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
{
if (hw->nvm.ops.update)
return hw->nvm.ops.update(hw);
return -E1000_ERR_CONFIG;
}
/**
* e1000_reload_nvm - Reloads EEPROM
* @hw: pointer to the HW structure
*
* Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
* extended control register.
**/
void e1000_reload_nvm(struct e1000_hw *hw)
{
if (hw->nvm.ops.reload)
hw->nvm.ops.reload(hw);
}
/**
* e1000_read_nvm - Reads NVM (EEPROM)
* @hw: pointer to the HW structure
* @offset: the word offset to read
* @words: number of 16-bit words to read
* @data: pointer to the properly sized buffer for the data.
*
* Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
* pointer entry point called by drivers.
**/
s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
{
if (hw->nvm.ops.read)
return hw->nvm.ops.read(hw, offset, words, data);
return -E1000_ERR_CONFIG;
}
/**
* e1000_write_nvm - Writes to NVM (EEPROM)
* @hw: pointer to the HW structure
* @offset: the word offset to read
* @words: number of 16-bit words to write
* @data: pointer to the properly sized buffer for the data.
*
* Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
* pointer entry point called by drivers.
**/
s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
{
if (hw->nvm.ops.write)
return hw->nvm.ops.write(hw, offset, words, data);
return E1000_SUCCESS;
}
/**
* e1000_write_8bit_ctrl_reg - Writes 8bit Control register
* @hw: pointer to the HW structure
* @reg: 32bit register offset
* @offset: the register to write
* @data: the value to write.
*
* Writes the PHY register at offset with the value in data.
* This is a function pointer entry point called by drivers.
**/
s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
u8 data)
{
return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
}
/**
* e1000_power_up_phy - Restores link in case of PHY power down
* @hw: pointer to the HW structure
*
* The phy may be powered down to save power, to turn off link when the
* driver is unloaded, or wake on lan is not enabled (among others).
**/
void e1000_power_up_phy(struct e1000_hw *hw)
{
if (hw->phy.ops.power_up)
hw->phy.ops.power_up(hw);
e1000_setup_link(hw);
}
/**
* e1000_power_down_phy - Power down PHY
* @hw: pointer to the HW structure
*
* The phy may be powered down to save power, to turn off link when the
* driver is unloaded, or wake on lan is not enabled (among others).
**/
void e1000_power_down_phy(struct e1000_hw *hw)
{
if (hw->phy.ops.power_down)
hw->phy.ops.power_down(hw);
}
/**
* e1000_power_up_fiber_serdes_link - Power up serdes link
* @hw: pointer to the HW structure
*
* Power on the optics and PCS.
**/
void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
{
if (hw->mac.ops.power_up_serdes)
hw->mac.ops.power_up_serdes(hw);
}
/**
* e1000_shutdown_fiber_serdes_link - Remove link during power down
* @hw: pointer to the HW structure
*
* Shutdown the optics and PCS on driver unload.
**/
void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
{
if (hw->mac.ops.shutdown_serdes)
hw->mac.ops.shutdown_serdes(hw);
}