Yunjian Wang f3013acfc1 net/netvsc: fix Tx queue leak in error path
In hn_dev_tx_queue_setup() allocated memory for txq, we don't free it
when error happens and it will lead to memory leak.

We can check for tx_free_thresh at the beginning of the function to
fix it, before calling txq = rte_zmalloc_socket().

Fixes: cc0251813277 ("net/netvsc: split send buffers from Tx descriptors")
Cc: stable@dpdk.org

Signed-off-by: Yunjian Wang <wangyunjian@huawei.com>
Acked-by: Long Li <longli@microsoft.com>
2020-10-16 19:18:47 +02:00

1647 lines
40 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2016-2018 Microsoft Corporation
* Copyright(c) 2013-2016 Brocade Communications Systems, Inc.
* All rights reserved.
*/
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include <unistd.h>
#include <strings.h>
#include <malloc.h>
#include <rte_ethdev.h>
#include <rte_memcpy.h>
#include <rte_string_fns.h>
#include <rte_memzone.h>
#include <rte_malloc.h>
#include <rte_atomic.h>
#include <rte_bitmap.h>
#include <rte_branch_prediction.h>
#include <rte_ether.h>
#include <rte_common.h>
#include <rte_errno.h>
#include <rte_memory.h>
#include <rte_eal.h>
#include <rte_dev.h>
#include <rte_net.h>
#include <rte_bus_vmbus.h>
#include <rte_spinlock.h>
#include "hn_logs.h"
#include "hn_var.h"
#include "hn_rndis.h"
#include "hn_nvs.h"
#include "ndis.h"
#define HN_NVS_SEND_MSG_SIZE \
(sizeof(struct vmbus_chanpkt_hdr) + sizeof(struct hn_nvs_rndis))
#define HN_TXD_CACHE_SIZE 32 /* per cpu tx_descriptor pool cache */
#define HN_TXCOPY_THRESHOLD 512
#define HN_RXCOPY_THRESHOLD 256
#define HN_RXQ_EVENT_DEFAULT 2048
struct hn_rxinfo {
uint32_t vlan_info;
uint32_t csum_info;
uint32_t hash_info;
uint32_t hash_value;
};
#define HN_RXINFO_VLAN 0x0001
#define HN_RXINFO_CSUM 0x0002
#define HN_RXINFO_HASHINF 0x0004
#define HN_RXINFO_HASHVAL 0x0008
#define HN_RXINFO_ALL \
(HN_RXINFO_VLAN | \
HN_RXINFO_CSUM | \
HN_RXINFO_HASHINF | \
HN_RXINFO_HASHVAL)
#define HN_NDIS_VLAN_INFO_INVALID 0xffffffff
#define HN_NDIS_RXCSUM_INFO_INVALID 0
#define HN_NDIS_HASH_INFO_INVALID 0
/*
* Per-transmit book keeping.
* A slot in transmit ring (chim_index) is reserved for each transmit.
*
* There are two types of transmit:
* - buffered transmit where chimney buffer is used and RNDIS header
* is in the buffer. mbuf == NULL for this case.
*
* - direct transmit where RNDIS header is in the in rndis_pkt
* mbuf is freed after transmit.
*
* Descriptors come from per-port pool which is used
* to limit number of outstanding requests per device.
*/
struct hn_txdesc {
struct rte_mbuf *m;
uint16_t queue_id;
uint32_t chim_index;
uint32_t chim_size;
uint32_t data_size;
uint32_t packets;
struct rndis_packet_msg *rndis_pkt;
};
#define HN_RNDIS_PKT_LEN \
(sizeof(struct rndis_packet_msg) + \
RNDIS_PKTINFO_SIZE(NDIS_HASH_VALUE_SIZE) + \
RNDIS_PKTINFO_SIZE(NDIS_VLAN_INFO_SIZE) + \
RNDIS_PKTINFO_SIZE(NDIS_LSO2_INFO_SIZE) + \
RNDIS_PKTINFO_SIZE(NDIS_TXCSUM_INFO_SIZE))
#define HN_RNDIS_PKT_ALIGNED RTE_ALIGN(HN_RNDIS_PKT_LEN, RTE_CACHE_LINE_SIZE)
/* Minimum space required for a packet */
#define HN_PKTSIZE_MIN(align) \
RTE_ALIGN(RTE_ETHER_MIN_LEN + HN_RNDIS_PKT_LEN, align)
#define DEFAULT_TX_FREE_THRESH 32
static void
hn_update_packet_stats(struct hn_stats *stats, const struct rte_mbuf *m)
{
uint32_t s = m->pkt_len;
const struct rte_ether_addr *ea;
if (s == 64) {
stats->size_bins[1]++;
} else if (s > 64 && s < 1024) {
uint32_t bin;
/* count zeros, and offset into correct bin */
bin = (sizeof(s) * 8) - __builtin_clz(s) - 5;
stats->size_bins[bin]++;
} else {
if (s < 64)
stats->size_bins[0]++;
else if (s < 1519)
stats->size_bins[6]++;
else
stats->size_bins[7]++;
}
ea = rte_pktmbuf_mtod(m, const struct rte_ether_addr *);
if (rte_is_multicast_ether_addr(ea)) {
if (rte_is_broadcast_ether_addr(ea))
stats->broadcast++;
else
stats->multicast++;
}
}
static inline unsigned int hn_rndis_pktlen(const struct rndis_packet_msg *pkt)
{
return pkt->pktinfooffset + pkt->pktinfolen;
}
static inline uint32_t
hn_rndis_pktmsg_offset(uint32_t ofs)
{
return ofs - offsetof(struct rndis_packet_msg, dataoffset);
}
static void hn_txd_init(struct rte_mempool *mp __rte_unused,
void *opaque, void *obj, unsigned int idx)
{
struct hn_tx_queue *txq = opaque;
struct hn_txdesc *txd = obj;
memset(txd, 0, sizeof(*txd));
txd->queue_id = txq->queue_id;
txd->chim_index = NVS_CHIM_IDX_INVALID;
txd->rndis_pkt = (struct rndis_packet_msg *)((char *)txq->tx_rndis
+ idx * HN_RNDIS_PKT_ALIGNED);
}
int
hn_chim_init(struct rte_eth_dev *dev)
{
struct hn_data *hv = dev->data->dev_private;
uint32_t i, chim_bmp_size;
rte_spinlock_init(&hv->chim_lock);
chim_bmp_size = rte_bitmap_get_memory_footprint(hv->chim_cnt);
hv->chim_bmem = rte_zmalloc("hn_chim_bitmap", chim_bmp_size,
RTE_CACHE_LINE_SIZE);
if (hv->chim_bmem == NULL) {
PMD_INIT_LOG(ERR, "failed to allocate bitmap size %u",
chim_bmp_size);
return -1;
}
hv->chim_bmap = rte_bitmap_init(hv->chim_cnt,
hv->chim_bmem, chim_bmp_size);
if (hv->chim_bmap == NULL) {
PMD_INIT_LOG(ERR, "failed to init chim bitmap");
return -1;
}
for (i = 0; i < hv->chim_cnt; i++)
rte_bitmap_set(hv->chim_bmap, i);
return 0;
}
void
hn_chim_uninit(struct rte_eth_dev *dev)
{
struct hn_data *hv = dev->data->dev_private;
rte_bitmap_free(hv->chim_bmap);
rte_free(hv->chim_bmem);
hv->chim_bmem = NULL;
}
static uint32_t hn_chim_alloc(struct hn_data *hv)
{
uint32_t index = NVS_CHIM_IDX_INVALID;
uint64_t slab = 0;
rte_spinlock_lock(&hv->chim_lock);
if (rte_bitmap_scan(hv->chim_bmap, &index, &slab)) {
index += rte_bsf64(slab);
rte_bitmap_clear(hv->chim_bmap, index);
}
rte_spinlock_unlock(&hv->chim_lock);
return index;
}
static void hn_chim_free(struct hn_data *hv, uint32_t chim_idx)
{
if (chim_idx >= hv->chim_cnt) {
PMD_DRV_LOG(ERR, "Invalid chimney index %u", chim_idx);
} else {
rte_spinlock_lock(&hv->chim_lock);
rte_bitmap_set(hv->chim_bmap, chim_idx);
rte_spinlock_unlock(&hv->chim_lock);
}
}
static void hn_reset_txagg(struct hn_tx_queue *txq)
{
txq->agg_szleft = txq->agg_szmax;
txq->agg_pktleft = txq->agg_pktmax;
txq->agg_txd = NULL;
txq->agg_prevpkt = NULL;
}
int
hn_dev_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx, uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
struct hn_data *hv = dev->data->dev_private;
struct hn_tx_queue *txq;
char name[RTE_MEMPOOL_NAMESIZE];
uint32_t tx_free_thresh;
int err = -ENOMEM;
PMD_INIT_FUNC_TRACE();
tx_free_thresh = tx_conf->tx_free_thresh;
if (tx_free_thresh == 0)
tx_free_thresh = RTE_MIN(nb_desc / 4,
DEFAULT_TX_FREE_THRESH);
if (tx_free_thresh + 3 >= nb_desc) {
PMD_INIT_LOG(ERR,
"tx_free_thresh must be less than the number of TX entries minus 3(%u)."
" (tx_free_thresh=%u port=%u queue=%u)\n",
nb_desc - 3,
tx_free_thresh, dev->data->port_id, queue_idx);
return -EINVAL;
}
txq = rte_zmalloc_socket("HN_TXQ", sizeof(*txq), RTE_CACHE_LINE_SIZE,
socket_id);
if (!txq)
return -ENOMEM;
txq->hv = hv;
txq->chan = hv->channels[queue_idx];
txq->port_id = dev->data->port_id;
txq->queue_id = queue_idx;
txq->free_thresh = tx_free_thresh;
snprintf(name, sizeof(name),
"hn_txd_%u_%u", dev->data->port_id, queue_idx);
PMD_INIT_LOG(DEBUG, "TX descriptor pool %s n=%u size=%zu",
name, nb_desc, sizeof(struct hn_txdesc));
txq->tx_rndis = rte_calloc("hn_txq_rndis", nb_desc,
HN_RNDIS_PKT_ALIGNED, RTE_CACHE_LINE_SIZE);
if (txq->tx_rndis == NULL)
goto error;
txq->txdesc_pool = rte_mempool_create(name, nb_desc,
sizeof(struct hn_txdesc),
0, 0, NULL, NULL,
hn_txd_init, txq,
dev->device->numa_node, 0);
if (txq->txdesc_pool == NULL) {
PMD_DRV_LOG(ERR,
"mempool %s create failed: %d", name, rte_errno);
goto error;
}
txq->agg_szmax = RTE_MIN(hv->chim_szmax, hv->rndis_agg_size);
txq->agg_pktmax = hv->rndis_agg_pkts;
txq->agg_align = hv->rndis_agg_align;
hn_reset_txagg(txq);
err = hn_vf_tx_queue_setup(dev, queue_idx, nb_desc,
socket_id, tx_conf);
if (err == 0) {
dev->data->tx_queues[queue_idx] = txq;
return 0;
}
error:
if (txq->txdesc_pool)
rte_mempool_free(txq->txdesc_pool);
rte_free(txq->tx_rndis);
rte_free(txq);
return err;
}
void
hn_dev_tx_queue_info(struct rte_eth_dev *dev, uint16_t queue_id,
struct rte_eth_txq_info *qinfo)
{
struct hn_tx_queue *txq = dev->data->tx_queues[queue_id];
qinfo->nb_desc = txq->txdesc_pool->size;
qinfo->conf.offloads = dev->data->dev_conf.txmode.offloads;
}
static struct hn_txdesc *hn_txd_get(struct hn_tx_queue *txq)
{
struct hn_txdesc *txd;
if (rte_mempool_get(txq->txdesc_pool, (void **)&txd)) {
++txq->stats.ring_full;
PMD_TX_LOG(DEBUG, "tx pool exhausted!");
return NULL;
}
txd->m = NULL;
txd->packets = 0;
txd->data_size = 0;
txd->chim_size = 0;
return txd;
}
static void hn_txd_put(struct hn_tx_queue *txq, struct hn_txdesc *txd)
{
rte_mempool_put(txq->txdesc_pool, txd);
}
void
hn_dev_tx_queue_release(void *arg)
{
struct hn_tx_queue *txq = arg;
PMD_INIT_FUNC_TRACE();
if (!txq)
return;
if (txq->txdesc_pool)
rte_mempool_free(txq->txdesc_pool);
rte_free(txq->tx_rndis);
rte_free(txq);
}
/*
* Check the status of a Tx descriptor in the queue.
*
* returns:
* - -EINVAL - offset outside of tx_descriptor pool.
* - RTE_ETH_TX_DESC_FULL - descriptor is not acknowledged by host.
* - RTE_ETH_TX_DESC_DONE - descriptor is available.
*/
int hn_dev_tx_descriptor_status(void *arg, uint16_t offset)
{
const struct hn_tx_queue *txq = arg;
hn_process_events(txq->hv, txq->queue_id, 0);
if (offset >= rte_mempool_avail_count(txq->txdesc_pool))
return -EINVAL;
if (offset < rte_mempool_in_use_count(txq->txdesc_pool))
return RTE_ETH_TX_DESC_FULL;
else
return RTE_ETH_TX_DESC_DONE;
}
static void
hn_nvs_send_completed(struct rte_eth_dev *dev, uint16_t queue_id,
unsigned long xactid, const struct hn_nvs_rndis_ack *ack)
{
struct hn_data *hv = dev->data->dev_private;
struct hn_txdesc *txd = (struct hn_txdesc *)xactid;
struct hn_tx_queue *txq;
/* Control packets are sent with xacid == 0 */
if (!txd)
return;
txq = dev->data->tx_queues[queue_id];
if (likely(ack->status == NVS_STATUS_OK)) {
PMD_TX_LOG(DEBUG, "port %u:%u complete tx %u packets %u bytes %u",
txq->port_id, txq->queue_id, txd->chim_index,
txd->packets, txd->data_size);
txq->stats.bytes += txd->data_size;
txq->stats.packets += txd->packets;
} else {
PMD_DRV_LOG(NOTICE, "port %u:%u complete tx %u failed status %u",
txq->port_id, txq->queue_id, txd->chim_index, ack->status);
++txq->stats.errors;
}
if (txd->chim_index != NVS_CHIM_IDX_INVALID) {
hn_chim_free(hv, txd->chim_index);
txd->chim_index = NVS_CHIM_IDX_INVALID;
}
rte_pktmbuf_free(txd->m);
hn_txd_put(txq, txd);
}
/* Handle transmit completion events */
static void
hn_nvs_handle_comp(struct rte_eth_dev *dev, uint16_t queue_id,
const struct vmbus_chanpkt_hdr *pkt,
const void *data)
{
const struct hn_nvs_hdr *hdr = data;
switch (hdr->type) {
case NVS_TYPE_RNDIS_ACK:
hn_nvs_send_completed(dev, queue_id, pkt->xactid, data);
break;
default:
PMD_DRV_LOG(NOTICE, "unexpected send completion type %u",
hdr->type);
}
}
/* Parse per-packet info (meta data) */
static int
hn_rndis_rxinfo(const void *info_data, unsigned int info_dlen,
struct hn_rxinfo *info)
{
const struct rndis_pktinfo *pi = info_data;
uint32_t mask = 0;
while (info_dlen != 0) {
const void *data;
uint32_t dlen;
if (unlikely(info_dlen < sizeof(*pi)))
return -EINVAL;
if (unlikely(info_dlen < pi->size))
return -EINVAL;
info_dlen -= pi->size;
if (unlikely(pi->size & RNDIS_PKTINFO_SIZE_ALIGNMASK))
return -EINVAL;
if (unlikely(pi->size < pi->offset))
return -EINVAL;
dlen = pi->size - pi->offset;
data = pi->data;
switch (pi->type) {
case NDIS_PKTINFO_TYPE_VLAN:
if (unlikely(dlen < NDIS_VLAN_INFO_SIZE))
return -EINVAL;
info->vlan_info = *((const uint32_t *)data);
mask |= HN_RXINFO_VLAN;
break;
case NDIS_PKTINFO_TYPE_CSUM:
if (unlikely(dlen < NDIS_RXCSUM_INFO_SIZE))
return -EINVAL;
info->csum_info = *((const uint32_t *)data);
mask |= HN_RXINFO_CSUM;
break;
case NDIS_PKTINFO_TYPE_HASHVAL:
if (unlikely(dlen < NDIS_HASH_VALUE_SIZE))
return -EINVAL;
info->hash_value = *((const uint32_t *)data);
mask |= HN_RXINFO_HASHVAL;
break;
case NDIS_PKTINFO_TYPE_HASHINF:
if (unlikely(dlen < NDIS_HASH_INFO_SIZE))
return -EINVAL;
info->hash_info = *((const uint32_t *)data);
mask |= HN_RXINFO_HASHINF;
break;
default:
goto next;
}
if (mask == HN_RXINFO_ALL)
break; /* All found; done */
next:
pi = (const struct rndis_pktinfo *)
((const uint8_t *)pi + pi->size);
}
/*
* Final fixup.
* - If there is no hash value, invalidate the hash info.
*/
if (!(mask & HN_RXINFO_HASHVAL))
info->hash_info = HN_NDIS_HASH_INFO_INVALID;
return 0;
}
static void hn_rx_buf_free_cb(void *buf __rte_unused, void *opaque)
{
struct hn_rx_bufinfo *rxb = opaque;
struct hn_rx_queue *rxq = rxb->rxq;
rte_atomic32_dec(&rxq->rxbuf_outstanding);
hn_nvs_ack_rxbuf(rxb->chan, rxb->xactid);
}
static struct hn_rx_bufinfo *hn_rx_buf_init(struct hn_rx_queue *rxq,
const struct vmbus_chanpkt_rxbuf *pkt)
{
struct hn_rx_bufinfo *rxb;
rxb = rxq->rxbuf_info + pkt->hdr.xactid;
rxb->chan = rxq->chan;
rxb->xactid = pkt->hdr.xactid;
rxb->rxq = rxq;
rxb->shinfo.free_cb = hn_rx_buf_free_cb;
rxb->shinfo.fcb_opaque = rxb;
rte_mbuf_ext_refcnt_set(&rxb->shinfo, 1);
return rxb;
}
static void hn_rxpkt(struct hn_rx_queue *rxq, struct hn_rx_bufinfo *rxb,
uint8_t *data, unsigned int headroom, unsigned int dlen,
const struct hn_rxinfo *info)
{
struct hn_data *hv = rxq->hv;
struct rte_mbuf *m;
bool use_extbuf = false;
m = rte_pktmbuf_alloc(rxq->mb_pool);
if (unlikely(!m)) {
struct rte_eth_dev *dev =
&rte_eth_devices[rxq->port_id];
dev->data->rx_mbuf_alloc_failed++;
return;
}
/*
* For large packets, avoid copy if possible but need to keep
* some space available in receive area for later packets.
*/
if (dlen >= HN_RXCOPY_THRESHOLD &&
(uint32_t)rte_atomic32_read(&rxq->rxbuf_outstanding) <
hv->rxbuf_section_cnt / 2) {
struct rte_mbuf_ext_shared_info *shinfo;
const void *rxbuf;
rte_iova_t iova;
/*
* Build an external mbuf that points to recveive area.
* Use refcount to handle multiple packets in same
* receive buffer section.
*/
rxbuf = hv->rxbuf_res->addr;
iova = rte_mem_virt2iova(rxbuf) + RTE_PTR_DIFF(data, rxbuf);
shinfo = &rxb->shinfo;
/* shinfo is already set to 1 by the caller */
if (rte_mbuf_ext_refcnt_update(shinfo, 1) == 2)
rte_atomic32_inc(&rxq->rxbuf_outstanding);
rte_pktmbuf_attach_extbuf(m, data, iova,
dlen + headroom, shinfo);
m->data_off = headroom;
use_extbuf = true;
} else {
/* Mbuf's in pool must be large enough to hold small packets */
if (unlikely(rte_pktmbuf_tailroom(m) < dlen)) {
rte_pktmbuf_free_seg(m);
++rxq->stats.errors;
return;
}
rte_memcpy(rte_pktmbuf_mtod(m, void *),
data + headroom, dlen);
}
m->port = rxq->port_id;
m->pkt_len = dlen;
m->data_len = dlen;
m->packet_type = rte_net_get_ptype(m, NULL,
RTE_PTYPE_L2_MASK |
RTE_PTYPE_L3_MASK |
RTE_PTYPE_L4_MASK);
if (info->vlan_info != HN_NDIS_VLAN_INFO_INVALID) {
m->vlan_tci = info->vlan_info;
m->ol_flags |= PKT_RX_VLAN_STRIPPED | PKT_RX_VLAN;
/* NDIS always strips tag, put it back if necessary */
if (!hv->vlan_strip && rte_vlan_insert(&m)) {
PMD_DRV_LOG(DEBUG, "vlan insert failed");
++rxq->stats.errors;
if (use_extbuf)
rte_pktmbuf_detach_extbuf(m);
rte_pktmbuf_free(m);
return;
}
}
if (info->csum_info != HN_NDIS_RXCSUM_INFO_INVALID) {
if (info->csum_info & NDIS_RXCSUM_INFO_IPCS_OK)
m->ol_flags |= PKT_RX_IP_CKSUM_GOOD;
if (info->csum_info & (NDIS_RXCSUM_INFO_UDPCS_OK
| NDIS_RXCSUM_INFO_TCPCS_OK))
m->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
else if (info->csum_info & (NDIS_RXCSUM_INFO_TCPCS_FAILED
| NDIS_RXCSUM_INFO_UDPCS_FAILED))
m->ol_flags |= PKT_RX_L4_CKSUM_BAD;
}
if (info->hash_info != HN_NDIS_HASH_INFO_INVALID) {
m->ol_flags |= PKT_RX_RSS_HASH;
m->hash.rss = info->hash_value;
}
PMD_RX_LOG(DEBUG,
"port %u:%u RX id %"PRIu64" size %u type %#x ol_flags %#"PRIx64,
rxq->port_id, rxq->queue_id, rxb->xactid,
m->pkt_len, m->packet_type, m->ol_flags);
++rxq->stats.packets;
rxq->stats.bytes += m->pkt_len;
hn_update_packet_stats(&rxq->stats, m);
if (unlikely(rte_ring_sp_enqueue(rxq->rx_ring, m) != 0)) {
++rxq->stats.ring_full;
PMD_RX_LOG(DEBUG, "rx ring full");
if (use_extbuf)
rte_pktmbuf_detach_extbuf(m);
rte_pktmbuf_free(m);
}
}
static void hn_rndis_rx_data(struct hn_rx_queue *rxq,
struct hn_rx_bufinfo *rxb,
void *data, uint32_t dlen)
{
unsigned int data_off, data_len;
unsigned int pktinfo_off, pktinfo_len;
const struct rndis_packet_msg *pkt = data;
struct hn_rxinfo info = {
.vlan_info = HN_NDIS_VLAN_INFO_INVALID,
.csum_info = HN_NDIS_RXCSUM_INFO_INVALID,
.hash_info = HN_NDIS_HASH_INFO_INVALID,
};
int err;
hn_rndis_dump(pkt);
if (unlikely(dlen < sizeof(*pkt)))
goto error;
if (unlikely(dlen < pkt->len))
goto error; /* truncated RNDIS from host */
if (unlikely(pkt->len < pkt->datalen
+ pkt->oobdatalen + pkt->pktinfolen))
goto error;
if (unlikely(pkt->datalen == 0))
goto error;
/* Check offsets. */
if (unlikely(pkt->dataoffset < RNDIS_PACKET_MSG_OFFSET_MIN))
goto error;
if (likely(pkt->pktinfooffset > 0) &&
unlikely(pkt->pktinfooffset < RNDIS_PACKET_MSG_OFFSET_MIN ||
(pkt->pktinfooffset & RNDIS_PACKET_MSG_OFFSET_ALIGNMASK)))
goto error;
data_off = RNDIS_PACKET_MSG_OFFSET_ABS(pkt->dataoffset);
data_len = pkt->datalen;
pktinfo_off = RNDIS_PACKET_MSG_OFFSET_ABS(pkt->pktinfooffset);
pktinfo_len = pkt->pktinfolen;
if (likely(pktinfo_len > 0)) {
err = hn_rndis_rxinfo((const uint8_t *)pkt + pktinfo_off,
pktinfo_len, &info);
if (err)
goto error;
}
/* overflow check */
if (data_len > data_len + data_off || data_len + data_off > pkt->len)
goto error;
if (unlikely(data_len < RTE_ETHER_HDR_LEN))
goto error;
hn_rxpkt(rxq, rxb, data, data_off, data_len, &info);
return;
error:
++rxq->stats.errors;
}
static void
hn_rndis_receive(struct rte_eth_dev *dev, struct hn_rx_queue *rxq,
struct hn_rx_bufinfo *rxb, void *buf, uint32_t len)
{
const struct rndis_msghdr *hdr = buf;
switch (hdr->type) {
case RNDIS_PACKET_MSG:
if (dev->data->dev_started)
hn_rndis_rx_data(rxq, rxb, buf, len);
break;
case RNDIS_INDICATE_STATUS_MSG:
hn_rndis_link_status(dev, buf);
break;
case RNDIS_INITIALIZE_CMPLT:
case RNDIS_QUERY_CMPLT:
case RNDIS_SET_CMPLT:
hn_rndis_receive_response(rxq->hv, buf, len);
break;
default:
PMD_DRV_LOG(NOTICE,
"unexpected RNDIS message (type %#x len %u)",
hdr->type, len);
break;
}
}
static void
hn_nvs_handle_rxbuf(struct rte_eth_dev *dev,
struct hn_data *hv,
struct hn_rx_queue *rxq,
const struct vmbus_chanpkt_hdr *hdr,
const void *buf)
{
const struct vmbus_chanpkt_rxbuf *pkt;
const struct hn_nvs_hdr *nvs_hdr = buf;
uint32_t rxbuf_sz = hv->rxbuf_res->len;
char *rxbuf = hv->rxbuf_res->addr;
unsigned int i, hlen, count;
struct hn_rx_bufinfo *rxb;
/* At minimum we need type header */
if (unlikely(vmbus_chanpkt_datalen(hdr) < sizeof(*nvs_hdr))) {
PMD_RX_LOG(ERR, "invalid receive nvs RNDIS");
return;
}
/* Make sure that this is a RNDIS message. */
if (unlikely(nvs_hdr->type != NVS_TYPE_RNDIS)) {
PMD_RX_LOG(ERR, "nvs type %u, not RNDIS",
nvs_hdr->type);
return;
}
hlen = vmbus_chanpkt_getlen(hdr->hlen);
if (unlikely(hlen < sizeof(*pkt))) {
PMD_RX_LOG(ERR, "invalid rxbuf chanpkt");
return;
}
pkt = container_of(hdr, const struct vmbus_chanpkt_rxbuf, hdr);
if (unlikely(pkt->rxbuf_id != NVS_RXBUF_SIG)) {
PMD_RX_LOG(ERR, "invalid rxbuf_id 0x%08x",
pkt->rxbuf_id);
return;
}
count = pkt->rxbuf_cnt;
if (unlikely(hlen < offsetof(struct vmbus_chanpkt_rxbuf,
rxbuf[count]))) {
PMD_RX_LOG(ERR, "invalid rxbuf_cnt %u", count);
return;
}
if (pkt->hdr.xactid > hv->rxbuf_section_cnt) {
PMD_RX_LOG(ERR, "invalid rxbuf section id %" PRIx64,
pkt->hdr.xactid);
return;
}
/* Setup receive buffer info to allow for callback */
rxb = hn_rx_buf_init(rxq, pkt);
/* Each range represents 1 RNDIS pkt that contains 1 Ethernet frame */
for (i = 0; i < count; ++i) {
unsigned int ofs, len;
ofs = pkt->rxbuf[i].ofs;
len = pkt->rxbuf[i].len;
if (unlikely(ofs + len > rxbuf_sz)) {
PMD_RX_LOG(ERR,
"%uth RNDIS msg overflow ofs %u, len %u",
i, ofs, len);
continue;
}
if (unlikely(len == 0)) {
PMD_RX_LOG(ERR, "%uth RNDIS msg len %u", i, len);
continue;
}
hn_rndis_receive(dev, rxq, rxb,
rxbuf + ofs, len);
}
/* Send ACK now if external mbuf not used */
if (rte_mbuf_ext_refcnt_update(&rxb->shinfo, -1) == 0)
hn_nvs_ack_rxbuf(rxb->chan, rxb->xactid);
}
/*
* Called when NVS inband events are received.
* Send up a two part message with port_id and the NVS message
* to the pipe to the netvsc-vf-event control thread.
*/
static void hn_nvs_handle_notify(struct rte_eth_dev *dev,
const struct vmbus_chanpkt_hdr *pkt,
const void *data)
{
const struct hn_nvs_hdr *hdr = data;
switch (hdr->type) {
case NVS_TYPE_TXTBL_NOTE:
/* Transmit indirection table has locking problems
* in DPDK and therefore not implemented
*/
PMD_DRV_LOG(DEBUG, "host notify of transmit indirection table");
break;
case NVS_TYPE_VFASSOC_NOTE:
hn_nvs_handle_vfassoc(dev, pkt, data);
break;
default:
PMD_DRV_LOG(INFO,
"got notify, nvs type %u", hdr->type);
}
}
struct hn_rx_queue *hn_rx_queue_alloc(struct hn_data *hv,
uint16_t queue_id,
unsigned int socket_id)
{
struct hn_rx_queue *rxq;
rxq = rte_zmalloc_socket("HN_RXQ", sizeof(*rxq),
RTE_CACHE_LINE_SIZE, socket_id);
if (!rxq)
return NULL;
rxq->hv = hv;
rxq->chan = hv->channels[queue_id];
rte_spinlock_init(&rxq->ring_lock);
rxq->port_id = hv->port_id;
rxq->queue_id = queue_id;
rxq->event_sz = HN_RXQ_EVENT_DEFAULT;
rxq->event_buf = rte_malloc_socket("HN_EVENTS", HN_RXQ_EVENT_DEFAULT,
RTE_CACHE_LINE_SIZE, socket_id);
if (!rxq->event_buf) {
rte_free(rxq);
return NULL;
}
/* setup rxbuf_info for non-primary queue */
if (queue_id) {
rxq->rxbuf_info = rte_calloc("HN_RXBUF_INFO",
hv->rxbuf_section_cnt,
sizeof(*rxq->rxbuf_info),
RTE_CACHE_LINE_SIZE);
if (!rxq->rxbuf_info) {
PMD_DRV_LOG(ERR,
"Could not allocate rxbuf info for queue %d\n",
queue_id);
rte_free(rxq->event_buf);
rte_free(rxq);
return NULL;
}
}
return rxq;
}
void
hn_dev_rx_queue_info(struct rte_eth_dev *dev, uint16_t queue_id,
struct rte_eth_rxq_info *qinfo)
{
struct hn_rx_queue *rxq = dev->data->rx_queues[queue_id];
qinfo->mp = rxq->mb_pool;
qinfo->nb_desc = rxq->rx_ring->size;
qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
}
int
hn_dev_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx, uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp)
{
struct hn_data *hv = dev->data->dev_private;
char ring_name[RTE_RING_NAMESIZE];
struct hn_rx_queue *rxq;
unsigned int count;
int error = -ENOMEM;
PMD_INIT_FUNC_TRACE();
if (queue_idx == 0) {
rxq = hv->primary;
} else {
rxq = hn_rx_queue_alloc(hv, queue_idx, socket_id);
if (!rxq)
return -ENOMEM;
}
rxq->mb_pool = mp;
count = rte_mempool_avail_count(mp) / dev->data->nb_rx_queues;
if (nb_desc == 0 || nb_desc > count)
nb_desc = count;
/*
* Staging ring from receive event logic to rx_pkts.
* rx_pkts assumes caller is handling multi-thread issue.
* event logic has locking.
*/
snprintf(ring_name, sizeof(ring_name),
"hn_rx_%u_%u", dev->data->port_id, queue_idx);
rxq->rx_ring = rte_ring_create(ring_name,
rte_align32pow2(nb_desc),
socket_id, 0);
if (!rxq->rx_ring)
goto fail;
error = hn_vf_rx_queue_setup(dev, queue_idx, nb_desc,
socket_id, rx_conf, mp);
if (error)
goto fail;
dev->data->rx_queues[queue_idx] = rxq;
return 0;
fail:
rte_ring_free(rxq->rx_ring);
rte_free(rxq->rxbuf_info);
rte_free(rxq->event_buf);
rte_free(rxq);
return error;
}
static void
hn_rx_queue_free(struct hn_rx_queue *rxq, bool keep_primary)
{
if (!rxq)
return;
rte_ring_free(rxq->rx_ring);
rxq->rx_ring = NULL;
rxq->mb_pool = NULL;
hn_vf_rx_queue_release(rxq->hv, rxq->queue_id);
/* Keep primary queue to allow for control operations */
if (keep_primary && rxq == rxq->hv->primary)
return;
rte_free(rxq->rxbuf_info);
rte_free(rxq->event_buf);
rte_free(rxq);
}
void
hn_dev_rx_queue_release(void *arg)
{
struct hn_rx_queue *rxq = arg;
PMD_INIT_FUNC_TRACE();
hn_rx_queue_free(rxq, true);
}
/*
* Get the number of used descriptor in a rx queue
* For this device that means how many packets are pending in the ring.
*/
uint32_t
hn_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t queue_id)
{
struct hn_rx_queue *rxq = dev->data->rx_queues[queue_id];
return rte_ring_count(rxq->rx_ring);
}
/*
* Check the status of a Rx descriptor in the queue
*
* returns:
* - -EINVAL - offset outside of ring
* - RTE_ETH_RX_DESC_AVAIL - no data available yet
* - RTE_ETH_RX_DESC_DONE - data is waiting in stagin ring
*/
int hn_dev_rx_queue_status(void *arg, uint16_t offset)
{
const struct hn_rx_queue *rxq = arg;
hn_process_events(rxq->hv, rxq->queue_id, 0);
if (offset >= rxq->rx_ring->capacity)
return -EINVAL;
if (offset < rte_ring_count(rxq->rx_ring))
return RTE_ETH_RX_DESC_DONE;
else
return RTE_ETH_RX_DESC_AVAIL;
}
int
hn_dev_tx_done_cleanup(void *arg, uint32_t free_cnt)
{
struct hn_tx_queue *txq = arg;
return hn_process_events(txq->hv, txq->queue_id, free_cnt);
}
/*
* Process pending events on the channel.
* Called from both Rx queue poll and Tx cleanup
*/
uint32_t hn_process_events(struct hn_data *hv, uint16_t queue_id,
uint32_t tx_limit)
{
struct rte_eth_dev *dev = &rte_eth_devices[hv->port_id];
struct hn_rx_queue *rxq;
uint32_t bytes_read = 0;
uint32_t tx_done = 0;
int ret = 0;
rxq = queue_id == 0 ? hv->primary : dev->data->rx_queues[queue_id];
/*
* Since channel is shared between Rx and TX queue need to have a lock
* since DPDK does not force same CPU to be used for Rx/Tx.
*/
if (unlikely(!rte_spinlock_trylock(&rxq->ring_lock)))
return 0;
for (;;) {
const struct vmbus_chanpkt_hdr *pkt;
uint32_t len = rxq->event_sz;
const void *data;
retry:
ret = rte_vmbus_chan_recv_raw(rxq->chan, rxq->event_buf, &len);
if (ret == -EAGAIN)
break; /* ring is empty */
if (unlikely(ret == -ENOBUFS)) {
/* event buffer not large enough to read ring */
PMD_DRV_LOG(DEBUG,
"event buffer expansion (need %u)", len);
rxq->event_sz = len + len / 4;
rxq->event_buf = rte_realloc(rxq->event_buf, rxq->event_sz,
RTE_CACHE_LINE_SIZE);
if (rxq->event_buf)
goto retry;
/* out of memory, no more events now */
rxq->event_sz = 0;
break;
}
if (unlikely(ret <= 0)) {
/* This indicates a failure to communicate (or worse) */
rte_exit(EXIT_FAILURE,
"vmbus ring buffer error: %d", ret);
}
bytes_read += ret;
pkt = (const struct vmbus_chanpkt_hdr *)rxq->event_buf;
data = (char *)rxq->event_buf + vmbus_chanpkt_getlen(pkt->hlen);
switch (pkt->type) {
case VMBUS_CHANPKT_TYPE_COMP:
++tx_done;
hn_nvs_handle_comp(dev, queue_id, pkt, data);
break;
case VMBUS_CHANPKT_TYPE_RXBUF:
hn_nvs_handle_rxbuf(dev, hv, rxq, pkt, data);
break;
case VMBUS_CHANPKT_TYPE_INBAND:
hn_nvs_handle_notify(dev, pkt, data);
break;
default:
PMD_DRV_LOG(ERR, "unknown chan pkt %u", pkt->type);
break;
}
if (tx_limit && tx_done >= tx_limit)
break;
}
if (bytes_read > 0)
rte_vmbus_chan_signal_read(rxq->chan, bytes_read);
rte_spinlock_unlock(&rxq->ring_lock);
return tx_done;
}
static void hn_append_to_chim(struct hn_tx_queue *txq,
struct rndis_packet_msg *pkt,
const struct rte_mbuf *m)
{
struct hn_txdesc *txd = txq->agg_txd;
uint8_t *buf = (uint8_t *)pkt;
unsigned int data_offs;
hn_rndis_dump(pkt);
data_offs = RNDIS_PACKET_MSG_OFFSET_ABS(pkt->dataoffset);
txd->chim_size += pkt->len;
txd->data_size += m->pkt_len;
++txd->packets;
hn_update_packet_stats(&txq->stats, m);
for (; m; m = m->next) {
uint16_t len = rte_pktmbuf_data_len(m);
rte_memcpy(buf + data_offs,
rte_pktmbuf_mtod(m, const char *), len);
data_offs += len;
}
}
/*
* Send pending aggregated data in chimney buffer (if any).
* Returns error if send was unsuccessful because channel ring buffer
* was full.
*/
static int hn_flush_txagg(struct hn_tx_queue *txq, bool *need_sig)
{
struct hn_txdesc *txd = txq->agg_txd;
struct hn_nvs_rndis rndis;
int ret;
if (!txd)
return 0;
rndis = (struct hn_nvs_rndis) {
.type = NVS_TYPE_RNDIS,
.rndis_mtype = NVS_RNDIS_MTYPE_DATA,
.chim_idx = txd->chim_index,
.chim_sz = txd->chim_size,
};
PMD_TX_LOG(DEBUG, "port %u:%u tx %u size %u",
txq->port_id, txq->queue_id, txd->chim_index, txd->chim_size);
ret = hn_nvs_send(txq->chan, VMBUS_CHANPKT_FLAG_RC,
&rndis, sizeof(rndis), (uintptr_t)txd, need_sig);
if (likely(ret == 0))
hn_reset_txagg(txq);
else if (ret == -EAGAIN) {
PMD_TX_LOG(DEBUG, "port %u:%u channel full",
txq->port_id, txq->queue_id);
++txq->stats.channel_full;
} else {
++txq->stats.errors;
PMD_DRV_LOG(NOTICE, "port %u:%u send failed: %d",
txq->port_id, txq->queue_id, ret);
}
return ret;
}
/*
* Try and find a place in a send chimney buffer to put
* the small packet. If space is available, this routine
* returns a pointer of where to place the data.
* If no space, caller should try direct transmit.
*/
static void *
hn_try_txagg(struct hn_data *hv, struct hn_tx_queue *txq,
struct hn_txdesc *txd, uint32_t pktsize)
{
struct hn_txdesc *agg_txd = txq->agg_txd;
struct rndis_packet_msg *pkt;
void *chim;
if (agg_txd) {
unsigned int padding, olen;
/*
* Update the previous RNDIS packet's total length,
* it can be increased due to the mandatory alignment
* padding for this RNDIS packet. And update the
* aggregating txdesc's chimney sending buffer size
* accordingly.
*
* Zero-out the padding, as required by the RNDIS spec.
*/
pkt = txq->agg_prevpkt;
olen = pkt->len;
padding = RTE_ALIGN(olen, txq->agg_align) - olen;
if (padding > 0) {
agg_txd->chim_size += padding;
pkt->len += padding;
memset((uint8_t *)pkt + olen, 0, padding);
}
chim = (uint8_t *)pkt + pkt->len;
txq->agg_prevpkt = chim;
txq->agg_pktleft--;
txq->agg_szleft -= pktsize;
if (txq->agg_szleft < HN_PKTSIZE_MIN(txq->agg_align)) {
/*
* Probably can't aggregate more packets,
* flush this aggregating txdesc proactively.
*/
txq->agg_pktleft = 0;
}
hn_txd_put(txq, txd);
return chim;
}
txd->chim_index = hn_chim_alloc(hv);
if (txd->chim_index == NVS_CHIM_IDX_INVALID)
return NULL;
chim = (uint8_t *)hv->chim_res->addr
+ txd->chim_index * hv->chim_szmax;
txq->agg_txd = txd;
txq->agg_pktleft = txq->agg_pktmax - 1;
txq->agg_szleft = txq->agg_szmax - pktsize;
txq->agg_prevpkt = chim;
return chim;
}
static inline void *
hn_rndis_pktinfo_append(struct rndis_packet_msg *pkt,
uint32_t pi_dlen, uint32_t pi_type)
{
const uint32_t pi_size = RNDIS_PKTINFO_SIZE(pi_dlen);
struct rndis_pktinfo *pi;
/*
* Per-packet-info does not move; it only grows.
*
* NOTE:
* pktinfooffset in this phase counts from the beginning
* of rndis_packet_msg.
*/
pi = (struct rndis_pktinfo *)((uint8_t *)pkt + hn_rndis_pktlen(pkt));
pkt->pktinfolen += pi_size;
pi->size = pi_size;
pi->type = pi_type;
pi->offset = RNDIS_PKTINFO_OFFSET;
return pi->data;
}
/* Put RNDIS header and packet info on packet */
static void hn_encap(struct rndis_packet_msg *pkt,
uint16_t queue_id,
const struct rte_mbuf *m)
{
unsigned int hlen = m->l2_len + m->l3_len;
uint32_t *pi_data;
uint32_t pkt_hlen;
pkt->type = RNDIS_PACKET_MSG;
pkt->len = m->pkt_len;
pkt->dataoffset = 0;
pkt->datalen = m->pkt_len;
pkt->oobdataoffset = 0;
pkt->oobdatalen = 0;
pkt->oobdataelements = 0;
pkt->pktinfooffset = sizeof(*pkt);
pkt->pktinfolen = 0;
pkt->vchandle = 0;
pkt->reserved = 0;
/*
* Set the hash value for this packet, to the queue_id to cause
* TX done event for this packet on the right channel.
*/
pi_data = hn_rndis_pktinfo_append(pkt, NDIS_HASH_VALUE_SIZE,
NDIS_PKTINFO_TYPE_HASHVAL);
*pi_data = queue_id;
if (m->ol_flags & PKT_TX_VLAN_PKT) {
pi_data = hn_rndis_pktinfo_append(pkt, NDIS_VLAN_INFO_SIZE,
NDIS_PKTINFO_TYPE_VLAN);
*pi_data = m->vlan_tci;
}
if (m->ol_flags & PKT_TX_TCP_SEG) {
pi_data = hn_rndis_pktinfo_append(pkt, NDIS_LSO2_INFO_SIZE,
NDIS_PKTINFO_TYPE_LSO);
if (m->ol_flags & PKT_TX_IPV6) {
*pi_data = NDIS_LSO2_INFO_MAKEIPV6(hlen,
m->tso_segsz);
} else {
*pi_data = NDIS_LSO2_INFO_MAKEIPV4(hlen,
m->tso_segsz);
}
} else if (m->ol_flags &
(PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM | PKT_TX_IP_CKSUM)) {
pi_data = hn_rndis_pktinfo_append(pkt, NDIS_TXCSUM_INFO_SIZE,
NDIS_PKTINFO_TYPE_CSUM);
*pi_data = 0;
if (m->ol_flags & PKT_TX_IPV6)
*pi_data |= NDIS_TXCSUM_INFO_IPV6;
if (m->ol_flags & PKT_TX_IPV4) {
*pi_data |= NDIS_TXCSUM_INFO_IPV4;
if (m->ol_flags & PKT_TX_IP_CKSUM)
*pi_data |= NDIS_TXCSUM_INFO_IPCS;
}
if (m->ol_flags & PKT_TX_TCP_CKSUM)
*pi_data |= NDIS_TXCSUM_INFO_MKTCPCS(hlen);
else if (m->ol_flags & PKT_TX_UDP_CKSUM)
*pi_data |= NDIS_TXCSUM_INFO_MKUDPCS(hlen);
}
pkt_hlen = pkt->pktinfooffset + pkt->pktinfolen;
/* Fixup RNDIS packet message total length */
pkt->len += pkt_hlen;
/* Convert RNDIS packet message offsets */
pkt->dataoffset = hn_rndis_pktmsg_offset(pkt_hlen);
pkt->pktinfooffset = hn_rndis_pktmsg_offset(pkt->pktinfooffset);
}
/* How many scatter gather list elements ar needed */
static unsigned int hn_get_slots(const struct rte_mbuf *m)
{
unsigned int slots = 1; /* for RNDIS header */
while (m) {
unsigned int size = rte_pktmbuf_data_len(m);
unsigned int offs = rte_mbuf_data_iova(m) & PAGE_MASK;
slots += (offs + size + PAGE_SIZE - 1) / PAGE_SIZE;
m = m->next;
}
return slots;
}
/* Build scatter gather list from chained mbuf */
static unsigned int hn_fill_sg(struct vmbus_gpa *sg,
const struct rte_mbuf *m)
{
unsigned int segs = 0;
while (m) {
rte_iova_t addr = rte_mbuf_data_iova(m);
unsigned int page = addr / PAGE_SIZE;
unsigned int offset = addr & PAGE_MASK;
unsigned int len = rte_pktmbuf_data_len(m);
while (len > 0) {
unsigned int bytes = RTE_MIN(len, PAGE_SIZE - offset);
sg[segs].page = page;
sg[segs].ofs = offset;
sg[segs].len = bytes;
segs++;
++page;
offset = 0;
len -= bytes;
}
m = m->next;
}
return segs;
}
/* Transmit directly from mbuf */
static int hn_xmit_sg(struct hn_tx_queue *txq,
const struct hn_txdesc *txd, const struct rte_mbuf *m,
bool *need_sig)
{
struct vmbus_gpa sg[hn_get_slots(m)];
struct hn_nvs_rndis nvs_rndis = {
.type = NVS_TYPE_RNDIS,
.rndis_mtype = NVS_RNDIS_MTYPE_DATA,
.chim_sz = txd->chim_size,
};
rte_iova_t addr;
unsigned int segs;
/* attach aggregation data if present */
if (txd->chim_size > 0)
nvs_rndis.chim_idx = txd->chim_index;
else
nvs_rndis.chim_idx = NVS_CHIM_IDX_INVALID;
hn_rndis_dump(txd->rndis_pkt);
/* pass IOVA of rndis header in first segment */
addr = rte_malloc_virt2iova(txq->tx_rndis);
if (unlikely(addr == RTE_BAD_IOVA)) {
PMD_DRV_LOG(ERR, "RNDIS transmit can not get iova");
return -EINVAL;
}
addr = addr + ((char *)txd->rndis_pkt - (char *)txq->tx_rndis);
sg[0].page = addr / PAGE_SIZE;
sg[0].ofs = addr & PAGE_MASK;
sg[0].len = RNDIS_PACKET_MSG_OFFSET_ABS(hn_rndis_pktlen(txd->rndis_pkt));
segs = 1;
hn_update_packet_stats(&txq->stats, m);
segs += hn_fill_sg(sg + 1, m);
PMD_TX_LOG(DEBUG, "port %u:%u tx %u segs %u size %u",
txq->port_id, txq->queue_id, txd->chim_index,
segs, nvs_rndis.chim_sz);
return hn_nvs_send_sglist(txq->chan, sg, segs,
&nvs_rndis, sizeof(nvs_rndis),
(uintptr_t)txd, need_sig);
}
uint16_t
hn_xmit_pkts(void *ptxq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
struct hn_tx_queue *txq = ptxq;
uint16_t queue_id = txq->queue_id;
struct hn_data *hv = txq->hv;
struct rte_eth_dev *vf_dev;
bool need_sig = false;
uint16_t nb_tx, tx_thresh;
int ret;
if (unlikely(hv->closed))
return 0;
/*
* Always check for events on the primary channel
* because that is where hotplug notifications occur.
*/
tx_thresh = RTE_MAX(txq->free_thresh, nb_pkts);
if (txq->queue_id == 0 ||
rte_mempool_avail_count(txq->txdesc_pool) < tx_thresh)
hn_process_events(hv, txq->queue_id, 0);
/* Transmit over VF if present and up */
rte_rwlock_read_lock(&hv->vf_lock);
vf_dev = hn_get_vf_dev(hv);
if (vf_dev && vf_dev->data->dev_started) {
void *sub_q = vf_dev->data->tx_queues[queue_id];
nb_tx = (*vf_dev->tx_pkt_burst)(sub_q, tx_pkts, nb_pkts);
rte_rwlock_read_unlock(&hv->vf_lock);
return nb_tx;
}
rte_rwlock_read_unlock(&hv->vf_lock);
for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
struct rte_mbuf *m = tx_pkts[nb_tx];
uint32_t pkt_size = m->pkt_len + HN_RNDIS_PKT_LEN;
struct rndis_packet_msg *pkt;
struct hn_txdesc *txd;
txd = hn_txd_get(txq);
if (txd == NULL)
break;
/* For small packets aggregate them in chimney buffer */
if (m->pkt_len < HN_TXCOPY_THRESHOLD && pkt_size <= txq->agg_szmax) {
/* If this packet will not fit, then flush */
if (txq->agg_pktleft == 0 ||
RTE_ALIGN(pkt_size, txq->agg_align) > txq->agg_szleft) {
if (hn_flush_txagg(txq, &need_sig))
goto fail;
}
pkt = hn_try_txagg(hv, txq, txd, pkt_size);
if (unlikely(!pkt))
break;
hn_encap(pkt, queue_id, m);
hn_append_to_chim(txq, pkt, m);
rte_pktmbuf_free(m);
/* if buffer is full, flush */
if (txq->agg_pktleft == 0 &&
hn_flush_txagg(txq, &need_sig))
goto fail;
} else {
/* Send any outstanding packets in buffer */
if (txq->agg_txd && hn_flush_txagg(txq, &need_sig))
goto fail;
pkt = txd->rndis_pkt;
txd->m = m;
txd->data_size = m->pkt_len;
++txd->packets;
hn_encap(pkt, queue_id, m);
ret = hn_xmit_sg(txq, txd, m, &need_sig);
if (unlikely(ret != 0)) {
if (ret == -EAGAIN) {
PMD_TX_LOG(DEBUG, "sg channel full");
++txq->stats.channel_full;
} else {
PMD_DRV_LOG(NOTICE, "sg send failed: %d", ret);
++txq->stats.errors;
}
hn_txd_put(txq, txd);
goto fail;
}
}
}
/* If partial buffer left, then try and send it.
* if that fails, then reuse it on next send.
*/
hn_flush_txagg(txq, &need_sig);
fail:
if (need_sig)
rte_vmbus_chan_signal_tx(txq->chan);
return nb_tx;
}
static uint16_t
hn_recv_vf(uint16_t vf_port, const struct hn_rx_queue *rxq,
struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
uint16_t i, n;
if (unlikely(nb_pkts == 0))
return 0;
n = rte_eth_rx_burst(vf_port, rxq->queue_id, rx_pkts, nb_pkts);
/* relabel the received mbufs */
for (i = 0; i < n; i++)
rx_pkts[i]->port = rxq->port_id;
return n;
}
uint16_t
hn_recv_pkts(void *prxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
struct hn_rx_queue *rxq = prxq;
struct hn_data *hv = rxq->hv;
struct rte_eth_dev *vf_dev;
uint16_t nb_rcv;
if (unlikely(hv->closed))
return 0;
/* Check for new completions (and hotplug) */
if (likely(rte_ring_count(rxq->rx_ring) < nb_pkts))
hn_process_events(hv, rxq->queue_id, 0);
/* Always check the vmbus path for multicast and new flows */
nb_rcv = rte_ring_sc_dequeue_burst(rxq->rx_ring,
(void **)rx_pkts, nb_pkts, NULL);
/* If VF is available, check that as well */
rte_rwlock_read_lock(&hv->vf_lock);
vf_dev = hn_get_vf_dev(hv);
if (vf_dev && vf_dev->data->dev_started)
nb_rcv += hn_recv_vf(vf_dev->data->port_id, rxq,
rx_pkts + nb_rcv, nb_pkts - nb_rcv);
rte_rwlock_read_unlock(&hv->vf_lock);
return nb_rcv;
}
void
hn_dev_free_queues(struct rte_eth_dev *dev)
{
unsigned int i;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
struct hn_rx_queue *rxq = dev->data->rx_queues[i];
hn_rx_queue_free(rxq, false);
dev->data->rx_queues[i] = NULL;
}
dev->data->nb_rx_queues = 0;
for (i = 0; i < dev->data->nb_tx_queues; i++) {
hn_dev_tx_queue_release(dev->data->tx_queues[i]);
dev->data->tx_queues[i] = NULL;
}
dev->data->nb_tx_queues = 0;
}