numam-dpdk/app/test-eventdev/test_pipeline_common.c
Pavan Nikhilesh c9043624e3 app/eventdev: add Tx first option to pipeline mode
Add Tx first support to pipeline mode tests, the transmission is done
on all the ethernet ports. This helps in testing eventdev performance
with standalone loopback interfaces.

Example:
./dpdk-test-eventdev ... -- ... --tx_first 512

512 defines the number of packets to transmit.
Add an option Tx packet size, the default packet size is 64.

Following example can change packet size value as 320.

Example:
./dpdk-test-eventdev ... -- ... --tx_first 512 --tx_pkt_sz 320

Signed-off-by: Pavan Nikhilesh <pbhagavatula@marvell.com>
Acked-by: Jerin Jacob <jerinj@marvell.com>
2022-06-13 07:59:42 +02:00

880 lines
21 KiB
C

/*
* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2017 Cavium, Inc.
*/
#include "test_pipeline_common.h"
int
pipeline_test_result(struct evt_test *test, struct evt_options *opt)
{
RTE_SET_USED(opt);
int i;
uint64_t total = 0;
struct test_pipeline *t = evt_test_priv(test);
evt_info("Packet distribution across worker cores :");
for (i = 0; i < t->nb_workers; i++)
total += t->worker[i].processed_pkts;
for (i = 0; i < t->nb_workers; i++)
evt_info("Worker %d packets: "CLGRN"%"PRIx64""CLNRM" percentage:"
CLGRN" %3.2f"CLNRM, i,
t->worker[i].processed_pkts,
(((double)t->worker[i].processed_pkts)/total)
* 100);
return t->result;
}
void
pipeline_opt_dump(struct evt_options *opt, uint8_t nb_queues)
{
evt_dump("nb_worker_lcores", "%d", evt_nr_active_lcores(opt->wlcores));
evt_dump_worker_lcores(opt);
evt_dump_nb_stages(opt);
evt_dump("nb_evdev_ports", "%d", pipeline_nb_event_ports(opt));
evt_dump("nb_evdev_queues", "%d", nb_queues);
evt_dump_queue_priority(opt);
evt_dump_sched_type_list(opt);
evt_dump_producer_type(opt);
evt_dump("nb_eth_rx_queues", "%d", opt->eth_queues);
evt_dump("event_vector", "%d", opt->ena_vector);
if (opt->ena_vector) {
evt_dump("vector_size", "%d", opt->vector_size);
evt_dump("vector_tmo_ns", "%" PRIu64 "", opt->vector_tmo_nsec);
}
}
static inline uint64_t
processed_pkts(struct test_pipeline *t)
{
uint8_t i;
uint64_t total = 0;
for (i = 0; i < t->nb_workers; i++)
total += t->worker[i].processed_pkts;
return total;
}
/* RFC863 discard port */
#define UDP_SRC_PORT 9
#define UDP_DST_PORT 9
/* RFC2544 reserved test subnet 192.18.0.0 */
#define IP_SRC_ADDR(x, y) ((192U << 24) | (18 << 16) | ((x) << 8) | (y))
#define IP_DST_ADDR(x, y) ((192U << 24) | (18 << 16) | ((x) << 8) | (y))
#define IP_DEFTTL 64 /* from RFC 1340. */
#define IP_VERSION 0x40
#define IP_HDRLEN 0x05 /* default IP header length == five 32-bits words. */
#define IP_VHL_DEF (IP_VERSION | IP_HDRLEN)
static void
setup_pkt_udp_ip_headers(struct rte_ipv4_hdr *ip_hdr,
struct rte_udp_hdr *udp_hdr, uint16_t pkt_data_len,
uint8_t port, uint8_t flow)
{
uint16_t *ptr16;
uint32_t ip_cksum;
uint16_t pkt_len;
/*
* Initialize UDP header.
*/
pkt_len = (uint16_t)(pkt_data_len + sizeof(struct rte_udp_hdr));
udp_hdr->src_port = rte_cpu_to_be_16(UDP_SRC_PORT);
udp_hdr->dst_port = rte_cpu_to_be_16(UDP_DST_PORT);
udp_hdr->dgram_len = rte_cpu_to_be_16(pkt_len);
udp_hdr->dgram_cksum = 0; /* No UDP checksum. */
/*
* Initialize IP header.
*/
pkt_len = (uint16_t)(pkt_len + sizeof(struct rte_ipv4_hdr));
ip_hdr->version_ihl = IP_VHL_DEF;
ip_hdr->type_of_service = 0;
ip_hdr->fragment_offset = 0;
ip_hdr->time_to_live = IP_DEFTTL;
ip_hdr->next_proto_id = IPPROTO_UDP;
ip_hdr->packet_id = 0;
ip_hdr->total_length = rte_cpu_to_be_16(pkt_len);
ip_hdr->src_addr = rte_cpu_to_be_32(IP_SRC_ADDR(port, 1));
ip_hdr->dst_addr = rte_cpu_to_be_32(IP_DST_ADDR(port + 1, flow));
/*
* Compute IP header checksum.
*/
ptr16 = (unaligned_uint16_t *)ip_hdr;
ip_cksum = 0;
ip_cksum += ptr16[0];
ip_cksum += ptr16[1];
ip_cksum += ptr16[2];
ip_cksum += ptr16[3];
ip_cksum += ptr16[4];
ip_cksum += ptr16[6];
ip_cksum += ptr16[7];
ip_cksum += ptr16[8];
ip_cksum += ptr16[9];
/*
* Reduce 32 bit checksum to 16 bits and complement it.
*/
ip_cksum = ((ip_cksum & 0xFFFF0000) >> 16) + (ip_cksum & 0x0000FFFF);
if (ip_cksum > 65535)
ip_cksum -= 65535;
ip_cksum = (~ip_cksum) & 0x0000FFFF;
if (ip_cksum == 0)
ip_cksum = 0xFFFF;
ip_hdr->hdr_checksum = (uint16_t)ip_cksum;
}
static void
pipeline_tx_first(struct test_pipeline *t, struct evt_options *opt)
{
#define TX_DEF_PACKET_LEN 64
uint16_t eth_port_id = 0;
uint16_t pkt_sz, rc;
uint32_t i;
pkt_sz = opt->tx_pkt_sz;
if (pkt_sz > opt->max_pkt_sz)
pkt_sz = opt->max_pkt_sz;
if (!pkt_sz)
pkt_sz = TX_DEF_PACKET_LEN;
RTE_ETH_FOREACH_DEV(eth_port_id) {
struct rte_ether_addr src_mac;
struct rte_ether_addr dst_mac;
struct rte_ether_hdr eth_hdr;
/* Send to the same dest.mac as port mac */
rte_eth_macaddr_get(eth_port_id, &dst_mac);
rte_eth_random_addr((uint8_t *)&src_mac);
rte_ether_addr_copy(&dst_mac, &eth_hdr.dst_addr);
rte_ether_addr_copy(&src_mac, &eth_hdr.src_addr);
eth_hdr.ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
for (i = 0; i < opt->tx_first; i++) {
struct rte_udp_hdr *pkt_udp_hdr;
struct rte_ipv4_hdr ip_hdr;
struct rte_udp_hdr udp_hdr;
struct rte_mbuf *mbuf;
mbuf = rte_pktmbuf_alloc(
opt->per_port_pool ? t->pool[i] : t->pool[0]);
if (mbuf == NULL)
continue;
setup_pkt_udp_ip_headers(
&ip_hdr, &udp_hdr,
pkt_sz - sizeof(struct rte_ether_hdr) -
sizeof(struct rte_ipv4_hdr) -
sizeof(struct rte_udp_hdr),
eth_port_id, i);
mbuf->port = eth_port_id;
mbuf->data_len = pkt_sz;
mbuf->pkt_len = pkt_sz;
/* Copy Ethernet header */
rte_memcpy(rte_pktmbuf_mtod_offset(mbuf, char *, 0),
&eth_hdr, sizeof(struct rte_ether_hdr));
/* Copy Ipv4 header */
rte_memcpy(rte_pktmbuf_mtod_offset(
mbuf, char *,
sizeof(struct rte_ether_hdr)),
&ip_hdr, sizeof(struct rte_ipv4_hdr));
/* Copy UDP header */
rte_memcpy(
rte_pktmbuf_mtod_offset(
mbuf, char *,
sizeof(struct rte_ipv4_hdr) +
sizeof(struct rte_ether_hdr)),
&udp_hdr, sizeof(struct rte_udp_hdr));
pkt_udp_hdr = rte_pktmbuf_mtod_offset(
mbuf, struct rte_udp_hdr *,
sizeof(struct rte_ipv4_hdr) +
sizeof(struct rte_ether_hdr));
pkt_udp_hdr->src_port =
rte_cpu_to_be_16(UDP_SRC_PORT + i);
pkt_udp_hdr->dst_port =
rte_cpu_to_be_16(UDP_SRC_PORT + i);
rc = rte_eth_tx_burst(eth_port_id, 0, &mbuf, 1);
if (rc == 0)
rte_pktmbuf_free(mbuf);
}
}
}
int
pipeline_launch_lcores(struct evt_test *test, struct evt_options *opt,
int (*worker)(void *))
{
struct test_pipeline *t = evt_test_priv(test);
int ret, lcore_id;
int port_idx = 0;
if (opt->tx_first)
pipeline_tx_first(t, opt);
/* launch workers */
RTE_LCORE_FOREACH_WORKER(lcore_id) {
if (!(opt->wlcores[lcore_id]))
continue;
ret = rte_eal_remote_launch(worker,
&t->worker[port_idx], lcore_id);
if (ret) {
evt_err("failed to launch worker %d", lcore_id);
return ret;
}
port_idx++;
}
uint64_t perf_cycles = rte_get_timer_cycles();
const uint64_t perf_sample = rte_get_timer_hz();
static float total_mpps;
static uint64_t samples;
uint64_t prev_pkts = 0;
while (t->done == false) {
const uint64_t new_cycles = rte_get_timer_cycles();
if ((new_cycles - perf_cycles) > perf_sample) {
const uint64_t curr_pkts = processed_pkts(t);
float mpps = (float)(curr_pkts - prev_pkts)/1000000;
prev_pkts = curr_pkts;
perf_cycles = new_cycles;
total_mpps += mpps;
++samples;
printf(CLGRN"\r%.3f mpps avg %.3f mpps"CLNRM,
mpps, total_mpps/samples);
fflush(stdout);
}
}
printf("\n");
return 0;
}
int
pipeline_opt_check(struct evt_options *opt, uint64_t nb_queues)
{
unsigned int lcores;
/* N worker + main */
lcores = 2;
if (opt->prod_type != EVT_PROD_TYPE_ETH_RX_ADPTR) {
evt_err("Invalid producer type '%s' valid producer '%s'",
evt_prod_id_to_name(opt->prod_type),
evt_prod_id_to_name(EVT_PROD_TYPE_ETH_RX_ADPTR));
return -1;
}
if (!rte_eth_dev_count_avail()) {
evt_err("test needs minimum 1 ethernet dev");
return -1;
}
if (rte_lcore_count() < lcores) {
evt_err("test need minimum %d lcores", lcores);
return -1;
}
/* Validate worker lcores */
if (evt_lcores_has_overlap(opt->wlcores, rte_get_main_lcore())) {
evt_err("worker lcores overlaps with main lcore");
return -1;
}
if (evt_has_disabled_lcore(opt->wlcores)) {
evt_err("one or more workers lcores are not enabled");
return -1;
}
if (!evt_has_active_lcore(opt->wlcores)) {
evt_err("minimum one worker is required");
return -1;
}
if (nb_queues > EVT_MAX_QUEUES) {
evt_err("number of queues exceeds %d", EVT_MAX_QUEUES);
return -1;
}
if (pipeline_nb_event_ports(opt) > EVT_MAX_PORTS) {
evt_err("number of ports exceeds %d", EVT_MAX_PORTS);
return -1;
}
if (opt->prod_type != EVT_PROD_TYPE_ETH_RX_ADPTR) {
evt_err("Invalid producer type, only --prod_type_ethdev is supported");
return -1;
}
if (evt_has_invalid_stage(opt))
return -1;
if (evt_has_invalid_sched_type(opt))
return -1;
return 0;
}
#define NB_RX_DESC 128
#define NB_TX_DESC 512
int
pipeline_ethdev_setup(struct evt_test *test, struct evt_options *opt)
{
uint16_t i, j;
int ret;
uint8_t nb_queues = 1;
struct test_pipeline *t = evt_test_priv(test);
struct rte_eth_rxconf rx_conf;
struct rte_eth_conf port_conf = {
.rxmode = {
.mq_mode = RTE_ETH_MQ_RX_RSS,
},
.rx_adv_conf = {
.rss_conf = {
.rss_key = NULL,
.rss_hf = RTE_ETH_RSS_IP,
},
},
};
if (!rte_eth_dev_count_avail()) {
evt_err("No ethernet ports found.");
return -ENODEV;
}
if (opt->max_pkt_sz < RTE_ETHER_MIN_LEN) {
evt_err("max_pkt_sz can not be less than %d",
RTE_ETHER_MIN_LEN);
return -EINVAL;
}
port_conf.rxmode.mtu = opt->max_pkt_sz - RTE_ETHER_HDR_LEN -
RTE_ETHER_CRC_LEN;
t->internal_port = 1;
RTE_ETH_FOREACH_DEV(i) {
struct rte_eth_dev_info dev_info;
struct rte_eth_conf local_port_conf = port_conf;
uint32_t caps = 0;
ret = rte_event_eth_tx_adapter_caps_get(opt->dev_id, i, &caps);
if (ret != 0) {
evt_err("failed to get event tx adapter[%d] caps", i);
return ret;
}
if (!(caps & RTE_EVENT_ETH_TX_ADAPTER_CAP_INTERNAL_PORT))
t->internal_port = 0;
ret = rte_event_eth_rx_adapter_caps_get(opt->dev_id, i, &caps);
if (ret != 0) {
evt_err("failed to get event tx adapter[%d] caps", i);
return ret;
}
if (!(caps & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT))
local_port_conf.rxmode.offloads |=
RTE_ETH_RX_OFFLOAD_RSS_HASH;
ret = rte_eth_dev_info_get(i, &dev_info);
if (ret != 0) {
evt_err("Error during getting device (port %u) info: %s\n",
i, strerror(-ret));
return ret;
}
/* Enable mbuf fast free if PMD has the capability. */
if (dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE)
local_port_conf.txmode.offloads |=
RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
rx_conf = dev_info.default_rxconf;
rx_conf.offloads = port_conf.rxmode.offloads;
local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
dev_info.flow_type_rss_offloads;
if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
port_conf.rx_adv_conf.rss_conf.rss_hf) {
evt_info("Port %u modified RSS hash function based on hardware support,"
"requested:%#"PRIx64" configured:%#"PRIx64"",
i,
port_conf.rx_adv_conf.rss_conf.rss_hf,
local_port_conf.rx_adv_conf.rss_conf.rss_hf);
}
if (rte_eth_dev_configure(i, opt->eth_queues, nb_queues,
&local_port_conf) < 0) {
evt_err("Failed to configure eth port [%d]", i);
return -EINVAL;
}
for (j = 0; j < opt->eth_queues; j++) {
if (rte_eth_rx_queue_setup(
i, j, NB_RX_DESC, rte_socket_id(), &rx_conf,
opt->per_port_pool ? t->pool[i] :
t->pool[0]) < 0) {
evt_err("Failed to setup eth port [%d] rx_queue: %d.",
i, 0);
return -EINVAL;
}
}
if (rte_eth_tx_queue_setup(i, 0, NB_TX_DESC,
rte_socket_id(), NULL) < 0) {
evt_err("Failed to setup eth port [%d] tx_queue: %d.",
i, 0);
return -EINVAL;
}
ret = rte_eth_promiscuous_enable(i);
if (ret != 0) {
evt_err("Failed to enable promiscuous mode for eth port [%d]: %s",
i, rte_strerror(-ret));
return ret;
}
}
return 0;
}
int
pipeline_event_port_setup(struct evt_test *test, struct evt_options *opt,
uint8_t *queue_arr, uint8_t nb_queues,
const struct rte_event_port_conf p_conf)
{
int ret;
uint8_t port;
struct test_pipeline *t = evt_test_priv(test);
/* setup one port per worker, linking to all queues */
for (port = 0; port < evt_nr_active_lcores(opt->wlcores); port++) {
struct worker_data *w = &t->worker[port];
w->dev_id = opt->dev_id;
w->port_id = port;
w->t = t;
w->processed_pkts = 0;
ret = rte_event_port_setup(opt->dev_id, port, &p_conf);
if (ret) {
evt_err("failed to setup port %d", port);
return ret;
}
if (rte_event_port_link(opt->dev_id, port, queue_arr, NULL,
nb_queues) != nb_queues)
goto link_fail;
}
return 0;
link_fail:
evt_err("failed to link queues to port %d", port);
return -EINVAL;
}
int
pipeline_event_rx_adapter_setup(struct evt_options *opt, uint8_t stride,
struct rte_event_port_conf prod_conf)
{
int ret = 0;
uint16_t prod;
struct rte_mempool *vector_pool = NULL;
struct rte_event_eth_rx_adapter_queue_conf queue_conf;
memset(&queue_conf, 0,
sizeof(struct rte_event_eth_rx_adapter_queue_conf));
queue_conf.ev.sched_type = opt->sched_type_list[0];
if (opt->ena_vector) {
unsigned int nb_elem = (opt->pool_sz / opt->vector_size) << 1;
nb_elem = RTE_MAX(512U, nb_elem);
nb_elem += evt_nr_active_lcores(opt->wlcores) * 32;
vector_pool = rte_event_vector_pool_create(
"vector_pool", nb_elem, 32, opt->vector_size,
opt->socket_id);
if (vector_pool == NULL) {
evt_err("failed to create event vector pool");
return -ENOMEM;
}
}
RTE_ETH_FOREACH_DEV(prod) {
struct rte_event_eth_rx_adapter_vector_limits limits;
uint32_t cap;
ret = rte_event_eth_rx_adapter_caps_get(opt->dev_id,
prod, &cap);
if (ret) {
evt_err("failed to get event rx adapter[%d]"
" capabilities",
opt->dev_id);
return ret;
}
if (opt->ena_vector) {
memset(&limits, 0, sizeof(limits));
ret = rte_event_eth_rx_adapter_vector_limits_get(
opt->dev_id, prod, &limits);
if (ret) {
evt_err("failed to get vector limits");
return ret;
}
if (opt->vector_size < limits.min_sz ||
opt->vector_size > limits.max_sz) {
evt_err("Vector size [%d] not within limits max[%d] min[%d]",
opt->vector_size, limits.min_sz,
limits.max_sz);
return -EINVAL;
}
if (limits.log2_sz &&
!rte_is_power_of_2(opt->vector_size)) {
evt_err("Vector size [%d] not power of 2",
opt->vector_size);
return -EINVAL;
}
if (opt->vector_tmo_nsec > limits.max_timeout_ns ||
opt->vector_tmo_nsec < limits.min_timeout_ns) {
evt_err("Vector timeout [%" PRIu64
"] not within limits max[%" PRIu64
"] min[%" PRIu64 "]",
opt->vector_tmo_nsec,
limits.max_timeout_ns,
limits.min_timeout_ns);
return -EINVAL;
}
if (cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_EVENT_VECTOR) {
queue_conf.vector_sz = opt->vector_size;
queue_conf.vector_timeout_ns =
opt->vector_tmo_nsec;
queue_conf.rx_queue_flags |=
RTE_EVENT_ETH_RX_ADAPTER_QUEUE_EVENT_VECTOR;
queue_conf.vector_mp = vector_pool;
} else {
evt_err("Rx adapter doesn't support event vector");
return -EINVAL;
}
}
queue_conf.ev.queue_id = prod * stride;
ret = rte_event_eth_rx_adapter_create(prod, opt->dev_id,
&prod_conf);
if (ret) {
evt_err("failed to create rx adapter[%d]", prod);
return ret;
}
ret = rte_event_eth_rx_adapter_queue_add(prod, prod, -1,
&queue_conf);
if (ret) {
evt_err("failed to add rx queues to adapter[%d]", prod);
return ret;
}
if (!(cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT)) {
uint32_t service_id = -1U;
rte_event_eth_rx_adapter_service_id_get(prod,
&service_id);
ret = evt_service_setup(service_id);
if (ret) {
evt_err("Failed to setup service core"
" for Rx adapter");
return ret;
}
}
evt_info("Port[%d] using Rx adapter[%d] configured", prod,
prod);
}
return ret;
}
int
pipeline_event_tx_adapter_setup(struct evt_options *opt,
struct rte_event_port_conf port_conf)
{
int ret = 0;
uint16_t consm;
RTE_ETH_FOREACH_DEV(consm) {
uint32_t cap;
ret = rte_event_eth_tx_adapter_caps_get(opt->dev_id,
consm, &cap);
if (ret) {
evt_err("failed to get event tx adapter[%d] caps",
consm);
return ret;
}
if (opt->ena_vector) {
if (!(cap &
RTE_EVENT_ETH_TX_ADAPTER_CAP_EVENT_VECTOR)) {
evt_err("Tx adapter doesn't support event vector");
return -EINVAL;
}
}
ret = rte_event_eth_tx_adapter_create(consm, opt->dev_id,
&port_conf);
if (ret) {
evt_err("failed to create tx adapter[%d]", consm);
return ret;
}
ret = rte_event_eth_tx_adapter_queue_add(consm, consm, -1);
if (ret) {
evt_err("failed to add tx queues to adapter[%d]",
consm);
return ret;
}
if (!(cap & RTE_EVENT_ETH_TX_ADAPTER_CAP_INTERNAL_PORT)) {
uint32_t service_id = -1U;
ret = rte_event_eth_tx_adapter_service_id_get(consm,
&service_id);
if (ret != -ESRCH && ret != 0) {
evt_err("Failed to get Tx adptr service ID");
return ret;
}
ret = evt_service_setup(service_id);
if (ret) {
evt_err("Failed to setup service core"
" for Tx adapter");
return ret;
}
}
evt_info("Port[%d] using Tx adapter[%d] Configured", consm,
consm);
}
return ret;
}
static void
pipeline_vector_array_free(struct rte_event events[], uint16_t num)
{
uint16_t i;
for (i = 0; i < num; i++) {
rte_pktmbuf_free_bulk(events[i].vec->mbufs,
events[i].vec->nb_elem);
rte_mempool_put(rte_mempool_from_obj(events[i].vec),
events[i].vec);
}
}
static void
pipeline_event_port_flush(uint8_t dev_id __rte_unused, struct rte_event ev,
void *args __rte_unused)
{
if (ev.event_type & RTE_EVENT_TYPE_VECTOR)
pipeline_vector_array_free(&ev, 1);
else
rte_pktmbuf_free(ev.mbuf);
}
void
pipeline_worker_cleanup(uint8_t dev, uint8_t port, struct rte_event ev[],
uint16_t enq, uint16_t deq)
{
int i;
if (!(deq - enq))
return;
if (deq) {
for (i = enq; i < deq; i++) {
if (ev[i].op == RTE_EVENT_OP_RELEASE)
continue;
if (ev[i].event_type & RTE_EVENT_TYPE_VECTOR)
pipeline_vector_array_free(&ev[i], 1);
else
rte_pktmbuf_free(ev[i].mbuf);
}
for (i = 0; i < deq; i++)
ev[i].op = RTE_EVENT_OP_RELEASE;
rte_event_enqueue_burst(dev, port, ev, deq);
}
rte_event_port_quiesce(dev, port, pipeline_event_port_flush, NULL);
}
void
pipeline_ethdev_rx_stop(struct evt_test *test, struct evt_options *opt)
{
uint16_t i, j;
RTE_SET_USED(test);
if (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR) {
RTE_ETH_FOREACH_DEV(i) {
rte_event_eth_rx_adapter_stop(i);
rte_event_eth_rx_adapter_queue_del(i, i, -1);
for (j = 0; j < opt->eth_queues; j++)
rte_eth_dev_rx_queue_stop(i, j);
}
}
}
void
pipeline_ethdev_destroy(struct evt_test *test, struct evt_options *opt)
{
uint16_t i;
RTE_SET_USED(test);
RTE_SET_USED(opt);
RTE_ETH_FOREACH_DEV(i) {
rte_event_eth_tx_adapter_stop(i);
rte_event_eth_tx_adapter_queue_del(i, i, -1);
rte_eth_dev_tx_queue_stop(i, 0);
rte_eth_dev_stop(i);
}
}
void
pipeline_eventdev_destroy(struct evt_test *test, struct evt_options *opt)
{
RTE_SET_USED(test);
rte_event_dev_stop(opt->dev_id);
rte_event_dev_close(opt->dev_id);
}
int
pipeline_mempool_setup(struct evt_test *test, struct evt_options *opt)
{
struct test_pipeline *t = evt_test_priv(test);
int i, ret;
if (!opt->mbuf_sz)
opt->mbuf_sz = RTE_MBUF_DEFAULT_BUF_SIZE;
if (!opt->max_pkt_sz)
opt->max_pkt_sz = RTE_ETHER_MAX_LEN;
RTE_ETH_FOREACH_DEV(i) {
struct rte_eth_dev_info dev_info;
uint16_t data_size = 0;
memset(&dev_info, 0, sizeof(dev_info));
ret = rte_eth_dev_info_get(i, &dev_info);
if (ret != 0) {
evt_err("Error during getting device (port %u) info: %s\n",
i, strerror(-ret));
return ret;
}
if (dev_info.rx_desc_lim.nb_mtu_seg_max != UINT16_MAX &&
dev_info.rx_desc_lim.nb_mtu_seg_max != 0) {
data_size = opt->max_pkt_sz /
dev_info.rx_desc_lim.nb_mtu_seg_max;
data_size += RTE_PKTMBUF_HEADROOM;
if (data_size > opt->mbuf_sz)
opt->mbuf_sz = data_size;
}
if (opt->per_port_pool) {
char name[RTE_MEMPOOL_NAMESIZE];
snprintf(name, RTE_MEMPOOL_NAMESIZE, "%s-%d",
test->name, i);
t->pool[i] = rte_pktmbuf_pool_create(
name, /* mempool name */
opt->pool_sz, /* number of elements*/
0, /* cache size*/
0, opt->mbuf_sz, opt->socket_id); /* flags */
if (t->pool[i] == NULL) {
evt_err("failed to create mempool %s", name);
return -ENOMEM;
}
}
}
if (!opt->per_port_pool) {
t->pool[0] = rte_pktmbuf_pool_create(
test->name, /* mempool name */
opt->pool_sz, /* number of elements*/
0, /* cache size*/
0, opt->mbuf_sz, opt->socket_id); /* flags */
if (t->pool[0] == NULL) {
evt_err("failed to create mempool");
return -ENOMEM;
}
}
return 0;
}
void
pipeline_mempool_destroy(struct evt_test *test, struct evt_options *opt)
{
struct test_pipeline *t = evt_test_priv(test);
int i;
RTE_SET_USED(opt);
if (opt->per_port_pool) {
RTE_ETH_FOREACH_DEV(i)
rte_mempool_free(t->pool[i]);
} else {
rte_mempool_free(t->pool[0]);
}
}
int
pipeline_test_setup(struct evt_test *test, struct evt_options *opt)
{
void *test_pipeline;
test_pipeline = rte_zmalloc_socket(test->name,
sizeof(struct test_pipeline), RTE_CACHE_LINE_SIZE,
opt->socket_id);
if (test_pipeline == NULL) {
evt_err("failed to allocate test_pipeline memory");
goto nomem;
}
test->test_priv = test_pipeline;
struct test_pipeline *t = evt_test_priv(test);
t->nb_workers = evt_nr_active_lcores(opt->wlcores);
t->outstand_pkts = opt->nb_pkts * evt_nr_active_lcores(opt->wlcores);
t->done = false;
t->nb_flows = opt->nb_flows;
t->result = EVT_TEST_FAILED;
t->opt = opt;
opt->prod_type = EVT_PROD_TYPE_ETH_RX_ADPTR;
memcpy(t->sched_type_list, opt->sched_type_list,
sizeof(opt->sched_type_list));
return 0;
nomem:
return -ENOMEM;
}
void
pipeline_test_destroy(struct evt_test *test, struct evt_options *opt)
{
RTE_SET_USED(opt);
rte_free(test->test_priv);
}