numam-dpdk/drivers/net/iavf/iavf_rxtx_vec_avx512.c
Zhichao Zeng 3b8c645afa net/iavf: fix outer checksum flags
When receiving tunneled packets, the testpmd output log shows 'ol_flags'
value always as 'RTE_MBUF_F_RX_OUTER_L4_CKSUM_UNKNOWN', but expected value
should be 'RX_OUTER_L4_CKSUM_GOOD' or 'RX_OUTER_L4_CKSUM_BAD'.

Adding 'RX_OUTER_L4_CKSUM_GOOD' and 'RX_OUTER_L4_CKSUM_BAD' to 'flags' for
normal path, 'l3_l4_flags_shuf' for AVX2 and AVX512 vector path and
'cksum_flags' for SSE vector path to ensure that the 'ol_flags'
can match correct flags.

Fixes: b8b4c54ef9 ("net/iavf: support flexible Rx descriptor in normal path")
Fixes: 1162f5a0ef ("net/iavf: support flexible Rx descriptor in SSE path")
Fixes: 5b6e885908 ("net/iavf: support flexible Rx descriptor in AVX path")
Fixes: 9c9aa00403 ("net/iavf: add offload path for Rx AVX512 flex descriptor")
Cc: stable@dpdk.org

Signed-off-by: Zhichao Zeng <zhichaox.zeng@intel.com>
Tested-by: Ke Xu <ke1.xu@intel.com>
Acked-by: Qi Zhang <qi.z.zhang@intel.com>
2022-09-25 16:00:43 +02:00

2097 lines
68 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2020 Intel Corporation
*/
#include "iavf_rxtx_vec_common.h"
#include <rte_vect.h>
#ifndef __INTEL_COMPILER
#pragma GCC diagnostic ignored "-Wcast-qual"
#endif
#define IAVF_DESCS_PER_LOOP_AVX 8
#define PKTLEN_SHIFT 10
/******************************************************************************
* If user knows a specific offload is not enabled by APP,
* the macro can be commented to save the effort of fast path.
* Currently below 2 features are supported in RX path,
* 1, checksum offload
* 2, VLAN/QINQ stripping
* 3, RSS hash
* 4, packet type analysis
* 5, flow director ID report
******************************************************************************/
#define IAVF_RX_CSUM_OFFLOAD
#define IAVF_RX_VLAN_OFFLOAD
#define IAVF_RX_RSS_OFFLOAD
#define IAVF_RX_PTYPE_OFFLOAD
#define IAVF_RX_FDIR_OFFLOAD
static __rte_always_inline void
iavf_rxq_rearm(struct iavf_rx_queue *rxq)
{
int i;
uint16_t rx_id;
volatile union iavf_rx_desc *rxdp;
struct rte_mempool_cache *cache =
rte_mempool_default_cache(rxq->mp, rte_lcore_id());
struct rte_mbuf **rxp = &rxq->sw_ring[rxq->rxrearm_start];
rxdp = rxq->rx_ring + rxq->rxrearm_start;
if (unlikely(!cache))
return iavf_rxq_rearm_common(rxq, true);
/* We need to pull 'n' more MBUFs into the software ring from mempool
* We inline the mempool function here, so we can vectorize the copy
* from the cache into the shadow ring.
*/
/* Can this be satisfied from the cache? */
if (cache->len < IAVF_RXQ_REARM_THRESH) {
/* No. Backfill the cache first, and then fill from it */
uint32_t req = IAVF_RXQ_REARM_THRESH + (cache->size -
cache->len);
/* How many do we require i.e. number to fill the cache + the request */
int ret = rte_mempool_ops_dequeue_bulk
(rxq->mp, &cache->objs[cache->len], req);
if (ret == 0) {
cache->len += req;
} else {
if (rxq->rxrearm_nb + IAVF_RXQ_REARM_THRESH >=
rxq->nb_rx_desc) {
__m128i dma_addr0;
dma_addr0 = _mm_setzero_si128();
for (i = 0; i < IAVF_VPMD_DESCS_PER_LOOP; i++) {
rxp[i] = &rxq->fake_mbuf;
_mm_storeu_si128((__m128i *)&rxdp[i].read,
dma_addr0);
}
}
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
IAVF_RXQ_REARM_THRESH;
return;
}
}
const __m512i iova_offsets = _mm512_set1_epi64(offsetof
(struct rte_mbuf, buf_iova));
const __m512i headroom = _mm512_set1_epi64(RTE_PKTMBUF_HEADROOM);
#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
/* to shuffle the addresses to correct slots. Values 4-7 will contain
* zeros, so use 7 for a zero-value.
*/
const __m512i permute_idx = _mm512_set_epi64(7, 7, 3, 1, 7, 7, 2, 0);
#else
const __m512i permute_idx = _mm512_set_epi64(7, 3, 6, 2, 5, 1, 4, 0);
#endif
/* Initialize the mbufs in vector, process 8 mbufs in one loop, taking
* from mempool cache and populating both shadow and HW rings
*/
for (i = 0; i < IAVF_RXQ_REARM_THRESH / IAVF_DESCS_PER_LOOP_AVX; i++) {
const __m512i mbuf_ptrs = _mm512_loadu_si512
(&cache->objs[cache->len - IAVF_DESCS_PER_LOOP_AVX]);
_mm512_storeu_si512(rxp, mbuf_ptrs);
const __m512i iova_base_addrs = _mm512_i64gather_epi64
(_mm512_add_epi64(mbuf_ptrs, iova_offsets),
0, /* base */
1 /* scale */);
const __m512i iova_addrs = _mm512_add_epi64(iova_base_addrs,
headroom);
#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
const __m512i iovas0 = _mm512_castsi256_si512
(_mm512_extracti64x4_epi64(iova_addrs, 0));
const __m512i iovas1 = _mm512_castsi256_si512
(_mm512_extracti64x4_epi64(iova_addrs, 1));
/* permute leaves desc 2-3 addresses in header address slots 0-1
* but these are ignored by driver since header split not
* enabled. Similarly for desc 6 & 7.
*/
const __m512i desc0_1 = _mm512_permutexvar_epi64
(permute_idx,
iovas0);
const __m512i desc2_3 = _mm512_bsrli_epi128(desc0_1, 8);
const __m512i desc4_5 = _mm512_permutexvar_epi64
(permute_idx,
iovas1);
const __m512i desc6_7 = _mm512_bsrli_epi128(desc4_5, 8);
_mm512_storeu_si512((void *)rxdp, desc0_1);
_mm512_storeu_si512((void *)(rxdp + 2), desc2_3);
_mm512_storeu_si512((void *)(rxdp + 4), desc4_5);
_mm512_storeu_si512((void *)(rxdp + 6), desc6_7);
#else
/* permute leaves desc 4-7 addresses in header address slots 0-3
* but these are ignored by driver since header split not
* enabled.
*/
const __m512i desc0_3 = _mm512_permutexvar_epi64(permute_idx,
iova_addrs);
const __m512i desc4_7 = _mm512_bsrli_epi128(desc0_3, 8);
_mm512_storeu_si512((void *)rxdp, desc0_3);
_mm512_storeu_si512((void *)(rxdp + 4), desc4_7);
#endif
rxp += IAVF_DESCS_PER_LOOP_AVX;
rxdp += IAVF_DESCS_PER_LOOP_AVX;
cache->len -= IAVF_DESCS_PER_LOOP_AVX;
}
rxq->rxrearm_start += IAVF_RXQ_REARM_THRESH;
if (rxq->rxrearm_start >= rxq->nb_rx_desc)
rxq->rxrearm_start = 0;
rxq->rxrearm_nb -= IAVF_RXQ_REARM_THRESH;
rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
(rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
/* Update the tail pointer on the NIC */
IAVF_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
}
#define IAVF_RX_LEN_MASK 0x80808080
static __rte_always_inline uint16_t
_iavf_recv_raw_pkts_vec_avx512(struct iavf_rx_queue *rxq,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts, uint8_t *split_packet,
bool offload)
{
#ifdef IAVF_RX_PTYPE_OFFLOAD
const uint32_t *type_table = rxq->vsi->adapter->ptype_tbl;
#endif
const __m256i mbuf_init = _mm256_set_epi64x(0, 0, 0,
rxq->mbuf_initializer);
struct rte_mbuf **sw_ring = &rxq->sw_ring[rxq->rx_tail];
volatile union iavf_rx_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
rte_prefetch0(rxdp);
/* nb_pkts has to be floor-aligned to IAVF_DESCS_PER_LOOP_AVX */
nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_DESCS_PER_LOOP_AVX);
/* See if we need to rearm the RX queue - gives the prefetch a bit
* of time to act
*/
if (rxq->rxrearm_nb > IAVF_RXQ_REARM_THRESH)
iavf_rxq_rearm(rxq);
/* Before we start moving massive data around, check to see if
* there is actually a packet available
*/
if (!(rxdp->wb.qword1.status_error_len &
rte_cpu_to_le_32(1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
return 0;
/* constants used in processing loop */
const __m512i crc_adjust =
_mm512_set_epi32
(/* 1st descriptor */
0, /* ignore non-length fields */
-rxq->crc_len, /* sub crc on data_len */
-rxq->crc_len, /* sub crc on pkt_len */
0, /* ignore pkt_type field */
/* 2nd descriptor */
0, /* ignore non-length fields */
-rxq->crc_len, /* sub crc on data_len */
-rxq->crc_len, /* sub crc on pkt_len */
0, /* ignore pkt_type field */
/* 3rd descriptor */
0, /* ignore non-length fields */
-rxq->crc_len, /* sub crc on data_len */
-rxq->crc_len, /* sub crc on pkt_len */
0, /* ignore pkt_type field */
/* 4th descriptor */
0, /* ignore non-length fields */
-rxq->crc_len, /* sub crc on data_len */
-rxq->crc_len, /* sub crc on pkt_len */
0 /* ignore pkt_type field */
);
/* 8 packets DD mask, LSB in each 32-bit value */
const __m256i dd_check = _mm256_set1_epi32(1);
/* 8 packets EOP mask, second-LSB in each 32-bit value */
const __m256i eop_check = _mm256_slli_epi32(dd_check,
IAVF_RX_DESC_STATUS_EOF_SHIFT);
/* mask to shuffle from desc. to mbuf (4 descriptors)*/
const __m512i shuf_msk =
_mm512_set_epi32
(/* 1st descriptor */
0x07060504, /* octet 4~7, 32bits rss */
0x03020F0E, /* octet 2~3, low 16 bits vlan_macip */
/* octet 15~14, 16 bits data_len */
0xFFFF0F0E, /* skip high 16 bits pkt_len, zero out */
/* octet 15~14, low 16 bits pkt_len */
0xFFFFFFFF, /* pkt_type set as unknown */
/* 2nd descriptor */
0x07060504, /* octet 4~7, 32bits rss */
0x03020F0E, /* octet 2~3, low 16 bits vlan_macip */
/* octet 15~14, 16 bits data_len */
0xFFFF0F0E, /* skip high 16 bits pkt_len, zero out */
/* octet 15~14, low 16 bits pkt_len */
0xFFFFFFFF, /* pkt_type set as unknown */
/* 3rd descriptor */
0x07060504, /* octet 4~7, 32bits rss */
0x03020F0E, /* octet 2~3, low 16 bits vlan_macip */
/* octet 15~14, 16 bits data_len */
0xFFFF0F0E, /* skip high 16 bits pkt_len, zero out */
/* octet 15~14, low 16 bits pkt_len */
0xFFFFFFFF, /* pkt_type set as unknown */
/* 4th descriptor */
0x07060504, /* octet 4~7, 32bits rss */
0x03020F0E, /* octet 2~3, low 16 bits vlan_macip */
/* octet 15~14, 16 bits data_len */
0xFFFF0F0E, /* skip high 16 bits pkt_len, zero out */
/* octet 15~14, low 16 bits pkt_len */
0xFFFFFFFF /* pkt_type set as unknown */
);
/**
* compile-time check the above crc and shuffle layout is correct.
* NOTE: the first field (lowest address) is given last in set_epi
* calls above.
*/
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
uint16_t i, received;
for (i = 0, received = 0; i < nb_pkts;
i += IAVF_DESCS_PER_LOOP_AVX,
rxdp += IAVF_DESCS_PER_LOOP_AVX) {
/* step 1, copy over 8 mbuf pointers to rx_pkts array */
_mm256_storeu_si256((void *)&rx_pkts[i],
_mm256_loadu_si256((void *)&sw_ring[i]));
#ifdef RTE_ARCH_X86_64
_mm256_storeu_si256
((void *)&rx_pkts[i + 4],
_mm256_loadu_si256((void *)&sw_ring[i + 4]));
#endif
__m512i raw_desc0_3, raw_desc4_7;
const __m128i raw_desc7 =
_mm_load_si128((void *)(rxdp + 7));
rte_compiler_barrier();
const __m128i raw_desc6 =
_mm_load_si128((void *)(rxdp + 6));
rte_compiler_barrier();
const __m128i raw_desc5 =
_mm_load_si128((void *)(rxdp + 5));
rte_compiler_barrier();
const __m128i raw_desc4 =
_mm_load_si128((void *)(rxdp + 4));
rte_compiler_barrier();
const __m128i raw_desc3 =
_mm_load_si128((void *)(rxdp + 3));
rte_compiler_barrier();
const __m128i raw_desc2 =
_mm_load_si128((void *)(rxdp + 2));
rte_compiler_barrier();
const __m128i raw_desc1 =
_mm_load_si128((void *)(rxdp + 1));
rte_compiler_barrier();
const __m128i raw_desc0 =
_mm_load_si128((void *)(rxdp + 0));
raw_desc4_7 = _mm512_broadcast_i32x4(raw_desc4);
raw_desc4_7 = _mm512_inserti32x4(raw_desc4_7, raw_desc5, 1);
raw_desc4_7 = _mm512_inserti32x4(raw_desc4_7, raw_desc6, 2);
raw_desc4_7 = _mm512_inserti32x4(raw_desc4_7, raw_desc7, 3);
raw_desc0_3 = _mm512_broadcast_i32x4(raw_desc0);
raw_desc0_3 = _mm512_inserti32x4(raw_desc0_3, raw_desc1, 1);
raw_desc0_3 = _mm512_inserti32x4(raw_desc0_3, raw_desc2, 2);
raw_desc0_3 = _mm512_inserti32x4(raw_desc0_3, raw_desc3, 3);
if (split_packet) {
int j;
for (j = 0; j < IAVF_DESCS_PER_LOOP_AVX; j++)
rte_mbuf_prefetch_part2(rx_pkts[i + j]);
}
/**
* convert descriptors 4-7 into mbufs, adjusting length and
* re-arranging fields. Then write into the mbuf
*/
const __m512i len4_7 = _mm512_slli_epi32(raw_desc4_7,
PKTLEN_SHIFT);
const __m512i desc4_7 = _mm512_mask_blend_epi16(IAVF_RX_LEN_MASK,
raw_desc4_7,
len4_7);
__m512i mb4_7 = _mm512_shuffle_epi8(desc4_7, shuf_msk);
mb4_7 = _mm512_add_epi32(mb4_7, crc_adjust);
#ifdef IAVF_RX_PTYPE_OFFLOAD
/**
* to get packet types, shift 64-bit values down 30 bits
* and so ptype is in lower 8-bits in each
*/
const __m512i ptypes4_7 = _mm512_srli_epi64(desc4_7, 30);
const __m256i ptypes6_7 = _mm512_extracti64x4_epi64(ptypes4_7, 1);
const __m256i ptypes4_5 = _mm512_extracti64x4_epi64(ptypes4_7, 0);
const uint8_t ptype7 = _mm256_extract_epi8(ptypes6_7, 24);
const uint8_t ptype6 = _mm256_extract_epi8(ptypes6_7, 8);
const uint8_t ptype5 = _mm256_extract_epi8(ptypes4_5, 24);
const uint8_t ptype4 = _mm256_extract_epi8(ptypes4_5, 8);
const __m512i ptype4_7 = _mm512_set_epi32
(0, 0, 0, type_table[ptype7],
0, 0, 0, type_table[ptype6],
0, 0, 0, type_table[ptype5],
0, 0, 0, type_table[ptype4]);
mb4_7 = _mm512_mask_blend_epi32(0x1111, mb4_7, ptype4_7);
#endif
/**
* convert descriptors 0-3 into mbufs, adjusting length and
* re-arranging fields. Then write into the mbuf
*/
const __m512i len0_3 = _mm512_slli_epi32(raw_desc0_3,
PKTLEN_SHIFT);
const __m512i desc0_3 = _mm512_mask_blend_epi16(IAVF_RX_LEN_MASK,
raw_desc0_3,
len0_3);
__m512i mb0_3 = _mm512_shuffle_epi8(desc0_3, shuf_msk);
mb0_3 = _mm512_add_epi32(mb0_3, crc_adjust);
#ifdef IAVF_RX_PTYPE_OFFLOAD
/* get the packet types */
const __m512i ptypes0_3 = _mm512_srli_epi64(desc0_3, 30);
const __m256i ptypes2_3 = _mm512_extracti64x4_epi64(ptypes0_3, 1);
const __m256i ptypes0_1 = _mm512_extracti64x4_epi64(ptypes0_3, 0);
const uint8_t ptype3 = _mm256_extract_epi8(ptypes2_3, 24);
const uint8_t ptype2 = _mm256_extract_epi8(ptypes2_3, 8);
const uint8_t ptype1 = _mm256_extract_epi8(ptypes0_1, 24);
const uint8_t ptype0 = _mm256_extract_epi8(ptypes0_1, 8);
const __m512i ptype0_3 = _mm512_set_epi32
(0, 0, 0, type_table[ptype3],
0, 0, 0, type_table[ptype2],
0, 0, 0, type_table[ptype1],
0, 0, 0, type_table[ptype0]);
mb0_3 = _mm512_mask_blend_epi32(0x1111, mb0_3, ptype0_3);
#endif
/**
* use permute/extract to get status content
* After the operations, the packets status flags are in the
* order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
*/
/* merge the status bits into one register */
const __m512i status_permute_msk = _mm512_set_epi32
(0, 0, 0, 0,
0, 0, 0, 0,
22, 30, 6, 14,
18, 26, 2, 10);
const __m512i raw_status0_7 = _mm512_permutex2var_epi32
(raw_desc4_7, status_permute_msk, raw_desc0_3);
__m256i status0_7 = _mm512_extracti64x4_epi64
(raw_status0_7, 0);
/* now do flag manipulation */
/* merge flags */
__m256i mbuf_flags = _mm256_set1_epi32(0);
if (offload) {
#if defined(IAVF_RX_CSUM_OFFLOAD) || defined(IAVF_RX_VLAN_OFFLOAD) || defined(IAVF_RX_RSS_OFFLOAD)
/* Status/Error flag masks */
/**
* mask everything except RSS, flow director and VLAN flags
* bit2 is for VLAN tag, bit11 for flow director indication
* bit13:12 for RSS indication. Bits 3-5 of error
* field (bits 22-24) are for IP/L4 checksum errors
*/
const __m256i flags_mask =
_mm256_set1_epi32((1 << 2) | (1 << 11) |
(3 << 12) | (7 << 22));
#endif
#ifdef IAVF_RX_VLAN_OFFLOAD
/**
* data to be shuffled by result of flag mask. If VLAN bit is set,
* (bit 2), then position 4 in this array will be used in the
* destination
*/
const __m256i vlan_flags_shuf =
_mm256_set_epi32(0, 0, RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, 0,
0, 0, RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, 0);
#endif
#ifdef IAVF_RX_RSS_OFFLOAD
/**
* data to be shuffled by result of flag mask, shifted down 11.
* If RSS/FDIR bits are set, shuffle moves appropriate flags in
* place.
*/
const __m256i rss_flags_shuf =
_mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_FDIR, RTE_MBUF_F_RX_RSS_HASH,
0, 0, 0, 0, RTE_MBUF_F_RX_FDIR, 0,/* end up 128-bits */
0, 0, 0, 0, 0, 0, 0, 0,
RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_FDIR, RTE_MBUF_F_RX_RSS_HASH,
0, 0, 0, 0, RTE_MBUF_F_RX_FDIR, 0);
#endif
#ifdef IAVF_RX_CSUM_OFFLOAD
/**
* data to be shuffled by the result of the flags mask shifted by 22
* bits. This gives use the l3_l4 flags.
*/
const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
/* shift right 1 bit to make sure it not exceed 255 */
(RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1,
RTE_MBUF_F_RX_IP_CKSUM_BAD >> 1,
(RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1,
/* second 128-bits */
0, 0, 0, 0, 0, 0, 0, 0,
(RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1,
RTE_MBUF_F_RX_IP_CKSUM_BAD >> 1,
(RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1);
const __m256i cksum_mask =
_mm256_set1_epi32(RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD);
#endif
#if defined(IAVF_RX_CSUM_OFFLOAD) || defined(IAVF_RX_VLAN_OFFLOAD) || defined(IAVF_RX_RSS_OFFLOAD)
/* get only flag/error bits we want */
const __m256i flag_bits =
_mm256_and_si256(status0_7, flags_mask);
#endif
/* set vlan and rss flags */
#ifdef IAVF_RX_VLAN_OFFLOAD
const __m256i vlan_flags =
_mm256_shuffle_epi8(vlan_flags_shuf, flag_bits);
#endif
#ifdef IAVF_RX_RSS_OFFLOAD
const __m256i rss_flags =
_mm256_shuffle_epi8(rss_flags_shuf,
_mm256_srli_epi32(flag_bits, 11));
#endif
#ifdef IAVF_RX_CSUM_OFFLOAD
/**
* l3_l4_error flags, shuffle, then shift to correct adjustment
* of flags in flags_shuf, and finally mask out extra bits
*/
__m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
_mm256_srli_epi32(flag_bits, 22));
l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
#endif
#ifdef IAVF_RX_CSUM_OFFLOAD
mbuf_flags = _mm256_or_si256(mbuf_flags, l3_l4_flags);
#endif
#ifdef IAVF_RX_RSS_OFFLOAD
mbuf_flags = _mm256_or_si256(mbuf_flags, rss_flags);
#endif
#ifdef IAVF_RX_VLAN_OFFLOAD
mbuf_flags = _mm256_or_si256(mbuf_flags, vlan_flags);
#endif
}
/**
* At this point, we have the 8 sets of flags in the low 16-bits
* of each 32-bit value in vlan0.
* We want to extract these, and merge them with the mbuf init
* data so we can do a single write to the mbuf to set the flags
* and all the other initialization fields. Extracting the
* appropriate flags means that we have to do a shift and blend
* for each mbuf before we do the write. However, we can also
* add in the previously computed rx_descriptor fields to
* make a single 256-bit write per mbuf
*/
/* check the structure matches expectations */
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
offsetof(struct rte_mbuf, rearm_data) + 8);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
RTE_ALIGN(offsetof(struct rte_mbuf,
rearm_data),
16));
/* build up data and do writes */
__m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
rearm6, rearm7;
const __m256i mb4_5 = _mm512_extracti64x4_epi64(mb4_7, 0);
const __m256i mb6_7 = _mm512_extracti64x4_epi64(mb4_7, 1);
const __m256i mb0_1 = _mm512_extracti64x4_epi64(mb0_3, 0);
const __m256i mb2_3 = _mm512_extracti64x4_epi64(mb0_3, 1);
if (offload) {
rearm6 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(mbuf_flags, 8),
0x04);
rearm4 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(mbuf_flags, 4),
0x04);
rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
rearm0 = _mm256_blend_epi32(mbuf_init,
_mm256_srli_si256(mbuf_flags, 4),
0x04);
/* permute to add in the rx_descriptor e.g. rss fields */
rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
} else {
rearm6 = _mm256_permute2f128_si256(mbuf_init, mb6_7, 0x20);
rearm4 = _mm256_permute2f128_si256(mbuf_init, mb4_5, 0x20);
rearm2 = _mm256_permute2f128_si256(mbuf_init, mb2_3, 0x20);
rearm0 = _mm256_permute2f128_si256(mbuf_init, mb0_1, 0x20);
}
/* write to mbuf */
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
rearm6);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
rearm4);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
rearm2);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
rearm0);
/* repeat for the odd mbufs */
if (offload) {
const __m256i odd_flags =
_mm256_castsi128_si256
(_mm256_extracti128_si256(mbuf_flags, 1));
rearm7 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(odd_flags, 8),
0x04);
rearm5 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(odd_flags, 4),
0x04);
rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
rearm1 = _mm256_blend_epi32(mbuf_init,
_mm256_srli_si256(odd_flags, 4),
0x04);
/* since odd mbufs are already in hi 128-bits use blend */
rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
} else {
rearm7 = _mm256_blend_epi32(mbuf_init, mb6_7, 0xF0);
rearm5 = _mm256_blend_epi32(mbuf_init, mb4_5, 0xF0);
rearm3 = _mm256_blend_epi32(mbuf_init, mb2_3, 0xF0);
rearm1 = _mm256_blend_epi32(mbuf_init, mb0_1, 0xF0);
}
/* again write to mbufs */
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
rearm7);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
rearm5);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
rearm3);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
rearm1);
/* extract and record EOP bit */
if (split_packet) {
const __m128i eop_mask =
_mm_set1_epi16(1 << IAVF_RX_DESC_STATUS_EOF_SHIFT);
const __m256i eop_bits256 = _mm256_and_si256(status0_7,
eop_check);
/* pack status bits into a single 128-bit register */
const __m128i eop_bits =
_mm_packus_epi32
(_mm256_castsi256_si128(eop_bits256),
_mm256_extractf128_si256(eop_bits256,
1));
/**
* flip bits, and mask out the EOP bit, which is now
* a split-packet bit i.e. !EOP, rather than EOP one.
*/
__m128i split_bits = _mm_andnot_si128(eop_bits,
eop_mask);
/**
* eop bits are out of order, so we need to shuffle them
* back into order again. In doing so, only use low 8
* bits, which acts like another pack instruction
* The original order is (hi->lo): 1,3,5,7,0,2,4,6
* [Since we use epi8, the 16-bit positions are
* multiplied by 2 in the eop_shuffle value.]
*/
__m128i eop_shuffle =
_mm_set_epi8(/* zero hi 64b */
0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF,
/* move values to lo 64b */
8, 0, 10, 2,
12, 4, 14, 6);
split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
*(uint64_t *)split_packet =
_mm_cvtsi128_si64(split_bits);
split_packet += IAVF_DESCS_PER_LOOP_AVX;
}
/* perform dd_check */
status0_7 = _mm256_and_si256(status0_7, dd_check);
status0_7 = _mm256_packs_epi32(status0_7,
_mm256_setzero_si256());
uint64_t burst = __builtin_popcountll
(_mm_cvtsi128_si64
(_mm256_extracti128_si256
(status0_7, 1)));
burst += __builtin_popcountll
(_mm_cvtsi128_si64
(_mm256_castsi256_si128(status0_7)));
received += burst;
if (burst != IAVF_DESCS_PER_LOOP_AVX)
break;
}
/* update tail pointers */
rxq->rx_tail += received;
rxq->rx_tail &= (rxq->nb_rx_desc - 1);
if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep aligned */
rxq->rx_tail--;
received--;
}
rxq->rxrearm_nb += received;
return received;
}
static __rte_always_inline __m256i
flex_rxd_to_fdir_flags_vec_avx512(const __m256i fdir_id0_7)
{
#define FDID_MIS_MAGIC 0xFFFFFFFF
RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR != (1 << 2));
RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR_ID != (1 << 13));
const __m256i pkt_fdir_bit = _mm256_set1_epi32(RTE_MBUF_F_RX_FDIR |
RTE_MBUF_F_RX_FDIR_ID);
/* desc->flow_id field == 0xFFFFFFFF means fdir mismatch */
const __m256i fdir_mis_mask = _mm256_set1_epi32(FDID_MIS_MAGIC);
__m256i fdir_mask = _mm256_cmpeq_epi32(fdir_id0_7,
fdir_mis_mask);
/* this XOR op results to bit-reverse the fdir_mask */
fdir_mask = _mm256_xor_si256(fdir_mask, fdir_mis_mask);
const __m256i fdir_flags = _mm256_and_si256(fdir_mask, pkt_fdir_bit);
return fdir_flags;
}
static __rte_always_inline uint16_t
_iavf_recv_raw_pkts_vec_avx512_flex_rxd(struct iavf_rx_queue *rxq,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts,
uint8_t *split_packet,
bool offload)
{
struct iavf_adapter *adapter = rxq->vsi->adapter;
uint64_t offloads = adapter->dev_data->dev_conf.rxmode.offloads;
#ifdef IAVF_RX_PTYPE_OFFLOAD
const uint32_t *type_table = adapter->ptype_tbl;
#endif
const __m256i mbuf_init = _mm256_set_epi64x(0, 0, 0,
rxq->mbuf_initializer);
struct rte_mbuf **sw_ring = &rxq->sw_ring[rxq->rx_tail];
volatile union iavf_rx_flex_desc *rxdp =
(union iavf_rx_flex_desc *)rxq->rx_ring + rxq->rx_tail;
rte_prefetch0(rxdp);
/* nb_pkts has to be floor-aligned to IAVF_DESCS_PER_LOOP_AVX */
nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_DESCS_PER_LOOP_AVX);
/* See if we need to rearm the RX queue - gives the prefetch a bit
* of time to act
*/
if (rxq->rxrearm_nb > IAVF_RXQ_REARM_THRESH)
iavf_rxq_rearm(rxq);
/* Before we start moving massive data around, check to see if
* there is actually a packet available
*/
if (!(rxdp->wb.status_error0 &
rte_cpu_to_le_32(1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
return 0;
/* constants used in processing loop */
const __m512i crc_adjust =
_mm512_set_epi32
(/* 1st descriptor */
0, /* ignore non-length fields */
-rxq->crc_len, /* sub crc on data_len */
-rxq->crc_len, /* sub crc on pkt_len */
0, /* ignore pkt_type field */
/* 2nd descriptor */
0, /* ignore non-length fields */
-rxq->crc_len, /* sub crc on data_len */
-rxq->crc_len, /* sub crc on pkt_len */
0, /* ignore pkt_type field */
/* 3rd descriptor */
0, /* ignore non-length fields */
-rxq->crc_len, /* sub crc on data_len */
-rxq->crc_len, /* sub crc on pkt_len */
0, /* ignore pkt_type field */
/* 4th descriptor */
0, /* ignore non-length fields */
-rxq->crc_len, /* sub crc on data_len */
-rxq->crc_len, /* sub crc on pkt_len */
0 /* ignore pkt_type field */
);
/* 8 packets DD mask, LSB in each 32-bit value */
const __m256i dd_check = _mm256_set1_epi32(1);
/* 8 packets EOP mask, second-LSB in each 32-bit value */
const __m256i eop_check = _mm256_slli_epi32(dd_check,
IAVF_RX_FLEX_DESC_STATUS0_EOF_S);
/* mask to shuffle from desc. to mbuf (4 descriptors)*/
const __m512i shuf_msk =
_mm512_set_epi32
(/* 1st descriptor */
0xFFFFFFFF, /* rss hash parsed separately */
0x0B0A0504, /* octet 10~11, 16 bits vlan_macip */
/* octet 4~5, 16 bits data_len */
0xFFFF0504, /* skip hi 16 bits pkt_len, zero out */
/* octet 4~5, 16 bits pkt_len */
0xFFFFFFFF, /* pkt_type set as unknown */
/* 2nd descriptor */
0xFFFFFFFF, /* rss hash parsed separately */
0x0B0A0504, /* octet 10~11, 16 bits vlan_macip */
/* octet 4~5, 16 bits data_len */
0xFFFF0504, /* skip hi 16 bits pkt_len, zero out */
/* octet 4~5, 16 bits pkt_len */
0xFFFFFFFF, /* pkt_type set as unknown */
/* 3rd descriptor */
0xFFFFFFFF, /* rss hash parsed separately */
0x0B0A0504, /* octet 10~11, 16 bits vlan_macip */
/* octet 4~5, 16 bits data_len */
0xFFFF0504, /* skip hi 16 bits pkt_len, zero out */
/* octet 4~5, 16 bits pkt_len */
0xFFFFFFFF, /* pkt_type set as unknown */
/* 4th descriptor */
0xFFFFFFFF, /* rss hash parsed separately */
0x0B0A0504, /* octet 10~11, 16 bits vlan_macip */
/* octet 4~5, 16 bits data_len */
0xFFFF0504, /* skip hi 16 bits pkt_len, zero out */
/* octet 4~5, 16 bits pkt_len */
0xFFFFFFFF /* pkt_type set as unknown */
);
/**
* compile-time check the above crc and shuffle layout is correct.
* NOTE: the first field (lowest address) is given last in set_epi
* calls above.
*/
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
uint16_t i, received;
for (i = 0, received = 0; i < nb_pkts;
i += IAVF_DESCS_PER_LOOP_AVX,
rxdp += IAVF_DESCS_PER_LOOP_AVX) {
/* step 1, copy over 8 mbuf pointers to rx_pkts array */
_mm256_storeu_si256((void *)&rx_pkts[i],
_mm256_loadu_si256((void *)&sw_ring[i]));
#ifdef RTE_ARCH_X86_64
_mm256_storeu_si256
((void *)&rx_pkts[i + 4],
_mm256_loadu_si256((void *)&sw_ring[i + 4]));
#endif
__m512i raw_desc0_3, raw_desc4_7;
const __m128i raw_desc7 =
_mm_load_si128((void *)(rxdp + 7));
rte_compiler_barrier();
const __m128i raw_desc6 =
_mm_load_si128((void *)(rxdp + 6));
rte_compiler_barrier();
const __m128i raw_desc5 =
_mm_load_si128((void *)(rxdp + 5));
rte_compiler_barrier();
const __m128i raw_desc4 =
_mm_load_si128((void *)(rxdp + 4));
rte_compiler_barrier();
const __m128i raw_desc3 =
_mm_load_si128((void *)(rxdp + 3));
rte_compiler_barrier();
const __m128i raw_desc2 =
_mm_load_si128((void *)(rxdp + 2));
rte_compiler_barrier();
const __m128i raw_desc1 =
_mm_load_si128((void *)(rxdp + 1));
rte_compiler_barrier();
const __m128i raw_desc0 =
_mm_load_si128((void *)(rxdp + 0));
raw_desc4_7 = _mm512_broadcast_i32x4(raw_desc4);
raw_desc4_7 = _mm512_inserti32x4(raw_desc4_7, raw_desc5, 1);
raw_desc4_7 = _mm512_inserti32x4(raw_desc4_7, raw_desc6, 2);
raw_desc4_7 = _mm512_inserti32x4(raw_desc4_7, raw_desc7, 3);
raw_desc0_3 = _mm512_broadcast_i32x4(raw_desc0);
raw_desc0_3 = _mm512_inserti32x4(raw_desc0_3, raw_desc1, 1);
raw_desc0_3 = _mm512_inserti32x4(raw_desc0_3, raw_desc2, 2);
raw_desc0_3 = _mm512_inserti32x4(raw_desc0_3, raw_desc3, 3);
if (split_packet) {
int j;
for (j = 0; j < IAVF_DESCS_PER_LOOP_AVX; j++)
rte_mbuf_prefetch_part2(rx_pkts[i + j]);
}
/**
* convert descriptors 4-7 into mbufs, re-arrange fields.
* Then write into the mbuf.
*/
__m512i mb4_7 = _mm512_shuffle_epi8(raw_desc4_7, shuf_msk);
mb4_7 = _mm512_add_epi32(mb4_7, crc_adjust);
#ifdef IAVF_RX_PTYPE_OFFLOAD
/**
* to get packet types, ptype is located in bit16-25
* of each 128bits
*/
const __m512i ptype_mask =
_mm512_set1_epi16(IAVF_RX_FLEX_DESC_PTYPE_M);
const __m512i ptypes4_7 =
_mm512_and_si512(raw_desc4_7, ptype_mask);
const __m256i ptypes6_7 = _mm512_extracti64x4_epi64(ptypes4_7, 1);
const __m256i ptypes4_5 = _mm512_extracti64x4_epi64(ptypes4_7, 0);
const uint16_t ptype7 = _mm256_extract_epi16(ptypes6_7, 9);
const uint16_t ptype6 = _mm256_extract_epi16(ptypes6_7, 1);
const uint16_t ptype5 = _mm256_extract_epi16(ptypes4_5, 9);
const uint16_t ptype4 = _mm256_extract_epi16(ptypes4_5, 1);
const __m512i ptype4_7 = _mm512_set_epi32
(0, 0, 0, type_table[ptype7],
0, 0, 0, type_table[ptype6],
0, 0, 0, type_table[ptype5],
0, 0, 0, type_table[ptype4]);
mb4_7 = _mm512_mask_blend_epi32(0x1111, mb4_7, ptype4_7);
#endif
/**
* convert descriptors 0-3 into mbufs, re-arrange fields.
* Then write into the mbuf.
*/
__m512i mb0_3 = _mm512_shuffle_epi8(raw_desc0_3, shuf_msk);
mb0_3 = _mm512_add_epi32(mb0_3, crc_adjust);
#ifdef IAVF_RX_PTYPE_OFFLOAD
/**
* to get packet types, ptype is located in bit16-25
* of each 128bits
*/
const __m512i ptypes0_3 =
_mm512_and_si512(raw_desc0_3, ptype_mask);
const __m256i ptypes2_3 = _mm512_extracti64x4_epi64(ptypes0_3, 1);
const __m256i ptypes0_1 = _mm512_extracti64x4_epi64(ptypes0_3, 0);
const uint16_t ptype3 = _mm256_extract_epi16(ptypes2_3, 9);
const uint16_t ptype2 = _mm256_extract_epi16(ptypes2_3, 1);
const uint16_t ptype1 = _mm256_extract_epi16(ptypes0_1, 9);
const uint16_t ptype0 = _mm256_extract_epi16(ptypes0_1, 1);
const __m512i ptype0_3 = _mm512_set_epi32
(0, 0, 0, type_table[ptype3],
0, 0, 0, type_table[ptype2],
0, 0, 0, type_table[ptype1],
0, 0, 0, type_table[ptype0]);
mb0_3 = _mm512_mask_blend_epi32(0x1111, mb0_3, ptype0_3);
#endif
/**
* use permute/extract to get status content
* After the operations, the packets status flags are in the
* order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
*/
/* merge the status bits into one register */
const __m512i status_permute_msk = _mm512_set_epi32
(0, 0, 0, 0,
0, 0, 0, 0,
22, 30, 6, 14,
18, 26, 2, 10);
const __m512i raw_status0_7 = _mm512_permutex2var_epi32
(raw_desc4_7, status_permute_msk, raw_desc0_3);
__m256i status0_7 = _mm512_extracti64x4_epi64
(raw_status0_7, 0);
/* now do flag manipulation */
/* merge flags */
__m256i mbuf_flags = _mm256_set1_epi32(0);
__m256i vlan_flags = _mm256_setzero_si256();
if (offload) {
#if defined(IAVF_RX_CSUM_OFFLOAD) || defined(IAVF_RX_VLAN_OFFLOAD) || defined(IAVF_RX_RSS_OFFLOAD)
/* Status/Error flag masks */
/**
* mask everything except Checksum Reports, RSS indication
* and VLAN indication.
* bit6:4 for IP/L4 checksum errors.
* bit12 is for RSS indication.
* bit13 is for VLAN indication.
*/
const __m256i flags_mask =
_mm256_set1_epi32((0xF << 4) | (1 << 12) | (1 << 13));
#endif
#ifdef IAVF_RX_CSUM_OFFLOAD
/**
* data to be shuffled by the result of the flags mask shifted by 4
* bits. This gives use the l3_l4 flags.
*/
const __m256i l3_l4_flags_shuf =
_mm256_set_epi8((RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 |
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 |
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 |
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 |
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 |
RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 |
RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 |
RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 |
RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 |
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 |
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 |
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 |
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 |
RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 |
RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 |
RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 |
RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
/**
* second 128-bits
* shift right 20 bits to use the low two bits to indicate
* outer checksum status
* shift right 1 bit to make sure it not exceed 255
*/
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 |
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 |
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 |
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 |
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 |
RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 |
RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 |
RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 |
RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 |
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 |
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 |
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 |
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 |
RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 |
RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 |
RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 |
RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1);
const __m256i cksum_mask =
_mm256_set1_epi32(RTE_MBUF_F_RX_IP_CKSUM_MASK |
RTE_MBUF_F_RX_L4_CKSUM_MASK |
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
RTE_MBUF_F_RX_OUTER_L4_CKSUM_MASK);
#endif
#if defined(IAVF_RX_VLAN_OFFLOAD) || defined(IAVF_RX_RSS_OFFLOAD)
/**
* data to be shuffled by result of flag mask, shifted down 12.
* If RSS(bit12)/VLAN(bit13) are set,
* shuffle moves appropriate flags in place.
*/
const __m256i rss_flags_shuf = _mm256_set_epi8
(0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
RTE_MBUF_F_RX_RSS_HASH, 0,
RTE_MBUF_F_RX_RSS_HASH, 0,
/* end up 128-bits */
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
RTE_MBUF_F_RX_RSS_HASH, 0,
RTE_MBUF_F_RX_RSS_HASH, 0);
const __m256i vlan_flags_shuf = _mm256_set_epi8
(0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
0, 0,
/* end up 128-bits */
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
0, 0);
#endif
#if defined(IAVF_RX_CSUM_OFFLOAD) || defined(IAVF_RX_VLAN_OFFLOAD) || defined(IAVF_RX_RSS_OFFLOAD)
/* get only flag/error bits we want */
const __m256i flag_bits =
_mm256_and_si256(status0_7, flags_mask);
#endif
#ifdef IAVF_RX_CSUM_OFFLOAD
/**
* l3_l4_error flags, shuffle, then shift to correct adjustment
* of flags in flags_shuf, and finally mask out extra bits
*/
__m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
_mm256_srli_epi32(flag_bits, 4));
l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
__m256i l4_outer_mask = _mm256_set1_epi32(0x6);
__m256i l4_outer_flags =
_mm256_and_si256(l3_l4_flags, l4_outer_mask);
l4_outer_flags = _mm256_slli_epi32(l4_outer_flags, 20);
__m256i l3_l4_mask = _mm256_set1_epi32(~0x6);
l3_l4_flags = _mm256_and_si256(l3_l4_flags, l3_l4_mask);
l3_l4_flags = _mm256_or_si256(l3_l4_flags, l4_outer_flags);
l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
#endif
#if defined(IAVF_RX_VLAN_OFFLOAD) || defined(IAVF_RX_RSS_OFFLOAD)
/* set rss and vlan flags */
const __m256i rss_vlan_flag_bits =
_mm256_srli_epi32(flag_bits, 12);
const __m256i rss_flags =
_mm256_shuffle_epi8(rss_flags_shuf,
rss_vlan_flag_bits);
if (rxq->rx_flags == IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG1)
vlan_flags =
_mm256_shuffle_epi8(vlan_flags_shuf,
rss_vlan_flag_bits);
const __m256i rss_vlan_flags =
_mm256_or_si256(rss_flags, vlan_flags);
#endif
#ifdef IAVF_RX_CSUM_OFFLOAD
mbuf_flags = _mm256_or_si256(mbuf_flags, l3_l4_flags);
#endif
#if defined(IAVF_RX_VLAN_OFFLOAD) || defined(IAVF_RX_RSS_OFFLOAD)
mbuf_flags = _mm256_or_si256(mbuf_flags, rss_vlan_flags);
#endif
}
#ifdef IAVF_RX_FDIR_OFFLOAD
if (rxq->fdir_enabled) {
const __m512i fdir_permute_mask = _mm512_set_epi32
(0, 0, 0, 0,
0, 0, 0, 0,
7, 15, 23, 31,
3, 11, 19, 27);
__m512i fdir_tmp = _mm512_permutex2var_epi32
(raw_desc0_3, fdir_permute_mask, raw_desc4_7);
const __m256i fdir_id0_7 = _mm512_extracti64x4_epi64
(fdir_tmp, 0);
const __m256i fdir_flags =
flex_rxd_to_fdir_flags_vec_avx512(fdir_id0_7);
/* merge with fdir_flags */
mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_flags);
/* write to mbuf: have to use scalar store here */
rx_pkts[i + 0]->hash.fdir.hi =
_mm256_extract_epi32(fdir_id0_7, 3);
rx_pkts[i + 1]->hash.fdir.hi =
_mm256_extract_epi32(fdir_id0_7, 7);
rx_pkts[i + 2]->hash.fdir.hi =
_mm256_extract_epi32(fdir_id0_7, 2);
rx_pkts[i + 3]->hash.fdir.hi =
_mm256_extract_epi32(fdir_id0_7, 6);
rx_pkts[i + 4]->hash.fdir.hi =
_mm256_extract_epi32(fdir_id0_7, 1);
rx_pkts[i + 5]->hash.fdir.hi =
_mm256_extract_epi32(fdir_id0_7, 5);
rx_pkts[i + 6]->hash.fdir.hi =
_mm256_extract_epi32(fdir_id0_7, 0);
rx_pkts[i + 7]->hash.fdir.hi =
_mm256_extract_epi32(fdir_id0_7, 4);
} /* if() on fdir_enabled */
#endif
__m256i mb4_5 = _mm512_extracti64x4_epi64(mb4_7, 0);
__m256i mb6_7 = _mm512_extracti64x4_epi64(mb4_7, 1);
__m256i mb0_1 = _mm512_extracti64x4_epi64(mb0_3, 0);
__m256i mb2_3 = _mm512_extracti64x4_epi64(mb0_3, 1);
#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
if (offload) {
#ifdef IAVF_RX_RSS_OFFLOAD
/**
* needs to load 2nd 16B of each desc for RSS hash parsing,
* will cause performance drop to get into this context.
*/
if (offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH ||
rxq->rx_flags & IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG2_2) {
/* load bottom half of every 32B desc */
const __m128i raw_desc_bh7 =
_mm_load_si128
((void *)(&rxdp[7].wb.status_error1));
rte_compiler_barrier();
const __m128i raw_desc_bh6 =
_mm_load_si128
((void *)(&rxdp[6].wb.status_error1));
rte_compiler_barrier();
const __m128i raw_desc_bh5 =
_mm_load_si128
((void *)(&rxdp[5].wb.status_error1));
rte_compiler_barrier();
const __m128i raw_desc_bh4 =
_mm_load_si128
((void *)(&rxdp[4].wb.status_error1));
rte_compiler_barrier();
const __m128i raw_desc_bh3 =
_mm_load_si128
((void *)(&rxdp[3].wb.status_error1));
rte_compiler_barrier();
const __m128i raw_desc_bh2 =
_mm_load_si128
((void *)(&rxdp[2].wb.status_error1));
rte_compiler_barrier();
const __m128i raw_desc_bh1 =
_mm_load_si128
((void *)(&rxdp[1].wb.status_error1));
rte_compiler_barrier();
const __m128i raw_desc_bh0 =
_mm_load_si128
((void *)(&rxdp[0].wb.status_error1));
__m256i raw_desc_bh6_7 =
_mm256_inserti128_si256
(_mm256_castsi128_si256(raw_desc_bh6),
raw_desc_bh7, 1);
__m256i raw_desc_bh4_5 =
_mm256_inserti128_si256
(_mm256_castsi128_si256(raw_desc_bh4),
raw_desc_bh5, 1);
__m256i raw_desc_bh2_3 =
_mm256_inserti128_si256
(_mm256_castsi128_si256(raw_desc_bh2),
raw_desc_bh3, 1);
__m256i raw_desc_bh0_1 =
_mm256_inserti128_si256
(_mm256_castsi128_si256(raw_desc_bh0),
raw_desc_bh1, 1);
if (offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH) {
/**
* to shift the 32b RSS hash value to the
* highest 32b of each 128b before mask
*/
__m256i rss_hash6_7 =
_mm256_slli_epi64
(raw_desc_bh6_7, 32);
__m256i rss_hash4_5 =
_mm256_slli_epi64
(raw_desc_bh4_5, 32);
__m256i rss_hash2_3 =
_mm256_slli_epi64
(raw_desc_bh2_3, 32);
__m256i rss_hash0_1 =
_mm256_slli_epi64
(raw_desc_bh0_1, 32);
const __m256i rss_hash_msk =
_mm256_set_epi32
(0xFFFFFFFF, 0, 0, 0,
0xFFFFFFFF, 0, 0, 0);
rss_hash6_7 = _mm256_and_si256
(rss_hash6_7, rss_hash_msk);
rss_hash4_5 = _mm256_and_si256
(rss_hash4_5, rss_hash_msk);
rss_hash2_3 = _mm256_and_si256
(rss_hash2_3, rss_hash_msk);
rss_hash0_1 = _mm256_and_si256
(rss_hash0_1, rss_hash_msk);
mb6_7 = _mm256_or_si256
(mb6_7, rss_hash6_7);
mb4_5 = _mm256_or_si256
(mb4_5, rss_hash4_5);
mb2_3 = _mm256_or_si256
(mb2_3, rss_hash2_3);
mb0_1 = _mm256_or_si256
(mb0_1, rss_hash0_1);
}
if (rxq->rx_flags & IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG2_2) {
/* merge the status/error-1 bits into one register */
const __m256i status1_4_7 =
_mm256_unpacklo_epi32
(raw_desc_bh6_7,
raw_desc_bh4_5);
const __m256i status1_0_3 =
_mm256_unpacklo_epi32
(raw_desc_bh2_3,
raw_desc_bh0_1);
const __m256i status1_0_7 =
_mm256_unpacklo_epi64
(status1_4_7, status1_0_3);
const __m256i l2tag2p_flag_mask =
_mm256_set1_epi32
(1 << IAVF_RX_FLEX_DESC_STATUS1_L2TAG2P_S);
__m256i l2tag2p_flag_bits =
_mm256_and_si256
(status1_0_7,
l2tag2p_flag_mask);
l2tag2p_flag_bits =
_mm256_srli_epi32
(l2tag2p_flag_bits,
IAVF_RX_FLEX_DESC_STATUS1_L2TAG2P_S);
const __m256i l2tag2_flags_shuf =
_mm256_set_epi8
(0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
/* end up 128-bits */
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0,
RTE_MBUF_F_RX_VLAN |
RTE_MBUF_F_RX_VLAN_STRIPPED,
0);
vlan_flags =
_mm256_shuffle_epi8
(l2tag2_flags_shuf,
l2tag2p_flag_bits);
/* merge with vlan_flags */
mbuf_flags = _mm256_or_si256
(mbuf_flags,
vlan_flags);
/* L2TAG2_2 */
__m256i vlan_tci6_7 =
_mm256_slli_si256
(raw_desc_bh6_7, 4);
__m256i vlan_tci4_5 =
_mm256_slli_si256
(raw_desc_bh4_5, 4);
__m256i vlan_tci2_3 =
_mm256_slli_si256
(raw_desc_bh2_3, 4);
__m256i vlan_tci0_1 =
_mm256_slli_si256
(raw_desc_bh0_1, 4);
const __m256i vlan_tci_msk =
_mm256_set_epi32
(0, 0xFFFF0000, 0, 0,
0, 0xFFFF0000, 0, 0);
vlan_tci6_7 = _mm256_and_si256
(vlan_tci6_7,
vlan_tci_msk);
vlan_tci4_5 = _mm256_and_si256
(vlan_tci4_5,
vlan_tci_msk);
vlan_tci2_3 = _mm256_and_si256
(vlan_tci2_3,
vlan_tci_msk);
vlan_tci0_1 = _mm256_and_si256
(vlan_tci0_1,
vlan_tci_msk);
mb6_7 = _mm256_or_si256
(mb6_7, vlan_tci6_7);
mb4_5 = _mm256_or_si256
(mb4_5, vlan_tci4_5);
mb2_3 = _mm256_or_si256
(mb2_3, vlan_tci2_3);
mb0_1 = _mm256_or_si256
(mb0_1, vlan_tci0_1);
}
} /* if() on RSS hash parsing */
#endif
}
#endif
/**
* At this point, we have the 8 sets of flags in the low 16-bits
* of each 32-bit value in vlan0.
* We want to extract these, and merge them with the mbuf init
* data so we can do a single write to the mbuf to set the flags
* and all the other initialization fields. Extracting the
* appropriate flags means that we have to do a shift and blend
* for each mbuf before we do the write. However, we can also
* add in the previously computed rx_descriptor fields to
* make a single 256-bit write per mbuf
*/
/* check the structure matches expectations */
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
offsetof(struct rte_mbuf, rearm_data) + 8);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
RTE_ALIGN(offsetof(struct rte_mbuf,
rearm_data),
16));
/* build up data and do writes */
__m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
rearm6, rearm7;
rearm6 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(mbuf_flags, 8),
0x04);
rearm4 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(mbuf_flags, 4),
0x04);
rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
rearm0 = _mm256_blend_epi32(mbuf_init,
_mm256_srli_si256(mbuf_flags, 4),
0x04);
/* permute to add in the rx_descriptor e.g. rss fields */
rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
/* write to mbuf */
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
rearm6);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
rearm4);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
rearm2);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
rearm0);
/* repeat for the odd mbufs */
const __m256i odd_flags =
_mm256_castsi128_si256
(_mm256_extracti128_si256(mbuf_flags, 1));
rearm7 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(odd_flags, 8),
0x04);
rearm5 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(odd_flags, 4),
0x04);
rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
rearm1 = _mm256_blend_epi32(mbuf_init,
_mm256_srli_si256(odd_flags, 4),
0x04);
/* since odd mbufs are already in hi 128-bits use blend */
rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
/* again write to mbufs */
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
rearm7);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
rearm5);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
rearm3);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
rearm1);
/* extract and record EOP bit */
if (split_packet) {
const __m128i eop_mask =
_mm_set1_epi16(1 <<
IAVF_RX_FLEX_DESC_STATUS0_EOF_S);
const __m256i eop_bits256 = _mm256_and_si256(status0_7,
eop_check);
/* pack status bits into a single 128-bit register */
const __m128i eop_bits =
_mm_packus_epi32
(_mm256_castsi256_si128(eop_bits256),
_mm256_extractf128_si256(eop_bits256,
1));
/**
* flip bits, and mask out the EOP bit, which is now
* a split-packet bit i.e. !EOP, rather than EOP one.
*/
__m128i split_bits = _mm_andnot_si128(eop_bits,
eop_mask);
/**
* eop bits are out of order, so we need to shuffle them
* back into order again. In doing so, only use low 8
* bits, which acts like another pack instruction
* The original order is (hi->lo): 1,3,5,7,0,2,4,6
* [Since we use epi8, the 16-bit positions are
* multiplied by 2 in the eop_shuffle value.]
*/
__m128i eop_shuffle =
_mm_set_epi8(/* zero hi 64b */
0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF,
/* move values to lo 64b */
8, 0, 10, 2,
12, 4, 14, 6);
split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
*(uint64_t *)split_packet =
_mm_cvtsi128_si64(split_bits);
split_packet += IAVF_DESCS_PER_LOOP_AVX;
}
/* perform dd_check */
status0_7 = _mm256_and_si256(status0_7, dd_check);
status0_7 = _mm256_packs_epi32(status0_7,
_mm256_setzero_si256());
uint64_t burst = __builtin_popcountll
(_mm_cvtsi128_si64
(_mm256_extracti128_si256
(status0_7, 1)));
burst += __builtin_popcountll
(_mm_cvtsi128_si64
(_mm256_castsi256_si128(status0_7)));
received += burst;
if (burst != IAVF_DESCS_PER_LOOP_AVX)
break;
}
/* update tail pointers */
rxq->rx_tail += received;
rxq->rx_tail &= (rxq->nb_rx_desc - 1);
if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep aligned */
rxq->rx_tail--;
received--;
}
rxq->rxrearm_nb += received;
return received;
}
/**
* Notice:
* - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
*/
uint16_t
iavf_recv_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return _iavf_recv_raw_pkts_vec_avx512(rx_queue, rx_pkts, nb_pkts,
NULL, false);
}
/**
* Notice:
* - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
*/
uint16_t
iavf_recv_pkts_vec_avx512_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return _iavf_recv_raw_pkts_vec_avx512_flex_rxd(rx_queue, rx_pkts,
nb_pkts, NULL, false);
}
/**
* vPMD receive routine that reassembles single burst of 32 scattered packets
* Notice:
* - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
*/
static __rte_always_inline uint16_t
iavf_recv_scattered_burst_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts, bool offload)
{
struct iavf_rx_queue *rxq = rx_queue;
uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};
/* get some new buffers */
uint16_t nb_bufs = _iavf_recv_raw_pkts_vec_avx512(rxq, rx_pkts, nb_pkts,
split_flags, offload);
if (nb_bufs == 0)
return 0;
/* happy day case, full burst + no packets to be joined */
const uint64_t *split_fl64 = (uint64_t *)split_flags;
if (!rxq->pkt_first_seg &&
split_fl64[0] == 0 && split_fl64[1] == 0 &&
split_fl64[2] == 0 && split_fl64[3] == 0)
return nb_bufs;
/* reassemble any packets that need reassembly*/
unsigned int i = 0;
if (!rxq->pkt_first_seg) {
/* find the first split flag, and only reassemble then*/
while (i < nb_bufs && !split_flags[i])
i++;
if (i == nb_bufs)
return nb_bufs;
rxq->pkt_first_seg = rx_pkts[i];
}
return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
&split_flags[i]);
}
/**
* vPMD receive routine that reassembles scattered packets.
* Main receive routine that can handle arbitrary burst sizes
* Notice:
* - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
*/
static __rte_always_inline uint16_t
iavf_recv_scattered_pkts_vec_avx512_cmn(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts, bool offload)
{
uint16_t retval = 0;
while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) {
uint16_t burst = iavf_recv_scattered_burst_vec_avx512(rx_queue,
rx_pkts + retval, IAVF_VPMD_RX_MAX_BURST, offload);
retval += burst;
nb_pkts -= burst;
if (burst < IAVF_VPMD_RX_MAX_BURST)
return retval;
}
return retval + iavf_recv_scattered_burst_vec_avx512(rx_queue,
rx_pkts + retval, nb_pkts, offload);
}
uint16_t
iavf_recv_scattered_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return iavf_recv_scattered_pkts_vec_avx512_cmn(rx_queue, rx_pkts,
nb_pkts, false);
}
/**
* vPMD receive routine that reassembles single burst of
* 32 scattered packets for flex RxD
* Notice:
* - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
*/
static __rte_always_inline uint16_t
iavf_recv_scattered_burst_vec_avx512_flex_rxd(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts,
bool offload)
{
struct iavf_rx_queue *rxq = rx_queue;
uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};
/* get some new buffers */
uint16_t nb_bufs = _iavf_recv_raw_pkts_vec_avx512_flex_rxd(rxq,
rx_pkts, nb_pkts, split_flags, offload);
if (nb_bufs == 0)
return 0;
/* happy day case, full burst + no packets to be joined */
const uint64_t *split_fl64 = (uint64_t *)split_flags;
if (!rxq->pkt_first_seg &&
split_fl64[0] == 0 && split_fl64[1] == 0 &&
split_fl64[2] == 0 && split_fl64[3] == 0)
return nb_bufs;
/* reassemble any packets that need reassembly*/
unsigned int i = 0;
if (!rxq->pkt_first_seg) {
/* find the first split flag, and only reassemble then*/
while (i < nb_bufs && !split_flags[i])
i++;
if (i == nb_bufs)
return nb_bufs;
rxq->pkt_first_seg = rx_pkts[i];
}
return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
&split_flags[i]);
}
/**
* vPMD receive routine that reassembles scattered packets for flex RxD.
* Main receive routine that can handle arbitrary burst sizes
* Notice:
* - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
*/
static __rte_always_inline uint16_t
iavf_recv_scattered_pkts_vec_avx512_flex_rxd_cmn(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts,
bool offload)
{
uint16_t retval = 0;
while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) {
uint16_t burst =
iavf_recv_scattered_burst_vec_avx512_flex_rxd
(rx_queue, rx_pkts + retval,
IAVF_VPMD_RX_MAX_BURST, offload);
retval += burst;
nb_pkts -= burst;
if (burst < IAVF_VPMD_RX_MAX_BURST)
return retval;
}
return retval + iavf_recv_scattered_burst_vec_avx512_flex_rxd(rx_queue,
rx_pkts + retval, nb_pkts, offload);
}
uint16_t
iavf_recv_scattered_pkts_vec_avx512_flex_rxd(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return iavf_recv_scattered_pkts_vec_avx512_flex_rxd_cmn(rx_queue,
rx_pkts,
nb_pkts,
false);
}
uint16_t
iavf_recv_pkts_vec_avx512_offload(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return _iavf_recv_raw_pkts_vec_avx512(rx_queue, rx_pkts,
nb_pkts, NULL, true);
}
uint16_t
iavf_recv_scattered_pkts_vec_avx512_offload(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return iavf_recv_scattered_pkts_vec_avx512_cmn(rx_queue, rx_pkts,
nb_pkts, true);
}
uint16_t
iavf_recv_pkts_vec_avx512_flex_rxd_offload(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return _iavf_recv_raw_pkts_vec_avx512_flex_rxd(rx_queue,
rx_pkts,
nb_pkts,
NULL,
true);
}
uint16_t
iavf_recv_scattered_pkts_vec_avx512_flex_rxd_offload(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return iavf_recv_scattered_pkts_vec_avx512_flex_rxd_cmn(rx_queue,
rx_pkts,
nb_pkts,
true);
}
static __rte_always_inline int
iavf_tx_free_bufs_avx512(struct iavf_tx_queue *txq)
{
struct iavf_tx_vec_entry *txep;
uint32_t n;
uint32_t i;
int nb_free = 0;
struct rte_mbuf *m, *free[IAVF_VPMD_TX_MAX_FREE_BUF];
/* check DD bits on threshold descriptor */
if ((txq->tx_ring[txq->next_dd].cmd_type_offset_bsz &
rte_cpu_to_le_64(IAVF_TXD_QW1_DTYPE_MASK)) !=
rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE))
return 0;
n = txq->rs_thresh;
/* first buffer to free from S/W ring is at index
* tx_next_dd - (tx_rs_thresh-1)
*/
txep = (void *)txq->sw_ring;
txep += txq->next_dd - (n - 1);
if (txq->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE && (n & 31) == 0) {
struct rte_mempool *mp = txep[0].mbuf->pool;
struct rte_mempool_cache *cache = rte_mempool_default_cache(mp,
rte_lcore_id());
void **cache_objs;
if (!cache || cache->len == 0)
goto normal;
cache_objs = &cache->objs[cache->len];
if (n > RTE_MEMPOOL_CACHE_MAX_SIZE) {
rte_mempool_ops_enqueue_bulk(mp, (void *)txep, n);
goto done;
}
/* The cache follows the following algorithm
* 1. Add the objects to the cache
* 2. Anything greater than the cache min value (if it crosses the
* cache flush threshold) is flushed to the ring.
*/
/* Add elements back into the cache */
uint32_t copied = 0;
/* n is multiple of 32 */
while (copied < n) {
const __m512i a = _mm512_loadu_si512(&txep[copied]);
const __m512i b = _mm512_loadu_si512(&txep[copied + 8]);
const __m512i c = _mm512_loadu_si512(&txep[copied + 16]);
const __m512i d = _mm512_loadu_si512(&txep[copied + 24]);
_mm512_storeu_si512(&cache_objs[copied], a);
_mm512_storeu_si512(&cache_objs[copied + 8], b);
_mm512_storeu_si512(&cache_objs[copied + 16], c);
_mm512_storeu_si512(&cache_objs[copied + 24], d);
copied += 32;
}
cache->len += n;
if (cache->len >= cache->flushthresh) {
rte_mempool_ops_enqueue_bulk(mp,
&cache->objs[cache->size],
cache->len - cache->size);
cache->len = cache->size;
}
goto done;
}
normal:
m = rte_pktmbuf_prefree_seg(txep[0].mbuf);
if (likely(m)) {
free[0] = m;
nb_free = 1;
for (i = 1; i < n; i++) {
m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
if (likely(m)) {
if (likely(m->pool == free[0]->pool)) {
free[nb_free++] = m;
} else {
rte_mempool_put_bulk(free[0]->pool,
(void *)free,
nb_free);
free[0] = m;
nb_free = 1;
}
}
}
rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
} else {
for (i = 1; i < n; i++) {
m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
if (m)
rte_mempool_put(m->pool, m);
}
}
done:
/* buffers were freed, update counters */
txq->nb_free = (uint16_t)(txq->nb_free + txq->rs_thresh);
txq->next_dd = (uint16_t)(txq->next_dd + txq->rs_thresh);
if (txq->next_dd >= txq->nb_tx_desc)
txq->next_dd = (uint16_t)(txq->rs_thresh - 1);
return txq->rs_thresh;
}
static __rte_always_inline void
tx_backlog_entry_avx512(struct iavf_tx_vec_entry *txep,
struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
int i;
for (i = 0; i < (int)nb_pkts; ++i)
txep[i].mbuf = tx_pkts[i];
}
static __rte_always_inline void
iavf_vtx1(volatile struct iavf_tx_desc *txdp,
struct rte_mbuf *pkt, uint64_t flags, bool offload)
{
uint64_t high_qw =
(IAVF_TX_DESC_DTYPE_DATA |
((uint64_t)flags << IAVF_TXD_QW1_CMD_SHIFT) |
((uint64_t)pkt->data_len << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT));
if (offload)
iavf_txd_enable_offload(pkt, &high_qw);
__m128i descriptor = _mm_set_epi64x(high_qw,
pkt->buf_iova + pkt->data_off);
_mm_storeu_si128((__m128i *)txdp, descriptor);
}
#define IAVF_TX_LEN_MASK 0xAA
#define IAVF_TX_OFF_MASK 0x55
static __rte_always_inline void
iavf_vtx(volatile struct iavf_tx_desc *txdp,
struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags,
bool offload)
{
const uint64_t hi_qw_tmpl = (IAVF_TX_DESC_DTYPE_DATA |
((uint64_t)flags << IAVF_TXD_QW1_CMD_SHIFT));
/* if unaligned on 32-bit boundary, do one to align */
if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) {
iavf_vtx1(txdp, *pkt, flags, offload);
nb_pkts--, txdp++, pkt++;
}
/* do 4 at a time while possible, in bursts */
for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
uint64_t hi_qw3 =
hi_qw_tmpl |
((uint64_t)pkt[3]->data_len <<
IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
if (offload)
iavf_txd_enable_offload(pkt[3], &hi_qw3);
uint64_t hi_qw2 =
hi_qw_tmpl |
((uint64_t)pkt[2]->data_len <<
IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
if (offload)
iavf_txd_enable_offload(pkt[2], &hi_qw2);
uint64_t hi_qw1 =
hi_qw_tmpl |
((uint64_t)pkt[1]->data_len <<
IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
if (offload)
iavf_txd_enable_offload(pkt[1], &hi_qw1);
uint64_t hi_qw0 =
hi_qw_tmpl |
((uint64_t)pkt[0]->data_len <<
IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
if (offload)
iavf_txd_enable_offload(pkt[0], &hi_qw0);
__m512i desc0_3 =
_mm512_set_epi64
(hi_qw3,
pkt[3]->buf_iova + pkt[3]->data_off,
hi_qw2,
pkt[2]->buf_iova + pkt[2]->data_off,
hi_qw1,
pkt[1]->buf_iova + pkt[1]->data_off,
hi_qw0,
pkt[0]->buf_iova + pkt[0]->data_off);
_mm512_storeu_si512((void *)txdp, desc0_3);
}
/* do any last ones */
while (nb_pkts) {
iavf_vtx1(txdp, *pkt, flags, offload);
txdp++, pkt++, nb_pkts--;
}
}
static __rte_always_inline uint16_t
iavf_xmit_fixed_burst_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts, bool offload)
{
struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
volatile struct iavf_tx_desc *txdp;
struct iavf_tx_vec_entry *txep;
uint16_t n, nb_commit, tx_id;
/* bit2 is reserved and must be set to 1 according to Spec */
uint64_t flags = IAVF_TX_DESC_CMD_EOP | IAVF_TX_DESC_CMD_ICRC;
uint64_t rs = IAVF_TX_DESC_CMD_RS | flags;
if (txq->nb_free < txq->free_thresh)
iavf_tx_free_bufs_avx512(txq);
nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts);
if (unlikely(nb_pkts == 0))
return 0;
tx_id = txq->tx_tail;
txdp = &txq->tx_ring[tx_id];
txep = (void *)txq->sw_ring;
txep += tx_id;
txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts);
n = (uint16_t)(txq->nb_tx_desc - tx_id);
if (nb_commit >= n) {
tx_backlog_entry_avx512(txep, tx_pkts, n);
iavf_vtx(txdp, tx_pkts, n - 1, flags, offload);
tx_pkts += (n - 1);
txdp += (n - 1);
iavf_vtx1(txdp, *tx_pkts++, rs, offload);
nb_commit = (uint16_t)(nb_commit - n);
tx_id = 0;
txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
/* avoid reach the end of ring */
txdp = &txq->tx_ring[tx_id];
txep = (void *)txq->sw_ring;
txep += tx_id;
}
tx_backlog_entry_avx512(txep, tx_pkts, nb_commit);
iavf_vtx(txdp, tx_pkts, nb_commit, flags, offload);
tx_id = (uint16_t)(tx_id + nb_commit);
if (tx_id > txq->next_rs) {
txq->tx_ring[txq->next_rs].cmd_type_offset_bsz |=
rte_cpu_to_le_64(((uint64_t)IAVF_TX_DESC_CMD_RS) <<
IAVF_TXD_QW1_CMD_SHIFT);
txq->next_rs =
(uint16_t)(txq->next_rs + txq->rs_thresh);
}
txq->tx_tail = tx_id;
IAVF_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
return nb_pkts;
}
static __rte_always_inline uint16_t
iavf_xmit_pkts_vec_avx512_cmn(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts, bool offload)
{
uint16_t nb_tx = 0;
struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
while (nb_pkts) {
uint16_t ret, num;
/* cross rs_thresh boundary is not allowed */
num = (uint16_t)RTE_MIN(nb_pkts, txq->rs_thresh);
ret = iavf_xmit_fixed_burst_vec_avx512(tx_queue, &tx_pkts[nb_tx],
num, offload);
nb_tx += ret;
nb_pkts -= ret;
if (ret < num)
break;
}
return nb_tx;
}
uint16_t
iavf_xmit_pkts_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
return iavf_xmit_pkts_vec_avx512_cmn(tx_queue, tx_pkts, nb_pkts, false);
}
void __rte_cold
iavf_tx_queue_release_mbufs_avx512(struct iavf_tx_queue *txq)
{
unsigned int i;
const uint16_t max_desc = (uint16_t)(txq->nb_tx_desc - 1);
struct iavf_tx_vec_entry *swr = (void *)txq->sw_ring;
if (!txq->sw_ring || txq->nb_free == max_desc)
return;
i = txq->next_dd - txq->rs_thresh + 1;
if (txq->tx_tail < i) {
for (; i < txq->nb_tx_desc; i++) {
rte_pktmbuf_free_seg(swr[i].mbuf);
swr[i].mbuf = NULL;
}
i = 0;
}
}
int __rte_cold
iavf_txq_vec_setup_avx512(struct iavf_tx_queue *txq)
{
txq->rel_mbufs_type = IAVF_REL_MBUFS_AVX512_VEC;
return 0;
}
uint16_t
iavf_xmit_pkts_vec_avx512_offload(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
return iavf_xmit_pkts_vec_avx512_cmn(tx_queue, tx_pkts, nb_pkts, true);
}