numam-dpdk/drivers/net/ice/base/ice_nvm.c
Qi Zhang 61da836257 net/ice/base: update copyright
Updated copyright to 2022 and update base code version.

Signed-off-by: Paul M Stillwell Jr <paul.m.stillwell.jr@intel.com>
Signed-off-by: Qi Zhang <qi.z.zhang@intel.com>
Acked-by: Qiming Yang <qiming.yang@intel.com>
2022-09-18 16:12:32 +02:00

1401 lines
40 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2001-2022 Intel Corporation
*/
#include "ice_common.h"
#define GL_MNG_DEF_DEVID 0x000B611C
/**
* ice_aq_read_nvm
* @hw: pointer to the HW struct
* @module_typeid: module pointer location in words from the NVM beginning
* @offset: byte offset from the module beginning
* @length: length of the section to be read (in bytes from the offset)
* @data: command buffer (size [bytes] = length)
* @last_command: tells if this is the last command in a series
* @read_shadow_ram: tell if this is a shadow RAM read
* @cd: pointer to command details structure or NULL
*
* Read the NVM using the admin queue commands (0x0701)
*/
enum ice_status
ice_aq_read_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset, u16 length,
void *data, bool last_command, bool read_shadow_ram,
struct ice_sq_cd *cd)
{
struct ice_aq_desc desc;
struct ice_aqc_nvm *cmd;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
cmd = &desc.params.nvm;
if (offset > ICE_AQC_NVM_MAX_OFFSET)
return ICE_ERR_PARAM;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_read);
if (!read_shadow_ram && module_typeid == ICE_AQC_NVM_START_POINT)
cmd->cmd_flags |= ICE_AQC_NVM_FLASH_ONLY;
/* If this is the last command in a series, set the proper flag. */
if (last_command)
cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD;
cmd->module_typeid = CPU_TO_LE16(module_typeid);
cmd->offset_low = CPU_TO_LE16(offset & 0xFFFF);
cmd->offset_high = (offset >> 16) & 0xFF;
cmd->length = CPU_TO_LE16(length);
return ice_aq_send_cmd(hw, &desc, data, length, cd);
}
/**
* ice_read_flat_nvm - Read portion of NVM by flat offset
* @hw: pointer to the HW struct
* @offset: offset from beginning of NVM
* @length: (in) number of bytes to read; (out) number of bytes actually read
* @data: buffer to return data in (sized to fit the specified length)
* @read_shadow_ram: if true, read from shadow RAM instead of NVM
*
* Reads a portion of the NVM, as a flat memory space. This function correctly
* breaks read requests across Shadow RAM sectors and ensures that no single
* read request exceeds the maximum 4KB read for a single AdminQ command.
*
* Returns a status code on failure. Note that the data pointer may be
* partially updated if some reads succeed before a failure.
*/
enum ice_status
ice_read_flat_nvm(struct ice_hw *hw, u32 offset, u32 *length, u8 *data,
bool read_shadow_ram)
{
enum ice_status status;
u32 inlen = *length;
u32 bytes_read = 0;
bool last_cmd;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
*length = 0;
/* Verify the length of the read if this is for the Shadow RAM */
if (read_shadow_ram && ((offset + inlen) > (hw->flash.sr_words * 2u))) {
ice_debug(hw, ICE_DBG_NVM, "NVM error: requested data is beyond Shadow RAM limit\n");
return ICE_ERR_PARAM;
}
do {
u32 read_size, sector_offset;
/* ice_aq_read_nvm cannot read more than 4KB at a time.
* Additionally, a read from the Shadow RAM may not cross over
* a sector boundary. Conveniently, the sector size is also
* 4KB.
*/
sector_offset = offset % ICE_AQ_MAX_BUF_LEN;
read_size = MIN_T(u32, ICE_AQ_MAX_BUF_LEN - sector_offset,
inlen - bytes_read);
last_cmd = !(bytes_read + read_size < inlen);
/* ice_aq_read_nvm takes the length as a u16. Our read_size is
* calculated using a u32, but the ICE_AQ_MAX_BUF_LEN maximum
* size guarantees that it will fit within the 2 bytes.
*/
status = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT,
offset, (u16)read_size,
data + bytes_read, last_cmd,
read_shadow_ram, NULL);
if (status)
break;
bytes_read += read_size;
offset += read_size;
} while (!last_cmd);
*length = bytes_read;
return status;
}
/**
* ice_read_sr_word_aq - Reads Shadow RAM via AQ
* @hw: pointer to the HW structure
* @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
* @data: word read from the Shadow RAM
*
* Reads one 16 bit word from the Shadow RAM using ice_read_flat_nvm.
*/
static enum ice_status
ice_read_sr_word_aq(struct ice_hw *hw, u16 offset, u16 *data)
{
u32 bytes = sizeof(u16);
enum ice_status status;
__le16 data_local;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
/* Note that ice_read_flat_nvm checks if the read is past the Shadow
* RAM size, and ensures we don't read across a Shadow RAM sector
* boundary
*/
status = ice_read_flat_nvm(hw, offset * sizeof(u16), &bytes,
(_FORCE_ u8 *)&data_local, true);
if (status)
return status;
*data = LE16_TO_CPU(data_local);
return ICE_SUCCESS;
}
/**
* ice_read_sr_buf_aq - Reads Shadow RAM buf via AQ
* @hw: pointer to the HW structure
* @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
* @words: (in) number of words to read; (out) number of words actually read
* @data: words read from the Shadow RAM
*
* Reads 16 bit words (data buf) from the Shadow RAM. Ownership of the NVM is
* taken before reading the buffer and later released.
*/
static enum ice_status
ice_read_sr_buf_aq(struct ice_hw *hw, u16 offset, u16 *words, u16 *data)
{
u32 bytes = *words * 2, i;
enum ice_status status;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
/* ice_read_flat_nvm takes into account the 4KB AdminQ and Shadow RAM
* sector restrictions necessary when reading from the NVM.
*/
status = ice_read_flat_nvm(hw, offset * 2, &bytes, (u8 *)data, true);
/* Report the number of words successfully read */
*words = (u16)(bytes / 2);
/* Byte swap the words up to the amount we actually read */
for (i = 0; i < *words; i++)
data[i] = LE16_TO_CPU(((_FORCE_ __le16 *)data)[i]);
return status;
}
/**
* ice_acquire_nvm - Generic request for acquiring the NVM ownership
* @hw: pointer to the HW structure
* @access: NVM access type (read or write)
*
* This function will request NVM ownership.
*/
enum ice_status
ice_acquire_nvm(struct ice_hw *hw, enum ice_aq_res_access_type access)
{
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
if (hw->flash.blank_nvm_mode)
return ICE_SUCCESS;
return ice_acquire_res(hw, ICE_NVM_RES_ID, access, ICE_NVM_TIMEOUT);
}
/**
* ice_release_nvm - Generic request for releasing the NVM ownership
* @hw: pointer to the HW structure
*
* This function will release NVM ownership.
*/
void ice_release_nvm(struct ice_hw *hw)
{
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
if (hw->flash.blank_nvm_mode)
return;
ice_release_res(hw, ICE_NVM_RES_ID);
}
/**
* ice_get_flash_bank_offset - Get offset into requested flash bank
* @hw: pointer to the HW structure
* @bank: whether to read from the active or inactive flash bank
* @module: the module to read from
*
* Based on the module, lookup the module offset from the beginning of the
* flash.
*
* Returns the flash offset. Note that a value of zero is invalid and must be
* treated as an error.
*/
static u32 ice_get_flash_bank_offset(struct ice_hw *hw, enum ice_bank_select bank, u16 module)
{
struct ice_bank_info *banks = &hw->flash.banks;
enum ice_flash_bank active_bank;
bool second_bank_active;
u32 offset, size;
switch (module) {
case ICE_SR_1ST_NVM_BANK_PTR:
offset = banks->nvm_ptr;
size = banks->nvm_size;
active_bank = banks->nvm_bank;
break;
case ICE_SR_1ST_OROM_BANK_PTR:
offset = banks->orom_ptr;
size = banks->orom_size;
active_bank = banks->orom_bank;
break;
case ICE_SR_NETLIST_BANK_PTR:
offset = banks->netlist_ptr;
size = banks->netlist_size;
active_bank = banks->netlist_bank;
break;
default:
ice_debug(hw, ICE_DBG_NVM, "Unexpected value for flash module: 0x%04x\n", module);
return 0;
}
switch (active_bank) {
case ICE_1ST_FLASH_BANK:
second_bank_active = false;
break;
case ICE_2ND_FLASH_BANK:
second_bank_active = true;
break;
default:
ice_debug(hw, ICE_DBG_NVM, "Unexpected value for active flash bank: %u\n",
active_bank);
return 0;
}
/* The second flash bank is stored immediately following the first
* bank. Based on whether the 1st or 2nd bank is active, and whether
* we want the active or inactive bank, calculate the desired offset.
*/
switch (bank) {
case ICE_ACTIVE_FLASH_BANK:
return offset + (second_bank_active ? size : 0);
case ICE_INACTIVE_FLASH_BANK:
return offset + (second_bank_active ? 0 : size);
}
ice_debug(hw, ICE_DBG_NVM, "Unexpected value for flash bank selection: %u\n", bank);
return 0;
}
/**
* ice_read_flash_module - Read a word from one of the main NVM modules
* @hw: pointer to the HW structure
* @bank: which bank of the module to read
* @module: the module to read
* @offset: the offset into the module in bytes
* @data: storage for the word read from the flash
* @length: bytes of data to read
*
* Read data from the specified flash module. The bank parameter indicates
* whether or not to read from the active bank or the inactive bank of that
* module.
*
* The word will be read using flat NVM access, and relies on the
* hw->flash.banks data being setup by ice_determine_active_flash_banks()
* during initialization.
*/
static enum ice_status
ice_read_flash_module(struct ice_hw *hw, enum ice_bank_select bank, u16 module,
u32 offset, u8 *data, u32 length)
{
enum ice_status status;
u32 start;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
start = ice_get_flash_bank_offset(hw, bank, module);
if (!start) {
ice_debug(hw, ICE_DBG_NVM, "Unable to calculate flash bank offset for module 0x%04x\n",
module);
return ICE_ERR_PARAM;
}
status = ice_acquire_nvm(hw, ICE_RES_READ);
if (status)
return status;
status = ice_read_flat_nvm(hw, start + offset, &length, data, false);
ice_release_nvm(hw);
return status;
}
/**
* ice_read_nvm_module - Read from the active main NVM module
* @hw: pointer to the HW structure
* @bank: whether to read from active or inactive NVM module
* @offset: offset into the NVM module to read, in words
* @data: storage for returned word value
*
* Read the specified word from the active NVM module. This includes the CSS
* header at the start of the NVM module.
*/
static enum ice_status
ice_read_nvm_module(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data)
{
enum ice_status status;
__le16 data_local;
status = ice_read_flash_module(hw, bank, ICE_SR_1ST_NVM_BANK_PTR, offset * sizeof(u16),
(_FORCE_ u8 *)&data_local, sizeof(u16));
if (!status)
*data = LE16_TO_CPU(data_local);
return status;
}
/**
* ice_get_nvm_css_hdr_len - Read the CSS header length from the NVM CSS header
* @hw: pointer to the HW struct
* @bank: whether to read from the active or inactive flash bank
* @hdr_len: storage for header length in words
*
* Read the CSS header length from the NVM CSS header and add the Authentication
* header size, and then convert to words.
*/
static enum ice_status
ice_get_nvm_css_hdr_len(struct ice_hw *hw, enum ice_bank_select bank,
u32 *hdr_len)
{
u16 hdr_len_l, hdr_len_h;
enum ice_status status;
u32 hdr_len_dword;
status = ice_read_nvm_module(hw, bank, ICE_NVM_CSS_HDR_LEN_L,
&hdr_len_l);
if (status)
return status;
status = ice_read_nvm_module(hw, bank, ICE_NVM_CSS_HDR_LEN_H,
&hdr_len_h);
if (status)
return status;
/* CSS header length is in DWORD, so convert to words and add
* authentication header size
*/
hdr_len_dword = hdr_len_h << 16 | hdr_len_l;
*hdr_len = (hdr_len_dword * 2) + ICE_NVM_AUTH_HEADER_LEN;
return ICE_SUCCESS;
}
/**
* ice_read_nvm_sr_copy - Read a word from the Shadow RAM copy in the NVM bank
* @hw: pointer to the HW structure
* @bank: whether to read from the active or inactive NVM module
* @offset: offset into the Shadow RAM copy to read, in words
* @data: storage for returned word value
*
* Read the specified word from the copy of the Shadow RAM found in the
* specified NVM module.
*/
static enum ice_status
ice_read_nvm_sr_copy(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data)
{
enum ice_status status;
u32 hdr_len;
status = ice_get_nvm_css_hdr_len(hw, bank, &hdr_len);
if (status)
return status;
hdr_len = ROUND_UP(hdr_len, 32);
return ice_read_nvm_module(hw, bank, hdr_len + offset, data);
}
/**
* ice_read_orom_module - Read from the active Option ROM module
* @hw: pointer to the HW structure
* @bank: whether to read from active or inactive OROM module
* @offset: offset into the OROM module to read, in words
* @data: storage for returned word value
*
* Read the specified word from the active Option ROM module of the flash.
* Note that unlike the NVM module, the CSS data is stored at the end of the
* module instead of at the beginning.
*/
static enum ice_status
ice_read_orom_module(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data)
{
enum ice_status status;
__le16 data_local;
status = ice_read_flash_module(hw, bank, ICE_SR_1ST_OROM_BANK_PTR, offset * sizeof(u16),
(_FORCE_ u8 *)&data_local, sizeof(u16));
if (!status)
*data = LE16_TO_CPU(data_local);
return status;
}
/**
* ice_read_sr_word - Reads Shadow RAM word and acquire NVM if necessary
* @hw: pointer to the HW structure
* @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
* @data: word read from the Shadow RAM
*
* Reads one 16 bit word from the Shadow RAM using the ice_read_sr_word_aq.
*/
enum ice_status ice_read_sr_word(struct ice_hw *hw, u16 offset, u16 *data)
{
enum ice_status status;
status = ice_acquire_nvm(hw, ICE_RES_READ);
if (!status) {
status = ice_read_sr_word_aq(hw, offset, data);
ice_release_nvm(hw);
}
return status;
}
/**
* ice_get_pfa_module_tlv - Reads sub module TLV from NVM PFA
* @hw: pointer to hardware structure
* @module_tlv: pointer to module TLV to return
* @module_tlv_len: pointer to module TLV length to return
* @module_type: module type requested
*
* Finds the requested sub module TLV type from the Preserved Field
* Area (PFA) and returns the TLV pointer and length. The caller can
* use these to read the variable length TLV value.
*/
enum ice_status
ice_get_pfa_module_tlv(struct ice_hw *hw, u16 *module_tlv, u16 *module_tlv_len,
u16 module_type)
{
enum ice_status status;
u16 pfa_len, pfa_ptr;
u16 next_tlv;
status = ice_read_sr_word(hw, ICE_SR_PFA_PTR, &pfa_ptr);
if (status != ICE_SUCCESS) {
ice_debug(hw, ICE_DBG_INIT, "Preserved Field Array pointer.\n");
return status;
}
status = ice_read_sr_word(hw, pfa_ptr, &pfa_len);
if (status != ICE_SUCCESS) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read PFA length.\n");
return status;
}
/* Starting with first TLV after PFA length, iterate through the list
* of TLVs to find the requested one.
*/
next_tlv = pfa_ptr + 1;
while (next_tlv < pfa_ptr + pfa_len) {
u16 tlv_sub_module_type;
u16 tlv_len;
/* Read TLV type */
status = ice_read_sr_word(hw, next_tlv, &tlv_sub_module_type);
if (status != ICE_SUCCESS) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV type.\n");
break;
}
/* Read TLV length */
status = ice_read_sr_word(hw, next_tlv + 1, &tlv_len);
if (status != ICE_SUCCESS) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV length.\n");
break;
}
if (tlv_sub_module_type == module_type) {
if (tlv_len) {
*module_tlv = next_tlv;
*module_tlv_len = tlv_len;
return ICE_SUCCESS;
}
return ICE_ERR_INVAL_SIZE;
}
/* Check next TLV, i.e. current TLV pointer + length + 2 words
* (for current TLV's type and length)
*/
next_tlv = next_tlv + tlv_len + 2;
}
/* Module does not exist */
return ICE_ERR_DOES_NOT_EXIST;
}
/**
* ice_read_pba_string - Reads part number string from NVM
* @hw: pointer to hardware structure
* @pba_num: stores the part number string from the NVM
* @pba_num_size: part number string buffer length
*
* Reads the part number string from the NVM.
*/
enum ice_status
ice_read_pba_string(struct ice_hw *hw, u8 *pba_num, u32 pba_num_size)
{
u16 pba_tlv, pba_tlv_len;
enum ice_status status;
u16 pba_word, pba_size;
u16 i;
status = ice_get_pfa_module_tlv(hw, &pba_tlv, &pba_tlv_len,
ICE_SR_PBA_BLOCK_PTR);
if (status != ICE_SUCCESS) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block TLV.\n");
return status;
}
/* pba_size is the next word */
status = ice_read_sr_word(hw, (pba_tlv + 2), &pba_size);
if (status != ICE_SUCCESS) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Section size.\n");
return status;
}
if (pba_tlv_len < pba_size) {
ice_debug(hw, ICE_DBG_INIT, "Invalid PBA Block TLV size.\n");
return ICE_ERR_INVAL_SIZE;
}
/* Subtract one to get PBA word count (PBA Size word is included in
* total size)
*/
pba_size--;
if (pba_num_size < (((u32)pba_size * 2) + 1)) {
ice_debug(hw, ICE_DBG_INIT, "Buffer too small for PBA data.\n");
return ICE_ERR_PARAM;
}
for (i = 0; i < pba_size; i++) {
status = ice_read_sr_word(hw, (pba_tlv + 2 + 1) + i, &pba_word);
if (status != ICE_SUCCESS) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block word %d.\n", i);
return status;
}
pba_num[(i * 2)] = (pba_word >> 8) & 0xFF;
pba_num[(i * 2) + 1] = pba_word & 0xFF;
}
pba_num[(pba_size * 2)] = '\0';
return status;
}
/**
* ice_get_nvm_srev - Read the security revision from the NVM CSS header
* @hw: pointer to the HW struct
* @bank: whether to read from the active or inactive flash bank
* @srev: storage for security revision
*
* Read the security revision out of the CSS header of the active NVM module
* bank.
*/
static enum ice_status ice_get_nvm_srev(struct ice_hw *hw, enum ice_bank_select bank, u32 *srev)
{
enum ice_status status;
u16 srev_l, srev_h;
status = ice_read_nvm_module(hw, bank, ICE_NVM_CSS_SREV_L, &srev_l);
if (status)
return status;
status = ice_read_nvm_module(hw, bank, ICE_NVM_CSS_SREV_H, &srev_h);
if (status)
return status;
*srev = srev_h << 16 | srev_l;
return ICE_SUCCESS;
}
/**
* ice_get_nvm_ver_info - Read NVM version information
* @hw: pointer to the HW struct
* @bank: whether to read from the active or inactive flash bank
* @nvm: pointer to NVM info structure
*
* Read the NVM EETRACK ID and map version of the main NVM image bank, filling
* in the nvm info structure.
*/
static enum ice_status
ice_get_nvm_ver_info(struct ice_hw *hw, enum ice_bank_select bank, struct ice_nvm_info *nvm)
{
u16 eetrack_lo, eetrack_hi, ver;
enum ice_status status;
status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_DEV_STARTER_VER, &ver);
if (status) {
ice_debug(hw, ICE_DBG_NVM, "Failed to read DEV starter version.\n");
return status;
}
nvm->major = (ver & ICE_NVM_VER_HI_MASK) >> ICE_NVM_VER_HI_SHIFT;
nvm->minor = (ver & ICE_NVM_VER_LO_MASK) >> ICE_NVM_VER_LO_SHIFT;
status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_EETRACK_LO, &eetrack_lo);
if (status) {
ice_debug(hw, ICE_DBG_NVM, "Failed to read EETRACK lo.\n");
return status;
}
status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_EETRACK_HI, &eetrack_hi);
if (status) {
ice_debug(hw, ICE_DBG_NVM, "Failed to read EETRACK hi.\n");
return status;
}
nvm->eetrack = (eetrack_hi << 16) | eetrack_lo;
status = ice_get_nvm_srev(hw, bank, &nvm->srev);
if (status)
ice_debug(hw, ICE_DBG_NVM, "Failed to read NVM security revision.\n");
return ICE_SUCCESS;
}
/**
* ice_get_inactive_nvm_ver - Read Option ROM version from the inactive bank
* @hw: pointer to the HW structure
* @nvm: storage for Option ROM version information
*
* Reads the NVM EETRACK ID, Map version, and security revision of the
* inactive NVM bank. Used to access version data for a pending update that
* has not yet been activated.
*/
enum ice_status ice_get_inactive_nvm_ver(struct ice_hw *hw, struct ice_nvm_info *nvm)
{
return ice_get_nvm_ver_info(hw, ICE_INACTIVE_FLASH_BANK, nvm);
}
/**
* ice_get_orom_srev - Read the security revision from the OROM CSS header
* @hw: pointer to the HW struct
* @bank: whether to read from active or inactive flash module
* @srev: storage for security revision
*
* Read the security revision out of the CSS header of the active OROM module
* bank.
*/
static enum ice_status ice_get_orom_srev(struct ice_hw *hw, enum ice_bank_select bank, u32 *srev)
{
u32 orom_size_word = hw->flash.banks.orom_size / 2;
enum ice_status status;
u16 srev_l, srev_h;
u32 css_start;
u32 hdr_len;
status = ice_get_nvm_css_hdr_len(hw, bank, &hdr_len);
if (status)
return status;
if (orom_size_word < hdr_len) {
ice_debug(hw, ICE_DBG_NVM, "Unexpected Option ROM Size of %u\n",
hw->flash.banks.orom_size);
return ICE_ERR_CFG;
}
/* calculate how far into the Option ROM the CSS header starts. Note
* that ice_read_orom_module takes a word offset
*/
css_start = orom_size_word - hdr_len;
status = ice_read_orom_module(hw, bank, css_start + ICE_NVM_CSS_SREV_L, &srev_l);
if (status)
return status;
status = ice_read_orom_module(hw, bank, css_start + ICE_NVM_CSS_SREV_H, &srev_h);
if (status)
return status;
*srev = srev_h << 16 | srev_l;
return ICE_SUCCESS;
}
/**
* ice_get_orom_civd_data - Get the combo version information from Option ROM
* @hw: pointer to the HW struct
* @bank: whether to read from the active or inactive flash module
* @civd: storage for the Option ROM CIVD data.
*
* Searches through the Option ROM flash contents to locate the CIVD data for
* the image.
*/
static enum ice_status
ice_get_orom_civd_data(struct ice_hw *hw, enum ice_bank_select bank,
struct ice_orom_civd_info *civd)
{
struct ice_orom_civd_info tmp;
u32 offset;
/* The CIVD section is located in the Option ROM aligned to 512 bytes.
* The first 4 bytes must contain the ASCII characters "$CIV".
* A simple modulo 256 sum of all of the bytes of the structure must
* equal 0.
*/
for (offset = 0; (offset + 512) <= hw->flash.banks.orom_size; offset += 512) {
enum ice_status status;
u8 sum = 0, i;
status = ice_read_flash_module(hw, bank, ICE_SR_1ST_OROM_BANK_PTR,
offset, (u8 *)&tmp, sizeof(tmp));
if (status) {
ice_debug(hw, ICE_DBG_NVM, "Unable to read Option ROM CIVD data\n");
return status;
}
/* Skip forward until we find a matching signature */
if (memcmp("$CIV", tmp.signature, sizeof(tmp.signature)) != 0)
continue;
/* Verify that the simple checksum is zero */
for (i = 0; i < sizeof(tmp); i++)
sum += ((u8 *)&tmp)[i];
if (sum) {
ice_debug(hw, ICE_DBG_NVM, "Found CIVD data with invalid checksum of %u\n",
sum);
return ICE_ERR_NVM;
}
*civd = tmp;
return ICE_SUCCESS;
}
return ICE_ERR_NVM;
}
/**
* ice_get_orom_ver_info - Read Option ROM version information
* @hw: pointer to the HW struct
* @bank: whether to read from the active or inactive flash module
* @orom: pointer to Option ROM info structure
*
* Read Option ROM version and security revision from the Option ROM flash
* section.
*/
static enum ice_status
ice_get_orom_ver_info(struct ice_hw *hw, enum ice_bank_select bank, struct ice_orom_info *orom)
{
struct ice_orom_civd_info civd;
enum ice_status status;
u32 combo_ver;
status = ice_get_orom_civd_data(hw, bank, &civd);
if (status) {
ice_debug(hw, ICE_DBG_NVM, "Failed to locate valid Option ROM CIVD data\n");
return status;
}
combo_ver = LE32_TO_CPU(civd.combo_ver);
orom->major = (u8)((combo_ver & ICE_OROM_VER_MASK) >> ICE_OROM_VER_SHIFT);
orom->patch = (u8)(combo_ver & ICE_OROM_VER_PATCH_MASK);
orom->build = (u16)((combo_ver & ICE_OROM_VER_BUILD_MASK) >> ICE_OROM_VER_BUILD_SHIFT);
status = ice_get_orom_srev(hw, bank, &orom->srev);
if (status) {
ice_debug(hw, ICE_DBG_NVM, "Failed to read Option ROM security revision.\n");
return status;
}
return ICE_SUCCESS;
}
/**
* ice_get_inactive_orom_ver - Read Option ROM version from the inactive bank
* @hw: pointer to the HW structure
* @orom: storage for Option ROM version information
*
* Reads the Option ROM version and security revision data for the inactive
* section of flash. Used to access version data for a pending update that has
* not yet been activated.
*/
enum ice_status ice_get_inactive_orom_ver(struct ice_hw *hw, struct ice_orom_info *orom)
{
return ice_get_orom_ver_info(hw, ICE_INACTIVE_FLASH_BANK, orom);
}
/**
* ice_discover_flash_size - Discover the available flash size.
* @hw: pointer to the HW struct
*
* The device flash could be up to 16MB in size. However, it is possible that
* the actual size is smaller. Use bisection to determine the accessible size
* of flash memory.
*/
static enum ice_status ice_discover_flash_size(struct ice_hw *hw)
{
u32 min_size = 0, max_size = ICE_AQC_NVM_MAX_OFFSET + 1;
enum ice_status status;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
status = ice_acquire_nvm(hw, ICE_RES_READ);
if (status)
return status;
while ((max_size - min_size) > 1) {
u32 offset = (max_size + min_size) / 2;
u32 len = 1;
u8 data;
status = ice_read_flat_nvm(hw, offset, &len, &data, false);
if (status == ICE_ERR_AQ_ERROR &&
hw->adminq.sq_last_status == ICE_AQ_RC_EINVAL) {
ice_debug(hw, ICE_DBG_NVM, "%s: New upper bound of %u bytes\n",
__func__, offset);
status = ICE_SUCCESS;
max_size = offset;
} else if (!status) {
ice_debug(hw, ICE_DBG_NVM, "%s: New lower bound of %u bytes\n",
__func__, offset);
min_size = offset;
} else {
/* an unexpected error occurred */
goto err_read_flat_nvm;
}
}
ice_debug(hw, ICE_DBG_NVM, "Predicted flash size is %u bytes\n", max_size);
hw->flash.flash_size = max_size;
err_read_flat_nvm:
ice_release_nvm(hw);
return status;
}
/**
* ice_read_sr_pointer - Read the value of a Shadow RAM pointer word
* @hw: pointer to the HW structure
* @offset: the word offset of the Shadow RAM word to read
* @pointer: pointer value read from Shadow RAM
*
* Read the given Shadow RAM word, and convert it to a pointer value specified
* in bytes. This function assumes the specified offset is a valid pointer
* word.
*
* Each pointer word specifies whether it is stored in word size or 4KB
* sector size by using the highest bit. The reported pointer value will be in
* bytes, intended for flat NVM reads.
*/
static enum ice_status
ice_read_sr_pointer(struct ice_hw *hw, u16 offset, u32 *pointer)
{
enum ice_status status;
u16 value;
status = ice_read_sr_word(hw, offset, &value);
if (status)
return status;
/* Determine if the pointer is in 4KB or word units */
if (value & ICE_SR_NVM_PTR_4KB_UNITS)
*pointer = (value & ~ICE_SR_NVM_PTR_4KB_UNITS) * 4 * 1024;
else
*pointer = value * 2;
return ICE_SUCCESS;
}
/**
* ice_read_sr_area_size - Read an area size from a Shadow RAM word
* @hw: pointer to the HW structure
* @offset: the word offset of the Shadow RAM to read
* @size: size value read from the Shadow RAM
*
* Read the given Shadow RAM word, and convert it to an area size value
* specified in bytes. This function assumes the specified offset is a valid
* area size word.
*
* Each area size word is specified in 4KB sector units. This function reports
* the size in bytes, intended for flat NVM reads.
*/
static enum ice_status
ice_read_sr_area_size(struct ice_hw *hw, u16 offset, u32 *size)
{
enum ice_status status;
u16 value;
status = ice_read_sr_word(hw, offset, &value);
if (status)
return status;
/* Area sizes are always specified in 4KB units */
*size = value * 4 * 1024;
return ICE_SUCCESS;
}
/**
* ice_determine_active_flash_banks - Discover active bank for each module
* @hw: pointer to the HW struct
*
* Read the Shadow RAM control word and determine which banks are active for
* the NVM, OROM, and Netlist modules. Also read and calculate the associated
* pointer and size. These values are then cached into the ice_flash_info
* structure for later use in order to calculate the correct offset to read
* from the active module.
*/
static enum ice_status
ice_determine_active_flash_banks(struct ice_hw *hw)
{
struct ice_bank_info *banks = &hw->flash.banks;
enum ice_status status;
u16 ctrl_word;
status = ice_read_sr_word(hw, ICE_SR_NVM_CTRL_WORD, &ctrl_word);
if (status) {
ice_debug(hw, ICE_DBG_NVM, "Failed to read the Shadow RAM control word\n");
return status;
}
/* Check that the control word indicates validity */
if ((ctrl_word & ICE_SR_CTRL_WORD_1_M) >> ICE_SR_CTRL_WORD_1_S != ICE_SR_CTRL_WORD_VALID) {
ice_debug(hw, ICE_DBG_NVM, "Shadow RAM control word is invalid\n");
return ICE_ERR_CFG;
}
if (!(ctrl_word & ICE_SR_CTRL_WORD_NVM_BANK))
banks->nvm_bank = ICE_1ST_FLASH_BANK;
else
banks->nvm_bank = ICE_2ND_FLASH_BANK;
if (!(ctrl_word & ICE_SR_CTRL_WORD_OROM_BANK))
banks->orom_bank = ICE_1ST_FLASH_BANK;
else
banks->orom_bank = ICE_2ND_FLASH_BANK;
if (!(ctrl_word & ICE_SR_CTRL_WORD_NETLIST_BANK))
banks->netlist_bank = ICE_1ST_FLASH_BANK;
else
banks->netlist_bank = ICE_2ND_FLASH_BANK;
status = ice_read_sr_pointer(hw, ICE_SR_1ST_NVM_BANK_PTR, &banks->nvm_ptr);
if (status) {
ice_debug(hw, ICE_DBG_NVM, "Failed to read NVM bank pointer\n");
return status;
}
status = ice_read_sr_area_size(hw, ICE_SR_NVM_BANK_SIZE, &banks->nvm_size);
if (status) {
ice_debug(hw, ICE_DBG_NVM, "Failed to read NVM bank area size\n");
return status;
}
status = ice_read_sr_pointer(hw, ICE_SR_1ST_OROM_BANK_PTR, &banks->orom_ptr);
if (status) {
ice_debug(hw, ICE_DBG_NVM, "Failed to read OROM bank pointer\n");
return status;
}
status = ice_read_sr_area_size(hw, ICE_SR_OROM_BANK_SIZE, &banks->orom_size);
if (status) {
ice_debug(hw, ICE_DBG_NVM, "Failed to read OROM bank area size\n");
return status;
}
status = ice_read_sr_pointer(hw, ICE_SR_NETLIST_BANK_PTR, &banks->netlist_ptr);
if (status) {
ice_debug(hw, ICE_DBG_NVM, "Failed to read Netlist bank pointer\n");
return status;
}
status = ice_read_sr_area_size(hw, ICE_SR_NETLIST_BANK_SIZE, &banks->netlist_size);
if (status) {
ice_debug(hw, ICE_DBG_NVM, "Failed to read Netlist bank area size\n");
return status;
}
return ICE_SUCCESS;
}
/**
* ice_init_nvm - initializes NVM setting
* @hw: pointer to the HW struct
*
* This function reads and populates NVM settings such as Shadow RAM size,
* max_timeout, and blank_nvm_mode
*/
enum ice_status ice_init_nvm(struct ice_hw *hw)
{
struct ice_flash_info *flash = &hw->flash;
enum ice_status status;
u32 fla, gens_stat;
u8 sr_size;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
/* The SR size is stored regardless of the NVM programming mode
* as the blank mode may be used in the factory line.
*/
gens_stat = rd32(hw, GLNVM_GENS);
sr_size = (gens_stat & GLNVM_GENS_SR_SIZE_M) >> GLNVM_GENS_SR_SIZE_S;
/* Switching to words (sr_size contains power of 2) */
flash->sr_words = BIT(sr_size) * ICE_SR_WORDS_IN_1KB;
/* Check if we are in the normal or blank NVM programming mode */
fla = rd32(hw, GLNVM_FLA);
if (fla & GLNVM_FLA_LOCKED_M) { /* Normal programming mode */
flash->blank_nvm_mode = false;
} else {
/* Blank programming mode */
flash->blank_nvm_mode = true;
ice_debug(hw, ICE_DBG_NVM, "NVM init error: unsupported blank mode.\n");
return ICE_ERR_NVM_BLANK_MODE;
}
status = ice_discover_flash_size(hw);
if (status) {
ice_debug(hw, ICE_DBG_NVM, "NVM init error: failed to discover flash size.\n");
return status;
}
status = ice_determine_active_flash_banks(hw);
if (status) {
ice_debug(hw, ICE_DBG_NVM, "Failed to determine active flash banks.\n");
return status;
}
status = ice_get_nvm_ver_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->nvm);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read NVM info.\n");
return status;
}
status = ice_get_orom_ver_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->orom);
if (status)
ice_debug(hw, ICE_DBG_INIT, "Failed to read Option ROM info.\n");
return ICE_SUCCESS;
}
/**
* ice_read_sr_buf - Reads Shadow RAM buf and acquire lock if necessary
* @hw: pointer to the HW structure
* @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
* @words: (in) number of words to read; (out) number of words actually read
* @data: words read from the Shadow RAM
*
* Reads 16 bit words (data buf) from the SR using the ice_read_nvm_buf_aq
* method. The buf read is preceded by the NVM ownership take
* and followed by the release.
*/
enum ice_status
ice_read_sr_buf(struct ice_hw *hw, u16 offset, u16 *words, u16 *data)
{
enum ice_status status;
status = ice_acquire_nvm(hw, ICE_RES_READ);
if (!status) {
status = ice_read_sr_buf_aq(hw, offset, words, data);
ice_release_nvm(hw);
}
return status;
}
/**
* ice_nvm_validate_checksum
* @hw: pointer to the HW struct
*
* Verify NVM PFA checksum validity (0x0706)
*/
enum ice_status ice_nvm_validate_checksum(struct ice_hw *hw)
{
struct ice_aqc_nvm_checksum *cmd;
struct ice_aq_desc desc;
enum ice_status status;
status = ice_acquire_nvm(hw, ICE_RES_READ);
if (status)
return status;
cmd = &desc.params.nvm_checksum;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_checksum);
cmd->flags = ICE_AQC_NVM_CHECKSUM_VERIFY;
status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
ice_release_nvm(hw);
if (!status)
if (LE16_TO_CPU(cmd->checksum) != ICE_AQC_NVM_CHECKSUM_CORRECT)
status = ICE_ERR_NVM_CHECKSUM;
return status;
}
/**
* ice_nvm_recalculate_checksum
* @hw: pointer to the HW struct
*
* Recalculate NVM PFA checksum (0x0706)
*/
enum ice_status ice_nvm_recalculate_checksum(struct ice_hw *hw)
{
struct ice_aqc_nvm_checksum *cmd;
struct ice_aq_desc desc;
enum ice_status status;
status = ice_acquire_nvm(hw, ICE_RES_READ);
if (status)
return status;
cmd = &desc.params.nvm_checksum;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_checksum);
cmd->flags = ICE_AQC_NVM_CHECKSUM_RECALC;
status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
ice_release_nvm(hw);
return status;
}
/**
* ice_nvm_access_get_features - Return the NVM access features structure
* @cmd: NVM access command to process
* @data: storage for the driver NVM features
*
* Fill in the data section of the NVM access request with a copy of the NVM
* features structure.
*/
enum ice_status
ice_nvm_access_get_features(struct ice_nvm_access_cmd *cmd,
union ice_nvm_access_data *data)
{
/* The provided data_size must be at least as large as our NVM
* features structure. A larger size should not be treated as an
* error, to allow future extensions to the features structure to
* work on older drivers.
*/
if (cmd->data_size < sizeof(struct ice_nvm_features))
return ICE_ERR_NO_MEMORY;
/* Initialize the data buffer to zeros */
ice_memset(data, 0, cmd->data_size, ICE_NONDMA_MEM);
/* Fill in the features data */
data->drv_features.major = ICE_NVM_ACCESS_MAJOR_VER;
data->drv_features.minor = ICE_NVM_ACCESS_MINOR_VER;
data->drv_features.size = sizeof(struct ice_nvm_features);
data->drv_features.features[0] = ICE_NVM_FEATURES_0_REG_ACCESS;
return ICE_SUCCESS;
}
/**
* ice_nvm_access_get_module - Helper function to read module value
* @cmd: NVM access command structure
*
* Reads the module value out of the NVM access config field.
*/
u32 ice_nvm_access_get_module(struct ice_nvm_access_cmd *cmd)
{
return ((cmd->config & ICE_NVM_CFG_MODULE_M) >> ICE_NVM_CFG_MODULE_S);
}
/**
* ice_nvm_access_get_flags - Helper function to read flags value
* @cmd: NVM access command structure
*
* Reads the flags value out of the NVM access config field.
*/
u32 ice_nvm_access_get_flags(struct ice_nvm_access_cmd *cmd)
{
return ((cmd->config & ICE_NVM_CFG_FLAGS_M) >> ICE_NVM_CFG_FLAGS_S);
}
/**
* ice_nvm_access_get_adapter - Helper function to read adapter info
* @cmd: NVM access command structure
*
* Read the adapter info value out of the NVM access config field.
*/
u32 ice_nvm_access_get_adapter(struct ice_nvm_access_cmd *cmd)
{
return ((cmd->config & ICE_NVM_CFG_ADAPTER_INFO_M) >>
ICE_NVM_CFG_ADAPTER_INFO_S);
}
/**
* ice_validate_nvm_rw_reg - Check than an NVM access request is valid
* @cmd: NVM access command structure
*
* Validates that an NVM access structure is request to read or write a valid
* register offset. First validates that the module and flags are correct, and
* then ensures that the register offset is one of the accepted registers.
*/
static enum ice_status
ice_validate_nvm_rw_reg(struct ice_nvm_access_cmd *cmd)
{
u32 module, flags, offset;
u16 i;
module = ice_nvm_access_get_module(cmd);
flags = ice_nvm_access_get_flags(cmd);
offset = cmd->offset;
/* Make sure the module and flags indicate a read/write request */
if (module != ICE_NVM_REG_RW_MODULE ||
flags != ICE_NVM_REG_RW_FLAGS ||
cmd->data_size != FIELD_SIZEOF(union ice_nvm_access_data, regval))
return ICE_ERR_PARAM;
switch (offset) {
case GL_HICR:
case GL_HICR_EN: /* Note, this register is read only */
case GL_FWSTS:
case GL_MNG_FWSM:
case GLGEN_CSR_DEBUG_C:
case GLGEN_RSTAT:
case GLPCI_LBARCTRL:
case GL_MNG_DEF_DEVID:
case GLNVM_GENS:
case GLNVM_FLA:
case PF_FUNC_RID:
return ICE_SUCCESS;
default:
break;
}
for (i = 0; i <= GL_HIDA_MAX_INDEX; i++)
if (offset == (u32)GL_HIDA(i))
return ICE_SUCCESS;
for (i = 0; i <= GL_HIBA_MAX_INDEX; i++)
if (offset == (u32)GL_HIBA(i))
return ICE_SUCCESS;
/* All other register offsets are not valid */
return ICE_ERR_OUT_OF_RANGE;
}
/**
* ice_nvm_access_read - Handle an NVM read request
* @hw: pointer to the HW struct
* @cmd: NVM access command to process
* @data: storage for the register value read
*
* Process an NVM access request to read a register.
*/
enum ice_status
ice_nvm_access_read(struct ice_hw *hw, struct ice_nvm_access_cmd *cmd,
union ice_nvm_access_data *data)
{
enum ice_status status;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
/* Always initialize the output data, even on failure */
ice_memset(data, 0, cmd->data_size, ICE_NONDMA_MEM);
/* Make sure this is a valid read/write access request */
status = ice_validate_nvm_rw_reg(cmd);
if (status)
return status;
ice_debug(hw, ICE_DBG_NVM, "NVM access: reading register %08x\n",
cmd->offset);
/* Read the register and store the contents in the data field */
data->regval = rd32(hw, cmd->offset);
return ICE_SUCCESS;
}
/**
* ice_nvm_access_write - Handle an NVM write request
* @hw: pointer to the HW struct
* @cmd: NVM access command to process
* @data: NVM access data to write
*
* Process an NVM access request to write a register.
*/
enum ice_status
ice_nvm_access_write(struct ice_hw *hw, struct ice_nvm_access_cmd *cmd,
union ice_nvm_access_data *data)
{
enum ice_status status;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
/* Make sure this is a valid read/write access request */
status = ice_validate_nvm_rw_reg(cmd);
if (status)
return status;
/* Reject requests to write to read-only registers */
switch (cmd->offset) {
case GL_HICR_EN:
case GLGEN_RSTAT:
return ICE_ERR_OUT_OF_RANGE;
default:
break;
}
ice_debug(hw, ICE_DBG_NVM, "NVM access: writing register %08x with value %08x\n",
cmd->offset, data->regval);
/* Write the data field to the specified register */
wr32(hw, cmd->offset, data->regval);
return ICE_SUCCESS;
}
/**
* ice_handle_nvm_access - Handle an NVM access request
* @hw: pointer to the HW struct
* @cmd: NVM access command info
* @data: pointer to read or return data
*
* Process an NVM access request. Read the command structure information and
* determine if it is valid. If not, report an error indicating the command
* was invalid.
*
* For valid commands, perform the necessary function, copying the data into
* the provided data buffer.
*/
enum ice_status
ice_handle_nvm_access(struct ice_hw *hw, struct ice_nvm_access_cmd *cmd,
union ice_nvm_access_data *data)
{
u32 module, flags, adapter_info;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
/* Extended flags are currently reserved and must be zero */
if ((cmd->config & ICE_NVM_CFG_EXT_FLAGS_M) != 0)
return ICE_ERR_PARAM;
/* Adapter info must match the HW device ID */
adapter_info = ice_nvm_access_get_adapter(cmd);
if (adapter_info != hw->device_id)
return ICE_ERR_PARAM;
switch (cmd->command) {
case ICE_NVM_CMD_READ:
module = ice_nvm_access_get_module(cmd);
flags = ice_nvm_access_get_flags(cmd);
/* Getting the driver's NVM features structure shares the same
* command type as reading a register. Read the config field
* to determine if this is a request to get features.
*/
if (module == ICE_NVM_GET_FEATURES_MODULE &&
flags == ICE_NVM_GET_FEATURES_FLAGS &&
cmd->offset == 0)
return ice_nvm_access_get_features(cmd, data);
else
return ice_nvm_access_read(hw, cmd, data);
case ICE_NVM_CMD_WRITE:
return ice_nvm_access_write(hw, cmd, data);
default:
return ICE_ERR_PARAM;
}
}