numam-dpdk/drivers/net/ixgbe/ixgbe_rxtx_vec_sse.c
Bin Zheng c59f93d9a1 net/ixgbe: add vector Rx parameter check
Under the circumstance that `rx_tail` wrap back to zero
and the advance speed of `rx_tail` is greater than `rxrearm_start`,
`rx_tail` will catch up with `rxrearm_start` and surpass it.
This may cause some mbufs be reused by application.

So we need to make some restrictions to ensure that
 `rx_tail` will not exceed `rxrearm_start`.

e.g.

RDH: 972 RDT: 991 rxrearm_nb: 991 rxrearm_start: 992 rx_tail: 959
RDH: 1004 RDT: 1023 rxrearm_nb: 991 rxrearm_start: 0 rx_tail: 991
RDH: 12 RDT: 31 rxrearm_nb: 991 rxrearm_start: 32 rx_tail: 1023
RDH: 31 RDT: 63 rxrearm_nb: 960 rxrearm_start: 64 rx_tail: 0
RDH: 95 RDT: 95 rxrearm_nb: 1016 rxrearm_start: 96 rx_tail: 88
RDH: 95 RDT: 127 rxrearm_nb: 991 rxrearm_start: 128 rx_tail: 95
...
RDH: 908 RDT: 927 rxrearm_nb: 991 rxrearm_start: 928 rx_tail: 895
RDH: 940 RDT: 959 rxrearm_nb: 991 rxrearm_start: 960 rx_tail: 927
RDH: 980 RDT: 991 rxrearm_nb: 991 rxrearm_start: 992 rx_tail: 959
RDH: 991 RDT: 991 rxrearm_nb: 1026 rxrearm_start: 992 rx_tail: 994

when `rx_tail` catches up with `rxrearm_start`,
2(994 - 992) mbufs be reused by application !

Bugzilla ID: 882
Fixes: 5a3cca3424 ("net/ixgbe: fix vector Rx")
Cc: stable@dpdk.org

Signed-off-by: Bin Zheng <zhengbin.89740@bytedance.com>
Acked-by: Leyi Rong <leyi.rong@intel.com>
Reviewed-by: Haiyue Wang <haiyue.wang@intel.com>
Reviewed-by: Liang Ma <liangma@liangbit.com>
2022-01-11 01:33:24 +01:00

806 lines
25 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2015 Intel Corporation
*/
#include <stdint.h>
#include <ethdev_driver.h>
#include <rte_malloc.h>
#include "ixgbe_ethdev.h"
#include "ixgbe_rxtx.h"
#include "ixgbe_rxtx_vec_common.h"
#include <tmmintrin.h>
#ifndef __INTEL_COMPILER
#pragma GCC diagnostic ignored "-Wcast-qual"
#endif
static inline void
ixgbe_rxq_rearm(struct ixgbe_rx_queue *rxq)
{
int i;
uint16_t rx_id;
volatile union ixgbe_adv_rx_desc *rxdp;
struct ixgbe_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
struct rte_mbuf *mb0, *mb1;
__m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
RTE_PKTMBUF_HEADROOM);
__m128i dma_addr0, dma_addr1;
const __m128i hba_msk = _mm_set_epi64x(0, UINT64_MAX);
rxdp = rxq->rx_ring + rxq->rxrearm_start;
/* Pull 'n' more MBUFs into the software ring */
if (rte_mempool_get_bulk(rxq->mb_pool,
(void *)rxep,
RTE_IXGBE_RXQ_REARM_THRESH) < 0) {
if (rxq->rxrearm_nb + RTE_IXGBE_RXQ_REARM_THRESH >=
rxq->nb_rx_desc) {
dma_addr0 = _mm_setzero_si128();
for (i = 0; i < RTE_IXGBE_DESCS_PER_LOOP; i++) {
rxep[i].mbuf = &rxq->fake_mbuf;
_mm_store_si128((__m128i *)&rxdp[i].read,
dma_addr0);
}
}
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
RTE_IXGBE_RXQ_REARM_THRESH;
return;
}
/* Initialize the mbufs in vector, process 2 mbufs in one loop */
for (i = 0; i < RTE_IXGBE_RXQ_REARM_THRESH; i += 2, rxep += 2) {
__m128i vaddr0, vaddr1;
mb0 = rxep[0].mbuf;
mb1 = rxep[1].mbuf;
/* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
offsetof(struct rte_mbuf, buf_addr) + 8);
vaddr0 = _mm_loadu_si128((__m128i *)&(mb0->buf_addr));
vaddr1 = _mm_loadu_si128((__m128i *)&(mb1->buf_addr));
/* convert pa to dma_addr hdr/data */
dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
/* add headroom to pa values */
dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
/* set Header Buffer Address to zero */
dma_addr0 = _mm_and_si128(dma_addr0, hba_msk);
dma_addr1 = _mm_and_si128(dma_addr1, hba_msk);
/* flush desc with pa dma_addr */
_mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
_mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
}
rxq->rxrearm_start += RTE_IXGBE_RXQ_REARM_THRESH;
if (rxq->rxrearm_start >= rxq->nb_rx_desc)
rxq->rxrearm_start = 0;
rxq->rxrearm_nb -= RTE_IXGBE_RXQ_REARM_THRESH;
rx_id = (uint16_t) ((rxq->rxrearm_start == 0) ?
(rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
/* Update the tail pointer on the NIC */
IXGBE_PCI_REG_WC_WRITE(rxq->rdt_reg_addr, rx_id);
}
#ifdef RTE_LIB_SECURITY
static inline void
desc_to_olflags_v_ipsec(__m128i descs[4], struct rte_mbuf **rx_pkts)
{
__m128i sterr, rearm, tmp_e, tmp_p;
uint32_t *rearm0 = (uint32_t *)rx_pkts[0]->rearm_data + 2;
uint32_t *rearm1 = (uint32_t *)rx_pkts[1]->rearm_data + 2;
uint32_t *rearm2 = (uint32_t *)rx_pkts[2]->rearm_data + 2;
uint32_t *rearm3 = (uint32_t *)rx_pkts[3]->rearm_data + 2;
const __m128i ipsec_sterr_msk =
_mm_set1_epi32(IXGBE_RXDADV_IPSEC_STATUS_SECP |
IXGBE_RXDADV_IPSEC_ERROR_AUTH_FAILED);
const __m128i ipsec_proc_msk =
_mm_set1_epi32(IXGBE_RXDADV_IPSEC_STATUS_SECP);
const __m128i ipsec_err_flag =
_mm_set1_epi32(RTE_MBUF_F_RX_SEC_OFFLOAD_FAILED |
RTE_MBUF_F_RX_SEC_OFFLOAD);
const __m128i ipsec_proc_flag = _mm_set1_epi32(RTE_MBUF_F_RX_SEC_OFFLOAD);
rearm = _mm_set_epi32(*rearm3, *rearm2, *rearm1, *rearm0);
sterr = _mm_set_epi32(_mm_extract_epi32(descs[3], 2),
_mm_extract_epi32(descs[2], 2),
_mm_extract_epi32(descs[1], 2),
_mm_extract_epi32(descs[0], 2));
sterr = _mm_and_si128(sterr, ipsec_sterr_msk);
tmp_e = _mm_cmpeq_epi32(sterr, ipsec_sterr_msk);
tmp_p = _mm_cmpeq_epi32(sterr, ipsec_proc_msk);
sterr = _mm_or_si128(_mm_and_si128(tmp_e, ipsec_err_flag),
_mm_and_si128(tmp_p, ipsec_proc_flag));
rearm = _mm_or_si128(rearm, sterr);
*rearm0 = _mm_extract_epi32(rearm, 0);
*rearm1 = _mm_extract_epi32(rearm, 1);
*rearm2 = _mm_extract_epi32(rearm, 2);
*rearm3 = _mm_extract_epi32(rearm, 3);
}
#endif
static inline void
desc_to_olflags_v(__m128i descs[4], __m128i mbuf_init, uint8_t vlan_flags,
uint16_t udp_p_flag, struct rte_mbuf **rx_pkts)
{
__m128i ptype0, ptype1, vtag0, vtag1, csum, udp_csum_skip;
__m128i rearm0, rearm1, rearm2, rearm3;
/* mask everything except rss type */
const __m128i rsstype_msk = _mm_set_epi16(
0x0000, 0x0000, 0x0000, 0x0000,
0x000F, 0x000F, 0x000F, 0x000F);
/* mask the lower byte of ol_flags */
const __m128i ol_flags_msk = _mm_set_epi16(
0x0000, 0x0000, 0x0000, 0x0000,
0x00FF, 0x00FF, 0x00FF, 0x00FF);
/* map rss type to rss hash flag */
const __m128i rss_flags = _mm_set_epi8(RTE_MBUF_F_RX_FDIR, 0, 0, 0,
0, 0, 0, RTE_MBUF_F_RX_RSS_HASH,
RTE_MBUF_F_RX_RSS_HASH, 0, RTE_MBUF_F_RX_RSS_HASH, 0,
RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, 0);
/* mask everything except vlan present and l4/ip csum error */
const __m128i vlan_csum_msk = _mm_set_epi16(
(IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 16,
(IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 16,
(IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 16,
(IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 16,
IXGBE_RXD_STAT_VP, IXGBE_RXD_STAT_VP,
IXGBE_RXD_STAT_VP, IXGBE_RXD_STAT_VP);
/* map vlan present (0x8), IPE (0x2), L4E (0x1) to ol_flags */
const __m128i vlan_csum_map_lo = _mm_set_epi8(
0, 0, 0, 0,
vlan_flags | RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD,
vlan_flags | RTE_MBUF_F_RX_IP_CKSUM_BAD,
vlan_flags | RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD,
vlan_flags | RTE_MBUF_F_RX_IP_CKSUM_GOOD,
0, 0, 0, 0,
RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD,
RTE_MBUF_F_RX_IP_CKSUM_BAD,
RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD,
RTE_MBUF_F_RX_IP_CKSUM_GOOD);
const __m128i vlan_csum_map_hi = _mm_set_epi8(
0, 0, 0, 0,
0, RTE_MBUF_F_RX_L4_CKSUM_GOOD >> sizeof(uint8_t), 0,
RTE_MBUF_F_RX_L4_CKSUM_GOOD >> sizeof(uint8_t),
0, 0, 0, 0,
0, RTE_MBUF_F_RX_L4_CKSUM_GOOD >> sizeof(uint8_t), 0,
RTE_MBUF_F_RX_L4_CKSUM_GOOD >> sizeof(uint8_t));
/* mask everything except UDP header present if specified */
const __m128i udp_hdr_p_msk = _mm_set_epi16
(0, 0, 0, 0,
udp_p_flag, udp_p_flag, udp_p_flag, udp_p_flag);
const __m128i udp_csum_bad_shuf = _mm_set_epi8
(0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, ~(uint8_t)RTE_MBUF_F_RX_L4_CKSUM_BAD, 0xFF);
ptype0 = _mm_unpacklo_epi16(descs[0], descs[1]);
ptype1 = _mm_unpacklo_epi16(descs[2], descs[3]);
vtag0 = _mm_unpackhi_epi16(descs[0], descs[1]);
vtag1 = _mm_unpackhi_epi16(descs[2], descs[3]);
ptype0 = _mm_unpacklo_epi32(ptype0, ptype1);
/* save the UDP header present information */
udp_csum_skip = _mm_and_si128(ptype0, udp_hdr_p_msk);
ptype0 = _mm_and_si128(ptype0, rsstype_msk);
ptype0 = _mm_shuffle_epi8(rss_flags, ptype0);
vtag1 = _mm_unpacklo_epi32(vtag0, vtag1);
vtag1 = _mm_and_si128(vtag1, vlan_csum_msk);
/* csum bits are in the most significant, to use shuffle we need to
* shift them. Change mask to 0xc000 to 0x0003.
*/
csum = _mm_srli_epi16(vtag1, 14);
/* now or the most significant 64 bits containing the checksum
* flags with the vlan present flags.
*/
csum = _mm_srli_si128(csum, 8);
vtag1 = _mm_or_si128(csum, vtag1);
/* convert VP, IPE, L4E to ol_flags */
vtag0 = _mm_shuffle_epi8(vlan_csum_map_hi, vtag1);
vtag0 = _mm_slli_epi16(vtag0, sizeof(uint8_t));
vtag1 = _mm_shuffle_epi8(vlan_csum_map_lo, vtag1);
vtag1 = _mm_and_si128(vtag1, ol_flags_msk);
vtag1 = _mm_or_si128(vtag0, vtag1);
vtag1 = _mm_or_si128(ptype0, vtag1);
/* convert the UDP header present 0x200 to 0x1 for aligning with each
* RTE_MBUF_F_RX_L4_CKSUM_BAD value in low byte of 16 bits word ol_flag in
* vtag1 (4x16). Then mask out the bad checksum value by shuffle and
* bit-mask.
*/
udp_csum_skip = _mm_srli_epi16(udp_csum_skip, 9);
udp_csum_skip = _mm_shuffle_epi8(udp_csum_bad_shuf, udp_csum_skip);
vtag1 = _mm_and_si128(vtag1, udp_csum_skip);
/*
* At this point, we have the 4 sets of flags in the low 64-bits
* of vtag1 (4x16).
* We want to extract these, and merge them with the mbuf init data
* so we can do a single 16-byte write to the mbuf to set the flags
* and all the other initialization fields. Extracting the
* appropriate flags means that we have to do a shift and blend for
* each mbuf before we do the write.
*/
rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vtag1, 8), 0x10);
rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vtag1, 6), 0x10);
rearm2 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vtag1, 4), 0x10);
rearm3 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vtag1, 2), 0x10);
/* write the rearm data and the olflags in one write */
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
offsetof(struct rte_mbuf, rearm_data) + 8);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
_mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0);
_mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1);
_mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2);
_mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
}
static inline uint32_t get_packet_type(int index,
uint32_t pkt_info,
uint32_t etqf_check,
uint32_t tunnel_check)
{
if (etqf_check & (0x02 << (index * RTE_IXGBE_DESCS_PER_LOOP)))
return RTE_PTYPE_UNKNOWN;
if (tunnel_check & (0x02 << (index * RTE_IXGBE_DESCS_PER_LOOP))) {
pkt_info &= IXGBE_PACKET_TYPE_MASK_TUNNEL;
return ptype_table_tn[pkt_info];
}
pkt_info &= IXGBE_PACKET_TYPE_MASK_82599;
return ptype_table[pkt_info];
}
static inline void
desc_to_ptype_v(__m128i descs[4], uint16_t pkt_type_mask,
struct rte_mbuf **rx_pkts)
{
__m128i etqf_mask = _mm_set_epi64x(0x800000008000LL, 0x800000008000LL);
__m128i ptype_mask = _mm_set_epi32(
pkt_type_mask, pkt_type_mask, pkt_type_mask, pkt_type_mask);
__m128i tunnel_mask =
_mm_set_epi64x(0x100000001000LL, 0x100000001000LL);
uint32_t etqf_check, tunnel_check, pkt_info;
__m128i ptype0 = _mm_unpacklo_epi32(descs[0], descs[2]);
__m128i ptype1 = _mm_unpacklo_epi32(descs[1], descs[3]);
/* interleave low 32 bits,
* now we have 4 ptypes in a XMM register
*/
ptype0 = _mm_unpacklo_epi32(ptype0, ptype1);
/* create a etqf bitmask based on the etqf bit. */
etqf_check = _mm_movemask_epi8(_mm_and_si128(ptype0, etqf_mask));
/* shift left by IXGBE_PACKET_TYPE_SHIFT, and apply ptype mask */
ptype0 = _mm_and_si128(_mm_srli_epi32(ptype0, IXGBE_PACKET_TYPE_SHIFT),
ptype_mask);
/* create a tunnel bitmask based on the tunnel bit */
tunnel_check = _mm_movemask_epi8(
_mm_slli_epi32(_mm_and_si128(ptype0, tunnel_mask), 0x3));
pkt_info = _mm_extract_epi32(ptype0, 0);
rx_pkts[0]->packet_type =
get_packet_type(0, pkt_info, etqf_check, tunnel_check);
pkt_info = _mm_extract_epi32(ptype0, 1);
rx_pkts[1]->packet_type =
get_packet_type(1, pkt_info, etqf_check, tunnel_check);
pkt_info = _mm_extract_epi32(ptype0, 2);
rx_pkts[2]->packet_type =
get_packet_type(2, pkt_info, etqf_check, tunnel_check);
pkt_info = _mm_extract_epi32(ptype0, 3);
rx_pkts[3]->packet_type =
get_packet_type(3, pkt_info, etqf_check, tunnel_check);
}
/**
* vPMD raw receive routine, only accept(nb_pkts >= RTE_IXGBE_DESCS_PER_LOOP)
*
* Notice:
* - nb_pkts < RTE_IXGBE_DESCS_PER_LOOP, just return no packet
* - floor align nb_pkts to a RTE_IXGBE_DESC_PER_LOOP power-of-two
*/
static inline uint16_t
_recv_raw_pkts_vec(struct ixgbe_rx_queue *rxq, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts, uint8_t *split_packet)
{
volatile union ixgbe_adv_rx_desc *rxdp;
struct ixgbe_rx_entry *sw_ring;
uint16_t nb_pkts_recd;
#ifdef RTE_LIB_SECURITY
uint8_t use_ipsec = rxq->using_ipsec;
#endif
int pos;
uint64_t var;
__m128i shuf_msk;
__m128i crc_adjust = _mm_set_epi16(
0, 0, 0, /* ignore non-length fields */
-rxq->crc_len, /* sub crc on data_len */
0, /* ignore high-16bits of pkt_len */
-rxq->crc_len, /* sub crc on pkt_len */
0, 0 /* ignore pkt_type field */
);
/*
* compile-time check the above crc_adjust layout is correct.
* NOTE: the first field (lowest address) is given last in set_epi16
* call above.
*/
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
__m128i dd_check, eop_check;
__m128i mbuf_init;
uint8_t vlan_flags;
uint16_t udp_p_flag = 0; /* Rx Descriptor UDP header present */
/*
* Under the circumstance that `rx_tail` wrap back to zero
* and the advance speed of `rx_tail` is greater than `rxrearm_start`,
* `rx_tail` will catch up with `rxrearm_start` and surpass it.
* This may cause some mbufs be reused by application.
*
* So we need to make some restrictions to ensure that
* `rx_tail` will not exceed `rxrearm_start`.
*/
nb_pkts = RTE_MIN(nb_pkts, RTE_IXGBE_RXQ_REARM_THRESH);
/* nb_pkts has to be floor-aligned to RTE_IXGBE_DESCS_PER_LOOP */
nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_IXGBE_DESCS_PER_LOOP);
/* Just the act of getting into the function from the application is
* going to cost about 7 cycles
*/
rxdp = rxq->rx_ring + rxq->rx_tail;
rte_prefetch0(rxdp);
/* See if we need to rearm the RX queue - gives the prefetch a bit
* of time to act
*/
if (rxq->rxrearm_nb > RTE_IXGBE_RXQ_REARM_THRESH)
ixgbe_rxq_rearm(rxq);
/* Before we start moving massive data around, check to see if
* there is actually a packet available
*/
if (!(rxdp->wb.upper.status_error &
rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
return 0;
if (rxq->rx_udp_csum_zero_err)
udp_p_flag = IXGBE_RXDADV_PKTTYPE_UDP;
/* 4 packets DD mask */
dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);
/* 4 packets EOP mask */
eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);
/* mask to shuffle from desc. to mbuf */
shuf_msk = _mm_set_epi8(
7, 6, 5, 4, /* octet 4~7, 32bits rss */
15, 14, /* octet 14~15, low 16 bits vlan_macip */
13, 12, /* octet 12~13, 16 bits data_len */
0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
13, 12, /* octet 12~13, low 16 bits pkt_len */
0xFF, 0xFF, /* skip 32 bit pkt_type */
0xFF, 0xFF
);
/*
* Compile-time verify the shuffle mask
* NOTE: some field positions already verified above, but duplicated
* here for completeness in case of future modifications.
*/
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
/* Cache is empty -> need to scan the buffer rings, but first move
* the next 'n' mbufs into the cache
*/
sw_ring = &rxq->sw_ring[rxq->rx_tail];
/* ensure these 2 flags are in the lower 8 bits */
RTE_BUILD_BUG_ON((RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED) > UINT8_MAX);
vlan_flags = rxq->vlan_flags & UINT8_MAX;
/* A. load 4 packet in one loop
* [A*. mask out 4 unused dirty field in desc]
* B. copy 4 mbuf point from swring to rx_pkts
* C. calc the number of DD bits among the 4 packets
* [C*. extract the end-of-packet bit, if requested]
* D. fill info. from desc to mbuf
*/
for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
pos += RTE_IXGBE_DESCS_PER_LOOP,
rxdp += RTE_IXGBE_DESCS_PER_LOOP) {
__m128i descs[RTE_IXGBE_DESCS_PER_LOOP];
__m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
__m128i zero, staterr, sterr_tmp1, sterr_tmp2;
/* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
__m128i mbp1;
#if defined(RTE_ARCH_X86_64)
__m128i mbp2;
#endif
/* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
/* Read desc statuses backwards to avoid race condition */
/* A.1 load desc[3] */
descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
rte_compiler_barrier();
/* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
_mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
#if defined(RTE_ARCH_X86_64)
/* B.1 load 2 64 bit mbuf points */
mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos+2]);
#endif
/* A.1 load desc[2-0] */
descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
rte_compiler_barrier();
descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
rte_compiler_barrier();
descs[0] = _mm_loadu_si128((__m128i *)(rxdp));
#if defined(RTE_ARCH_X86_64)
/* B.2 copy 2 mbuf point into rx_pkts */
_mm_storeu_si128((__m128i *)&rx_pkts[pos+2], mbp2);
#endif
if (split_packet) {
rte_mbuf_prefetch_part2(rx_pkts[pos]);
rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
}
/* avoid compiler reorder optimization */
rte_compiler_barrier();
/* D.1 pkt 3,4 convert format from desc to pktmbuf */
pkt_mb4 = _mm_shuffle_epi8(descs[3], shuf_msk);
pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk);
/* D.1 pkt 1,2 convert format from desc to pktmbuf */
pkt_mb2 = _mm_shuffle_epi8(descs[1], shuf_msk);
pkt_mb1 = _mm_shuffle_epi8(descs[0], shuf_msk);
/* C.1 4=>2 filter staterr info only */
sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
/* C.1 4=>2 filter staterr info only */
sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);
/* set ol_flags with vlan packet type */
desc_to_olflags_v(descs, mbuf_init, vlan_flags, udp_p_flag,
&rx_pkts[pos]);
#ifdef RTE_LIB_SECURITY
if (unlikely(use_ipsec))
desc_to_olflags_v_ipsec(descs, &rx_pkts[pos]);
#endif
/* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
pkt_mb4 = _mm_add_epi16(pkt_mb4, crc_adjust);
pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
/* C.2 get 4 pkts staterr value */
zero = _mm_xor_si128(dd_check, dd_check);
staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
/* D.3 copy final 3,4 data to rx_pkts */
_mm_storeu_si128((void *)&rx_pkts[pos+3]->rx_descriptor_fields1,
pkt_mb4);
_mm_storeu_si128((void *)&rx_pkts[pos+2]->rx_descriptor_fields1,
pkt_mb3);
/* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);
/* C* extract and record EOP bit */
if (split_packet) {
__m128i eop_shuf_mask = _mm_set_epi8(
0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF,
0x04, 0x0C, 0x00, 0x08
);
/* and with mask to extract bits, flipping 1-0 */
__m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
/* the staterr values are not in order, as the count
* of dd bits doesn't care. However, for end of
* packet tracking, we do care, so shuffle. This also
* compresses the 32-bit values to 8-bit
*/
eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
/* store the resulting 32-bit value */
*(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
split_packet += RTE_IXGBE_DESCS_PER_LOOP;
}
/* C.3 calc available number of desc */
staterr = _mm_and_si128(staterr, dd_check);
staterr = _mm_packs_epi32(staterr, zero);
/* D.3 copy final 1,2 data to rx_pkts */
_mm_storeu_si128((void *)&rx_pkts[pos+1]->rx_descriptor_fields1,
pkt_mb2);
_mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
pkt_mb1);
desc_to_ptype_v(descs, rxq->pkt_type_mask, &rx_pkts[pos]);
/* C.4 calc available number of desc */
var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
nb_pkts_recd += var;
if (likely(var != RTE_IXGBE_DESCS_PER_LOOP))
break;
}
/* Update our internal tail pointer */
rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
return nb_pkts_recd;
}
/**
* vPMD receive routine, only accept(nb_pkts >= RTE_IXGBE_DESCS_PER_LOOP)
*
* Notice:
* - nb_pkts < RTE_IXGBE_DESCS_PER_LOOP, just return no packet
* - floor align nb_pkts to a RTE_IXGBE_DESC_PER_LOOP power-of-two
*/
uint16_t
ixgbe_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
}
/**
* vPMD receive routine that reassembles scattered packets
*
* Notice:
* - nb_pkts < RTE_IXGBE_DESCS_PER_LOOP, just return no packet
* - floor align nb_pkts to a RTE_IXGBE_DESC_PER_LOOP power-of-two
*/
static uint16_t
ixgbe_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct ixgbe_rx_queue *rxq = rx_queue;
uint8_t split_flags[RTE_IXGBE_MAX_RX_BURST] = {0};
/* get some new buffers */
uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
split_flags);
if (nb_bufs == 0)
return 0;
/* happy day case, full burst + no packets to be joined */
const uint64_t *split_fl64 = (uint64_t *)split_flags;
if (rxq->pkt_first_seg == NULL &&
split_fl64[0] == 0 && split_fl64[1] == 0 &&
split_fl64[2] == 0 && split_fl64[3] == 0)
return nb_bufs;
/* reassemble any packets that need reassembly*/
unsigned i = 0;
if (rxq->pkt_first_seg == NULL) {
/* find the first split flag, and only reassemble then*/
while (i < nb_bufs && !split_flags[i])
i++;
if (i == nb_bufs)
return nb_bufs;
rxq->pkt_first_seg = rx_pkts[i];
}
return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
&split_flags[i]);
}
/**
* vPMD receive routine that reassembles scattered packets.
*/
uint16_t
ixgbe_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
uint16_t retval = 0;
while (nb_pkts > RTE_IXGBE_MAX_RX_BURST) {
uint16_t burst;
burst = ixgbe_recv_scattered_burst_vec(rx_queue,
rx_pkts + retval,
RTE_IXGBE_MAX_RX_BURST);
retval += burst;
nb_pkts -= burst;
if (burst < RTE_IXGBE_MAX_RX_BURST)
return retval;
}
return retval + ixgbe_recv_scattered_burst_vec(rx_queue,
rx_pkts + retval,
nb_pkts);
}
static inline void
vtx1(volatile union ixgbe_adv_tx_desc *txdp,
struct rte_mbuf *pkt, uint64_t flags)
{
__m128i descriptor = _mm_set_epi64x((uint64_t)pkt->pkt_len << 46 |
flags | pkt->data_len,
pkt->buf_iova + pkt->data_off);
_mm_store_si128((__m128i *)&txdp->read, descriptor);
}
static inline void
vtx(volatile union ixgbe_adv_tx_desc *txdp,
struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags)
{
int i;
for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
vtx1(txdp, *pkt, flags);
}
uint16_t
ixgbe_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
volatile union ixgbe_adv_tx_desc *txdp;
struct ixgbe_tx_entry_v *txep;
uint16_t n, nb_commit, tx_id;
uint64_t flags = DCMD_DTYP_FLAGS;
uint64_t rs = IXGBE_ADVTXD_DCMD_RS|DCMD_DTYP_FLAGS;
int i;
/* cross rx_thresh boundary is not allowed */
nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
if (txq->nb_tx_free < txq->tx_free_thresh)
ixgbe_tx_free_bufs(txq);
nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
if (unlikely(nb_pkts == 0))
return 0;
tx_id = txq->tx_tail;
txdp = &txq->tx_ring[tx_id];
txep = &txq->sw_ring_v[tx_id];
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
n = (uint16_t)(txq->nb_tx_desc - tx_id);
if (nb_commit >= n) {
tx_backlog_entry(txep, tx_pkts, n);
for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
vtx1(txdp, *tx_pkts, flags);
vtx1(txdp, *tx_pkts++, rs);
nb_commit = (uint16_t)(nb_commit - n);
tx_id = 0;
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
/* avoid reach the end of ring */
txdp = &(txq->tx_ring[tx_id]);
txep = &txq->sw_ring_v[tx_id];
}
tx_backlog_entry(txep, tx_pkts, nb_commit);
vtx(txdp, tx_pkts, nb_commit, flags);
tx_id = (uint16_t)(tx_id + nb_commit);
if (tx_id > txq->tx_next_rs) {
txq->tx_ring[txq->tx_next_rs].read.cmd_type_len |=
rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
txq->tx_next_rs = (uint16_t)(txq->tx_next_rs +
txq->tx_rs_thresh);
}
txq->tx_tail = tx_id;
IXGBE_PCI_REG_WC_WRITE(txq->tdt_reg_addr, txq->tx_tail);
return nb_pkts;
}
static void __rte_cold
ixgbe_tx_queue_release_mbufs_vec(struct ixgbe_tx_queue *txq)
{
_ixgbe_tx_queue_release_mbufs_vec(txq);
}
void __rte_cold
ixgbe_rx_queue_release_mbufs_vec(struct ixgbe_rx_queue *rxq)
{
_ixgbe_rx_queue_release_mbufs_vec(rxq);
}
static void __rte_cold
ixgbe_tx_free_swring(struct ixgbe_tx_queue *txq)
{
_ixgbe_tx_free_swring_vec(txq);
}
static void __rte_cold
ixgbe_reset_tx_queue(struct ixgbe_tx_queue *txq)
{
_ixgbe_reset_tx_queue_vec(txq);
}
static const struct ixgbe_txq_ops vec_txq_ops = {
.release_mbufs = ixgbe_tx_queue_release_mbufs_vec,
.free_swring = ixgbe_tx_free_swring,
.reset = ixgbe_reset_tx_queue,
};
int __rte_cold
ixgbe_rxq_vec_setup(struct ixgbe_rx_queue *rxq)
{
return ixgbe_rxq_vec_setup_default(rxq);
}
int __rte_cold
ixgbe_txq_vec_setup(struct ixgbe_tx_queue *txq)
{
return ixgbe_txq_vec_setup_default(txq, &vec_txq_ops);
}
int __rte_cold
ixgbe_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev)
{
return ixgbe_rx_vec_dev_conf_condition_check_default(dev);
}