numam-dpdk/drivers/net/virtio/virtio_rxtx.c
Joyce Kong ea5207c158 virtio: use one way barrier for split vring used index
In case VIRTIO_F_ORDER_PLATFORM(36) is not negotiated, then the frontend
and backend are assumed to be implemented in software, that is they can
run on identical CPUs in an SMP configuration.
Thus a weak form of memory barriers like rte_smp_r/wmb, other than
rte_cio_r/wmb, is sufficient for this case(vq->hw->weak_barriers == 1)
and yields better performance.
For the above case, this patch helps yielding even better performance
by replacing the two-way barriers with C11 one-way barriers for used
index in split ring.

Signed-off-by: Joyce Kong <joyce.kong@arm.com>
Reviewed-by: Gavin Hu <gavin.hu@arm.com>
Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com>
2020-05-05 15:54:26 +02:00

2040 lines
50 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <rte_cycles.h>
#include <rte_memory.h>
#include <rte_branch_prediction.h>
#include <rte_mempool.h>
#include <rte_malloc.h>
#include <rte_mbuf.h>
#include <rte_ether.h>
#include <rte_ethdev_driver.h>
#include <rte_prefetch.h>
#include <rte_string_fns.h>
#include <rte_errno.h>
#include <rte_byteorder.h>
#include <rte_net.h>
#include <rte_ip.h>
#include <rte_udp.h>
#include <rte_tcp.h>
#include "virtio_logs.h"
#include "virtio_ethdev.h"
#include "virtio_pci.h"
#include "virtqueue.h"
#include "virtio_rxtx.h"
#include "virtio_rxtx_simple.h"
#include "virtio_ring.h"
#ifdef RTE_LIBRTE_VIRTIO_DEBUG_DUMP
#define VIRTIO_DUMP_PACKET(m, len) rte_pktmbuf_dump(stdout, m, len)
#else
#define VIRTIO_DUMP_PACKET(m, len) do { } while (0)
#endif
int
virtio_dev_rx_queue_done(void *rxq, uint16_t offset)
{
struct virtnet_rx *rxvq = rxq;
struct virtqueue *vq = rxvq->vq;
return virtqueue_nused(vq) >= offset;
}
void
vq_ring_free_inorder(struct virtqueue *vq, uint16_t desc_idx, uint16_t num)
{
vq->vq_free_cnt += num;
vq->vq_desc_tail_idx = desc_idx & (vq->vq_nentries - 1);
}
void
vq_ring_free_chain(struct virtqueue *vq, uint16_t desc_idx)
{
struct vring_desc *dp, *dp_tail;
struct vq_desc_extra *dxp;
uint16_t desc_idx_last = desc_idx;
dp = &vq->vq_split.ring.desc[desc_idx];
dxp = &vq->vq_descx[desc_idx];
vq->vq_free_cnt = (uint16_t)(vq->vq_free_cnt + dxp->ndescs);
if ((dp->flags & VRING_DESC_F_INDIRECT) == 0) {
while (dp->flags & VRING_DESC_F_NEXT) {
desc_idx_last = dp->next;
dp = &vq->vq_split.ring.desc[dp->next];
}
}
dxp->ndescs = 0;
/*
* We must append the existing free chain, if any, to the end of
* newly freed chain. If the virtqueue was completely used, then
* head would be VQ_RING_DESC_CHAIN_END (ASSERTed above).
*/
if (vq->vq_desc_tail_idx == VQ_RING_DESC_CHAIN_END) {
vq->vq_desc_head_idx = desc_idx;
} else {
dp_tail = &vq->vq_split.ring.desc[vq->vq_desc_tail_idx];
dp_tail->next = desc_idx;
}
vq->vq_desc_tail_idx = desc_idx_last;
dp->next = VQ_RING_DESC_CHAIN_END;
}
void
virtio_update_packet_stats(struct virtnet_stats *stats, struct rte_mbuf *mbuf)
{
uint32_t s = mbuf->pkt_len;
struct rte_ether_addr *ea;
stats->bytes += s;
if (s == 64) {
stats->size_bins[1]++;
} else if (s > 64 && s < 1024) {
uint32_t bin;
/* count zeros, and offset into correct bin */
bin = (sizeof(s) * 8) - __builtin_clz(s) - 5;
stats->size_bins[bin]++;
} else {
if (s < 64)
stats->size_bins[0]++;
else if (s < 1519)
stats->size_bins[6]++;
else
stats->size_bins[7]++;
}
ea = rte_pktmbuf_mtod(mbuf, struct rte_ether_addr *);
if (rte_is_multicast_ether_addr(ea)) {
if (rte_is_broadcast_ether_addr(ea))
stats->broadcast++;
else
stats->multicast++;
}
}
static inline void
virtio_rx_stats_updated(struct virtnet_rx *rxvq, struct rte_mbuf *m)
{
VIRTIO_DUMP_PACKET(m, m->data_len);
virtio_update_packet_stats(&rxvq->stats, m);
}
static uint16_t
virtqueue_dequeue_burst_rx_packed(struct virtqueue *vq,
struct rte_mbuf **rx_pkts,
uint32_t *len,
uint16_t num)
{
struct rte_mbuf *cookie;
uint16_t used_idx;
uint16_t id;
struct vring_packed_desc *desc;
uint16_t i;
desc = vq->vq_packed.ring.desc;
for (i = 0; i < num; i++) {
used_idx = vq->vq_used_cons_idx;
/* desc_is_used has a load-acquire or rte_cio_rmb inside
* and wait for used desc in virtqueue.
*/
if (!desc_is_used(&desc[used_idx], vq))
return i;
len[i] = desc[used_idx].len;
id = desc[used_idx].id;
cookie = (struct rte_mbuf *)vq->vq_descx[id].cookie;
if (unlikely(cookie == NULL)) {
PMD_DRV_LOG(ERR, "vring descriptor with no mbuf cookie at %u",
vq->vq_used_cons_idx);
break;
}
rte_prefetch0(cookie);
rte_packet_prefetch(rte_pktmbuf_mtod(cookie, void *));
rx_pkts[i] = cookie;
vq->vq_free_cnt++;
vq->vq_used_cons_idx++;
if (vq->vq_used_cons_idx >= vq->vq_nentries) {
vq->vq_used_cons_idx -= vq->vq_nentries;
vq->vq_packed.used_wrap_counter ^= 1;
}
}
return i;
}
static uint16_t
virtqueue_dequeue_burst_rx(struct virtqueue *vq, struct rte_mbuf **rx_pkts,
uint32_t *len, uint16_t num)
{
struct vring_used_elem *uep;
struct rte_mbuf *cookie;
uint16_t used_idx, desc_idx;
uint16_t i;
/* Caller does the check */
for (i = 0; i < num ; i++) {
used_idx = (uint16_t)(vq->vq_used_cons_idx & (vq->vq_nentries - 1));
uep = &vq->vq_split.ring.used->ring[used_idx];
desc_idx = (uint16_t) uep->id;
len[i] = uep->len;
cookie = (struct rte_mbuf *)vq->vq_descx[desc_idx].cookie;
if (unlikely(cookie == NULL)) {
PMD_DRV_LOG(ERR, "vring descriptor with no mbuf cookie at %u",
vq->vq_used_cons_idx);
break;
}
rte_prefetch0(cookie);
rte_packet_prefetch(rte_pktmbuf_mtod(cookie, void *));
rx_pkts[i] = cookie;
vq->vq_used_cons_idx++;
vq_ring_free_chain(vq, desc_idx);
vq->vq_descx[desc_idx].cookie = NULL;
}
return i;
}
static uint16_t
virtqueue_dequeue_rx_inorder(struct virtqueue *vq,
struct rte_mbuf **rx_pkts,
uint32_t *len,
uint16_t num)
{
struct vring_used_elem *uep;
struct rte_mbuf *cookie;
uint16_t used_idx = 0;
uint16_t i;
if (unlikely(num == 0))
return 0;
for (i = 0; i < num; i++) {
used_idx = vq->vq_used_cons_idx & (vq->vq_nentries - 1);
/* Desc idx same as used idx */
uep = &vq->vq_split.ring.used->ring[used_idx];
len[i] = uep->len;
cookie = (struct rte_mbuf *)vq->vq_descx[used_idx].cookie;
if (unlikely(cookie == NULL)) {
PMD_DRV_LOG(ERR, "vring descriptor with no mbuf cookie at %u",
vq->vq_used_cons_idx);
break;
}
rte_prefetch0(cookie);
rte_packet_prefetch(rte_pktmbuf_mtod(cookie, void *));
rx_pkts[i] = cookie;
vq->vq_used_cons_idx++;
vq->vq_descx[used_idx].cookie = NULL;
}
vq_ring_free_inorder(vq, used_idx, i);
return i;
}
static inline int
virtqueue_enqueue_refill_inorder(struct virtqueue *vq,
struct rte_mbuf **cookies,
uint16_t num)
{
struct vq_desc_extra *dxp;
struct virtio_hw *hw = vq->hw;
struct vring_desc *start_dp;
uint16_t head_idx, idx, i = 0;
if (unlikely(vq->vq_free_cnt == 0))
return -ENOSPC;
if (unlikely(vq->vq_free_cnt < num))
return -EMSGSIZE;
head_idx = vq->vq_desc_head_idx & (vq->vq_nentries - 1);
start_dp = vq->vq_split.ring.desc;
while (i < num) {
idx = head_idx & (vq->vq_nentries - 1);
dxp = &vq->vq_descx[idx];
dxp->cookie = (void *)cookies[i];
dxp->ndescs = 1;
start_dp[idx].addr =
VIRTIO_MBUF_ADDR(cookies[i], vq) +
RTE_PKTMBUF_HEADROOM - hw->vtnet_hdr_size;
start_dp[idx].len =
cookies[i]->buf_len -
RTE_PKTMBUF_HEADROOM +
hw->vtnet_hdr_size;
start_dp[idx].flags = VRING_DESC_F_WRITE;
vq_update_avail_ring(vq, idx);
head_idx++;
i++;
}
vq->vq_desc_head_idx += num;
vq->vq_free_cnt = (uint16_t)(vq->vq_free_cnt - num);
return 0;
}
static inline int
virtqueue_enqueue_recv_refill(struct virtqueue *vq, struct rte_mbuf **cookie,
uint16_t num)
{
struct vq_desc_extra *dxp;
struct virtio_hw *hw = vq->hw;
struct vring_desc *start_dp = vq->vq_split.ring.desc;
uint16_t idx, i;
if (unlikely(vq->vq_free_cnt == 0))
return -ENOSPC;
if (unlikely(vq->vq_free_cnt < num))
return -EMSGSIZE;
if (unlikely(vq->vq_desc_head_idx >= vq->vq_nentries))
return -EFAULT;
for (i = 0; i < num; i++) {
idx = vq->vq_desc_head_idx;
dxp = &vq->vq_descx[idx];
dxp->cookie = (void *)cookie[i];
dxp->ndescs = 1;
start_dp[idx].addr =
VIRTIO_MBUF_ADDR(cookie[i], vq) +
RTE_PKTMBUF_HEADROOM - hw->vtnet_hdr_size;
start_dp[idx].len =
cookie[i]->buf_len - RTE_PKTMBUF_HEADROOM +
hw->vtnet_hdr_size;
start_dp[idx].flags = VRING_DESC_F_WRITE;
vq->vq_desc_head_idx = start_dp[idx].next;
vq_update_avail_ring(vq, idx);
if (vq->vq_desc_head_idx == VQ_RING_DESC_CHAIN_END) {
vq->vq_desc_tail_idx = vq->vq_desc_head_idx;
break;
}
}
vq->vq_free_cnt = (uint16_t)(vq->vq_free_cnt - num);
return 0;
}
static inline int
virtqueue_enqueue_recv_refill_packed(struct virtqueue *vq,
struct rte_mbuf **cookie, uint16_t num)
{
struct vring_packed_desc *start_dp = vq->vq_packed.ring.desc;
uint16_t flags = vq->vq_packed.cached_flags;
struct virtio_hw *hw = vq->hw;
struct vq_desc_extra *dxp;
uint16_t idx;
int i;
if (unlikely(vq->vq_free_cnt == 0))
return -ENOSPC;
if (unlikely(vq->vq_free_cnt < num))
return -EMSGSIZE;
for (i = 0; i < num; i++) {
idx = vq->vq_avail_idx;
dxp = &vq->vq_descx[idx];
dxp->cookie = (void *)cookie[i];
dxp->ndescs = 1;
start_dp[idx].addr = VIRTIO_MBUF_ADDR(cookie[i], vq) +
RTE_PKTMBUF_HEADROOM - hw->vtnet_hdr_size;
start_dp[idx].len = cookie[i]->buf_len - RTE_PKTMBUF_HEADROOM
+ hw->vtnet_hdr_size;
vq->vq_desc_head_idx = dxp->next;
if (vq->vq_desc_head_idx == VQ_RING_DESC_CHAIN_END)
vq->vq_desc_tail_idx = vq->vq_desc_head_idx;
virtqueue_store_flags_packed(&start_dp[idx], flags,
hw->weak_barriers);
if (++vq->vq_avail_idx >= vq->vq_nentries) {
vq->vq_avail_idx -= vq->vq_nentries;
vq->vq_packed.cached_flags ^=
VRING_PACKED_DESC_F_AVAIL_USED;
flags = vq->vq_packed.cached_flags;
}
}
vq->vq_free_cnt = (uint16_t)(vq->vq_free_cnt - num);
return 0;
}
/* When doing TSO, the IP length is not included in the pseudo header
* checksum of the packet given to the PMD, but for virtio it is
* expected.
*/
static void
virtio_tso_fix_cksum(struct rte_mbuf *m)
{
/* common case: header is not fragmented */
if (likely(rte_pktmbuf_data_len(m) >= m->l2_len + m->l3_len +
m->l4_len)) {
struct rte_ipv4_hdr *iph;
struct rte_ipv6_hdr *ip6h;
struct rte_tcp_hdr *th;
uint16_t prev_cksum, new_cksum, ip_len, ip_paylen;
uint32_t tmp;
iph = rte_pktmbuf_mtod_offset(m,
struct rte_ipv4_hdr *, m->l2_len);
th = RTE_PTR_ADD(iph, m->l3_len);
if ((iph->version_ihl >> 4) == 4) {
iph->hdr_checksum = 0;
iph->hdr_checksum = rte_ipv4_cksum(iph);
ip_len = iph->total_length;
ip_paylen = rte_cpu_to_be_16(rte_be_to_cpu_16(ip_len) -
m->l3_len);
} else {
ip6h = (struct rte_ipv6_hdr *)iph;
ip_paylen = ip6h->payload_len;
}
/* calculate the new phdr checksum not including ip_paylen */
prev_cksum = th->cksum;
tmp = prev_cksum;
tmp += ip_paylen;
tmp = (tmp & 0xffff) + (tmp >> 16);
new_cksum = tmp;
/* replace it in the packet */
th->cksum = new_cksum;
}
}
static inline void
virtqueue_enqueue_xmit_inorder(struct virtnet_tx *txvq,
struct rte_mbuf **cookies,
uint16_t num)
{
struct vq_desc_extra *dxp;
struct virtqueue *vq = txvq->vq;
struct vring_desc *start_dp;
struct virtio_net_hdr *hdr;
uint16_t idx;
int16_t head_size = vq->hw->vtnet_hdr_size;
uint16_t i = 0;
idx = vq->vq_desc_head_idx;
start_dp = vq->vq_split.ring.desc;
while (i < num) {
idx = idx & (vq->vq_nentries - 1);
dxp = &vq->vq_descx[vq->vq_avail_idx & (vq->vq_nentries - 1)];
dxp->cookie = (void *)cookies[i];
dxp->ndescs = 1;
virtio_update_packet_stats(&txvq->stats, cookies[i]);
hdr = rte_pktmbuf_mtod_offset(cookies[i],
struct virtio_net_hdr *, -head_size);
/* if offload disabled, hdr is not zeroed yet, do it now */
if (!vq->hw->has_tx_offload)
virtqueue_clear_net_hdr(hdr);
else
virtqueue_xmit_offload(hdr, cookies[i], true);
start_dp[idx].addr =
VIRTIO_MBUF_DATA_DMA_ADDR(cookies[i], vq) - head_size;
start_dp[idx].len = cookies[i]->data_len + head_size;
start_dp[idx].flags = 0;
vq_update_avail_ring(vq, idx);
idx++;
i++;
};
vq->vq_free_cnt = (uint16_t)(vq->vq_free_cnt - num);
vq->vq_desc_head_idx = idx & (vq->vq_nentries - 1);
}
static inline void
virtqueue_enqueue_xmit_packed_fast(struct virtnet_tx *txvq,
struct rte_mbuf *cookie,
int in_order)
{
struct virtqueue *vq = txvq->vq;
struct vring_packed_desc *dp;
struct vq_desc_extra *dxp;
uint16_t idx, id, flags;
int16_t head_size = vq->hw->vtnet_hdr_size;
struct virtio_net_hdr *hdr;
id = in_order ? vq->vq_avail_idx : vq->vq_desc_head_idx;
idx = vq->vq_avail_idx;
dp = &vq->vq_packed.ring.desc[idx];
dxp = &vq->vq_descx[id];
dxp->ndescs = 1;
dxp->cookie = cookie;
flags = vq->vq_packed.cached_flags;
/* prepend cannot fail, checked by caller */
hdr = rte_pktmbuf_mtod_offset(cookie, struct virtio_net_hdr *,
-head_size);
/* if offload disabled, hdr is not zeroed yet, do it now */
if (!vq->hw->has_tx_offload)
virtqueue_clear_net_hdr(hdr);
else
virtqueue_xmit_offload(hdr, cookie, true);
dp->addr = VIRTIO_MBUF_DATA_DMA_ADDR(cookie, vq) - head_size;
dp->len = cookie->data_len + head_size;
dp->id = id;
if (++vq->vq_avail_idx >= vq->vq_nentries) {
vq->vq_avail_idx -= vq->vq_nentries;
vq->vq_packed.cached_flags ^= VRING_PACKED_DESC_F_AVAIL_USED;
}
vq->vq_free_cnt--;
if (!in_order) {
vq->vq_desc_head_idx = dxp->next;
if (vq->vq_desc_head_idx == VQ_RING_DESC_CHAIN_END)
vq->vq_desc_tail_idx = VQ_RING_DESC_CHAIN_END;
}
virtqueue_store_flags_packed(dp, flags, vq->hw->weak_barriers);
}
static inline void
virtqueue_enqueue_xmit(struct virtnet_tx *txvq, struct rte_mbuf *cookie,
uint16_t needed, int use_indirect, int can_push,
int in_order)
{
struct virtio_tx_region *txr = txvq->virtio_net_hdr_mz->addr;
struct vq_desc_extra *dxp;
struct virtqueue *vq = txvq->vq;
struct vring_desc *start_dp;
uint16_t seg_num = cookie->nb_segs;
uint16_t head_idx, idx;
int16_t head_size = vq->hw->vtnet_hdr_size;
bool prepend_header = false;
struct virtio_net_hdr *hdr;
head_idx = vq->vq_desc_head_idx;
idx = head_idx;
if (in_order)
dxp = &vq->vq_descx[vq->vq_avail_idx & (vq->vq_nentries - 1)];
else
dxp = &vq->vq_descx[idx];
dxp->cookie = (void *)cookie;
dxp->ndescs = needed;
start_dp = vq->vq_split.ring.desc;
if (can_push) {
/* prepend cannot fail, checked by caller */
hdr = rte_pktmbuf_mtod_offset(cookie, struct virtio_net_hdr *,
-head_size);
prepend_header = true;
/* if offload disabled, it is not zeroed below, do it now */
if (!vq->hw->has_tx_offload)
virtqueue_clear_net_hdr(hdr);
} else if (use_indirect) {
/* setup tx ring slot to point to indirect
* descriptor list stored in reserved region.
*
* the first slot in indirect ring is already preset
* to point to the header in reserved region
*/
start_dp[idx].addr = txvq->virtio_net_hdr_mem +
RTE_PTR_DIFF(&txr[idx].tx_indir, txr);
start_dp[idx].len = (seg_num + 1) * sizeof(struct vring_desc);
start_dp[idx].flags = VRING_DESC_F_INDIRECT;
hdr = (struct virtio_net_hdr *)&txr[idx].tx_hdr;
/* loop below will fill in rest of the indirect elements */
start_dp = txr[idx].tx_indir;
idx = 1;
} else {
/* setup first tx ring slot to point to header
* stored in reserved region.
*/
start_dp[idx].addr = txvq->virtio_net_hdr_mem +
RTE_PTR_DIFF(&txr[idx].tx_hdr, txr);
start_dp[idx].len = vq->hw->vtnet_hdr_size;
start_dp[idx].flags = VRING_DESC_F_NEXT;
hdr = (struct virtio_net_hdr *)&txr[idx].tx_hdr;
idx = start_dp[idx].next;
}
virtqueue_xmit_offload(hdr, cookie, vq->hw->has_tx_offload);
do {
start_dp[idx].addr = VIRTIO_MBUF_DATA_DMA_ADDR(cookie, vq);
start_dp[idx].len = cookie->data_len;
if (prepend_header) {
start_dp[idx].addr -= head_size;
start_dp[idx].len += head_size;
prepend_header = false;
}
start_dp[idx].flags = cookie->next ? VRING_DESC_F_NEXT : 0;
idx = start_dp[idx].next;
} while ((cookie = cookie->next) != NULL);
if (use_indirect)
idx = vq->vq_split.ring.desc[head_idx].next;
vq->vq_free_cnt = (uint16_t)(vq->vq_free_cnt - needed);
vq->vq_desc_head_idx = idx;
vq_update_avail_ring(vq, head_idx);
if (!in_order) {
if (vq->vq_desc_head_idx == VQ_RING_DESC_CHAIN_END)
vq->vq_desc_tail_idx = idx;
}
}
void
virtio_dev_cq_start(struct rte_eth_dev *dev)
{
struct virtio_hw *hw = dev->data->dev_private;
if (hw->cvq && hw->cvq->vq) {
rte_spinlock_init(&hw->cvq->lock);
VIRTQUEUE_DUMP((struct virtqueue *)hw->cvq->vq);
}
}
int
virtio_dev_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id __rte_unused,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp)
{
uint16_t vtpci_queue_idx = 2 * queue_idx + VTNET_SQ_RQ_QUEUE_IDX;
struct virtio_hw *hw = dev->data->dev_private;
struct virtqueue *vq = hw->vqs[vtpci_queue_idx];
struct virtnet_rx *rxvq;
uint16_t rx_free_thresh;
PMD_INIT_FUNC_TRACE();
if (rx_conf->rx_deferred_start) {
PMD_INIT_LOG(ERR, "Rx deferred start is not supported");
return -EINVAL;
}
rx_free_thresh = rx_conf->rx_free_thresh;
if (rx_free_thresh == 0)
rx_free_thresh =
RTE_MIN(vq->vq_nentries / 4, DEFAULT_RX_FREE_THRESH);
if (rx_free_thresh & 0x3) {
RTE_LOG(ERR, PMD, "rx_free_thresh must be multiples of four."
" (rx_free_thresh=%u port=%u queue=%u)\n",
rx_free_thresh, dev->data->port_id, queue_idx);
return -EINVAL;
}
if (rx_free_thresh >= vq->vq_nentries) {
RTE_LOG(ERR, PMD, "rx_free_thresh must be less than the "
"number of RX entries (%u)."
" (rx_free_thresh=%u port=%u queue=%u)\n",
vq->vq_nentries,
rx_free_thresh, dev->data->port_id, queue_idx);
return -EINVAL;
}
vq->vq_free_thresh = rx_free_thresh;
if (nb_desc == 0 || nb_desc > vq->vq_nentries)
nb_desc = vq->vq_nentries;
vq->vq_free_cnt = RTE_MIN(vq->vq_free_cnt, nb_desc);
rxvq = &vq->rxq;
rxvq->queue_id = queue_idx;
rxvq->mpool = mp;
dev->data->rx_queues[queue_idx] = rxvq;
return 0;
}
int
virtio_dev_rx_queue_setup_finish(struct rte_eth_dev *dev, uint16_t queue_idx)
{
uint16_t vtpci_queue_idx = 2 * queue_idx + VTNET_SQ_RQ_QUEUE_IDX;
struct virtio_hw *hw = dev->data->dev_private;
struct virtqueue *vq = hw->vqs[vtpci_queue_idx];
struct virtnet_rx *rxvq = &vq->rxq;
struct rte_mbuf *m;
uint16_t desc_idx;
int error, nbufs, i;
bool in_order = vtpci_with_feature(hw, VIRTIO_F_IN_ORDER);
PMD_INIT_FUNC_TRACE();
/* Allocate blank mbufs for the each rx descriptor */
nbufs = 0;
if (hw->use_vec_rx && !vtpci_packed_queue(hw)) {
for (desc_idx = 0; desc_idx < vq->vq_nentries;
desc_idx++) {
vq->vq_split.ring.avail->ring[desc_idx] = desc_idx;
vq->vq_split.ring.desc[desc_idx].flags =
VRING_DESC_F_WRITE;
}
virtio_rxq_vec_setup(rxvq);
}
memset(&rxvq->fake_mbuf, 0, sizeof(rxvq->fake_mbuf));
for (desc_idx = 0; desc_idx < RTE_PMD_VIRTIO_RX_MAX_BURST;
desc_idx++) {
vq->sw_ring[vq->vq_nentries + desc_idx] =
&rxvq->fake_mbuf;
}
if (hw->use_vec_rx && !vtpci_packed_queue(hw)) {
while (vq->vq_free_cnt >= RTE_VIRTIO_VPMD_RX_REARM_THRESH) {
virtio_rxq_rearm_vec(rxvq);
nbufs += RTE_VIRTIO_VPMD_RX_REARM_THRESH;
}
} else if (!vtpci_packed_queue(vq->hw) && in_order) {
if ((!virtqueue_full(vq))) {
uint16_t free_cnt = vq->vq_free_cnt;
struct rte_mbuf *pkts[free_cnt];
if (!rte_pktmbuf_alloc_bulk(rxvq->mpool, pkts,
free_cnt)) {
error = virtqueue_enqueue_refill_inorder(vq,
pkts,
free_cnt);
if (unlikely(error)) {
for (i = 0; i < free_cnt; i++)
rte_pktmbuf_free(pkts[i]);
}
}
nbufs += free_cnt;
vq_update_avail_idx(vq);
}
} else {
while (!virtqueue_full(vq)) {
m = rte_mbuf_raw_alloc(rxvq->mpool);
if (m == NULL)
break;
/* Enqueue allocated buffers */
if (vtpci_packed_queue(vq->hw))
error = virtqueue_enqueue_recv_refill_packed(vq,
&m, 1);
else
error = virtqueue_enqueue_recv_refill(vq,
&m, 1);
if (error) {
rte_pktmbuf_free(m);
break;
}
nbufs++;
}
if (!vtpci_packed_queue(vq->hw))
vq_update_avail_idx(vq);
}
PMD_INIT_LOG(DEBUG, "Allocated %d bufs", nbufs);
VIRTQUEUE_DUMP(vq);
return 0;
}
/*
* struct rte_eth_dev *dev: Used to update dev
* uint16_t nb_desc: Defaults to values read from config space
* unsigned int socket_id: Used to allocate memzone
* const struct rte_eth_txconf *tx_conf: Used to setup tx engine
* uint16_t queue_idx: Just used as an index in dev txq list
*/
int
virtio_dev_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id __rte_unused,
const struct rte_eth_txconf *tx_conf)
{
uint8_t vtpci_queue_idx = 2 * queue_idx + VTNET_SQ_TQ_QUEUE_IDX;
struct virtio_hw *hw = dev->data->dev_private;
struct virtqueue *vq = hw->vqs[vtpci_queue_idx];
struct virtnet_tx *txvq;
uint16_t tx_free_thresh;
PMD_INIT_FUNC_TRACE();
if (tx_conf->tx_deferred_start) {
PMD_INIT_LOG(ERR, "Tx deferred start is not supported");
return -EINVAL;
}
if (nb_desc == 0 || nb_desc > vq->vq_nentries)
nb_desc = vq->vq_nentries;
vq->vq_free_cnt = RTE_MIN(vq->vq_free_cnt, nb_desc);
txvq = &vq->txq;
txvq->queue_id = queue_idx;
tx_free_thresh = tx_conf->tx_free_thresh;
if (tx_free_thresh == 0)
tx_free_thresh =
RTE_MIN(vq->vq_nentries / 4, DEFAULT_TX_FREE_THRESH);
if (tx_free_thresh >= (vq->vq_nentries - 3)) {
PMD_DRV_LOG(ERR, "tx_free_thresh must be less than the "
"number of TX entries minus 3 (%u)."
" (tx_free_thresh=%u port=%u queue=%u)\n",
vq->vq_nentries - 3,
tx_free_thresh, dev->data->port_id, queue_idx);
return -EINVAL;
}
vq->vq_free_thresh = tx_free_thresh;
dev->data->tx_queues[queue_idx] = txvq;
return 0;
}
int
virtio_dev_tx_queue_setup_finish(struct rte_eth_dev *dev,
uint16_t queue_idx)
{
uint8_t vtpci_queue_idx = 2 * queue_idx + VTNET_SQ_TQ_QUEUE_IDX;
struct virtio_hw *hw = dev->data->dev_private;
struct virtqueue *vq = hw->vqs[vtpci_queue_idx];
PMD_INIT_FUNC_TRACE();
if (!vtpci_packed_queue(hw)) {
if (vtpci_with_feature(hw, VIRTIO_F_IN_ORDER))
vq->vq_split.ring.desc[vq->vq_nentries - 1].next = 0;
}
VIRTQUEUE_DUMP(vq);
return 0;
}
static inline void
virtio_discard_rxbuf(struct virtqueue *vq, struct rte_mbuf *m)
{
int error;
/*
* Requeue the discarded mbuf. This should always be
* successful since it was just dequeued.
*/
if (vtpci_packed_queue(vq->hw))
error = virtqueue_enqueue_recv_refill_packed(vq, &m, 1);
else
error = virtqueue_enqueue_recv_refill(vq, &m, 1);
if (unlikely(error)) {
PMD_DRV_LOG(ERR, "cannot requeue discarded mbuf");
rte_pktmbuf_free(m);
}
}
static inline void
virtio_discard_rxbuf_inorder(struct virtqueue *vq, struct rte_mbuf *m)
{
int error;
error = virtqueue_enqueue_refill_inorder(vq, &m, 1);
if (unlikely(error)) {
PMD_DRV_LOG(ERR, "cannot requeue discarded mbuf");
rte_pktmbuf_free(m);
}
}
/* Optionally fill offload information in structure */
static inline int
virtio_rx_offload(struct rte_mbuf *m, struct virtio_net_hdr *hdr)
{
struct rte_net_hdr_lens hdr_lens;
uint32_t hdrlen, ptype;
int l4_supported = 0;
/* nothing to do */
if (hdr->flags == 0 && hdr->gso_type == VIRTIO_NET_HDR_GSO_NONE)
return 0;
m->ol_flags |= PKT_RX_IP_CKSUM_UNKNOWN;
ptype = rte_net_get_ptype(m, &hdr_lens, RTE_PTYPE_ALL_MASK);
m->packet_type = ptype;
if ((ptype & RTE_PTYPE_L4_MASK) == RTE_PTYPE_L4_TCP ||
(ptype & RTE_PTYPE_L4_MASK) == RTE_PTYPE_L4_UDP ||
(ptype & RTE_PTYPE_L4_MASK) == RTE_PTYPE_L4_SCTP)
l4_supported = 1;
if (hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
hdrlen = hdr_lens.l2_len + hdr_lens.l3_len + hdr_lens.l4_len;
if (hdr->csum_start <= hdrlen && l4_supported) {
m->ol_flags |= PKT_RX_L4_CKSUM_NONE;
} else {
/* Unknown proto or tunnel, do sw cksum. We can assume
* the cksum field is in the first segment since the
* buffers we provided to the host are large enough.
* In case of SCTP, this will be wrong since it's a CRC
* but there's nothing we can do.
*/
uint16_t csum = 0, off;
rte_raw_cksum_mbuf(m, hdr->csum_start,
rte_pktmbuf_pkt_len(m) - hdr->csum_start,
&csum);
if (likely(csum != 0xffff))
csum = ~csum;
off = hdr->csum_offset + hdr->csum_start;
if (rte_pktmbuf_data_len(m) >= off + 1)
*rte_pktmbuf_mtod_offset(m, uint16_t *,
off) = csum;
}
} else if (hdr->flags & VIRTIO_NET_HDR_F_DATA_VALID && l4_supported) {
m->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
}
/* GSO request, save required information in mbuf */
if (hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) {
/* Check unsupported modes */
if ((hdr->gso_type & VIRTIO_NET_HDR_GSO_ECN) ||
(hdr->gso_size == 0)) {
return -EINVAL;
}
/* Update mss lengthes in mbuf */
m->tso_segsz = hdr->gso_size;
switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
case VIRTIO_NET_HDR_GSO_TCPV4:
case VIRTIO_NET_HDR_GSO_TCPV6:
m->ol_flags |= PKT_RX_LRO | \
PKT_RX_L4_CKSUM_NONE;
break;
default:
return -EINVAL;
}
}
return 0;
}
#define DESC_PER_CACHELINE (RTE_CACHE_LINE_SIZE / sizeof(struct vring_desc))
uint16_t
virtio_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
struct virtnet_rx *rxvq = rx_queue;
struct virtqueue *vq = rxvq->vq;
struct virtio_hw *hw = vq->hw;
struct rte_mbuf *rxm;
uint16_t nb_used, num, nb_rx;
uint32_t len[VIRTIO_MBUF_BURST_SZ];
struct rte_mbuf *rcv_pkts[VIRTIO_MBUF_BURST_SZ];
int error;
uint32_t i, nb_enqueued;
uint32_t hdr_size;
struct virtio_net_hdr *hdr;
nb_rx = 0;
if (unlikely(hw->started == 0))
return nb_rx;
nb_used = virtqueue_nused(vq);
num = likely(nb_used <= nb_pkts) ? nb_used : nb_pkts;
if (unlikely(num > VIRTIO_MBUF_BURST_SZ))
num = VIRTIO_MBUF_BURST_SZ;
if (likely(num > DESC_PER_CACHELINE))
num = num - ((vq->vq_used_cons_idx + num) % DESC_PER_CACHELINE);
num = virtqueue_dequeue_burst_rx(vq, rcv_pkts, len, num);
PMD_RX_LOG(DEBUG, "used:%d dequeue:%d", nb_used, num);
nb_enqueued = 0;
hdr_size = hw->vtnet_hdr_size;
for (i = 0; i < num ; i++) {
rxm = rcv_pkts[i];
PMD_RX_LOG(DEBUG, "packet len:%d", len[i]);
if (unlikely(len[i] < hdr_size + RTE_ETHER_HDR_LEN)) {
PMD_RX_LOG(ERR, "Packet drop");
nb_enqueued++;
virtio_discard_rxbuf(vq, rxm);
rxvq->stats.errors++;
continue;
}
rxm->port = rxvq->port_id;
rxm->data_off = RTE_PKTMBUF_HEADROOM;
rxm->ol_flags = 0;
rxm->vlan_tci = 0;
rxm->pkt_len = (uint32_t)(len[i] - hdr_size);
rxm->data_len = (uint16_t)(len[i] - hdr_size);
hdr = (struct virtio_net_hdr *)((char *)rxm->buf_addr +
RTE_PKTMBUF_HEADROOM - hdr_size);
if (hw->vlan_strip)
rte_vlan_strip(rxm);
if (hw->has_rx_offload && virtio_rx_offload(rxm, hdr) < 0) {
virtio_discard_rxbuf(vq, rxm);
rxvq->stats.errors++;
continue;
}
virtio_rx_stats_updated(rxvq, rxm);
rx_pkts[nb_rx++] = rxm;
}
rxvq->stats.packets += nb_rx;
/* Allocate new mbuf for the used descriptor */
if (likely(!virtqueue_full(vq))) {
uint16_t free_cnt = vq->vq_free_cnt;
struct rte_mbuf *new_pkts[free_cnt];
if (likely(rte_pktmbuf_alloc_bulk(rxvq->mpool, new_pkts,
free_cnt) == 0)) {
error = virtqueue_enqueue_recv_refill(vq, new_pkts,
free_cnt);
if (unlikely(error)) {
for (i = 0; i < free_cnt; i++)
rte_pktmbuf_free(new_pkts[i]);
}
nb_enqueued += free_cnt;
} else {
struct rte_eth_dev *dev =
&rte_eth_devices[rxvq->port_id];
dev->data->rx_mbuf_alloc_failed += free_cnt;
}
}
if (likely(nb_enqueued)) {
vq_update_avail_idx(vq);
if (unlikely(virtqueue_kick_prepare(vq))) {
virtqueue_notify(vq);
PMD_RX_LOG(DEBUG, "Notified");
}
}
return nb_rx;
}
uint16_t
virtio_recv_pkts_packed(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct virtnet_rx *rxvq = rx_queue;
struct virtqueue *vq = rxvq->vq;
struct virtio_hw *hw = vq->hw;
struct rte_mbuf *rxm;
uint16_t num, nb_rx;
uint32_t len[VIRTIO_MBUF_BURST_SZ];
struct rte_mbuf *rcv_pkts[VIRTIO_MBUF_BURST_SZ];
int error;
uint32_t i, nb_enqueued;
uint32_t hdr_size;
struct virtio_net_hdr *hdr;
nb_rx = 0;
if (unlikely(hw->started == 0))
return nb_rx;
num = RTE_MIN(VIRTIO_MBUF_BURST_SZ, nb_pkts);
if (likely(num > DESC_PER_CACHELINE))
num = num - ((vq->vq_used_cons_idx + num) % DESC_PER_CACHELINE);
num = virtqueue_dequeue_burst_rx_packed(vq, rcv_pkts, len, num);
PMD_RX_LOG(DEBUG, "dequeue:%d", num);
nb_enqueued = 0;
hdr_size = hw->vtnet_hdr_size;
for (i = 0; i < num; i++) {
rxm = rcv_pkts[i];
PMD_RX_LOG(DEBUG, "packet len:%d", len[i]);
if (unlikely(len[i] < hdr_size + RTE_ETHER_HDR_LEN)) {
PMD_RX_LOG(ERR, "Packet drop");
nb_enqueued++;
virtio_discard_rxbuf(vq, rxm);
rxvq->stats.errors++;
continue;
}
rxm->port = rxvq->port_id;
rxm->data_off = RTE_PKTMBUF_HEADROOM;
rxm->ol_flags = 0;
rxm->vlan_tci = 0;
rxm->pkt_len = (uint32_t)(len[i] - hdr_size);
rxm->data_len = (uint16_t)(len[i] - hdr_size);
hdr = (struct virtio_net_hdr *)((char *)rxm->buf_addr +
RTE_PKTMBUF_HEADROOM - hdr_size);
if (hw->vlan_strip)
rte_vlan_strip(rxm);
if (hw->has_rx_offload && virtio_rx_offload(rxm, hdr) < 0) {
virtio_discard_rxbuf(vq, rxm);
rxvq->stats.errors++;
continue;
}
virtio_rx_stats_updated(rxvq, rxm);
rx_pkts[nb_rx++] = rxm;
}
rxvq->stats.packets += nb_rx;
/* Allocate new mbuf for the used descriptor */
if (likely(!virtqueue_full(vq))) {
uint16_t free_cnt = vq->vq_free_cnt;
struct rte_mbuf *new_pkts[free_cnt];
if (likely(rte_pktmbuf_alloc_bulk(rxvq->mpool, new_pkts,
free_cnt) == 0)) {
error = virtqueue_enqueue_recv_refill_packed(vq,
new_pkts, free_cnt);
if (unlikely(error)) {
for (i = 0; i < free_cnt; i++)
rte_pktmbuf_free(new_pkts[i]);
}
nb_enqueued += free_cnt;
} else {
struct rte_eth_dev *dev =
&rte_eth_devices[rxvq->port_id];
dev->data->rx_mbuf_alloc_failed += free_cnt;
}
}
if (likely(nb_enqueued)) {
if (unlikely(virtqueue_kick_prepare_packed(vq))) {
virtqueue_notify(vq);
PMD_RX_LOG(DEBUG, "Notified");
}
}
return nb_rx;
}
uint16_t
virtio_recv_pkts_inorder(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct virtnet_rx *rxvq = rx_queue;
struct virtqueue *vq = rxvq->vq;
struct virtio_hw *hw = vq->hw;
struct rte_mbuf *rxm;
struct rte_mbuf *prev = NULL;
uint16_t nb_used, num, nb_rx;
uint32_t len[VIRTIO_MBUF_BURST_SZ];
struct rte_mbuf *rcv_pkts[VIRTIO_MBUF_BURST_SZ];
int error;
uint32_t nb_enqueued;
uint32_t seg_num;
uint32_t seg_res;
uint32_t hdr_size;
int32_t i;
nb_rx = 0;
if (unlikely(hw->started == 0))
return nb_rx;
nb_used = virtqueue_nused(vq);
nb_used = RTE_MIN(nb_used, nb_pkts);
nb_used = RTE_MIN(nb_used, VIRTIO_MBUF_BURST_SZ);
PMD_RX_LOG(DEBUG, "used:%d", nb_used);
nb_enqueued = 0;
seg_num = 1;
seg_res = 0;
hdr_size = hw->vtnet_hdr_size;
num = virtqueue_dequeue_rx_inorder(vq, rcv_pkts, len, nb_used);
for (i = 0; i < num; i++) {
struct virtio_net_hdr_mrg_rxbuf *header;
PMD_RX_LOG(DEBUG, "dequeue:%d", num);
PMD_RX_LOG(DEBUG, "packet len:%d", len[i]);
rxm = rcv_pkts[i];
if (unlikely(len[i] < hdr_size + RTE_ETHER_HDR_LEN)) {
PMD_RX_LOG(ERR, "Packet drop");
nb_enqueued++;
virtio_discard_rxbuf_inorder(vq, rxm);
rxvq->stats.errors++;
continue;
}
header = (struct virtio_net_hdr_mrg_rxbuf *)
((char *)rxm->buf_addr + RTE_PKTMBUF_HEADROOM
- hdr_size);
if (vtpci_with_feature(hw, VIRTIO_NET_F_MRG_RXBUF)) {
seg_num = header->num_buffers;
if (seg_num == 0)
seg_num = 1;
} else {
seg_num = 1;
}
rxm->data_off = RTE_PKTMBUF_HEADROOM;
rxm->nb_segs = seg_num;
rxm->ol_flags = 0;
rxm->vlan_tci = 0;
rxm->pkt_len = (uint32_t)(len[i] - hdr_size);
rxm->data_len = (uint16_t)(len[i] - hdr_size);
rxm->port = rxvq->port_id;
rx_pkts[nb_rx] = rxm;
prev = rxm;
if (vq->hw->has_rx_offload &&
virtio_rx_offload(rxm, &header->hdr) < 0) {
virtio_discard_rxbuf_inorder(vq, rxm);
rxvq->stats.errors++;
continue;
}
if (hw->vlan_strip)
rte_vlan_strip(rx_pkts[nb_rx]);
seg_res = seg_num - 1;
/* Merge remaining segments */
while (seg_res != 0 && i < (num - 1)) {
i++;
rxm = rcv_pkts[i];
rxm->data_off = RTE_PKTMBUF_HEADROOM - hdr_size;
rxm->pkt_len = (uint32_t)(len[i]);
rxm->data_len = (uint16_t)(len[i]);
rx_pkts[nb_rx]->pkt_len += (uint32_t)(len[i]);
prev->next = rxm;
prev = rxm;
seg_res -= 1;
}
if (!seg_res) {
virtio_rx_stats_updated(rxvq, rx_pkts[nb_rx]);
nb_rx++;
}
}
/* Last packet still need merge segments */
while (seg_res != 0) {
uint16_t rcv_cnt = RTE_MIN((uint16_t)seg_res,
VIRTIO_MBUF_BURST_SZ);
if (likely(virtqueue_nused(vq) >= rcv_cnt)) {
num = virtqueue_dequeue_rx_inorder(vq, rcv_pkts, len,
rcv_cnt);
uint16_t extra_idx = 0;
rcv_cnt = num;
while (extra_idx < rcv_cnt) {
rxm = rcv_pkts[extra_idx];
rxm->data_off =
RTE_PKTMBUF_HEADROOM - hdr_size;
rxm->pkt_len = (uint32_t)(len[extra_idx]);
rxm->data_len = (uint16_t)(len[extra_idx]);
prev->next = rxm;
prev = rxm;
rx_pkts[nb_rx]->pkt_len += len[extra_idx];
extra_idx += 1;
};
seg_res -= rcv_cnt;
if (!seg_res) {
virtio_rx_stats_updated(rxvq, rx_pkts[nb_rx]);
nb_rx++;
}
} else {
PMD_RX_LOG(ERR,
"No enough segments for packet.");
rte_pktmbuf_free(rx_pkts[nb_rx]);
rxvq->stats.errors++;
break;
}
}
rxvq->stats.packets += nb_rx;
/* Allocate new mbuf for the used descriptor */
if (likely(!virtqueue_full(vq))) {
/* free_cnt may include mrg descs */
uint16_t free_cnt = vq->vq_free_cnt;
struct rte_mbuf *new_pkts[free_cnt];
if (!rte_pktmbuf_alloc_bulk(rxvq->mpool, new_pkts, free_cnt)) {
error = virtqueue_enqueue_refill_inorder(vq, new_pkts,
free_cnt);
if (unlikely(error)) {
for (i = 0; i < free_cnt; i++)
rte_pktmbuf_free(new_pkts[i]);
}
nb_enqueued += free_cnt;
} else {
struct rte_eth_dev *dev =
&rte_eth_devices[rxvq->port_id];
dev->data->rx_mbuf_alloc_failed += free_cnt;
}
}
if (likely(nb_enqueued)) {
vq_update_avail_idx(vq);
if (unlikely(virtqueue_kick_prepare(vq))) {
virtqueue_notify(vq);
PMD_RX_LOG(DEBUG, "Notified");
}
}
return nb_rx;
}
uint16_t
virtio_recv_mergeable_pkts(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct virtnet_rx *rxvq = rx_queue;
struct virtqueue *vq = rxvq->vq;
struct virtio_hw *hw = vq->hw;
struct rte_mbuf *rxm;
struct rte_mbuf *prev = NULL;
uint16_t nb_used, num, nb_rx = 0;
uint32_t len[VIRTIO_MBUF_BURST_SZ];
struct rte_mbuf *rcv_pkts[VIRTIO_MBUF_BURST_SZ];
int error;
uint32_t nb_enqueued = 0;
uint32_t seg_num = 0;
uint32_t seg_res = 0;
uint32_t hdr_size = hw->vtnet_hdr_size;
int32_t i;
if (unlikely(hw->started == 0))
return nb_rx;
nb_used = virtqueue_nused(vq);
PMD_RX_LOG(DEBUG, "used:%d", nb_used);
num = likely(nb_used <= nb_pkts) ? nb_used : nb_pkts;
if (unlikely(num > VIRTIO_MBUF_BURST_SZ))
num = VIRTIO_MBUF_BURST_SZ;
if (likely(num > DESC_PER_CACHELINE))
num = num - ((vq->vq_used_cons_idx + num) %
DESC_PER_CACHELINE);
num = virtqueue_dequeue_burst_rx(vq, rcv_pkts, len, num);
for (i = 0; i < num; i++) {
struct virtio_net_hdr_mrg_rxbuf *header;
PMD_RX_LOG(DEBUG, "dequeue:%d", num);
PMD_RX_LOG(DEBUG, "packet len:%d", len[i]);
rxm = rcv_pkts[i];
if (unlikely(len[i] < hdr_size + RTE_ETHER_HDR_LEN)) {
PMD_RX_LOG(ERR, "Packet drop");
nb_enqueued++;
virtio_discard_rxbuf(vq, rxm);
rxvq->stats.errors++;
continue;
}
header = (struct virtio_net_hdr_mrg_rxbuf *)
((char *)rxm->buf_addr + RTE_PKTMBUF_HEADROOM
- hdr_size);
seg_num = header->num_buffers;
if (seg_num == 0)
seg_num = 1;
rxm->data_off = RTE_PKTMBUF_HEADROOM;
rxm->nb_segs = seg_num;
rxm->ol_flags = 0;
rxm->vlan_tci = 0;
rxm->pkt_len = (uint32_t)(len[i] - hdr_size);
rxm->data_len = (uint16_t)(len[i] - hdr_size);
rxm->port = rxvq->port_id;
rx_pkts[nb_rx] = rxm;
prev = rxm;
if (hw->has_rx_offload &&
virtio_rx_offload(rxm, &header->hdr) < 0) {
virtio_discard_rxbuf(vq, rxm);
rxvq->stats.errors++;
continue;
}
if (hw->vlan_strip)
rte_vlan_strip(rx_pkts[nb_rx]);
seg_res = seg_num - 1;
/* Merge remaining segments */
while (seg_res != 0 && i < (num - 1)) {
i++;
rxm = rcv_pkts[i];
rxm->data_off = RTE_PKTMBUF_HEADROOM - hdr_size;
rxm->pkt_len = (uint32_t)(len[i]);
rxm->data_len = (uint16_t)(len[i]);
rx_pkts[nb_rx]->pkt_len += (uint32_t)(len[i]);
prev->next = rxm;
prev = rxm;
seg_res -= 1;
}
if (!seg_res) {
virtio_rx_stats_updated(rxvq, rx_pkts[nb_rx]);
nb_rx++;
}
}
/* Last packet still need merge segments */
while (seg_res != 0) {
uint16_t rcv_cnt = RTE_MIN((uint16_t)seg_res,
VIRTIO_MBUF_BURST_SZ);
if (likely(virtqueue_nused(vq) >= rcv_cnt)) {
num = virtqueue_dequeue_burst_rx(vq, rcv_pkts, len,
rcv_cnt);
uint16_t extra_idx = 0;
rcv_cnt = num;
while (extra_idx < rcv_cnt) {
rxm = rcv_pkts[extra_idx];
rxm->data_off =
RTE_PKTMBUF_HEADROOM - hdr_size;
rxm->pkt_len = (uint32_t)(len[extra_idx]);
rxm->data_len = (uint16_t)(len[extra_idx]);
prev->next = rxm;
prev = rxm;
rx_pkts[nb_rx]->pkt_len += len[extra_idx];
extra_idx += 1;
};
seg_res -= rcv_cnt;
if (!seg_res) {
virtio_rx_stats_updated(rxvq, rx_pkts[nb_rx]);
nb_rx++;
}
} else {
PMD_RX_LOG(ERR,
"No enough segments for packet.");
rte_pktmbuf_free(rx_pkts[nb_rx]);
rxvq->stats.errors++;
break;
}
}
rxvq->stats.packets += nb_rx;
/* Allocate new mbuf for the used descriptor */
if (likely(!virtqueue_full(vq))) {
/* free_cnt may include mrg descs */
uint16_t free_cnt = vq->vq_free_cnt;
struct rte_mbuf *new_pkts[free_cnt];
if (!rte_pktmbuf_alloc_bulk(rxvq->mpool, new_pkts, free_cnt)) {
error = virtqueue_enqueue_recv_refill(vq, new_pkts,
free_cnt);
if (unlikely(error)) {
for (i = 0; i < free_cnt; i++)
rte_pktmbuf_free(new_pkts[i]);
}
nb_enqueued += free_cnt;
} else {
struct rte_eth_dev *dev =
&rte_eth_devices[rxvq->port_id];
dev->data->rx_mbuf_alloc_failed += free_cnt;
}
}
if (likely(nb_enqueued)) {
vq_update_avail_idx(vq);
if (unlikely(virtqueue_kick_prepare(vq))) {
virtqueue_notify(vq);
PMD_RX_LOG(DEBUG, "Notified");
}
}
return nb_rx;
}
uint16_t
virtio_recv_mergeable_pkts_packed(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct virtnet_rx *rxvq = rx_queue;
struct virtqueue *vq = rxvq->vq;
struct virtio_hw *hw = vq->hw;
struct rte_mbuf *rxm;
struct rte_mbuf *prev = NULL;
uint16_t num, nb_rx = 0;
uint32_t len[VIRTIO_MBUF_BURST_SZ];
struct rte_mbuf *rcv_pkts[VIRTIO_MBUF_BURST_SZ];
uint32_t nb_enqueued = 0;
uint32_t seg_num = 0;
uint32_t seg_res = 0;
uint32_t hdr_size = hw->vtnet_hdr_size;
int32_t i;
int error;
if (unlikely(hw->started == 0))
return nb_rx;
num = nb_pkts;
if (unlikely(num > VIRTIO_MBUF_BURST_SZ))
num = VIRTIO_MBUF_BURST_SZ;
if (likely(num > DESC_PER_CACHELINE))
num = num - ((vq->vq_used_cons_idx + num) % DESC_PER_CACHELINE);
num = virtqueue_dequeue_burst_rx_packed(vq, rcv_pkts, len, num);
for (i = 0; i < num; i++) {
struct virtio_net_hdr_mrg_rxbuf *header;
PMD_RX_LOG(DEBUG, "dequeue:%d", num);
PMD_RX_LOG(DEBUG, "packet len:%d", len[i]);
rxm = rcv_pkts[i];
if (unlikely(len[i] < hdr_size + RTE_ETHER_HDR_LEN)) {
PMD_RX_LOG(ERR, "Packet drop");
nb_enqueued++;
virtio_discard_rxbuf(vq, rxm);
rxvq->stats.errors++;
continue;
}
header = (struct virtio_net_hdr_mrg_rxbuf *)((char *)
rxm->buf_addr + RTE_PKTMBUF_HEADROOM - hdr_size);
seg_num = header->num_buffers;
if (seg_num == 0)
seg_num = 1;
rxm->data_off = RTE_PKTMBUF_HEADROOM;
rxm->nb_segs = seg_num;
rxm->ol_flags = 0;
rxm->vlan_tci = 0;
rxm->pkt_len = (uint32_t)(len[i] - hdr_size);
rxm->data_len = (uint16_t)(len[i] - hdr_size);
rxm->port = rxvq->port_id;
rx_pkts[nb_rx] = rxm;
prev = rxm;
if (hw->has_rx_offload &&
virtio_rx_offload(rxm, &header->hdr) < 0) {
virtio_discard_rxbuf(vq, rxm);
rxvq->stats.errors++;
continue;
}
if (hw->vlan_strip)
rte_vlan_strip(rx_pkts[nb_rx]);
seg_res = seg_num - 1;
/* Merge remaining segments */
while (seg_res != 0 && i < (num - 1)) {
i++;
rxm = rcv_pkts[i];
rxm->data_off = RTE_PKTMBUF_HEADROOM - hdr_size;
rxm->pkt_len = (uint32_t)(len[i]);
rxm->data_len = (uint16_t)(len[i]);
rx_pkts[nb_rx]->pkt_len += (uint32_t)(len[i]);
prev->next = rxm;
prev = rxm;
seg_res -= 1;
}
if (!seg_res) {
virtio_rx_stats_updated(rxvq, rx_pkts[nb_rx]);
nb_rx++;
}
}
/* Last packet still need merge segments */
while (seg_res != 0) {
uint16_t rcv_cnt = RTE_MIN((uint16_t)seg_res,
VIRTIO_MBUF_BURST_SZ);
uint16_t extra_idx = 0;
rcv_cnt = virtqueue_dequeue_burst_rx_packed(vq, rcv_pkts,
len, rcv_cnt);
if (unlikely(rcv_cnt == 0)) {
PMD_RX_LOG(ERR, "No enough segments for packet.");
rte_pktmbuf_free(rx_pkts[nb_rx]);
rxvq->stats.errors++;
break;
}
while (extra_idx < rcv_cnt) {
rxm = rcv_pkts[extra_idx];
rxm->data_off = RTE_PKTMBUF_HEADROOM - hdr_size;
rxm->pkt_len = (uint32_t)(len[extra_idx]);
rxm->data_len = (uint16_t)(len[extra_idx]);
prev->next = rxm;
prev = rxm;
rx_pkts[nb_rx]->pkt_len += len[extra_idx];
extra_idx += 1;
}
seg_res -= rcv_cnt;
if (!seg_res) {
virtio_rx_stats_updated(rxvq, rx_pkts[nb_rx]);
nb_rx++;
}
}
rxvq->stats.packets += nb_rx;
/* Allocate new mbuf for the used descriptor */
if (likely(!virtqueue_full(vq))) {
/* free_cnt may include mrg descs */
uint16_t free_cnt = vq->vq_free_cnt;
struct rte_mbuf *new_pkts[free_cnt];
if (!rte_pktmbuf_alloc_bulk(rxvq->mpool, new_pkts, free_cnt)) {
error = virtqueue_enqueue_recv_refill_packed(vq,
new_pkts, free_cnt);
if (unlikely(error)) {
for (i = 0; i < free_cnt; i++)
rte_pktmbuf_free(new_pkts[i]);
}
nb_enqueued += free_cnt;
} else {
struct rte_eth_dev *dev =
&rte_eth_devices[rxvq->port_id];
dev->data->rx_mbuf_alloc_failed += free_cnt;
}
}
if (likely(nb_enqueued)) {
if (unlikely(virtqueue_kick_prepare_packed(vq))) {
virtqueue_notify(vq);
PMD_RX_LOG(DEBUG, "Notified");
}
}
return nb_rx;
}
uint16_t
virtio_xmit_pkts_prepare(void *tx_queue __rte_unused, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
uint16_t nb_tx;
int error;
for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
struct rte_mbuf *m = tx_pkts[nb_tx];
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
error = rte_validate_tx_offload(m);
if (unlikely(error)) {
rte_errno = -error;
break;
}
#endif
/* Do VLAN tag insertion */
if (unlikely(m->ol_flags & PKT_TX_VLAN_PKT)) {
error = rte_vlan_insert(&m);
/* rte_vlan_insert() may change pointer
* even in the case of failure
*/
tx_pkts[nb_tx] = m;
if (unlikely(error)) {
rte_errno = -error;
break;
}
}
error = rte_net_intel_cksum_prepare(m);
if (unlikely(error)) {
rte_errno = -error;
break;
}
if (m->ol_flags & PKT_TX_TCP_SEG)
virtio_tso_fix_cksum(m);
}
return nb_tx;
}
uint16_t
virtio_xmit_pkts_packed(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct virtnet_tx *txvq = tx_queue;
struct virtqueue *vq = txvq->vq;
struct virtio_hw *hw = vq->hw;
uint16_t hdr_size = hw->vtnet_hdr_size;
uint16_t nb_tx = 0;
bool in_order = vtpci_with_feature(hw, VIRTIO_F_IN_ORDER);
if (unlikely(hw->started == 0 && tx_pkts != hw->inject_pkts))
return nb_tx;
if (unlikely(nb_pkts < 1))
return nb_pkts;
PMD_TX_LOG(DEBUG, "%d packets to xmit", nb_pkts);
if (nb_pkts > vq->vq_free_cnt)
virtio_xmit_cleanup_packed(vq, nb_pkts - vq->vq_free_cnt,
in_order);
for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
struct rte_mbuf *txm = tx_pkts[nb_tx];
int can_push = 0, slots, need;
/* optimize ring usage */
if ((vtpci_with_feature(hw, VIRTIO_F_ANY_LAYOUT) ||
vtpci_with_feature(hw, VIRTIO_F_VERSION_1)) &&
rte_mbuf_refcnt_read(txm) == 1 &&
RTE_MBUF_DIRECT(txm) &&
txm->nb_segs == 1 &&
rte_pktmbuf_headroom(txm) >= hdr_size &&
rte_is_aligned(rte_pktmbuf_mtod(txm, char *),
__alignof__(struct virtio_net_hdr_mrg_rxbuf)))
can_push = 1;
/* How many main ring entries are needed to this Tx?
* any_layout => number of segments
* default => number of segments + 1
*/
slots = txm->nb_segs + !can_push;
need = slots - vq->vq_free_cnt;
/* Positive value indicates it need free vring descriptors */
if (unlikely(need > 0)) {
virtio_xmit_cleanup_packed(vq, need, in_order);
need = slots - vq->vq_free_cnt;
if (unlikely(need > 0)) {
PMD_TX_LOG(ERR,
"No free tx descriptors to transmit");
break;
}
}
/* Enqueue Packet buffers */
if (can_push)
virtqueue_enqueue_xmit_packed_fast(txvq, txm, in_order);
else
virtqueue_enqueue_xmit_packed(txvq, txm, slots, 0,
in_order);
virtio_update_packet_stats(&txvq->stats, txm);
}
txvq->stats.packets += nb_tx;
if (likely(nb_tx)) {
if (unlikely(virtqueue_kick_prepare_packed(vq))) {
virtqueue_notify(vq);
PMD_TX_LOG(DEBUG, "Notified backend after xmit");
}
}
return nb_tx;
}
uint16_t
virtio_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
struct virtnet_tx *txvq = tx_queue;
struct virtqueue *vq = txvq->vq;
struct virtio_hw *hw = vq->hw;
uint16_t hdr_size = hw->vtnet_hdr_size;
uint16_t nb_used, nb_tx = 0;
if (unlikely(hw->started == 0 && tx_pkts != hw->inject_pkts))
return nb_tx;
if (unlikely(nb_pkts < 1))
return nb_pkts;
PMD_TX_LOG(DEBUG, "%d packets to xmit", nb_pkts);
nb_used = virtqueue_nused(vq);
if (likely(nb_used > vq->vq_nentries - vq->vq_free_thresh))
virtio_xmit_cleanup(vq, nb_used);
for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
struct rte_mbuf *txm = tx_pkts[nb_tx];
int can_push = 0, use_indirect = 0, slots, need;
/* optimize ring usage */
if ((vtpci_with_feature(hw, VIRTIO_F_ANY_LAYOUT) ||
vtpci_with_feature(hw, VIRTIO_F_VERSION_1)) &&
rte_mbuf_refcnt_read(txm) == 1 &&
RTE_MBUF_DIRECT(txm) &&
txm->nb_segs == 1 &&
rte_pktmbuf_headroom(txm) >= hdr_size &&
rte_is_aligned(rte_pktmbuf_mtod(txm, char *),
__alignof__(struct virtio_net_hdr_mrg_rxbuf)))
can_push = 1;
else if (vtpci_with_feature(hw, VIRTIO_RING_F_INDIRECT_DESC) &&
txm->nb_segs < VIRTIO_MAX_TX_INDIRECT)
use_indirect = 1;
/* How many main ring entries are needed to this Tx?
* any_layout => number of segments
* indirect => 1
* default => number of segments + 1
*/
slots = use_indirect ? 1 : (txm->nb_segs + !can_push);
need = slots - vq->vq_free_cnt;
/* Positive value indicates it need free vring descriptors */
if (unlikely(need > 0)) {
nb_used = virtqueue_nused(vq);
need = RTE_MIN(need, (int)nb_used);
virtio_xmit_cleanup(vq, need);
need = slots - vq->vq_free_cnt;
if (unlikely(need > 0)) {
PMD_TX_LOG(ERR,
"No free tx descriptors to transmit");
break;
}
}
/* Enqueue Packet buffers */
virtqueue_enqueue_xmit(txvq, txm, slots, use_indirect,
can_push, 0);
virtio_update_packet_stats(&txvq->stats, txm);
}
txvq->stats.packets += nb_tx;
if (likely(nb_tx)) {
vq_update_avail_idx(vq);
if (unlikely(virtqueue_kick_prepare(vq))) {
virtqueue_notify(vq);
PMD_TX_LOG(DEBUG, "Notified backend after xmit");
}
}
return nb_tx;
}
static __rte_always_inline int
virtio_xmit_try_cleanup_inorder(struct virtqueue *vq, uint16_t need)
{
uint16_t nb_used, nb_clean, nb_descs;
nb_descs = vq->vq_free_cnt + need;
nb_used = virtqueue_nused(vq);
nb_clean = RTE_MIN(need, (int)nb_used);
virtio_xmit_cleanup_inorder(vq, nb_clean);
return nb_descs - vq->vq_free_cnt;
}
uint16_t
virtio_xmit_pkts_inorder(void *tx_queue,
struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct virtnet_tx *txvq = tx_queue;
struct virtqueue *vq = txvq->vq;
struct virtio_hw *hw = vq->hw;
uint16_t hdr_size = hw->vtnet_hdr_size;
uint16_t nb_used, nb_tx = 0, nb_inorder_pkts = 0;
struct rte_mbuf *inorder_pkts[nb_pkts];
int need;
if (unlikely(hw->started == 0 && tx_pkts != hw->inject_pkts))
return nb_tx;
if (unlikely(nb_pkts < 1))
return nb_pkts;
VIRTQUEUE_DUMP(vq);
PMD_TX_LOG(DEBUG, "%d packets to xmit", nb_pkts);
nb_used = virtqueue_nused(vq);
if (likely(nb_used > vq->vq_nentries - vq->vq_free_thresh))
virtio_xmit_cleanup_inorder(vq, nb_used);
for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
struct rte_mbuf *txm = tx_pkts[nb_tx];
int slots;
/* optimize ring usage */
if ((vtpci_with_feature(hw, VIRTIO_F_ANY_LAYOUT) ||
vtpci_with_feature(hw, VIRTIO_F_VERSION_1)) &&
rte_mbuf_refcnt_read(txm) == 1 &&
RTE_MBUF_DIRECT(txm) &&
txm->nb_segs == 1 &&
rte_pktmbuf_headroom(txm) >= hdr_size &&
rte_is_aligned(rte_pktmbuf_mtod(txm, char *),
__alignof__(struct virtio_net_hdr_mrg_rxbuf))) {
inorder_pkts[nb_inorder_pkts] = txm;
nb_inorder_pkts++;
continue;
}
if (nb_inorder_pkts) {
need = nb_inorder_pkts - vq->vq_free_cnt;
if (unlikely(need > 0)) {
need = virtio_xmit_try_cleanup_inorder(vq,
need);
if (unlikely(need > 0)) {
PMD_TX_LOG(ERR,
"No free tx descriptors to "
"transmit");
break;
}
}
virtqueue_enqueue_xmit_inorder(txvq, inorder_pkts,
nb_inorder_pkts);
nb_inorder_pkts = 0;
}
slots = txm->nb_segs + 1;
need = slots - vq->vq_free_cnt;
if (unlikely(need > 0)) {
need = virtio_xmit_try_cleanup_inorder(vq, slots);
if (unlikely(need > 0)) {
PMD_TX_LOG(ERR,
"No free tx descriptors to transmit");
break;
}
}
/* Enqueue Packet buffers */
virtqueue_enqueue_xmit(txvq, txm, slots, 0, 0, 1);
virtio_update_packet_stats(&txvq->stats, txm);
}
/* Transmit all inorder packets */
if (nb_inorder_pkts) {
need = nb_inorder_pkts - vq->vq_free_cnt;
if (unlikely(need > 0)) {
need = virtio_xmit_try_cleanup_inorder(vq,
need);
if (unlikely(need > 0)) {
PMD_TX_LOG(ERR,
"No free tx descriptors to transmit");
nb_inorder_pkts = vq->vq_free_cnt;
nb_tx -= need;
}
}
virtqueue_enqueue_xmit_inorder(txvq, inorder_pkts,
nb_inorder_pkts);
}
txvq->stats.packets += nb_tx;
if (likely(nb_tx)) {
vq_update_avail_idx(vq);
if (unlikely(virtqueue_kick_prepare(vq))) {
virtqueue_notify(vq);
PMD_TX_LOG(DEBUG, "Notified backend after xmit");
}
}
VIRTQUEUE_DUMP(vq);
return nb_tx;
}
#ifndef CC_AVX512_SUPPORT
uint16_t
virtio_recv_pkts_packed_vec(void *rx_queue __rte_unused,
struct rte_mbuf **rx_pkts __rte_unused,
uint16_t nb_pkts __rte_unused)
{
return 0;
}
uint16_t
virtio_xmit_pkts_packed_vec(void *tx_queue __rte_unused,
struct rte_mbuf **tx_pkts __rte_unused,
uint16_t nb_pkts __rte_unused)
{
return 0;
}
#endif /* ifndef CC_AVX512_SUPPORT */