numam-dpdk/drivers/net/sfc/sfc_ethdev.c
Viacheslav Galaktionov 3037e6cf3d net/sfc: support regioned NIC DMA memory mapping type
DMA on SN1022 SoC requires extra mapping of the memory via MCDI.

Signed-off-by: Viacheslav Galaktionov <viacheslav.galaktionov@oktetlabs.ru>
Signed-off-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
Reviewed-by: Ivan Malov <ivan.malov@oktetlabs.ru>
2021-11-17 12:37:07 +01:00

3240 lines
80 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright(c) 2019-2021 Xilinx, Inc.
* Copyright(c) 2016-2019 Solarflare Communications Inc.
*
* This software was jointly developed between OKTET Labs (under contract
* for Solarflare) and Solarflare Communications, Inc.
*/
#include <rte_dev.h>
#include <ethdev_driver.h>
#include <ethdev_pci.h>
#include <rte_pci.h>
#include <rte_bus_pci.h>
#include <rte_errno.h>
#include <rte_string_fns.h>
#include <rte_ether.h>
#include "efx.h"
#include "sfc.h"
#include "sfc_debug.h"
#include "sfc_log.h"
#include "sfc_kvargs.h"
#include "sfc_ev.h"
#include "sfc_rx.h"
#include "sfc_tx.h"
#include "sfc_flow.h"
#include "sfc_flow_tunnel.h"
#include "sfc_dp.h"
#include "sfc_dp_rx.h"
#include "sfc_repr.h"
#include "sfc_sw_stats.h"
#include "sfc_switch.h"
#include "sfc_nic_dma.h"
#define SFC_XSTAT_ID_INVALID_VAL UINT64_MAX
#define SFC_XSTAT_ID_INVALID_NAME '\0'
uint32_t sfc_logtype_driver;
static struct sfc_dp_list sfc_dp_head =
TAILQ_HEAD_INITIALIZER(sfc_dp_head);
static void sfc_eth_dev_clear_ops(struct rte_eth_dev *dev);
static int
sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
{
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
efx_nic_fw_info_t enfi;
int ret;
int rc;
rc = efx_nic_get_fw_version(sa->nic, &enfi);
if (rc != 0)
return -rc;
ret = snprintf(fw_version, fw_size,
"%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16,
enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1],
enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]);
if (ret < 0)
return ret;
if (enfi.enfi_dpcpu_fw_ids_valid) {
size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret);
int ret_extra;
ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset,
fw_size - dpcpu_fw_ids_offset,
" rx%" PRIx16 " tx%" PRIx16,
enfi.enfi_rx_dpcpu_fw_id,
enfi.enfi_tx_dpcpu_fw_id);
if (ret_extra < 0)
return ret_extra;
ret += ret_extra;
}
if (fw_size < (size_t)(++ret))
return ret;
else
return 0;
}
static int
sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
{
const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
struct sfc_rss *rss = &sas->rss;
struct sfc_mae *mae = &sa->mae;
uint64_t txq_offloads_def = 0;
sfc_log_init(sa, "entry");
dev_info->min_mtu = RTE_ETHER_MIN_MTU;
dev_info->max_mtu = EFX_MAC_SDU_MAX;
dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX;
dev_info->max_vfs = sa->sriov.num_vfs;
/* Autonegotiation may be disabled */
dev_info->speed_capa = RTE_ETH_LINK_SPEED_FIXED;
if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX))
dev_info->speed_capa |= RTE_ETH_LINK_SPEED_1G;
if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX))
dev_info->speed_capa |= RTE_ETH_LINK_SPEED_10G;
if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX))
dev_info->speed_capa |= RTE_ETH_LINK_SPEED_25G;
if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX))
dev_info->speed_capa |= RTE_ETH_LINK_SPEED_40G;
if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX))
dev_info->speed_capa |= RTE_ETH_LINK_SPEED_50G;
if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX))
dev_info->speed_capa |= RTE_ETH_LINK_SPEED_100G;
dev_info->max_rx_queues = sa->rxq_max;
dev_info->max_tx_queues = sa->txq_max;
/* By default packets are dropped if no descriptors are available */
dev_info->default_rxconf.rx_drop_en = 1;
dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa);
/*
* rx_offload_capa includes both device and queue offloads since
* the latter may be requested on a per device basis which makes
* sense when some offloads are needed to be set on all queues.
*/
dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) |
dev_info->rx_queue_offload_capa;
dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa);
/*
* tx_offload_capa includes both device and queue offloads since
* the latter may be requested on a per device basis which makes
* sense when some offloads are needed to be set on all queues.
*/
dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) |
dev_info->tx_queue_offload_capa;
if (dev_info->tx_offload_capa & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE)
txq_offloads_def |= RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
dev_info->default_txconf.offloads |= txq_offloads_def;
if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) {
uint64_t rte_hf = 0;
unsigned int i;
for (i = 0; i < rss->hf_map_nb_entries; ++i)
rte_hf |= rss->hf_map[i].rte;
dev_info->reta_size = EFX_RSS_TBL_SIZE;
dev_info->hash_key_size = EFX_RSS_KEY_SIZE;
dev_info->flow_type_rss_offloads = rte_hf;
}
/* Initialize to hardware limits */
dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries;
dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries;
/* The RXQ hardware requires that the descriptor count is a power
* of 2, but rx_desc_lim cannot properly describe that constraint.
*/
dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries;
/* Initialize to hardware limits */
dev_info->tx_desc_lim.nb_max = sa->txq_max_entries;
dev_info->tx_desc_lim.nb_min = sa->txq_min_entries;
/*
* The TXQ hardware requires that the descriptor count is a power
* of 2, but tx_desc_lim cannot properly describe that constraint
*/
dev_info->tx_desc_lim.nb_align = sa->txq_min_entries;
if (sap->dp_rx->get_dev_info != NULL)
sap->dp_rx->get_dev_info(dev_info);
if (sap->dp_tx->get_dev_info != NULL)
sap->dp_tx->get_dev_info(dev_info);
dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
dev_info->dev_capa &= ~RTE_ETH_DEV_CAPA_FLOW_RULE_KEEP;
if (mae->status == SFC_MAE_STATUS_SUPPORTED ||
mae->status == SFC_MAE_STATUS_ADMIN) {
dev_info->switch_info.name = dev->device->driver->name;
dev_info->switch_info.domain_id = mae->switch_domain_id;
dev_info->switch_info.port_id = mae->switch_port_id;
}
return 0;
}
static const uint32_t *
sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev)
{
const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps);
}
static int
sfc_dev_configure(struct rte_eth_dev *dev)
{
struct rte_eth_dev_data *dev_data = dev->data;
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
int rc;
sfc_log_init(sa, "entry n_rxq=%u n_txq=%u",
dev_data->nb_rx_queues, dev_data->nb_tx_queues);
sfc_adapter_lock(sa);
switch (sa->state) {
case SFC_ETHDEV_CONFIGURED:
/* FALLTHROUGH */
case SFC_ETHDEV_INITIALIZED:
rc = sfc_configure(sa);
break;
default:
sfc_err(sa, "unexpected adapter state %u to configure",
sa->state);
rc = EINVAL;
break;
}
sfc_adapter_unlock(sa);
sfc_log_init(sa, "done %d", rc);
SFC_ASSERT(rc >= 0);
return -rc;
}
static int
sfc_dev_start(struct rte_eth_dev *dev)
{
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
int rc;
sfc_log_init(sa, "entry");
sfc_adapter_lock(sa);
rc = sfc_start(sa);
sfc_adapter_unlock(sa);
sfc_log_init(sa, "done %d", rc);
SFC_ASSERT(rc >= 0);
return -rc;
}
static int
sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete)
{
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
struct rte_eth_link current_link;
int ret;
sfc_log_init(sa, "entry");
if (sa->state != SFC_ETHDEV_STARTED) {
sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, &current_link);
} else if (wait_to_complete) {
efx_link_mode_t link_mode;
if (efx_port_poll(sa->nic, &link_mode) != 0)
link_mode = EFX_LINK_UNKNOWN;
sfc_port_link_mode_to_info(link_mode, &current_link);
} else {
sfc_ev_mgmt_qpoll(sa);
rte_eth_linkstatus_get(dev, &current_link);
}
ret = rte_eth_linkstatus_set(dev, &current_link);
if (ret == 0)
sfc_notice(sa, "Link status is %s",
current_link.link_status ? "UP" : "DOWN");
return ret;
}
static int
sfc_dev_stop(struct rte_eth_dev *dev)
{
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
sfc_log_init(sa, "entry");
sfc_adapter_lock(sa);
sfc_stop(sa);
sfc_adapter_unlock(sa);
sfc_log_init(sa, "done");
return 0;
}
static int
sfc_dev_set_link_up(struct rte_eth_dev *dev)
{
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
int rc;
sfc_log_init(sa, "entry");
sfc_adapter_lock(sa);
rc = sfc_start(sa);
sfc_adapter_unlock(sa);
SFC_ASSERT(rc >= 0);
return -rc;
}
static int
sfc_dev_set_link_down(struct rte_eth_dev *dev)
{
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
sfc_log_init(sa, "entry");
sfc_adapter_lock(sa);
sfc_stop(sa);
sfc_adapter_unlock(sa);
return 0;
}
static void
sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev)
{
free(dev->process_private);
rte_eth_dev_release_port(dev);
}
static int
sfc_dev_close(struct rte_eth_dev *dev)
{
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
sfc_log_init(sa, "entry");
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
sfc_eth_dev_secondary_clear_ops(dev);
return 0;
}
sfc_pre_detach(sa);
sfc_adapter_lock(sa);
switch (sa->state) {
case SFC_ETHDEV_STARTED:
sfc_stop(sa);
SFC_ASSERT(sa->state == SFC_ETHDEV_CONFIGURED);
/* FALLTHROUGH */
case SFC_ETHDEV_CONFIGURED:
sfc_close(sa);
SFC_ASSERT(sa->state == SFC_ETHDEV_INITIALIZED);
/* FALLTHROUGH */
case SFC_ETHDEV_INITIALIZED:
break;
default:
sfc_err(sa, "unexpected adapter state %u on close", sa->state);
break;
}
/*
* Cleanup all resources.
* Rollback primary process sfc_eth_dev_init() below.
*/
sfc_eth_dev_clear_ops(dev);
sfc_nic_dma_detach(sa);
sfc_detach(sa);
sfc_unprobe(sa);
sfc_kvargs_cleanup(sa);
sfc_adapter_unlock(sa);
sfc_adapter_lock_fini(sa);
sfc_log_init(sa, "done");
/* Required for logging, so cleanup last */
sa->eth_dev = NULL;
free(sa);
return 0;
}
static int
sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode,
boolean_t enabled)
{
struct sfc_port *port;
boolean_t *toggle;
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI);
const char *desc = (allmulti) ? "all-multi" : "promiscuous";
int rc = 0;
sfc_adapter_lock(sa);
port = &sa->port;
toggle = (allmulti) ? (&port->allmulti) : (&port->promisc);
if (*toggle != enabled) {
*toggle = enabled;
if (sfc_sa2shared(sa)->isolated) {
sfc_warn(sa, "isolated mode is active on the port");
sfc_warn(sa, "the change is to be applied on the next "
"start provided that isolated mode is "
"disabled prior the next start");
} else if ((sa->state == SFC_ETHDEV_STARTED) &&
((rc = sfc_set_rx_mode(sa)) != 0)) {
*toggle = !(enabled);
sfc_warn(sa, "Failed to %s %s mode, rc = %d",
((enabled) ? "enable" : "disable"), desc, rc);
/*
* For promiscuous and all-multicast filters a
* permission failure should be reported as an
* unsupported filter.
*/
if (rc == EPERM)
rc = ENOTSUP;
}
}
sfc_adapter_unlock(sa);
return rc;
}
static int
sfc_dev_promisc_enable(struct rte_eth_dev *dev)
{
int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE);
SFC_ASSERT(rc >= 0);
return -rc;
}
static int
sfc_dev_promisc_disable(struct rte_eth_dev *dev)
{
int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE);
SFC_ASSERT(rc >= 0);
return -rc;
}
static int
sfc_dev_allmulti_enable(struct rte_eth_dev *dev)
{
int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE);
SFC_ASSERT(rc >= 0);
return -rc;
}
static int
sfc_dev_allmulti_disable(struct rte_eth_dev *dev)
{
int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE);
SFC_ASSERT(rc >= 0);
return -rc;
}
static int
sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t ethdev_qid,
uint16_t nb_rx_desc, unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mb_pool)
{
struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
struct sfc_rxq_info *rxq_info;
sfc_sw_index_t sw_index;
int rc;
sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u",
ethdev_qid, nb_rx_desc, socket_id);
sfc_adapter_lock(sa);
sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
rc = sfc_rx_qinit(sa, sw_index, nb_rx_desc, socket_id,
rx_conf, mb_pool);
if (rc != 0)
goto fail_rx_qinit;
rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
dev->data->rx_queues[ethdev_qid] = rxq_info->dp;
sfc_adapter_unlock(sa);
return 0;
fail_rx_qinit:
sfc_adapter_unlock(sa);
SFC_ASSERT(rc > 0);
return -rc;
}
static void
sfc_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
{
struct sfc_dp_rxq *dp_rxq = dev->data->rx_queues[qid];
struct sfc_rxq *rxq;
struct sfc_adapter *sa;
sfc_sw_index_t sw_index;
if (dp_rxq == NULL)
return;
rxq = sfc_rxq_by_dp_rxq(dp_rxq);
sa = rxq->evq->sa;
sfc_adapter_lock(sa);
sw_index = dp_rxq->dpq.queue_id;
sfc_log_init(sa, "RxQ=%u", sw_index);
sfc_rx_qfini(sa, sw_index);
sfc_adapter_unlock(sa);
}
static int
sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t ethdev_qid,
uint16_t nb_tx_desc, unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
struct sfc_txq_info *txq_info;
sfc_sw_index_t sw_index;
int rc;
sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u",
ethdev_qid, nb_tx_desc, socket_id);
sfc_adapter_lock(sa);
sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
rc = sfc_tx_qinit(sa, sw_index, nb_tx_desc, socket_id, tx_conf);
if (rc != 0)
goto fail_tx_qinit;
txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
dev->data->tx_queues[ethdev_qid] = txq_info->dp;
sfc_adapter_unlock(sa);
return 0;
fail_tx_qinit:
sfc_adapter_unlock(sa);
SFC_ASSERT(rc > 0);
return -rc;
}
static void
sfc_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
{
struct sfc_dp_txq *dp_txq = dev->data->tx_queues[qid];
struct sfc_txq *txq;
sfc_sw_index_t sw_index;
struct sfc_adapter *sa;
if (dp_txq == NULL)
return;
txq = sfc_txq_by_dp_txq(dp_txq);
sw_index = dp_txq->dpq.queue_id;
SFC_ASSERT(txq->evq != NULL);
sa = txq->evq->sa;
sfc_log_init(sa, "TxQ = %u", sw_index);
sfc_adapter_lock(sa);
sfc_tx_qfini(sa, sw_index);
sfc_adapter_unlock(sa);
}
static void
sfc_stats_get_dp_rx(struct sfc_adapter *sa, uint64_t *pkts, uint64_t *bytes)
{
struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
uint64_t pkts_sum = 0;
uint64_t bytes_sum = 0;
unsigned int i;
for (i = 0; i < sas->ethdev_rxq_count; ++i) {
struct sfc_rxq_info *rxq_info;
rxq_info = sfc_rxq_info_by_ethdev_qid(sas, i);
if (rxq_info->state & SFC_RXQ_INITIALIZED) {
union sfc_pkts_bytes qstats;
sfc_pkts_bytes_get(&rxq_info->dp->dpq.stats, &qstats);
pkts_sum += qstats.pkts -
sa->sw_stats.reset_rx_pkts[i];
bytes_sum += qstats.bytes -
sa->sw_stats.reset_rx_bytes[i];
}
}
*pkts = pkts_sum;
*bytes = bytes_sum;
}
static void
sfc_stats_get_dp_tx(struct sfc_adapter *sa, uint64_t *pkts, uint64_t *bytes)
{
struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
uint64_t pkts_sum = 0;
uint64_t bytes_sum = 0;
unsigned int i;
for (i = 0; i < sas->ethdev_txq_count; ++i) {
struct sfc_txq_info *txq_info;
txq_info = sfc_txq_info_by_ethdev_qid(sas, i);
if (txq_info->state & SFC_TXQ_INITIALIZED) {
union sfc_pkts_bytes qstats;
sfc_pkts_bytes_get(&txq_info->dp->dpq.stats, &qstats);
pkts_sum += qstats.pkts -
sa->sw_stats.reset_tx_pkts[i];
bytes_sum += qstats.bytes -
sa->sw_stats.reset_tx_bytes[i];
}
}
*pkts = pkts_sum;
*bytes = bytes_sum;
}
/*
* Some statistics are computed as A - B where A and B each increase
* monotonically with some hardware counter(s) and the counters are read
* asynchronously.
*
* If packet X is counted in A, but not counted in B yet, computed value is
* greater than real.
*
* If packet X is not counted in A at the moment of reading the counter,
* but counted in B at the moment of reading the counter, computed value
* is less than real.
*
* However, counter which grows backward is worse evil than slightly wrong
* value. So, let's try to guarantee that it never happens except may be
* the case when the MAC stats are zeroed as a result of a NIC reset.
*/
static void
sfc_update_diff_stat(uint64_t *stat, uint64_t newval)
{
if ((int64_t)(newval - *stat) > 0 || newval == 0)
*stat = newval;
}
static int
sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
{
const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
bool have_dp_rx_stats = sap->dp_rx->features & SFC_DP_RX_FEAT_STATS;
bool have_dp_tx_stats = sap->dp_tx->features & SFC_DP_TX_FEAT_STATS;
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
struct sfc_port *port = &sa->port;
uint64_t *mac_stats;
int ret;
sfc_adapter_lock(sa);
if (have_dp_rx_stats)
sfc_stats_get_dp_rx(sa, &stats->ipackets, &stats->ibytes);
if (have_dp_tx_stats)
sfc_stats_get_dp_tx(sa, &stats->opackets, &stats->obytes);
ret = sfc_port_update_mac_stats(sa, B_FALSE);
if (ret != 0)
goto unlock;
mac_stats = port->mac_stats_buf;
if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask,
EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) {
if (!have_dp_rx_stats) {
stats->ipackets =
mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] +
mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] +
mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS];
stats->ibytes =
mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] +
mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] +
mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES];
/* CRC is included in these stats, but shouldn't be */
stats->ibytes -= stats->ipackets * RTE_ETHER_CRC_LEN;
}
if (!have_dp_tx_stats) {
stats->opackets =
mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] +
mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] +
mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS];
stats->obytes =
mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] +
mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] +
mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES];
/* CRC is included in these stats, but shouldn't be */
stats->obytes -= stats->opackets * RTE_ETHER_CRC_LEN;
}
stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS];
stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS];
} else {
if (!have_dp_tx_stats) {
stats->opackets = mac_stats[EFX_MAC_TX_PKTS];
stats->obytes = mac_stats[EFX_MAC_TX_OCTETS] -
mac_stats[EFX_MAC_TX_PKTS] * RTE_ETHER_CRC_LEN;
}
/*
* Take into account stats which are whenever supported
* on EF10. If some stat is not supported by current
* firmware variant or HW revision, it is guaranteed
* to be zero in mac_stats.
*/
stats->imissed =
mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] +
mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] +
mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] +
mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] +
mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] +
mac_stats[EFX_MAC_PM_TRUNC_QBB] +
mac_stats[EFX_MAC_PM_DISCARD_QBB] +
mac_stats[EFX_MAC_PM_DISCARD_MAPPING] +
mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] +
mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS];
stats->ierrors =
mac_stats[EFX_MAC_RX_FCS_ERRORS] +
mac_stats[EFX_MAC_RX_ALIGN_ERRORS] +
mac_stats[EFX_MAC_RX_JABBER_PKTS];
/* no oerrors counters supported on EF10 */
if (!have_dp_rx_stats) {
/* Exclude missed, errors and pauses from Rx packets */
sfc_update_diff_stat(&port->ipackets,
mac_stats[EFX_MAC_RX_PKTS] -
mac_stats[EFX_MAC_RX_PAUSE_PKTS] -
stats->imissed - stats->ierrors);
stats->ipackets = port->ipackets;
stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS] -
mac_stats[EFX_MAC_RX_PKTS] * RTE_ETHER_CRC_LEN;
}
}
unlock:
sfc_adapter_unlock(sa);
SFC_ASSERT(ret >= 0);
return -ret;
}
static int
sfc_stats_reset(struct rte_eth_dev *dev)
{
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
struct sfc_port *port = &sa->port;
int rc;
sfc_adapter_lock(sa);
if (sa->state != SFC_ETHDEV_STARTED) {
/*
* The operation cannot be done if port is not started; it
* will be scheduled to be done during the next port start
*/
port->mac_stats_reset_pending = B_TRUE;
sfc_adapter_unlock(sa);
return 0;
}
rc = sfc_port_reset_mac_stats(sa);
if (rc != 0)
sfc_err(sa, "failed to reset statistics (rc = %d)", rc);
sfc_sw_xstats_reset(sa);
sfc_adapter_unlock(sa);
SFC_ASSERT(rc >= 0);
return -rc;
}
static unsigned int
sfc_xstats_get_nb_supported(struct sfc_adapter *sa)
{
struct sfc_port *port = &sa->port;
unsigned int nb_supported;
sfc_adapter_lock(sa);
nb_supported = port->mac_stats_nb_supported +
sfc_sw_xstats_get_nb_supported(sa);
sfc_adapter_unlock(sa);
return nb_supported;
}
static int
sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
unsigned int xstats_count)
{
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
unsigned int nb_written = 0;
unsigned int nb_supported = 0;
int rc;
if (unlikely(xstats == NULL))
return sfc_xstats_get_nb_supported(sa);
rc = sfc_port_get_mac_stats(sa, xstats, xstats_count, &nb_written);
if (rc < 0)
return rc;
nb_supported = rc;
sfc_sw_xstats_get_vals(sa, xstats, xstats_count, &nb_written,
&nb_supported);
return nb_supported;
}
static int
sfc_xstats_get_names(struct rte_eth_dev *dev,
struct rte_eth_xstat_name *xstats_names,
unsigned int xstats_count)
{
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
struct sfc_port *port = &sa->port;
unsigned int i;
unsigned int nstats = 0;
unsigned int nb_written = 0;
int ret;
if (unlikely(xstats_names == NULL))
return sfc_xstats_get_nb_supported(sa);
for (i = 0; i < EFX_MAC_NSTATS; ++i) {
if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
if (nstats < xstats_count) {
strlcpy(xstats_names[nstats].name,
efx_mac_stat_name(sa->nic, i),
sizeof(xstats_names[0].name));
nb_written++;
}
nstats++;
}
}
ret = sfc_sw_xstats_get_names(sa, xstats_names, xstats_count,
&nb_written, &nstats);
if (ret != 0) {
SFC_ASSERT(ret < 0);
return ret;
}
return nstats;
}
static int
sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
uint64_t *values, unsigned int n)
{
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
struct sfc_port *port = &sa->port;
unsigned int nb_supported;
unsigned int i;
int rc;
if (unlikely(ids == NULL || values == NULL))
return -EINVAL;
/*
* Values array could be filled in nonsequential order. Fill values with
* constant indicating invalid ID first.
*/
for (i = 0; i < n; i++)
values[i] = SFC_XSTAT_ID_INVALID_VAL;
rc = sfc_port_get_mac_stats_by_id(sa, ids, values, n);
if (rc != 0)
return rc;
nb_supported = port->mac_stats_nb_supported;
sfc_sw_xstats_get_vals_by_id(sa, ids, values, n, &nb_supported);
/* Return number of written stats before invalid ID is encountered. */
for (i = 0; i < n; i++) {
if (values[i] == SFC_XSTAT_ID_INVALID_VAL)
return i;
}
return n;
}
static int
sfc_xstats_get_names_by_id(struct rte_eth_dev *dev,
const uint64_t *ids,
struct rte_eth_xstat_name *xstats_names,
unsigned int size)
{
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
struct sfc_port *port = &sa->port;
unsigned int nb_supported;
unsigned int i;
int ret;
if (unlikely(xstats_names == NULL && ids != NULL) ||
unlikely(xstats_names != NULL && ids == NULL))
return -EINVAL;
if (unlikely(xstats_names == NULL && ids == NULL))
return sfc_xstats_get_nb_supported(sa);
/*
* Names array could be filled in nonsequential order. Fill names with
* string indicating invalid ID first.
*/
for (i = 0; i < size; i++)
xstats_names[i].name[0] = SFC_XSTAT_ID_INVALID_NAME;
sfc_adapter_lock(sa);
SFC_ASSERT(port->mac_stats_nb_supported <=
RTE_DIM(port->mac_stats_by_id));
for (i = 0; i < size; i++) {
if (ids[i] < port->mac_stats_nb_supported) {
strlcpy(xstats_names[i].name,
efx_mac_stat_name(sa->nic,
port->mac_stats_by_id[ids[i]]),
sizeof(xstats_names[0].name));
}
}
nb_supported = port->mac_stats_nb_supported;
sfc_adapter_unlock(sa);
ret = sfc_sw_xstats_get_names_by_id(sa, ids, xstats_names, size,
&nb_supported);
if (ret != 0) {
SFC_ASSERT(ret < 0);
return ret;
}
/* Return number of written names before invalid ID is encountered. */
for (i = 0; i < size; i++) {
if (xstats_names[i].name[0] == SFC_XSTAT_ID_INVALID_NAME)
return i;
}
return size;
}
static int
sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
{
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
unsigned int wanted_fc, link_fc;
memset(fc_conf, 0, sizeof(*fc_conf));
sfc_adapter_lock(sa);
if (sa->state == SFC_ETHDEV_STARTED)
efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc);
else
link_fc = sa->port.flow_ctrl;
switch (link_fc) {
case 0:
fc_conf->mode = RTE_ETH_FC_NONE;
break;
case EFX_FCNTL_RESPOND:
fc_conf->mode = RTE_ETH_FC_RX_PAUSE;
break;
case EFX_FCNTL_GENERATE:
fc_conf->mode = RTE_ETH_FC_TX_PAUSE;
break;
case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE):
fc_conf->mode = RTE_ETH_FC_FULL;
break;
default:
sfc_err(sa, "%s: unexpected flow control value %#x",
__func__, link_fc);
}
fc_conf->autoneg = sa->port.flow_ctrl_autoneg;
sfc_adapter_unlock(sa);
return 0;
}
static int
sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
{
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
struct sfc_port *port = &sa->port;
unsigned int fcntl;
int rc;
if (fc_conf->high_water != 0 || fc_conf->low_water != 0 ||
fc_conf->pause_time != 0 || fc_conf->send_xon != 0 ||
fc_conf->mac_ctrl_frame_fwd != 0) {
sfc_err(sa, "unsupported flow control settings specified");
rc = EINVAL;
goto fail_inval;
}
switch (fc_conf->mode) {
case RTE_ETH_FC_NONE:
fcntl = 0;
break;
case RTE_ETH_FC_RX_PAUSE:
fcntl = EFX_FCNTL_RESPOND;
break;
case RTE_ETH_FC_TX_PAUSE:
fcntl = EFX_FCNTL_GENERATE;
break;
case RTE_ETH_FC_FULL:
fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE;
break;
default:
rc = EINVAL;
goto fail_inval;
}
sfc_adapter_lock(sa);
if (sa->state == SFC_ETHDEV_STARTED) {
rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg);
if (rc != 0)
goto fail_mac_fcntl_set;
}
port->flow_ctrl = fcntl;
port->flow_ctrl_autoneg = fc_conf->autoneg;
sfc_adapter_unlock(sa);
return 0;
fail_mac_fcntl_set:
sfc_adapter_unlock(sa);
fail_inval:
SFC_ASSERT(rc > 0);
return -rc;
}
static int
sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu)
{
struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
boolean_t scatter_enabled;
const char *error;
unsigned int i;
for (i = 0; i < sas->rxq_count; i++) {
if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0)
continue;
scatter_enabled = (sas->rxq_info[i].type_flags &
EFX_RXQ_FLAG_SCATTER);
if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size,
encp->enc_rx_prefix_size,
scatter_enabled,
encp->enc_rx_scatter_max, &error)) {
sfc_err(sa, "MTU check for RxQ %u failed: %s", i,
error);
return EINVAL;
}
}
return 0;
}
static int
sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
{
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
size_t pdu = EFX_MAC_PDU(mtu);
size_t old_pdu;
int rc;
sfc_log_init(sa, "mtu=%u", mtu);
rc = EINVAL;
if (pdu < EFX_MAC_PDU_MIN) {
sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)",
(unsigned int)mtu, (unsigned int)pdu,
EFX_MAC_PDU_MIN);
goto fail_inval;
}
if (pdu > EFX_MAC_PDU_MAX) {
sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)",
(unsigned int)mtu, (unsigned int)pdu,
(unsigned int)EFX_MAC_PDU_MAX);
goto fail_inval;
}
sfc_adapter_lock(sa);
rc = sfc_check_scatter_on_all_rx_queues(sa, pdu);
if (rc != 0)
goto fail_check_scatter;
if (pdu != sa->port.pdu) {
if (sa->state == SFC_ETHDEV_STARTED) {
sfc_stop(sa);
old_pdu = sa->port.pdu;
sa->port.pdu = pdu;
rc = sfc_start(sa);
if (rc != 0)
goto fail_start;
} else {
sa->port.pdu = pdu;
}
}
sfc_adapter_unlock(sa);
sfc_log_init(sa, "done");
return 0;
fail_start:
sa->port.pdu = old_pdu;
if (sfc_start(sa) != 0)
sfc_err(sa, "cannot start with neither new (%u) nor old (%u) "
"PDU max size - port is stopped",
(unsigned int)pdu, (unsigned int)old_pdu);
fail_check_scatter:
sfc_adapter_unlock(sa);
fail_inval:
sfc_log_init(sa, "failed %d", rc);
SFC_ASSERT(rc > 0);
return -rc;
}
static int
sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
{
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
struct sfc_port *port = &sa->port;
struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0];
int rc = 0;
sfc_adapter_lock(sa);
if (rte_is_same_ether_addr(mac_addr, &port->default_mac_addr))
goto unlock;
/*
* Copy the address to the device private data so that
* it could be recalled in the case of adapter restart.
*/
rte_ether_addr_copy(mac_addr, &port->default_mac_addr);
/*
* Neither of the two following checks can return
* an error. The new MAC address is preserved in
* the device private data and can be activated
* on the next port start if the user prevents
* isolated mode from being enabled.
*/
if (sfc_sa2shared(sa)->isolated) {
sfc_warn(sa, "isolated mode is active on the port");
sfc_warn(sa, "will not set MAC address");
goto unlock;
}
if (sa->state != SFC_ETHDEV_STARTED) {
sfc_notice(sa, "the port is not started");
sfc_notice(sa, "the new MAC address will be set on port start");
goto unlock;
}
if (encp->enc_allow_set_mac_with_installed_filters) {
rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes);
if (rc != 0) {
sfc_err(sa, "cannot set MAC address (rc = %u)", rc);
goto unlock;
}
/*
* Changing the MAC address by means of MCDI request
* has no effect on received traffic, therefore
* we also need to update unicast filters
*/
rc = sfc_set_rx_mode_unchecked(sa);
if (rc != 0) {
sfc_err(sa, "cannot set filter (rc = %u)", rc);
/* Rollback the old address */
(void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes);
(void)sfc_set_rx_mode_unchecked(sa);
}
} else {
sfc_warn(sa, "cannot set MAC address with filters installed");
sfc_warn(sa, "adapter will be restarted to pick the new MAC");
sfc_warn(sa, "(some traffic may be dropped)");
/*
* Since setting MAC address with filters installed is not
* allowed on the adapter, the new MAC address will be set
* by means of adapter restart. sfc_start() shall retrieve
* the new address from the device private data and set it.
*/
sfc_stop(sa);
rc = sfc_start(sa);
if (rc != 0)
sfc_err(sa, "cannot restart adapter (rc = %u)", rc);
}
unlock:
if (rc != 0)
rte_ether_addr_copy(old_addr, &port->default_mac_addr);
sfc_adapter_unlock(sa);
SFC_ASSERT(rc >= 0);
return -rc;
}
static int
sfc_set_mc_addr_list(struct rte_eth_dev *dev,
struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr)
{
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
struct sfc_port *port = &sa->port;
uint8_t *mc_addrs = port->mcast_addrs;
int rc;
unsigned int i;
if (sfc_sa2shared(sa)->isolated) {
sfc_err(sa, "isolated mode is active on the port");
sfc_err(sa, "will not set multicast address list");
return -ENOTSUP;
}
if (mc_addrs == NULL)
return -ENOBUFS;
if (nb_mc_addr > port->max_mcast_addrs) {
sfc_err(sa, "too many multicast addresses: %u > %u",
nb_mc_addr, port->max_mcast_addrs);
return -EINVAL;
}
for (i = 0; i < nb_mc_addr; ++i) {
rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes,
EFX_MAC_ADDR_LEN);
mc_addrs += EFX_MAC_ADDR_LEN;
}
port->nb_mcast_addrs = nb_mc_addr;
if (sa->state != SFC_ETHDEV_STARTED)
return 0;
rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs,
port->nb_mcast_addrs);
if (rc != 0)
sfc_err(sa, "cannot set multicast address list (rc = %u)", rc);
SFC_ASSERT(rc >= 0);
return -rc;
}
/*
* The function is used by the secondary process as well. It must not
* use any process-local pointers from the adapter data.
*/
static void
sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t ethdev_qid,
struct rte_eth_rxq_info *qinfo)
{
struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
struct sfc_rxq_info *rxq_info;
rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
qinfo->mp = rxq_info->refill_mb_pool;
qinfo->conf.rx_free_thresh = rxq_info->refill_threshold;
qinfo->conf.rx_drop_en = 1;
qinfo->conf.rx_deferred_start = rxq_info->deferred_start;
qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) {
qinfo->conf.offloads |= RTE_ETH_RX_OFFLOAD_SCATTER;
qinfo->scattered_rx = 1;
}
qinfo->nb_desc = rxq_info->entries;
}
/*
* The function is used by the secondary process as well. It must not
* use any process-local pointers from the adapter data.
*/
static void
sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t ethdev_qid,
struct rte_eth_txq_info *qinfo)
{
struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
struct sfc_txq_info *txq_info;
SFC_ASSERT(ethdev_qid < sas->ethdev_txq_count);
txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
memset(qinfo, 0, sizeof(*qinfo));
qinfo->conf.offloads = txq_info->offloads;
qinfo->conf.tx_free_thresh = txq_info->free_thresh;
qinfo->conf.tx_deferred_start = txq_info->deferred_start;
qinfo->nb_desc = txq_info->entries;
}
/*
* The function is used by the secondary process as well. It must not
* use any process-local pointers from the adapter data.
*/
static uint32_t
sfc_rx_queue_count(void *rx_queue)
{
struct sfc_dp_rxq *dp_rxq = rx_queue;
const struct sfc_dp_rx *dp_rx;
struct sfc_rxq_info *rxq_info;
dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
rxq_info = sfc_rxq_info_by_dp_rxq(dp_rxq);
if ((rxq_info->state & SFC_RXQ_STARTED) == 0)
return 0;
return dp_rx->qdesc_npending(dp_rxq);
}
/*
* The function is used by the secondary process as well. It must not
* use any process-local pointers from the adapter data.
*/
static int
sfc_rx_descriptor_status(void *queue, uint16_t offset)
{
struct sfc_dp_rxq *dp_rxq = queue;
const struct sfc_dp_rx *dp_rx;
dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
return dp_rx->qdesc_status(dp_rxq, offset);
}
/*
* The function is used by the secondary process as well. It must not
* use any process-local pointers from the adapter data.
*/
static int
sfc_tx_descriptor_status(void *queue, uint16_t offset)
{
struct sfc_dp_txq *dp_txq = queue;
const struct sfc_dp_tx *dp_tx;
dp_tx = sfc_dp_tx_by_dp_txq(dp_txq);
return dp_tx->qdesc_status(dp_txq, offset);
}
static int
sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t ethdev_qid)
{
struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
struct sfc_rxq_info *rxq_info;
sfc_sw_index_t sw_index;
int rc;
sfc_log_init(sa, "RxQ=%u", ethdev_qid);
sfc_adapter_lock(sa);
rc = EINVAL;
if (sa->state != SFC_ETHDEV_STARTED)
goto fail_not_started;
rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
if (rxq_info->state != SFC_RXQ_INITIALIZED)
goto fail_not_setup;
sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
rc = sfc_rx_qstart(sa, sw_index);
if (rc != 0)
goto fail_rx_qstart;
rxq_info->deferred_started = B_TRUE;
sfc_adapter_unlock(sa);
return 0;
fail_rx_qstart:
fail_not_setup:
fail_not_started:
sfc_adapter_unlock(sa);
SFC_ASSERT(rc > 0);
return -rc;
}
static int
sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t ethdev_qid)
{
struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
struct sfc_rxq_info *rxq_info;
sfc_sw_index_t sw_index;
sfc_log_init(sa, "RxQ=%u", ethdev_qid);
sfc_adapter_lock(sa);
sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
sfc_rx_qstop(sa, sw_index);
rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
rxq_info->deferred_started = B_FALSE;
sfc_adapter_unlock(sa);
return 0;
}
static int
sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t ethdev_qid)
{
struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
struct sfc_txq_info *txq_info;
sfc_sw_index_t sw_index;
int rc;
sfc_log_init(sa, "TxQ = %u", ethdev_qid);
sfc_adapter_lock(sa);
rc = EINVAL;
if (sa->state != SFC_ETHDEV_STARTED)
goto fail_not_started;
txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
if (txq_info->state != SFC_TXQ_INITIALIZED)
goto fail_not_setup;
sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
rc = sfc_tx_qstart(sa, sw_index);
if (rc != 0)
goto fail_tx_qstart;
txq_info->deferred_started = B_TRUE;
sfc_adapter_unlock(sa);
return 0;
fail_tx_qstart:
fail_not_setup:
fail_not_started:
sfc_adapter_unlock(sa);
SFC_ASSERT(rc > 0);
return -rc;
}
static int
sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t ethdev_qid)
{
struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
struct sfc_txq_info *txq_info;
sfc_sw_index_t sw_index;
sfc_log_init(sa, "TxQ = %u", ethdev_qid);
sfc_adapter_lock(sa);
sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
sfc_tx_qstop(sa, sw_index);
txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
txq_info->deferred_started = B_FALSE;
sfc_adapter_unlock(sa);
return 0;
}
static efx_tunnel_protocol_t
sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type)
{
switch (rte_type) {
case RTE_ETH_TUNNEL_TYPE_VXLAN:
return EFX_TUNNEL_PROTOCOL_VXLAN;
case RTE_ETH_TUNNEL_TYPE_GENEVE:
return EFX_TUNNEL_PROTOCOL_GENEVE;
default:
return EFX_TUNNEL_NPROTOS;
}
}
enum sfc_udp_tunnel_op_e {
SFC_UDP_TUNNEL_ADD_PORT,
SFC_UDP_TUNNEL_DEL_PORT,
};
static int
sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev,
struct rte_eth_udp_tunnel *tunnel_udp,
enum sfc_udp_tunnel_op_e op)
{
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
efx_tunnel_protocol_t tunnel_proto;
int rc;
sfc_log_init(sa, "%s udp_port=%u prot_type=%u",
(op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" :
(op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown",
tunnel_udp->udp_port, tunnel_udp->prot_type);
tunnel_proto =
sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type);
if (tunnel_proto >= EFX_TUNNEL_NPROTOS) {
rc = ENOTSUP;
goto fail_bad_proto;
}
sfc_adapter_lock(sa);
switch (op) {
case SFC_UDP_TUNNEL_ADD_PORT:
rc = efx_tunnel_config_udp_add(sa->nic,
tunnel_udp->udp_port,
tunnel_proto);
break;
case SFC_UDP_TUNNEL_DEL_PORT:
rc = efx_tunnel_config_udp_remove(sa->nic,
tunnel_udp->udp_port,
tunnel_proto);
break;
default:
rc = EINVAL;
goto fail_bad_op;
}
if (rc != 0)
goto fail_op;
if (sa->state == SFC_ETHDEV_STARTED) {
rc = efx_tunnel_reconfigure(sa->nic);
if (rc == EAGAIN) {
/*
* Configuration is accepted by FW and MC reboot
* is initiated to apply the changes. MC reboot
* will be handled in a usual way (MC reboot
* event on management event queue and adapter
* restart).
*/
rc = 0;
} else if (rc != 0) {
goto fail_reconfigure;
}
}
sfc_adapter_unlock(sa);
return 0;
fail_reconfigure:
/* Remove/restore entry since the change makes the trouble */
switch (op) {
case SFC_UDP_TUNNEL_ADD_PORT:
(void)efx_tunnel_config_udp_remove(sa->nic,
tunnel_udp->udp_port,
tunnel_proto);
break;
case SFC_UDP_TUNNEL_DEL_PORT:
(void)efx_tunnel_config_udp_add(sa->nic,
tunnel_udp->udp_port,
tunnel_proto);
break;
}
fail_op:
fail_bad_op:
sfc_adapter_unlock(sa);
fail_bad_proto:
SFC_ASSERT(rc > 0);
return -rc;
}
static int
sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
struct rte_eth_udp_tunnel *tunnel_udp)
{
return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT);
}
static int
sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
struct rte_eth_udp_tunnel *tunnel_udp)
{
return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT);
}
/*
* The function is used by the secondary process as well. It must not
* use any process-local pointers from the adapter data.
*/
static int
sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
struct sfc_rss *rss = &sas->rss;
if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE)
return -ENOTSUP;
/*
* Mapping of hash configuration between RTE and EFX is not one-to-one,
* hence, conversion is done here to derive a correct set of RTE_ETH_RSS
* flags which corresponds to the active EFX configuration stored
* locally in 'sfc_adapter' and kept up-to-date
*/
rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types);
rss_conf->rss_key_len = EFX_RSS_KEY_SIZE;
if (rss_conf->rss_key != NULL)
rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE);
return 0;
}
static int
sfc_dev_rss_hash_update(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
unsigned int efx_hash_types;
uint32_t contexts[] = {EFX_RSS_CONTEXT_DEFAULT, rss->dummy_rss_context};
unsigned int n_contexts;
unsigned int mode_i = 0;
unsigned int key_i = 0;
unsigned int i = 0;
int rc = 0;
n_contexts = rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT ? 1 : 2;
if (sfc_sa2shared(sa)->isolated)
return -ENOTSUP;
if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
sfc_err(sa, "RSS is not available");
return -ENOTSUP;
}
if (rss->channels == 0) {
sfc_err(sa, "RSS is not configured");
return -EINVAL;
}
if ((rss_conf->rss_key != NULL) &&
(rss_conf->rss_key_len != sizeof(rss->key))) {
sfc_err(sa, "RSS key size is wrong (should be %zu)",
sizeof(rss->key));
return -EINVAL;
}
sfc_adapter_lock(sa);
rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types);
if (rc != 0)
goto fail_rx_hf_rte_to_efx;
for (mode_i = 0; mode_i < n_contexts; mode_i++) {
rc = efx_rx_scale_mode_set(sa->nic, contexts[mode_i],
rss->hash_alg, efx_hash_types,
B_TRUE);
if (rc != 0)
goto fail_scale_mode_set;
}
if (rss_conf->rss_key != NULL) {
if (sa->state == SFC_ETHDEV_STARTED) {
for (key_i = 0; key_i < n_contexts; key_i++) {
rc = efx_rx_scale_key_set(sa->nic,
contexts[key_i],
rss_conf->rss_key,
sizeof(rss->key));
if (rc != 0)
goto fail_scale_key_set;
}
}
rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key));
}
rss->hash_types = efx_hash_types;
sfc_adapter_unlock(sa);
return 0;
fail_scale_key_set:
for (i = 0; i < key_i; i++) {
if (efx_rx_scale_key_set(sa->nic, contexts[i], rss->key,
sizeof(rss->key)) != 0)
sfc_err(sa, "failed to restore RSS key");
}
fail_scale_mode_set:
for (i = 0; i < mode_i; i++) {
if (efx_rx_scale_mode_set(sa->nic, contexts[i],
EFX_RX_HASHALG_TOEPLITZ,
rss->hash_types, B_TRUE) != 0)
sfc_err(sa, "failed to restore RSS mode");
}
fail_rx_hf_rte_to_efx:
sfc_adapter_unlock(sa);
return -rc;
}
/*
* The function is used by the secondary process as well. It must not
* use any process-local pointers from the adapter data.
*/
static int
sfc_dev_rss_reta_query(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
struct sfc_rss *rss = &sas->rss;
int entry;
if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated)
return -ENOTSUP;
if (rss->channels == 0)
return -EINVAL;
if (reta_size != EFX_RSS_TBL_SIZE)
return -EINVAL;
for (entry = 0; entry < reta_size; entry++) {
int grp = entry / RTE_ETH_RETA_GROUP_SIZE;
int grp_idx = entry % RTE_ETH_RETA_GROUP_SIZE;
if ((reta_conf[grp].mask >> grp_idx) & 1)
reta_conf[grp].reta[grp_idx] = rss->tbl[entry];
}
return 0;
}
static int
sfc_dev_rss_reta_update(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
unsigned int *rss_tbl_new;
uint16_t entry;
int rc = 0;
if (sfc_sa2shared(sa)->isolated)
return -ENOTSUP;
if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
sfc_err(sa, "RSS is not available");
return -ENOTSUP;
}
if (rss->channels == 0) {
sfc_err(sa, "RSS is not configured");
return -EINVAL;
}
if (reta_size != EFX_RSS_TBL_SIZE) {
sfc_err(sa, "RETA size is wrong (should be %u)",
EFX_RSS_TBL_SIZE);
return -EINVAL;
}
rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0);
if (rss_tbl_new == NULL)
return -ENOMEM;
sfc_adapter_lock(sa);
rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl));
for (entry = 0; entry < reta_size; entry++) {
int grp_idx = entry % RTE_ETH_RETA_GROUP_SIZE;
struct rte_eth_rss_reta_entry64 *grp;
grp = &reta_conf[entry / RTE_ETH_RETA_GROUP_SIZE];
if (grp->mask & (1ull << grp_idx)) {
if (grp->reta[grp_idx] >= rss->channels) {
rc = EINVAL;
goto bad_reta_entry;
}
rss_tbl_new[entry] = grp->reta[grp_idx];
}
}
if (sa->state == SFC_ETHDEV_STARTED) {
rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
rss_tbl_new, EFX_RSS_TBL_SIZE);
if (rc != 0)
goto fail_scale_tbl_set;
}
rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl));
fail_scale_tbl_set:
bad_reta_entry:
sfc_adapter_unlock(sa);
rte_free(rss_tbl_new);
SFC_ASSERT(rc >= 0);
return -rc;
}
static int
sfc_dev_flow_ops_get(struct rte_eth_dev *dev __rte_unused,
const struct rte_flow_ops **ops)
{
*ops = &sfc_flow_ops;
return 0;
}
static int
sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool)
{
const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
/*
* If Rx datapath does not provide callback to check mempool,
* all pools are supported.
*/
if (sap->dp_rx->pool_ops_supported == NULL)
return 1;
return sap->dp_rx->pool_ops_supported(pool);
}
static int
sfc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t ethdev_qid)
{
const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
struct sfc_rxq_info *rxq_info;
rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
return sap->dp_rx->intr_enable(rxq_info->dp);
}
static int
sfc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t ethdev_qid)
{
const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
struct sfc_rxq_info *rxq_info;
rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
return sap->dp_rx->intr_disable(rxq_info->dp);
}
struct sfc_mport_journal_ctx {
struct sfc_adapter *sa;
uint16_t switch_domain_id;
uint32_t mcdi_handle;
bool controllers_assigned;
efx_pcie_interface_t *controllers;
size_t nb_controllers;
};
static int
sfc_journal_ctx_add_controller(struct sfc_mport_journal_ctx *ctx,
efx_pcie_interface_t intf)
{
efx_pcie_interface_t *new_controllers;
size_t i, target;
size_t new_size;
if (ctx->controllers == NULL) {
ctx->controllers = rte_malloc("sfc_controller_mapping",
sizeof(ctx->controllers[0]), 0);
if (ctx->controllers == NULL)
return ENOMEM;
ctx->controllers[0] = intf;
ctx->nb_controllers = 1;
return 0;
}
for (i = 0; i < ctx->nb_controllers; i++) {
if (ctx->controllers[i] == intf)
return 0;
if (ctx->controllers[i] > intf)
break;
}
target = i;
ctx->nb_controllers += 1;
new_size = ctx->nb_controllers * sizeof(ctx->controllers[0]);
new_controllers = rte_realloc(ctx->controllers, new_size, 0);
if (new_controllers == NULL) {
rte_free(ctx->controllers);
return ENOMEM;
}
ctx->controllers = new_controllers;
for (i = target + 1; i < ctx->nb_controllers; i++)
ctx->controllers[i] = ctx->controllers[i - 1];
ctx->controllers[target] = intf;
return 0;
}
static efx_rc_t
sfc_process_mport_journal_entry(struct sfc_mport_journal_ctx *ctx,
efx_mport_desc_t *mport)
{
struct sfc_mae_switch_port_request req;
efx_mport_sel_t entity_selector;
efx_mport_sel_t ethdev_mport;
uint16_t switch_port_id;
efx_rc_t efx_rc;
int rc;
sfc_dbg(ctx->sa,
"processing mport id %u (controller %u pf %u vf %u)",
mport->emd_id.id, mport->emd_vnic.ev_intf,
mport->emd_vnic.ev_pf, mport->emd_vnic.ev_vf);
efx_mae_mport_invalid(&ethdev_mport);
if (!ctx->controllers_assigned) {
rc = sfc_journal_ctx_add_controller(ctx,
mport->emd_vnic.ev_intf);
if (rc != 0)
return rc;
}
/* Build Mport selector */
efx_rc = efx_mae_mport_by_pcie_mh_function(mport->emd_vnic.ev_intf,
mport->emd_vnic.ev_pf,
mport->emd_vnic.ev_vf,
&entity_selector);
if (efx_rc != 0) {
sfc_err(ctx->sa, "failed to build entity mport selector for c%upf%uvf%u",
mport->emd_vnic.ev_intf,
mport->emd_vnic.ev_pf,
mport->emd_vnic.ev_vf);
return efx_rc;
}
rc = sfc_mae_switch_port_id_by_entity(ctx->switch_domain_id,
&entity_selector,
SFC_MAE_SWITCH_PORT_REPRESENTOR,
&switch_port_id);
switch (rc) {
case 0:
/* Already registered */
break;
case ENOENT:
/*
* No representor has been created for this entity.
* Create a dummy switch registry entry with an invalid ethdev
* mport selector. When a corresponding representor is created,
* this entry will be updated.
*/
req.type = SFC_MAE_SWITCH_PORT_REPRESENTOR;
req.entity_mportp = &entity_selector;
req.ethdev_mportp = &ethdev_mport;
req.ethdev_port_id = RTE_MAX_ETHPORTS;
req.port_data.repr.intf = mport->emd_vnic.ev_intf;
req.port_data.repr.pf = mport->emd_vnic.ev_pf;
req.port_data.repr.vf = mport->emd_vnic.ev_vf;
rc = sfc_mae_assign_switch_port(ctx->switch_domain_id,
&req, &switch_port_id);
if (rc != 0) {
sfc_err(ctx->sa,
"failed to assign MAE switch port for c%upf%uvf%u: %s",
mport->emd_vnic.ev_intf,
mport->emd_vnic.ev_pf,
mport->emd_vnic.ev_vf,
rte_strerror(rc));
return rc;
}
break;
default:
sfc_err(ctx->sa, "failed to find MAE switch port for c%upf%uvf%u: %s",
mport->emd_vnic.ev_intf,
mport->emd_vnic.ev_pf,
mport->emd_vnic.ev_vf,
rte_strerror(rc));
return rc;
}
return 0;
}
static efx_rc_t
sfc_process_mport_journal_cb(void *data, efx_mport_desc_t *mport,
size_t mport_len)
{
struct sfc_mport_journal_ctx *ctx = data;
if (ctx == NULL || ctx->sa == NULL) {
sfc_err(ctx->sa, "received NULL context or SFC adapter");
return EINVAL;
}
if (mport_len != sizeof(*mport)) {
sfc_err(ctx->sa, "actual and expected mport buffer sizes differ");
return EINVAL;
}
SFC_ASSERT(sfc_adapter_is_locked(ctx->sa));
/*
* If a zombie flag is set, it means the mport has been marked for
* deletion and cannot be used for any new operations. The mport will
* be destroyed completely once all references to it are released.
*/
if (mport->emd_zombie) {
sfc_dbg(ctx->sa, "mport is a zombie, skipping");
return 0;
}
if (mport->emd_type != EFX_MPORT_TYPE_VNIC) {
sfc_dbg(ctx->sa, "mport is not a VNIC, skipping");
return 0;
}
if (mport->emd_vnic.ev_client_type != EFX_MPORT_VNIC_CLIENT_FUNCTION) {
sfc_dbg(ctx->sa, "mport is not a function, skipping");
return 0;
}
if (mport->emd_vnic.ev_handle == ctx->mcdi_handle) {
sfc_dbg(ctx->sa, "mport is this driver instance, skipping");
return 0;
}
return sfc_process_mport_journal_entry(ctx, mport);
}
static int
sfc_process_mport_journal(struct sfc_adapter *sa)
{
struct sfc_mport_journal_ctx ctx;
const efx_pcie_interface_t *controllers;
size_t nb_controllers;
efx_rc_t efx_rc;
int rc;
memset(&ctx, 0, sizeof(ctx));
ctx.sa = sa;
ctx.switch_domain_id = sa->mae.switch_domain_id;
efx_rc = efx_mcdi_get_own_client_handle(sa->nic, &ctx.mcdi_handle);
if (efx_rc != 0) {
sfc_err(sa, "failed to get own MCDI handle");
SFC_ASSERT(efx_rc > 0);
return efx_rc;
}
rc = sfc_mae_switch_domain_controllers(ctx.switch_domain_id,
&controllers, &nb_controllers);
if (rc != 0) {
sfc_err(sa, "failed to get controller mapping");
return rc;
}
ctx.controllers_assigned = controllers != NULL;
ctx.controllers = NULL;
ctx.nb_controllers = 0;
efx_rc = efx_mae_read_mport_journal(sa->nic,
sfc_process_mport_journal_cb, &ctx);
if (efx_rc != 0) {
sfc_err(sa, "failed to process MAE mport journal");
SFC_ASSERT(efx_rc > 0);
return efx_rc;
}
if (controllers == NULL) {
rc = sfc_mae_switch_domain_map_controllers(ctx.switch_domain_id,
ctx.controllers,
ctx.nb_controllers);
if (rc != 0)
return rc;
}
return 0;
}
static void
sfc_count_representors_cb(enum sfc_mae_switch_port_type type,
const efx_mport_sel_t *ethdev_mportp __rte_unused,
uint16_t ethdev_port_id __rte_unused,
const efx_mport_sel_t *entity_mportp __rte_unused,
uint16_t switch_port_id __rte_unused,
union sfc_mae_switch_port_data *port_datap
__rte_unused,
void *user_datap)
{
int *counter = user_datap;
SFC_ASSERT(counter != NULL);
if (type == SFC_MAE_SWITCH_PORT_REPRESENTOR)
(*counter)++;
}
struct sfc_get_representors_ctx {
struct rte_eth_representor_info *info;
struct sfc_adapter *sa;
uint16_t switch_domain_id;
const efx_pcie_interface_t *controllers;
size_t nb_controllers;
};
static void
sfc_get_representors_cb(enum sfc_mae_switch_port_type type,
const efx_mport_sel_t *ethdev_mportp __rte_unused,
uint16_t ethdev_port_id __rte_unused,
const efx_mport_sel_t *entity_mportp __rte_unused,
uint16_t switch_port_id,
union sfc_mae_switch_port_data *port_datap,
void *user_datap)
{
struct sfc_get_representors_ctx *ctx = user_datap;
struct rte_eth_representor_range *range;
int ret;
int rc;
SFC_ASSERT(ctx != NULL);
SFC_ASSERT(ctx->info != NULL);
SFC_ASSERT(ctx->sa != NULL);
if (type != SFC_MAE_SWITCH_PORT_REPRESENTOR) {
sfc_dbg(ctx->sa, "not a representor, skipping");
return;
}
if (ctx->info->nb_ranges >= ctx->info->nb_ranges_alloc) {
sfc_dbg(ctx->sa, "info structure is full already");
return;
}
range = &ctx->info->ranges[ctx->info->nb_ranges];
rc = sfc_mae_switch_controller_from_mapping(ctx->controllers,
ctx->nb_controllers,
port_datap->repr.intf,
&range->controller);
if (rc != 0) {
sfc_err(ctx->sa, "invalid representor controller: %d",
port_datap->repr.intf);
range->controller = -1;
}
range->pf = port_datap->repr.pf;
range->id_base = switch_port_id;
range->id_end = switch_port_id;
if (port_datap->repr.vf != EFX_PCI_VF_INVALID) {
range->type = RTE_ETH_REPRESENTOR_VF;
range->vf = port_datap->repr.vf;
ret = snprintf(range->name, RTE_DEV_NAME_MAX_LEN,
"c%dpf%dvf%d", range->controller, range->pf,
range->vf);
} else {
range->type = RTE_ETH_REPRESENTOR_PF;
ret = snprintf(range->name, RTE_DEV_NAME_MAX_LEN,
"c%dpf%d", range->controller, range->pf);
}
if (ret >= RTE_DEV_NAME_MAX_LEN) {
sfc_err(ctx->sa, "representor name has been truncated: %s",
range->name);
}
ctx->info->nb_ranges++;
}
static int
sfc_representor_info_get(struct rte_eth_dev *dev,
struct rte_eth_representor_info *info)
{
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
struct sfc_get_representors_ctx get_repr_ctx;
const efx_nic_cfg_t *nic_cfg;
uint16_t switch_domain_id;
uint32_t nb_repr;
int controller;
int rc;
sfc_adapter_lock(sa);
if (sa->mae.status != SFC_MAE_STATUS_ADMIN) {
sfc_adapter_unlock(sa);
return -ENOTSUP;
}
rc = sfc_process_mport_journal(sa);
if (rc != 0) {
sfc_adapter_unlock(sa);
SFC_ASSERT(rc > 0);
return -rc;
}
switch_domain_id = sa->mae.switch_domain_id;
nb_repr = 0;
rc = sfc_mae_switch_ports_iterate(switch_domain_id,
sfc_count_representors_cb,
&nb_repr);
if (rc != 0) {
sfc_adapter_unlock(sa);
SFC_ASSERT(rc > 0);
return -rc;
}
if (info == NULL) {
sfc_adapter_unlock(sa);
return nb_repr;
}
rc = sfc_mae_switch_domain_controllers(switch_domain_id,
&get_repr_ctx.controllers,
&get_repr_ctx.nb_controllers);
if (rc != 0) {
sfc_adapter_unlock(sa);
SFC_ASSERT(rc > 0);
return -rc;
}
nic_cfg = efx_nic_cfg_get(sa->nic);
rc = sfc_mae_switch_domain_get_controller(switch_domain_id,
nic_cfg->enc_intf,
&controller);
if (rc != 0) {
sfc_err(sa, "invalid controller: %d", nic_cfg->enc_intf);
controller = -1;
}
info->controller = controller;
info->pf = nic_cfg->enc_pf;
get_repr_ctx.info = info;
get_repr_ctx.sa = sa;
get_repr_ctx.switch_domain_id = switch_domain_id;
rc = sfc_mae_switch_ports_iterate(switch_domain_id,
sfc_get_representors_cb,
&get_repr_ctx);
if (rc != 0) {
sfc_adapter_unlock(sa);
SFC_ASSERT(rc > 0);
return -rc;
}
sfc_adapter_unlock(sa);
return nb_repr;
}
static int
sfc_rx_metadata_negotiate(struct rte_eth_dev *dev, uint64_t *features)
{
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
uint64_t supported = 0;
sfc_adapter_lock(sa);
if ((sa->priv.dp_rx->features & SFC_DP_RX_FEAT_FLOW_FLAG) != 0)
supported |= RTE_ETH_RX_METADATA_USER_FLAG;
if ((sa->priv.dp_rx->features & SFC_DP_RX_FEAT_FLOW_MARK) != 0)
supported |= RTE_ETH_RX_METADATA_USER_MARK;
if (sfc_flow_tunnel_is_supported(sa))
supported |= RTE_ETH_RX_METADATA_TUNNEL_ID;
sa->negotiated_rx_metadata = supported & *features;
*features = sa->negotiated_rx_metadata;
sfc_adapter_unlock(sa);
return 0;
}
static const struct eth_dev_ops sfc_eth_dev_ops = {
.dev_configure = sfc_dev_configure,
.dev_start = sfc_dev_start,
.dev_stop = sfc_dev_stop,
.dev_set_link_up = sfc_dev_set_link_up,
.dev_set_link_down = sfc_dev_set_link_down,
.dev_close = sfc_dev_close,
.promiscuous_enable = sfc_dev_promisc_enable,
.promiscuous_disable = sfc_dev_promisc_disable,
.allmulticast_enable = sfc_dev_allmulti_enable,
.allmulticast_disable = sfc_dev_allmulti_disable,
.link_update = sfc_dev_link_update,
.stats_get = sfc_stats_get,
.stats_reset = sfc_stats_reset,
.xstats_get = sfc_xstats_get,
.xstats_reset = sfc_stats_reset,
.xstats_get_names = sfc_xstats_get_names,
.dev_infos_get = sfc_dev_infos_get,
.dev_supported_ptypes_get = sfc_dev_supported_ptypes_get,
.mtu_set = sfc_dev_set_mtu,
.rx_queue_start = sfc_rx_queue_start,
.rx_queue_stop = sfc_rx_queue_stop,
.tx_queue_start = sfc_tx_queue_start,
.tx_queue_stop = sfc_tx_queue_stop,
.rx_queue_setup = sfc_rx_queue_setup,
.rx_queue_release = sfc_rx_queue_release,
.rx_queue_intr_enable = sfc_rx_queue_intr_enable,
.rx_queue_intr_disable = sfc_rx_queue_intr_disable,
.tx_queue_setup = sfc_tx_queue_setup,
.tx_queue_release = sfc_tx_queue_release,
.flow_ctrl_get = sfc_flow_ctrl_get,
.flow_ctrl_set = sfc_flow_ctrl_set,
.mac_addr_set = sfc_mac_addr_set,
.udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add,
.udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del,
.reta_update = sfc_dev_rss_reta_update,
.reta_query = sfc_dev_rss_reta_query,
.rss_hash_update = sfc_dev_rss_hash_update,
.rss_hash_conf_get = sfc_dev_rss_hash_conf_get,
.flow_ops_get = sfc_dev_flow_ops_get,
.set_mc_addr_list = sfc_set_mc_addr_list,
.rxq_info_get = sfc_rx_queue_info_get,
.txq_info_get = sfc_tx_queue_info_get,
.fw_version_get = sfc_fw_version_get,
.xstats_get_by_id = sfc_xstats_get_by_id,
.xstats_get_names_by_id = sfc_xstats_get_names_by_id,
.pool_ops_supported = sfc_pool_ops_supported,
.representor_info_get = sfc_representor_info_get,
.rx_metadata_negotiate = sfc_rx_metadata_negotiate,
};
struct sfc_ethdev_init_data {
uint16_t nb_representors;
};
/**
* Duplicate a string in potentially shared memory required for
* multi-process support.
*
* strdup() allocates from process-local heap/memory.
*/
static char *
sfc_strdup(const char *str)
{
size_t size;
char *copy;
if (str == NULL)
return NULL;
size = strlen(str) + 1;
copy = rte_malloc(__func__, size, 0);
if (copy != NULL)
rte_memcpy(copy, str, size);
return copy;
}
static int
sfc_eth_dev_set_ops(struct rte_eth_dev *dev)
{
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
const struct sfc_dp_rx *dp_rx;
const struct sfc_dp_tx *dp_tx;
const efx_nic_cfg_t *encp;
unsigned int avail_caps = 0;
const char *rx_name = NULL;
const char *tx_name = NULL;
int rc;
switch (sa->family) {
case EFX_FAMILY_HUNTINGTON:
case EFX_FAMILY_MEDFORD:
case EFX_FAMILY_MEDFORD2:
avail_caps |= SFC_DP_HW_FW_CAP_EF10;
avail_caps |= SFC_DP_HW_FW_CAP_RX_EFX;
avail_caps |= SFC_DP_HW_FW_CAP_TX_EFX;
break;
case EFX_FAMILY_RIVERHEAD:
avail_caps |= SFC_DP_HW_FW_CAP_EF100;
break;
default:
break;
}
encp = efx_nic_cfg_get(sa->nic);
if (encp->enc_rx_es_super_buffer_supported)
avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER;
rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH,
sfc_kvarg_string_handler, &rx_name);
if (rc != 0)
goto fail_kvarg_rx_datapath;
if (rx_name != NULL) {
dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name);
if (dp_rx == NULL) {
sfc_err(sa, "Rx datapath %s not found", rx_name);
rc = ENOENT;
goto fail_dp_rx;
}
if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) {
sfc_err(sa,
"Insufficient Hw/FW capabilities to use Rx datapath %s",
rx_name);
rc = EINVAL;
goto fail_dp_rx_caps;
}
} else {
dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps);
if (dp_rx == NULL) {
sfc_err(sa, "Rx datapath by caps %#x not found",
avail_caps);
rc = ENOENT;
goto fail_dp_rx;
}
}
sas->dp_rx_name = sfc_strdup(dp_rx->dp.name);
if (sas->dp_rx_name == NULL) {
rc = ENOMEM;
goto fail_dp_rx_name;
}
if (strcmp(dp_rx->dp.name, SFC_KVARG_DATAPATH_EF10_ESSB) == 0) {
/* FLAG and MARK are always available from Rx prefix. */
sa->negotiated_rx_metadata |= RTE_ETH_RX_METADATA_USER_FLAG;
sa->negotiated_rx_metadata |= RTE_ETH_RX_METADATA_USER_MARK;
}
sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name);
rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH,
sfc_kvarg_string_handler, &tx_name);
if (rc != 0)
goto fail_kvarg_tx_datapath;
if (tx_name != NULL) {
dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name);
if (dp_tx == NULL) {
sfc_err(sa, "Tx datapath %s not found", tx_name);
rc = ENOENT;
goto fail_dp_tx;
}
if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) {
sfc_err(sa,
"Insufficient Hw/FW capabilities to use Tx datapath %s",
tx_name);
rc = EINVAL;
goto fail_dp_tx_caps;
}
} else {
dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps);
if (dp_tx == NULL) {
sfc_err(sa, "Tx datapath by caps %#x not found",
avail_caps);
rc = ENOENT;
goto fail_dp_tx;
}
}
sas->dp_tx_name = sfc_strdup(dp_tx->dp.name);
if (sas->dp_tx_name == NULL) {
rc = ENOMEM;
goto fail_dp_tx_name;
}
sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name);
sa->priv.dp_rx = dp_rx;
sa->priv.dp_tx = dp_tx;
dev->rx_pkt_burst = dp_rx->pkt_burst;
dev->tx_pkt_prepare = dp_tx->pkt_prepare;
dev->tx_pkt_burst = dp_tx->pkt_burst;
dev->rx_queue_count = sfc_rx_queue_count;
dev->rx_descriptor_status = sfc_rx_descriptor_status;
dev->tx_descriptor_status = sfc_tx_descriptor_status;
dev->dev_ops = &sfc_eth_dev_ops;
return 0;
fail_dp_tx_name:
fail_dp_tx_caps:
fail_dp_tx:
fail_kvarg_tx_datapath:
rte_free(sas->dp_rx_name);
sas->dp_rx_name = NULL;
fail_dp_rx_name:
fail_dp_rx_caps:
fail_dp_rx:
fail_kvarg_rx_datapath:
return rc;
}
static void
sfc_eth_dev_clear_ops(struct rte_eth_dev *dev)
{
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
dev->dev_ops = NULL;
dev->tx_pkt_prepare = NULL;
dev->rx_pkt_burst = NULL;
dev->tx_pkt_burst = NULL;
rte_free(sas->dp_tx_name);
sas->dp_tx_name = NULL;
sa->priv.dp_tx = NULL;
rte_free(sas->dp_rx_name);
sas->dp_rx_name = NULL;
sa->priv.dp_rx = NULL;
}
static const struct eth_dev_ops sfc_eth_dev_secondary_ops = {
.dev_supported_ptypes_get = sfc_dev_supported_ptypes_get,
.reta_query = sfc_dev_rss_reta_query,
.rss_hash_conf_get = sfc_dev_rss_hash_conf_get,
.rxq_info_get = sfc_rx_queue_info_get,
.txq_info_get = sfc_tx_queue_info_get,
};
static int
sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main)
{
struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
struct sfc_adapter_priv *sap;
const struct sfc_dp_rx *dp_rx;
const struct sfc_dp_tx *dp_tx;
int rc;
/*
* Allocate process private data from heap, since it should not
* be located in shared memory allocated using rte_malloc() API.
*/
sap = calloc(1, sizeof(*sap));
if (sap == NULL) {
rc = ENOMEM;
goto fail_alloc_priv;
}
sap->logtype_main = logtype_main;
dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name);
if (dp_rx == NULL) {
SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
"cannot find %s Rx datapath", sas->dp_rx_name);
rc = ENOENT;
goto fail_dp_rx;
}
if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) {
SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
"%s Rx datapath does not support multi-process",
sas->dp_rx_name);
rc = EINVAL;
goto fail_dp_rx_multi_process;
}
dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name);
if (dp_tx == NULL) {
SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
"cannot find %s Tx datapath", sas->dp_tx_name);
rc = ENOENT;
goto fail_dp_tx;
}
if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) {
SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
"%s Tx datapath does not support multi-process",
sas->dp_tx_name);
rc = EINVAL;
goto fail_dp_tx_multi_process;
}
sap->dp_rx = dp_rx;
sap->dp_tx = dp_tx;
dev->process_private = sap;
dev->rx_pkt_burst = dp_rx->pkt_burst;
dev->tx_pkt_prepare = dp_tx->pkt_prepare;
dev->tx_pkt_burst = dp_tx->pkt_burst;
dev->rx_queue_count = sfc_rx_queue_count;
dev->rx_descriptor_status = sfc_rx_descriptor_status;
dev->tx_descriptor_status = sfc_tx_descriptor_status;
dev->dev_ops = &sfc_eth_dev_secondary_ops;
return 0;
fail_dp_tx_multi_process:
fail_dp_tx:
fail_dp_rx_multi_process:
fail_dp_rx:
free(sap);
fail_alloc_priv:
return rc;
}
static void
sfc_register_dp(void)
{
/* Register once */
if (TAILQ_EMPTY(&sfc_dp_head)) {
/* Prefer EF10 datapath */
sfc_dp_register(&sfc_dp_head, &sfc_ef100_rx.dp);
sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp);
sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp);
sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp);
sfc_dp_register(&sfc_dp_head, &sfc_ef100_tx.dp);
sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp);
sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp);
sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp);
}
}
static int
sfc_parse_switch_mode(struct sfc_adapter *sa, bool has_representors)
{
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
const char *switch_mode = NULL;
int rc;
sfc_log_init(sa, "entry");
rc = sfc_kvargs_process(sa, SFC_KVARG_SWITCH_MODE,
sfc_kvarg_string_handler, &switch_mode);
if (rc != 0)
goto fail_kvargs;
if (switch_mode == NULL) {
sa->switchdev = encp->enc_mae_admin &&
(!encp->enc_datapath_cap_evb ||
has_representors);
} else if (strcasecmp(switch_mode, SFC_KVARG_SWITCH_MODE_LEGACY) == 0) {
sa->switchdev = false;
} else if (strcasecmp(switch_mode,
SFC_KVARG_SWITCH_MODE_SWITCHDEV) == 0) {
sa->switchdev = true;
} else {
sfc_err(sa, "invalid switch mode device argument '%s'",
switch_mode);
rc = EINVAL;
goto fail_mode;
}
sfc_log_init(sa, "done");
return 0;
fail_mode:
fail_kvargs:
sfc_log_init(sa, "failed: %s", rte_strerror(rc));
return rc;
}
static int
sfc_eth_dev_init(struct rte_eth_dev *dev, void *init_params)
{
struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct sfc_ethdev_init_data *init_data = init_params;
uint32_t logtype_main;
struct sfc_adapter *sa;
int rc;
const efx_nic_cfg_t *encp;
const struct rte_ether_addr *from;
int ret;
if (sfc_efx_dev_class_get(pci_dev->device.devargs) !=
SFC_EFX_DEV_CLASS_NET) {
SFC_GENERIC_LOG(DEBUG,
"Incompatible device class: skip probing, should be probed by other sfc driver.");
return 1;
}
rc = sfc_dp_mport_register();
if (rc != 0)
return rc;
sfc_register_dp();
logtype_main = sfc_register_logtype(&pci_dev->addr,
SFC_LOGTYPE_MAIN_STR,
RTE_LOG_NOTICE);
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return -sfc_eth_dev_secondary_init(dev, logtype_main);
/* Required for logging */
ret = snprintf(sas->log_prefix, sizeof(sas->log_prefix),
"PMD: sfc_efx " PCI_PRI_FMT " #%" PRIu16 ": ",
pci_dev->addr.domain, pci_dev->addr.bus,
pci_dev->addr.devid, pci_dev->addr.function,
dev->data->port_id);
if (ret < 0 || ret >= (int)sizeof(sas->log_prefix)) {
SFC_GENERIC_LOG(ERR,
"reserved log prefix is too short for " PCI_PRI_FMT,
pci_dev->addr.domain, pci_dev->addr.bus,
pci_dev->addr.devid, pci_dev->addr.function);
return -EINVAL;
}
sas->pci_addr = pci_dev->addr;
sas->port_id = dev->data->port_id;
/*
* Allocate process private data from heap, since it should not
* be located in shared memory allocated using rte_malloc() API.
*/
sa = calloc(1, sizeof(*sa));
if (sa == NULL) {
rc = ENOMEM;
goto fail_alloc_sa;
}
dev->process_private = sa;
/* Required for logging */
sa->priv.shared = sas;
sa->priv.logtype_main = logtype_main;
sa->eth_dev = dev;
/* Copy PCI device info to the dev->data */
rte_eth_copy_pci_info(dev, pci_dev);
dev->data->dev_flags |= RTE_ETH_DEV_FLOW_OPS_THREAD_SAFE;
rc = sfc_kvargs_parse(sa);
if (rc != 0)
goto fail_kvargs_parse;
sfc_log_init(sa, "entry");
dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0);
if (dev->data->mac_addrs == NULL) {
rc = ENOMEM;
goto fail_mac_addrs;
}
sfc_adapter_lock_init(sa);
sfc_adapter_lock(sa);
sfc_log_init(sa, "probing");
rc = sfc_probe(sa);
if (rc != 0)
goto fail_probe;
/*
* Selecting a default switch mode requires the NIC to be probed and
* to have its capabilities filled in.
*/
rc = sfc_parse_switch_mode(sa, init_data->nb_representors > 0);
if (rc != 0)
goto fail_switch_mode;
sfc_log_init(sa, "set device ops");
rc = sfc_eth_dev_set_ops(dev);
if (rc != 0)
goto fail_set_ops;
sfc_log_init(sa, "attaching");
rc = sfc_attach(sa);
if (rc != 0)
goto fail_attach;
if (sa->switchdev && sa->mae.status != SFC_MAE_STATUS_ADMIN) {
sfc_err(sa,
"failed to enable switchdev mode without admin MAE privilege");
rc = ENOTSUP;
goto fail_switchdev_no_mae;
}
encp = efx_nic_cfg_get(sa->nic);
/*
* The arguments are really reverse order in comparison to
* Linux kernel. Copy from NIC config to Ethernet device data.
*/
from = (const struct rte_ether_addr *)(encp->enc_mac_addr);
rte_ether_addr_copy(from, &dev->data->mac_addrs[0]);
/*
* Setup the NIC DMA mapping handler. All internal mempools
* MUST be created on attach before this point, and the
* adapter MUST NOT create mempools with the adapter lock
* held after this point.
*/
rc = sfc_nic_dma_attach(sa);
if (rc != 0)
goto fail_nic_dma_attach;
sfc_adapter_unlock(sa);
sfc_log_init(sa, "done");
return 0;
fail_nic_dma_attach:
fail_switchdev_no_mae:
sfc_detach(sa);
fail_attach:
sfc_eth_dev_clear_ops(dev);
fail_set_ops:
fail_switch_mode:
sfc_unprobe(sa);
fail_probe:
sfc_adapter_unlock(sa);
sfc_adapter_lock_fini(sa);
rte_free(dev->data->mac_addrs);
dev->data->mac_addrs = NULL;
fail_mac_addrs:
sfc_kvargs_cleanup(sa);
fail_kvargs_parse:
sfc_log_init(sa, "failed %d", rc);
dev->process_private = NULL;
free(sa);
fail_alloc_sa:
SFC_ASSERT(rc > 0);
return -rc;
}
static int
sfc_eth_dev_uninit(struct rte_eth_dev *dev)
{
sfc_dev_close(dev);
return 0;
}
static const struct rte_pci_id pci_id_sfc_efx_map[] = {
{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) },
{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) },
{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) },
{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) },
{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) },
{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) },
{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) },
{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) },
{ RTE_PCI_DEVICE(EFX_PCI_VENID_XILINX, EFX_PCI_DEVID_RIVERHEAD) },
{ RTE_PCI_DEVICE(EFX_PCI_VENID_XILINX, EFX_PCI_DEVID_RIVERHEAD_VF) },
{ .vendor_id = 0 /* sentinel */ }
};
static int
sfc_parse_rte_devargs(const char *args, struct rte_eth_devargs *devargs)
{
struct rte_eth_devargs eth_da = { .nb_representor_ports = 0 };
int rc;
if (args != NULL) {
rc = rte_eth_devargs_parse(args, &eth_da);
if (rc != 0) {
SFC_GENERIC_LOG(ERR,
"Failed to parse generic devargs '%s'",
args);
return rc;
}
}
*devargs = eth_da;
return 0;
}
static int
sfc_eth_dev_find_or_create(struct rte_pci_device *pci_dev,
struct sfc_ethdev_init_data *init_data,
struct rte_eth_dev **devp,
bool *dev_created)
{
struct rte_eth_dev *dev;
bool created = false;
int rc;
dev = rte_eth_dev_allocated(pci_dev->device.name);
if (dev == NULL) {
rc = rte_eth_dev_create(&pci_dev->device, pci_dev->device.name,
sizeof(struct sfc_adapter_shared),
eth_dev_pci_specific_init, pci_dev,
sfc_eth_dev_init, init_data);
if (rc != 0) {
SFC_GENERIC_LOG(ERR, "Failed to create sfc ethdev '%s'",
pci_dev->device.name);
return rc;
}
created = true;
dev = rte_eth_dev_allocated(pci_dev->device.name);
if (dev == NULL) {
SFC_GENERIC_LOG(ERR,
"Failed to find allocated sfc ethdev '%s'",
pci_dev->device.name);
return -ENODEV;
}
}
*devp = dev;
*dev_created = created;
return 0;
}
static int
sfc_eth_dev_create_repr(struct sfc_adapter *sa,
efx_pcie_interface_t controller,
uint16_t port,
uint16_t repr_port,
enum rte_eth_representor_type type)
{
struct sfc_repr_entity_info entity;
efx_mport_sel_t mport_sel;
int rc;
switch (type) {
case RTE_ETH_REPRESENTOR_NONE:
return 0;
case RTE_ETH_REPRESENTOR_VF:
case RTE_ETH_REPRESENTOR_PF:
break;
case RTE_ETH_REPRESENTOR_SF:
sfc_err(sa, "SF representors are not supported");
return ENOTSUP;
default:
sfc_err(sa, "unknown representor type: %d", type);
return ENOTSUP;
}
rc = efx_mae_mport_by_pcie_mh_function(controller,
port,
repr_port,
&mport_sel);
if (rc != 0) {
sfc_err(sa,
"failed to get m-port selector for controller %u port %u repr_port %u: %s",
controller, port, repr_port, rte_strerror(-rc));
return rc;
}
memset(&entity, 0, sizeof(entity));
entity.type = type;
entity.intf = controller;
entity.pf = port;
entity.vf = repr_port;
rc = sfc_repr_create(sa->eth_dev, &entity, sa->mae.switch_domain_id,
&mport_sel);
if (rc != 0) {
sfc_err(sa,
"failed to create representor for controller %u port %u repr_port %u: %s",
controller, port, repr_port, rte_strerror(-rc));
return rc;
}
return 0;
}
static int
sfc_eth_dev_create_repr_port(struct sfc_adapter *sa,
const struct rte_eth_devargs *eth_da,
efx_pcie_interface_t controller,
uint16_t port)
{
int first_error = 0;
uint16_t i;
int rc;
if (eth_da->type == RTE_ETH_REPRESENTOR_PF) {
return sfc_eth_dev_create_repr(sa, controller, port,
EFX_PCI_VF_INVALID,
eth_da->type);
}
for (i = 0; i < eth_da->nb_representor_ports; i++) {
rc = sfc_eth_dev_create_repr(sa, controller, port,
eth_da->representor_ports[i],
eth_da->type);
if (rc != 0 && first_error == 0)
first_error = rc;
}
return first_error;
}
static int
sfc_eth_dev_create_repr_controller(struct sfc_adapter *sa,
const struct rte_eth_devargs *eth_da,
efx_pcie_interface_t controller)
{
const efx_nic_cfg_t *encp;
int first_error = 0;
uint16_t default_port;
uint16_t i;
int rc;
if (eth_da->nb_ports == 0) {
encp = efx_nic_cfg_get(sa->nic);
default_port = encp->enc_intf == controller ? encp->enc_pf : 0;
return sfc_eth_dev_create_repr_port(sa, eth_da, controller,
default_port);
}
for (i = 0; i < eth_da->nb_ports; i++) {
rc = sfc_eth_dev_create_repr_port(sa, eth_da, controller,
eth_da->ports[i]);
if (rc != 0 && first_error == 0)
first_error = rc;
}
return first_error;
}
static int
sfc_eth_dev_create_representors(struct rte_eth_dev *dev,
const struct rte_eth_devargs *eth_da)
{
efx_pcie_interface_t intf;
const efx_nic_cfg_t *encp;
struct sfc_adapter *sa;
uint16_t switch_domain_id;
uint16_t i;
int rc;
sa = sfc_adapter_by_eth_dev(dev);
switch_domain_id = sa->mae.switch_domain_id;
switch (eth_da->type) {
case RTE_ETH_REPRESENTOR_NONE:
return 0;
case RTE_ETH_REPRESENTOR_PF:
case RTE_ETH_REPRESENTOR_VF:
break;
case RTE_ETH_REPRESENTOR_SF:
sfc_err(sa, "SF representors are not supported");
return -ENOTSUP;
default:
sfc_err(sa, "unknown representor type: %d",
eth_da->type);
return -ENOTSUP;
}
if (!sa->switchdev) {
sfc_err(sa, "cannot create representors in non-switchdev mode");
return -EINVAL;
}
if (!sfc_repr_available(sfc_sa2shared(sa))) {
sfc_err(sa, "cannot create representors: unsupported");
return -ENOTSUP;
}
/*
* This is needed to construct the DPDK controller -> EFX interface
* mapping.
*/
sfc_adapter_lock(sa);
rc = sfc_process_mport_journal(sa);
sfc_adapter_unlock(sa);
if (rc != 0) {
SFC_ASSERT(rc > 0);
return -rc;
}
if (eth_da->nb_mh_controllers > 0) {
for (i = 0; i < eth_da->nb_mh_controllers; i++) {
rc = sfc_mae_switch_domain_get_intf(switch_domain_id,
eth_da->mh_controllers[i],
&intf);
if (rc != 0) {
sfc_err(sa, "failed to get representor");
continue;
}
sfc_eth_dev_create_repr_controller(sa, eth_da, intf);
}
} else {
encp = efx_nic_cfg_get(sa->nic);
sfc_eth_dev_create_repr_controller(sa, eth_da, encp->enc_intf);
}
return 0;
}
static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
struct sfc_ethdev_init_data init_data;
struct rte_eth_devargs eth_da;
struct rte_eth_dev *dev;
bool dev_created;
int rc;
if (pci_dev->device.devargs != NULL) {
rc = sfc_parse_rte_devargs(pci_dev->device.devargs->args,
&eth_da);
if (rc != 0)
return rc;
} else {
memset(&eth_da, 0, sizeof(eth_da));
}
/* If no VF representors specified, check for PF ones */
if (eth_da.nb_representor_ports > 0)
init_data.nb_representors = eth_da.nb_representor_ports;
else
init_data.nb_representors = eth_da.nb_ports;
if (init_data.nb_representors > 0 &&
rte_eal_process_type() != RTE_PROC_PRIMARY) {
SFC_GENERIC_LOG(ERR,
"Create representors from secondary process not supported, dev '%s'",
pci_dev->device.name);
return -ENOTSUP;
}
/*
* Driver supports RTE_PCI_DRV_PROBE_AGAIN. Hence create device only
* if it does not already exist. Re-probing an existing device is
* expected to allow additional representors to be configured.
*/
rc = sfc_eth_dev_find_or_create(pci_dev, &init_data, &dev,
&dev_created);
if (rc != 0)
return rc;
rc = sfc_eth_dev_create_representors(dev, &eth_da);
if (rc != 0) {
if (dev_created)
(void)rte_eth_dev_destroy(dev, sfc_eth_dev_uninit);
return rc;
}
return 0;
}
static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit);
}
static struct rte_pci_driver sfc_efx_pmd = {
.id_table = pci_id_sfc_efx_map,
.drv_flags =
RTE_PCI_DRV_INTR_LSC |
RTE_PCI_DRV_NEED_MAPPING |
RTE_PCI_DRV_PROBE_AGAIN,
.probe = sfc_eth_dev_pci_probe,
.remove = sfc_eth_dev_pci_remove,
};
RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd);
RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map);
RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci");
RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx,
SFC_KVARG_SWITCH_MODE "=" SFC_KVARG_VALUES_SWITCH_MODE " "
SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " "
SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " "
SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " "
SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " "
SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> "
SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>");
RTE_INIT(sfc_driver_register_logtype)
{
int ret;
ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver",
RTE_LOG_NOTICE);
sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret;
}