numam-dpdk/lib/librte_gro/rte_gro.c
Jiayu Hu ee9c90cf2f gro: fix bitwise overflow
When try to get GRO types, expression "1 << i" with type "int" may
overflow. This patch is to fix this issue.

Coverity issue: 158664
Fixes: e996506a1c ("lib/gro: add Generic Receive Offload API framework")

Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
2017-07-31 09:00:49 +02:00

279 lines
7.4 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2017 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <rte_malloc.h>
#include <rte_mbuf.h>
#include <rte_cycles.h>
#include <rte_ethdev.h>
#include "rte_gro.h"
#include "gro_tcp4.h"
typedef void *(*gro_tbl_create_fn)(uint16_t socket_id,
uint16_t max_flow_num,
uint16_t max_item_per_flow);
typedef void (*gro_tbl_destroy_fn)(void *tbl);
typedef uint32_t (*gro_tbl_pkt_count_fn)(void *tbl);
static gro_tbl_create_fn tbl_create_fn[RTE_GRO_TYPE_MAX_NUM] = {
gro_tcp4_tbl_create, NULL};
static gro_tbl_destroy_fn tbl_destroy_fn[RTE_GRO_TYPE_MAX_NUM] = {
gro_tcp4_tbl_destroy, NULL};
static gro_tbl_pkt_count_fn tbl_pkt_count_fn[RTE_GRO_TYPE_MAX_NUM] = {
gro_tcp4_tbl_pkt_count, NULL};
/*
* GRO context structure, which is used to merge packets. It keeps
* many reassembly tables of desired GRO types. Applications need to
* create GRO context objects before using rte_gro_reassemble to
* perform GRO.
*/
struct gro_ctx {
/* GRO types to perform */
uint64_t gro_types;
/* reassembly tables */
void *tbls[RTE_GRO_TYPE_MAX_NUM];
};
void *
rte_gro_ctx_create(const struct rte_gro_param *param)
{
struct gro_ctx *gro_ctx;
gro_tbl_create_fn create_tbl_fn;
uint64_t gro_type_flag = 0;
uint64_t gro_types = 0;
uint8_t i;
gro_ctx = rte_zmalloc_socket(__func__,
sizeof(struct gro_ctx),
RTE_CACHE_LINE_SIZE,
param->socket_id);
if (gro_ctx == NULL)
return NULL;
for (i = 0; i < RTE_GRO_TYPE_MAX_NUM; i++) {
gro_type_flag = 1ULL << i;
if ((param->gro_types & gro_type_flag) == 0)
continue;
create_tbl_fn = tbl_create_fn[i];
if (create_tbl_fn == NULL)
continue;
gro_ctx->tbls[i] = create_tbl_fn(param->socket_id,
param->max_flow_num,
param->max_item_per_flow);
if (gro_ctx->tbls[i] == NULL) {
/* destroy all created tables */
gro_ctx->gro_types = gro_types;
rte_gro_ctx_destroy(gro_ctx);
return NULL;
}
gro_types |= gro_type_flag;
}
gro_ctx->gro_types = param->gro_types;
return gro_ctx;
}
void
rte_gro_ctx_destroy(void *ctx)
{
gro_tbl_destroy_fn destroy_tbl_fn;
struct gro_ctx *gro_ctx = ctx;
uint64_t gro_type_flag;
uint8_t i;
if (gro_ctx == NULL)
return;
for (i = 0; i < RTE_GRO_TYPE_MAX_NUM; i++) {
gro_type_flag = 1ULL << i;
if ((gro_ctx->gro_types & gro_type_flag) == 0)
continue;
destroy_tbl_fn = tbl_destroy_fn[i];
if (destroy_tbl_fn)
destroy_tbl_fn(gro_ctx->tbls[i]);
}
rte_free(gro_ctx);
}
uint16_t
rte_gro_reassemble_burst(struct rte_mbuf **pkts,
uint16_t nb_pkts,
const struct rte_gro_param *param)
{
uint16_t i;
uint16_t nb_after_gro = nb_pkts;
uint32_t item_num;
/* allocate a reassembly table for TCP/IPv4 GRO */
struct gro_tcp4_tbl tcp_tbl;
struct gro_tcp4_key tcp_keys[RTE_GRO_MAX_BURST_ITEM_NUM];
struct gro_tcp4_item tcp_items[RTE_GRO_MAX_BURST_ITEM_NUM] = {{0} };
struct rte_mbuf *unprocess_pkts[nb_pkts];
uint16_t unprocess_num = 0;
int32_t ret;
uint64_t current_time;
if ((param->gro_types & RTE_GRO_TCP_IPV4) == 0)
return nb_pkts;
/* get the actual number of packets */
item_num = RTE_MIN(nb_pkts, (param->max_flow_num *
param->max_item_per_flow));
item_num = RTE_MIN(item_num, RTE_GRO_MAX_BURST_ITEM_NUM);
for (i = 0; i < item_num; i++)
tcp_keys[i].start_index = INVALID_ARRAY_INDEX;
tcp_tbl.keys = tcp_keys;
tcp_tbl.items = tcp_items;
tcp_tbl.key_num = 0;
tcp_tbl.item_num = 0;
tcp_tbl.max_key_num = item_num;
tcp_tbl.max_item_num = item_num;
current_time = rte_rdtsc();
for (i = 0; i < nb_pkts; i++) {
if ((pkts[i]->packet_type & (RTE_PTYPE_L3_IPV4 |
RTE_PTYPE_L4_TCP)) ==
(RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP)) {
ret = gro_tcp4_reassemble(pkts[i],
&tcp_tbl,
current_time);
if (ret > 0)
/* merge successfully */
nb_after_gro--;
else if (ret < 0) {
unprocess_pkts[unprocess_num++] =
pkts[i];
}
} else
unprocess_pkts[unprocess_num++] = pkts[i];
}
/* re-arrange GROed packets */
if (nb_after_gro < nb_pkts) {
i = gro_tcp4_tbl_timeout_flush(&tcp_tbl, current_time,
pkts, nb_pkts);
if (unprocess_num > 0) {
memcpy(&pkts[i], unprocess_pkts,
sizeof(struct rte_mbuf *) *
unprocess_num);
}
}
return nb_after_gro;
}
uint16_t
rte_gro_reassemble(struct rte_mbuf **pkts,
uint16_t nb_pkts,
void *ctx)
{
uint16_t i, unprocess_num = 0;
struct rte_mbuf *unprocess_pkts[nb_pkts];
struct gro_ctx *gro_ctx = ctx;
uint64_t current_time;
if ((gro_ctx->gro_types & RTE_GRO_TCP_IPV4) == 0)
return nb_pkts;
current_time = rte_rdtsc();
for (i = 0; i < nb_pkts; i++) {
if ((pkts[i]->packet_type & (RTE_PTYPE_L3_IPV4 |
RTE_PTYPE_L4_TCP)) ==
(RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP)) {
if (gro_tcp4_reassemble(pkts[i],
gro_ctx->tbls
[RTE_GRO_TCP_IPV4_INDEX],
current_time) < 0)
unprocess_pkts[unprocess_num++] = pkts[i];
} else
unprocess_pkts[unprocess_num++] = pkts[i];
}
if (unprocess_num > 0) {
memcpy(pkts, unprocess_pkts,
sizeof(struct rte_mbuf *) *
unprocess_num);
}
return unprocess_num;
}
uint16_t
rte_gro_timeout_flush(void *ctx,
uint64_t timeout_cycles,
uint64_t gro_types,
struct rte_mbuf **out,
uint16_t max_nb_out)
{
struct gro_ctx *gro_ctx = ctx;
uint64_t flush_timestamp;
gro_types = gro_types & gro_ctx->gro_types;
flush_timestamp = rte_rdtsc() - timeout_cycles;
if (gro_types & RTE_GRO_TCP_IPV4) {
return gro_tcp4_tbl_timeout_flush(
gro_ctx->tbls[RTE_GRO_TCP_IPV4_INDEX],
flush_timestamp,
out, max_nb_out);
}
return 0;
}
uint64_t
rte_gro_get_pkt_count(void *ctx)
{
struct gro_ctx *gro_ctx = ctx;
gro_tbl_pkt_count_fn pkt_count_fn;
uint64_t item_num = 0;
uint64_t gro_type_flag;
uint8_t i;
for (i = 0; i < RTE_GRO_TYPE_MAX_NUM; i++) {
gro_type_flag = 1ULL << i;
if ((gro_ctx->gro_types & gro_type_flag) == 0)
continue;
pkt_count_fn = tbl_pkt_count_fn[i];
if (pkt_count_fn == NULL)
continue;
item_num += pkt_count_fn(gro_ctx->tbls[i]);
}
return item_num;
}