numam-dpdk/lib/librte_eal/common/eal_common_memzone.c
Stephen Hemminger 6f41fe75e2 eal: deprecate rte_snprintf
The function rte_snprintf serves no useful purpose. It is the
same as snprintf() for all valid inputs. Deprecate it and
replace all uses in current code.

Leave the tests for the deprecated function in place.

Signed-off-by: Stephen Hemminger <stephen@networkplumber.org>
Acked-by: Thomas Monjalon <thomas.monjalon@6wind.com>
2014-06-27 02:31:24 +02:00

525 lines
14 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <stdarg.h>
#include <inttypes.h>
#include <string.h>
#include <errno.h>
#include <sys/queue.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_tailq.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_per_lcore.h>
#include <rte_errno.h>
#include <rte_string_fns.h>
#include <rte_common.h>
#include "eal_private.h"
/* internal copy of free memory segments */
static struct rte_memseg *free_memseg = NULL;
static inline const struct rte_memzone *
memzone_lookup_thread_unsafe(const char *name)
{
const struct rte_mem_config *mcfg;
unsigned i = 0;
/* get pointer to global configuration */
mcfg = rte_eal_get_configuration()->mem_config;
/*
* the algorithm is not optimal (linear), but there are few
* zones and this function should be called at init only
*/
for (i = 0; i < RTE_MAX_MEMZONE && mcfg->memzone[i].addr != NULL; i++) {
if (!strncmp(name, mcfg->memzone[i].name, RTE_MEMZONE_NAMESIZE))
return &mcfg->memzone[i];
}
return NULL;
}
/*
* Return a pointer to a correctly filled memzone descriptor. If the
* allocation cannot be done, return NULL.
*/
const struct rte_memzone *
rte_memzone_reserve(const char *name, size_t len, int socket_id,
unsigned flags)
{
return rte_memzone_reserve_aligned(name,
len, socket_id, flags, CACHE_LINE_SIZE);
}
/*
* Helper function for memzone_reserve_aligned_thread_unsafe().
* Calculate address offset from the start of the segment.
* Align offset in that way that it satisfy istart alignmnet and
* buffer of the requested length would not cross specified boundary.
*/
static inline phys_addr_t
align_phys_boundary(const struct rte_memseg *ms, size_t len, size_t align,
size_t bound)
{
phys_addr_t addr_offset, bmask, end, start;
size_t step;
step = RTE_MAX(align, bound);
bmask = ~((phys_addr_t)bound - 1);
/* calculate offset to closest alignment */
start = RTE_ALIGN_CEIL(ms->phys_addr, align);
addr_offset = start - ms->phys_addr;
while (addr_offset + len < ms->len) {
/* check, do we meet boundary condition */
end = start + len - (len != 0);
if ((start & bmask) == (end & bmask))
break;
/* calculate next offset */
start = RTE_ALIGN_CEIL(start + 1, step);
addr_offset = start - ms->phys_addr;
}
return (addr_offset);
}
static const struct rte_memzone *
memzone_reserve_aligned_thread_unsafe(const char *name, size_t len,
int socket_id, unsigned flags, unsigned align, unsigned bound)
{
struct rte_mem_config *mcfg;
unsigned i = 0;
int memseg_idx = -1;
uint64_t addr_offset, seg_offset = 0;
size_t requested_len;
size_t memseg_len = 0;
phys_addr_t memseg_physaddr;
void *memseg_addr;
/* get pointer to global configuration */
mcfg = rte_eal_get_configuration()->mem_config;
/* no more room in config */
if (mcfg->memzone_idx >= RTE_MAX_MEMZONE) {
RTE_LOG(ERR, EAL, "%s(): No more room in config\n", __func__);
rte_errno = ENOSPC;
return NULL;
}
/* zone already exist */
if ((memzone_lookup_thread_unsafe(name)) != NULL) {
RTE_LOG(DEBUG, EAL, "%s(): memzone <%s> already exists\n",
__func__, name);
rte_errno = EEXIST;
return NULL;
}
/* if alignment is not a power of two */
if (!rte_is_power_of_2(align)) {
RTE_LOG(ERR, EAL, "%s(): Invalid alignment: %u\n", __func__,
align);
rte_errno = EINVAL;
return NULL;
}
/* alignment less than cache size is not allowed */
if (align < CACHE_LINE_SIZE)
align = CACHE_LINE_SIZE;
/* align length on cache boundary. Check for overflow before doing so */
if (len > SIZE_MAX - CACHE_LINE_MASK) {
rte_errno = EINVAL; /* requested size too big */
return NULL;
}
len += CACHE_LINE_MASK;
len &= ~((size_t) CACHE_LINE_MASK);
/* save minimal requested length */
requested_len = RTE_MAX((size_t)CACHE_LINE_SIZE, len);
/* check that boundary condition is valid */
if (bound != 0 &&
(requested_len > bound || !rte_is_power_of_2(bound))) {
rte_errno = EINVAL;
return NULL;
}
/* find the smallest segment matching requirements */
for (i = 0; i < RTE_MAX_MEMSEG; i++) {
/* last segment */
if (free_memseg[i].addr == NULL)
break;
/* empty segment, skip it */
if (free_memseg[i].len == 0)
continue;
/* bad socket ID */
if (socket_id != SOCKET_ID_ANY &&
free_memseg[i].socket_id != SOCKET_ID_ANY &&
socket_id != free_memseg[i].socket_id)
continue;
/*
* calculate offset to closest alignment that
* meets boundary conditions.
*/
addr_offset = align_phys_boundary(free_memseg + i,
requested_len, align, bound);
/* check len */
if ((requested_len + addr_offset) > free_memseg[i].len)
continue;
/* check flags for hugepage sizes */
if ((flags & RTE_MEMZONE_2MB) &&
free_memseg[i].hugepage_sz == RTE_PGSIZE_1G )
continue;
if ((flags & RTE_MEMZONE_1GB) &&
free_memseg[i].hugepage_sz == RTE_PGSIZE_2M )
continue;
/* this segment is the best until now */
if (memseg_idx == -1) {
memseg_idx = i;
memseg_len = free_memseg[i].len;
seg_offset = addr_offset;
}
/* find the biggest contiguous zone */
else if (len == 0) {
if (free_memseg[i].len > memseg_len) {
memseg_idx = i;
memseg_len = free_memseg[i].len;
seg_offset = addr_offset;
}
}
/*
* find the smallest (we already checked that current
* zone length is > len
*/
else if (free_memseg[i].len + align < memseg_len ||
(free_memseg[i].len <= memseg_len + align &&
addr_offset < seg_offset)) {
memseg_idx = i;
memseg_len = free_memseg[i].len;
seg_offset = addr_offset;
}
}
/* no segment found */
if (memseg_idx == -1) {
/*
* If RTE_MEMZONE_SIZE_HINT_ONLY flag is specified,
* try allocating again without the size parameter otherwise -fail.
*/
if ((flags & RTE_MEMZONE_SIZE_HINT_ONLY) &&
((flags & RTE_MEMZONE_1GB) || (flags & RTE_MEMZONE_2MB)))
return memzone_reserve_aligned_thread_unsafe(name,
len, socket_id, 0, align, bound);
rte_errno = ENOMEM;
return NULL;
}
/* save aligned physical and virtual addresses */
memseg_physaddr = free_memseg[memseg_idx].phys_addr + seg_offset;
memseg_addr = RTE_PTR_ADD(free_memseg[memseg_idx].addr,
(uintptr_t) seg_offset);
/* if we are looking for a biggest memzone */
if (len == 0) {
if (bound == 0)
requested_len = memseg_len - seg_offset;
else
requested_len = RTE_ALIGN_CEIL(memseg_physaddr + 1,
bound) - memseg_physaddr;
}
/* set length to correct value */
len = (size_t)seg_offset + requested_len;
/* update our internal state */
free_memseg[memseg_idx].len -= len;
free_memseg[memseg_idx].phys_addr += len;
free_memseg[memseg_idx].addr =
(char *)free_memseg[memseg_idx].addr + len;
/* fill the zone in config */
struct rte_memzone *mz = &mcfg->memzone[mcfg->memzone_idx++];
snprintf(mz->name, sizeof(mz->name), "%s", name);
mz->phys_addr = memseg_physaddr;
mz->addr = memseg_addr;
mz->len = requested_len;
mz->hugepage_sz = free_memseg[memseg_idx].hugepage_sz;
mz->socket_id = free_memseg[memseg_idx].socket_id;
mz->flags = 0;
mz->memseg_id = memseg_idx;
return mz;
}
/*
* Return a pointer to a correctly filled memzone descriptor (with a
* specified alignment). If the allocation cannot be done, return NULL.
*/
const struct rte_memzone *
rte_memzone_reserve_aligned(const char *name, size_t len,
int socket_id, unsigned flags, unsigned align)
{
struct rte_mem_config *mcfg;
const struct rte_memzone *mz = NULL;
/* both sizes cannot be explicitly called for */
if ((flags & RTE_MEMZONE_1GB) && (flags & RTE_MEMZONE_2MB)) {
rte_errno = EINVAL;
return NULL;
}
/* get pointer to global configuration */
mcfg = rte_eal_get_configuration()->mem_config;
rte_rwlock_write_lock(&mcfg->mlock);
mz = memzone_reserve_aligned_thread_unsafe(
name, len, socket_id, flags, align, 0);
rte_rwlock_write_unlock(&mcfg->mlock);
return mz;
}
/*
* Return a pointer to a correctly filled memzone descriptor (with a
* specified alignment and boundary).
* If the allocation cannot be done, return NULL.
*/
const struct rte_memzone *
rte_memzone_reserve_bounded(const char *name, size_t len,
int socket_id, unsigned flags, unsigned align, unsigned bound)
{
struct rte_mem_config *mcfg;
const struct rte_memzone *mz = NULL;
/* both sizes cannot be explicitly called for */
if ((flags & RTE_MEMZONE_1GB) && (flags & RTE_MEMZONE_2MB)) {
rte_errno = EINVAL;
return NULL;
}
/* get pointer to global configuration */
mcfg = rte_eal_get_configuration()->mem_config;
rte_rwlock_write_lock(&mcfg->mlock);
mz = memzone_reserve_aligned_thread_unsafe(
name, len, socket_id, flags, align, bound);
rte_rwlock_write_unlock(&mcfg->mlock);
return mz;
}
/*
* Lookup for the memzone identified by the given name
*/
const struct rte_memzone *
rte_memzone_lookup(const char *name)
{
struct rte_mem_config *mcfg;
const struct rte_memzone *memzone = NULL;
mcfg = rte_eal_get_configuration()->mem_config;
rte_rwlock_read_lock(&mcfg->mlock);
memzone = memzone_lookup_thread_unsafe(name);
rte_rwlock_read_unlock(&mcfg->mlock);
return memzone;
}
/* Dump all reserved memory zones on console */
void
rte_memzone_dump(FILE *f)
{
struct rte_mem_config *mcfg;
unsigned i = 0;
/* get pointer to global configuration */
mcfg = rte_eal_get_configuration()->mem_config;
rte_rwlock_read_lock(&mcfg->mlock);
/* dump all zones */
for (i=0; i<RTE_MAX_MEMZONE; i++) {
if (mcfg->memzone[i].addr == NULL)
break;
fprintf(f, "Zone %u: name:<%s>, phys:0x%"PRIx64", len:0x%zx"
", virt:%p, socket_id:%"PRId32", flags:%"PRIx32"\n", i,
mcfg->memzone[i].name,
mcfg->memzone[i].phys_addr,
mcfg->memzone[i].len,
mcfg->memzone[i].addr,
mcfg->memzone[i].socket_id,
mcfg->memzone[i].flags);
}
rte_rwlock_read_unlock(&mcfg->mlock);
}
/*
* called by init: modify the free memseg list to have cache-aligned
* addresses and cache-aligned lengths
*/
static int
memseg_sanitize(struct rte_memseg *memseg)
{
unsigned phys_align;
unsigned virt_align;
unsigned off;
phys_align = memseg->phys_addr & CACHE_LINE_MASK;
virt_align = (unsigned long)memseg->addr & CACHE_LINE_MASK;
/*
* sanity check: phys_addr and addr must have the same
* alignment
*/
if (phys_align != virt_align)
return -1;
/* memseg is really too small, don't bother with it */
if (memseg->len < (2 * CACHE_LINE_SIZE)) {
memseg->len = 0;
return 0;
}
/* align start address */
off = (CACHE_LINE_SIZE - phys_align) & CACHE_LINE_MASK;
memseg->phys_addr += off;
memseg->addr = (char *)memseg->addr + off;
memseg->len -= off;
/* align end address */
memseg->len &= ~((uint64_t)CACHE_LINE_MASK);
return 0;
}
/*
* Init the memzone subsystem
*/
int
rte_eal_memzone_init(void)
{
struct rte_mem_config *mcfg;
const struct rte_memseg *memseg;
unsigned i = 0;
/* get pointer to global configuration */
mcfg = rte_eal_get_configuration()->mem_config;
/* mirror the runtime memsegs from config */
free_memseg = mcfg->free_memseg;
/* secondary processes don't need to initialise anything */
if (rte_eal_process_type() == RTE_PROC_SECONDARY)
return 0;
memseg = rte_eal_get_physmem_layout();
if (memseg == NULL) {
RTE_LOG(ERR, EAL, "%s(): Cannot get physical layout\n", __func__);
return -1;
}
rte_rwlock_write_lock(&mcfg->mlock);
/* fill in uninitialized free_memsegs */
for (i = 0; i < RTE_MAX_MEMSEG; i++) {
if (memseg[i].addr == NULL)
break;
if (free_memseg[i].addr != NULL)
continue;
memcpy(&free_memseg[i], &memseg[i], sizeof(struct rte_memseg));
}
/* make all zones cache-aligned */
for (i = 0; i < RTE_MAX_MEMSEG; i++) {
if (free_memseg[i].addr == NULL)
break;
if (memseg_sanitize(&free_memseg[i]) < 0) {
RTE_LOG(ERR, EAL, "%s(): Sanity check failed\n", __func__);
rte_rwlock_write_unlock(&mcfg->mlock);
return -1;
}
}
/* delete all zones */
mcfg->memzone_idx = 0;
memset(mcfg->memzone, 0, sizeof(mcfg->memzone));
rte_rwlock_write_unlock(&mcfg->mlock);
return 0;
}
/* Walk all reserved memory zones */
void rte_memzone_walk(void (*func)(const struct rte_memzone *, void *),
void *arg)
{
struct rte_mem_config *mcfg;
unsigned i;
mcfg = rte_eal_get_configuration()->mem_config;
rte_rwlock_read_lock(&mcfg->mlock);
for (i=0; i<RTE_MAX_MEMZONE; i++) {
if (mcfg->memzone[i].addr != NULL)
(*func)(&mcfg->memzone[i], arg);
}
rte_rwlock_read_unlock(&mcfg->mlock);
}