numam-dpdk/drivers/crypto/qat/qat_sym.h
Adam Dybkowski 45fe9ea971 crypto/qat: support single-pass GMAC on GEN3
This patch implements Single-Pass AES-GMAC possible on QAT GEN3
which improves the performance. On GEN1 and GEN2 the previous
chained method is used.

Signed-off-by: Adam Dybkowski <adamx.dybkowski@intel.com>
Acked-by: Declan Doherty <declan.doherty@intel.com>
2021-04-16 12:43:33 +02:00

312 lines
7.7 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2015-2018 Intel Corporation
*/
#ifndef _QAT_SYM_H_
#define _QAT_SYM_H_
#include <rte_cryptodev_pmd.h>
#ifdef RTE_LIB_SECURITY
#include <rte_net_crc.h>
#endif
#ifdef BUILD_QAT_SYM
#include <openssl/evp.h>
#include "qat_common.h"
#include "qat_sym_session.h"
#include "qat_sym_pmd.h"
#include "qat_logs.h"
#define BYTE_LENGTH 8
/* bpi is only used for partial blocks of DES and AES
* so AES block len can be assumed as max len for iv, src and dst
*/
#define BPI_MAX_ENCR_IV_LEN ICP_QAT_HW_AES_BLK_SZ
/*
* Maximum number of SGL entries
*/
#define QAT_SYM_SGL_MAX_NUMBER 16
/* Maximum data length for single pass GMAC: 2^14-1 */
#define QAT_AES_GMAC_SPC_MAX_SIZE 16383
struct qat_sym_session;
struct qat_sym_sgl {
qat_sgl_hdr;
struct qat_flat_buf buffers[QAT_SYM_SGL_MAX_NUMBER];
} __rte_packed __rte_cache_aligned;
struct qat_sym_op_cookie {
struct qat_sym_sgl qat_sgl_src;
struct qat_sym_sgl qat_sgl_dst;
phys_addr_t qat_sgl_src_phys_addr;
phys_addr_t qat_sgl_dst_phys_addr;
union {
/* Used for Single-Pass AES-GMAC only */
struct {
struct icp_qat_hw_cipher_algo_blk cd_cipher
__rte_packed __rte_cache_aligned;
phys_addr_t cd_phys_addr;
} spc_gmac;
} opt;
};
int
qat_sym_build_request(void *in_op, uint8_t *out_msg,
void *op_cookie, enum qat_device_gen qat_dev_gen);
/** Encrypt a single partial block
* Depends on openssl libcrypto
* Uses ECB+XOR to do CFB encryption, same result, more performant
*/
static inline int
bpi_cipher_encrypt(uint8_t *src, uint8_t *dst,
uint8_t *iv, int ivlen, int srclen,
void *bpi_ctx)
{
EVP_CIPHER_CTX *ctx = (EVP_CIPHER_CTX *)bpi_ctx;
int encrypted_ivlen;
uint8_t encrypted_iv[BPI_MAX_ENCR_IV_LEN];
uint8_t *encr = encrypted_iv;
/* ECB method: encrypt the IV, then XOR this with plaintext */
if (EVP_EncryptUpdate(ctx, encrypted_iv, &encrypted_ivlen, iv, ivlen)
<= 0)
goto cipher_encrypt_err;
for (; srclen != 0; --srclen, ++dst, ++src, ++encr)
*dst = *src ^ *encr;
return 0;
cipher_encrypt_err:
QAT_DP_LOG(ERR, "libcrypto ECB cipher encrypt failed");
return -EINVAL;
}
static inline uint32_t
qat_bpicipher_postprocess(struct qat_sym_session *ctx,
struct rte_crypto_op *op)
{
int block_len = qat_cipher_get_block_size(ctx->qat_cipher_alg);
struct rte_crypto_sym_op *sym_op = op->sym;
uint8_t last_block_len = block_len > 0 ?
sym_op->cipher.data.length % block_len : 0;
if (last_block_len > 0 &&
ctx->qat_dir == ICP_QAT_HW_CIPHER_ENCRYPT) {
/* Encrypt last block */
uint8_t *last_block, *dst, *iv;
uint32_t last_block_offset;
last_block_offset = sym_op->cipher.data.offset +
sym_op->cipher.data.length - last_block_len;
last_block = (uint8_t *) rte_pktmbuf_mtod_offset(sym_op->m_src,
uint8_t *, last_block_offset);
if (unlikely(sym_op->m_dst != NULL))
/* out-of-place operation (OOP) */
dst = (uint8_t *) rte_pktmbuf_mtod_offset(sym_op->m_dst,
uint8_t *, last_block_offset);
else
dst = last_block;
if (last_block_len < sym_op->cipher.data.length)
/* use previous block ciphertext as IV */
iv = dst - block_len;
else
/* runt block, i.e. less than one full block */
iv = rte_crypto_op_ctod_offset(op, uint8_t *,
ctx->cipher_iv.offset);
#if RTE_LOG_DP_LEVEL >= RTE_LOG_DEBUG
QAT_DP_HEXDUMP_LOG(DEBUG, "BPI: src before post-process:",
last_block, last_block_len);
if (sym_op->m_dst != NULL)
QAT_DP_HEXDUMP_LOG(DEBUG,
"BPI: dst before post-process:",
dst, last_block_len);
#endif
bpi_cipher_encrypt(last_block, dst, iv, block_len,
last_block_len, ctx->bpi_ctx);
#if RTE_LOG_DP_LEVEL >= RTE_LOG_DEBUG
QAT_DP_HEXDUMP_LOG(DEBUG, "BPI: src after post-process:",
last_block, last_block_len);
if (sym_op->m_dst != NULL)
QAT_DP_HEXDUMP_LOG(DEBUG,
"BPI: dst after post-process:",
dst, last_block_len);
#endif
}
return sym_op->cipher.data.length - last_block_len;
}
#ifdef RTE_LIB_SECURITY
static inline void
qat_crc_verify(struct qat_sym_session *ctx, struct rte_crypto_op *op)
{
struct rte_crypto_sym_op *sym_op = op->sym;
uint32_t crc_data_ofs, crc_data_len, crc;
uint8_t *crc_data;
if (ctx->qat_dir == ICP_QAT_HW_CIPHER_DECRYPT &&
sym_op->auth.data.length != 0) {
crc_data_ofs = sym_op->auth.data.offset;
crc_data_len = sym_op->auth.data.length;
crc_data = rte_pktmbuf_mtod_offset(sym_op->m_src, uint8_t *,
crc_data_ofs);
crc = rte_net_crc_calc(crc_data, crc_data_len,
RTE_NET_CRC32_ETH);
if (crc != *(uint32_t *)(crc_data + crc_data_len))
op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
}
}
static inline void
qat_crc_generate(struct qat_sym_session *ctx,
struct rte_crypto_op *op)
{
struct rte_crypto_sym_op *sym_op = op->sym;
uint32_t *crc, crc_data_len;
uint8_t *crc_data;
if (ctx->qat_dir == ICP_QAT_HW_CIPHER_ENCRYPT &&
sym_op->auth.data.length != 0 &&
sym_op->m_src->nb_segs == 1) {
crc_data_len = sym_op->auth.data.length;
crc_data = rte_pktmbuf_mtod_offset(sym_op->m_src, uint8_t *,
sym_op->auth.data.offset);
crc = (uint32_t *)(crc_data + crc_data_len);
*crc = rte_net_crc_calc(crc_data, crc_data_len,
RTE_NET_CRC32_ETH);
}
}
static inline void
qat_sym_preprocess_requests(void **ops, uint16_t nb_ops)
{
struct rte_crypto_op *op;
struct qat_sym_session *ctx;
uint16_t i;
for (i = 0; i < nb_ops; i++) {
op = (struct rte_crypto_op *)ops[i];
if (op->sess_type == RTE_CRYPTO_OP_SECURITY_SESSION) {
ctx = (struct qat_sym_session *)
get_sec_session_private_data(
op->sym->sec_session);
if (ctx == NULL || ctx->bpi_ctx == NULL)
continue;
qat_crc_generate(ctx, op);
}
}
}
#else
static inline void
qat_sym_preprocess_requests(void **ops __rte_unused,
uint16_t nb_ops __rte_unused)
{
}
#endif
static inline void
qat_sym_process_response(void **op, uint8_t *resp, void *op_cookie)
{
struct icp_qat_fw_comn_resp *resp_msg =
(struct icp_qat_fw_comn_resp *)resp;
struct rte_crypto_op *rx_op = (struct rte_crypto_op *)(uintptr_t)
(resp_msg->opaque_data);
struct qat_sym_session *sess;
uint8_t is_docsis_sec;
#if RTE_LOG_DP_LEVEL >= RTE_LOG_DEBUG
QAT_DP_HEXDUMP_LOG(DEBUG, "qat_response:", (uint8_t *)resp_msg,
sizeof(struct icp_qat_fw_comn_resp));
#endif
#ifdef RTE_LIB_SECURITY
if (rx_op->sess_type == RTE_CRYPTO_OP_SECURITY_SESSION) {
/*
* Assuming at this point that if it's a security
* op, that this is for DOCSIS
*/
sess = (struct qat_sym_session *)
get_sec_session_private_data(
rx_op->sym->sec_session);
is_docsis_sec = 1;
} else
#endif
{
sess = (struct qat_sym_session *)
get_sym_session_private_data(
rx_op->sym->session,
qat_sym_driver_id);
is_docsis_sec = 0;
}
if (ICP_QAT_FW_COMN_STATUS_FLAG_OK !=
ICP_QAT_FW_COMN_RESP_CRYPTO_STAT_GET(
resp_msg->comn_hdr.comn_status)) {
rx_op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
} else {
rx_op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
if (sess->bpi_ctx) {
qat_bpicipher_postprocess(sess, rx_op);
#ifdef RTE_LIB_SECURITY
if (is_docsis_sec)
qat_crc_verify(sess, rx_op);
#endif
}
}
if (sess->is_single_pass_gmac) {
struct qat_sym_op_cookie *cookie =
(struct qat_sym_op_cookie *) op_cookie;
memset(cookie->opt.spc_gmac.cd_cipher.key, 0,
sess->auth_key_length);
}
*op = (void *)rx_op;
}
int
qat_sym_configure_dp_ctx(struct rte_cryptodev *dev, uint16_t qp_id,
struct rte_crypto_raw_dp_ctx *raw_dp_ctx,
enum rte_crypto_op_sess_type sess_type,
union rte_cryptodev_session_ctx session_ctx, uint8_t is_update);
int
qat_sym_get_dp_ctx_size(struct rte_cryptodev *dev);
#else
static inline void
qat_sym_preprocess_requests(void **ops __rte_unused,
uint16_t nb_ops __rte_unused)
{
}
static inline void
qat_sym_process_response(void **op __rte_unused, uint8_t *resp __rte_unused,
void *op_cookie __rte_unused)
{
}
#endif
#endif /* _QAT_SYM_H_ */